CRAB LARVAE (Callinectes), IN PLANKTON COLLECTIONS FROM CRUISES OF M/V Theodore N. Gill SOUTH ATLANTIC COAST OF THE UNITED STATES, 1953-54

448

SPECIAL SCIENTIFIC REPORT-FISHERIES No. 448

Harine Biological Laborat LIBRARY JAN COLIN WOODS HOLE, A

INITED STATES DEPARTMENT OF THE INTERIOR

FISH AND WILDLIFE SERV

UNITED STATES DEPARTMENT OF THE INTERIOR, Stewart L. Udall, Secretary FISH AND WILDLIFE SERVICE, Clarence F. Pautzke, Commissioner BUREAU OF COMMERCIAL FISHERIES, Donald L. McKernan, Director

CRAB LARVAE (Callinectes), IN PLANKTON COLLECTIONS FROM CRUISES OF M/V Theodore N. Gill, SOUTH ATLANTIC COAST OF THE UNITED STATES, 1953-54

by

Paul R. Nichols and Peggy M. Keney

United States Fish and Wildlife Service Special Scientific Report--Fisheries No. 448

> Washington, D.C. October 1963

CONTENTS

Page

Introduction	1
Methods	2
Occurrence of Callinectes larvae	2
Discussion	4
Literature cited	13

CRAB LARVAE (Callinectes), IN PLANKTON COLLECTIONS FROM CRUISES OF M/V Theodore N. Gill SOUTH ATLANTIC COAST OF THE UNITED STATES, 1953-54

by

Paul R. Nichols and Peggy M. Keney Fishery Biologists

ABSTRACT

During the course of nine *Gill* cruises, plankton was collected at 80 regular stations between Jupiter Light, Fla., and Cape Hatteras, N.C., from near the beaches to beyond the axis of the Gulf Stream, and from 9 special stations farther offshore. Subsamples were taken from selected collections and examined for *Callinectes* larvae. The presence of early stage zoeae indicated that spawning occurred throughout the year in Florida waters, but subsided during winter months in waters north of Florida. Early stage zoeae were captured at temperatures from 16.4° to 29.2° C., with peak numbers taken from May to November at 27.0° to 29.0°C., depending on the area. Early stage zoeae occurred in abundance near the beaches, advanced stage zoeae and megalops were more common offshore, while combined larval stages were found in greatest numbers at the 20-mile offshore stations.

INTRODUCTION

The identity and distribution of crabs, genus Callinectes occurring along the coast of the Southeastern United States are uncertain. Four crabs of this genus are known to occur in this area. They are C. sapidus, C. ornatus, C. danae, and C. Marginatus, Rathbun (1930) described each of these species and reported that the northern limits of their ranges are: C. sapidus, Cape Code, Mass.; C. ornatus, New Jersey; C. danac, Indian River Inlet, Fla.; and C. marginatus, the Florida Keys. Lunz (1958) reported that the morphological features usually given for taxonomic separation of the latter three species are quite variable, and individuals matching any of the frontal outlines given by Rathbun can be found in South Carolina waters. Also, Lunz reported that only about 30 percent of the crabs caught by trawlers on the South Carolina coast are C. sapidus. The remainder belong to another species of *Callinectes*, presumably *C. ornatus* (but possibly *C. danae*). Relatively large numbers of *C. sapidus*, and presumably *C. ornatus*, are taken in trawler catches on the North Carolina coast. Nonselective gear catches in the St. Johns River, Fla., are composed of *C. sapidus* and *C. ornatus*, but possibly *C. danae* or a combination of all three *Callinectes*.

Hatching and development of some *Callinectes* species are known to occur along the coastal area of the South Atlantic States. Lunz (1958) reported that egg-bearing females, presumably *C. ornatus* (but possibly *C. danae*), were trawled along the South Carolina coast in May, August, and September at temperatures ranging from 24° to 29° C., in salinities between 26.5 and 30.6 parts per thousand ($%_{\circ\circ}$). There were indications that spawning took place offshore and extended over a long period. Van Engel (1958) reported that mating of C. sapidus began in early May and continued into October in the Chesapeake Bay. After hatching, the larvae passed through a number of zoeal stages and a megalops stage, before they had the form of a crab. Also, Van Engel reported that the zoeal form lasted about a month, during which time it molted at least four times. Hopkins (1944) suggested that there may be a fifth stage zoea, and Snodgrass (1956) reported that perhaps there was a sixth stage zoea preceding the megalops stage. In the laboratory, Costlow and Bookout (1959) observed that C. sapidus had seven zoeal stages and one megalops before it reached the first crab stage. An eighth zoeal stage was sometimes observed but usually did not complete metamorphosis to the megalops. Development to the megalops required a minimum of 31 days and a maximum of 49 days. The megalops stage lasted from 6 to 20 days depending on the salinities used.

To obtain information on the spawning season and the number of larval molts of *Callinectes* crabs and to determine the offshore distribution and abundance of the larval forms in the areas crulsed by the Bureau of Commercial Fisheries research, vessel *Theodore N. Gill*, we examined the plankton collected by that vessel on nine cruises over a 2-year period, 1953-54. This study is a part of an investigation by the Bureau of the blue crab *C. sapidus* along the South Atlantic coast of the United States.

METHODS

The basic station plan for all cruises of the *Gill* has 80 regular stations between Jupiter Light (Florida Straits) and Cape Hatteras extending from near the beaches to beyond the axis of the Gulf Stream and 9 special stations farther offshore (fig. 1). The regular stations were 20 miles apart on the east-west line, 40 miles apart in the north-south direction, with some stations established inshore between the east-west lines. Nine cruises were made from January 1953 to December 1954; all varied from the basic plan (table 1). The physical oceanographic, biological, and chemical data were published in a series of

reports (Anderson and Gehringer, 1957a, 1957b, 1958a, 1958b, 1959a, 1959b, and 1959c; Anderson, Gehringer, and Cohen, 1956a and 1956b). Biological methods and procedures and other pertinent information were given in those reports.

To examine the plankton samples from the *Gill* cruises for *Callinectes* larvae a 40-ml. subsample was taken from each sample (table 2). Then, three 4-ml. aliquots were taken from each subsample, and the *Callinectes* larvae removed with the aid of a binocular microscope. The number of larvae at each stage was recorded and stored for future reference. Finally the larvae in each 4-ml. aliquot were combined. Identification of *Callinectes* type larvae was based on Costlow and Bookout (1959) and unpublished work by the Bureau of Commercial Fisheries Biological Laboratory, Beaufort, N.C.

OCCURRENCE OF Callinectes LARVAE

Early stage *Callinectes* zoeae were more common than the advanced stage zoeae, though all eight stages and the megalops were present. The most productive sections for the combined larval forms were Matanzas and Jacksonville, Fla.; Savannah, Ga.; Charleston, S.C.; and Cape Fear, N.C. (fig. 2). The number of larvae at each stage in each area in the combined 4-ml. aliquots, is listed in table 3 by cruise and station number. The east-west distribution of larvae at each stage is listed in table 4 by month with temperature, salinity, and depth of capture ranges.

In general, larger numbers of early stage zoeae were collected near the beaches with a progression to advanced stage zoeae occurring 20 and 40 miles offshore, and the megalops in greatest numbers were 40 or more miles offshore (figs. 3 and 4). In Florida and Georgia early stage zoeae and the megalops were collected each month, while late stage zoeae were collected only from April to October (fig. 5). In South Carolina and North Carolina early stage zoeae were collected from May to December, late stage zoeae from July to September, and megalops from January to December (fig. 6).

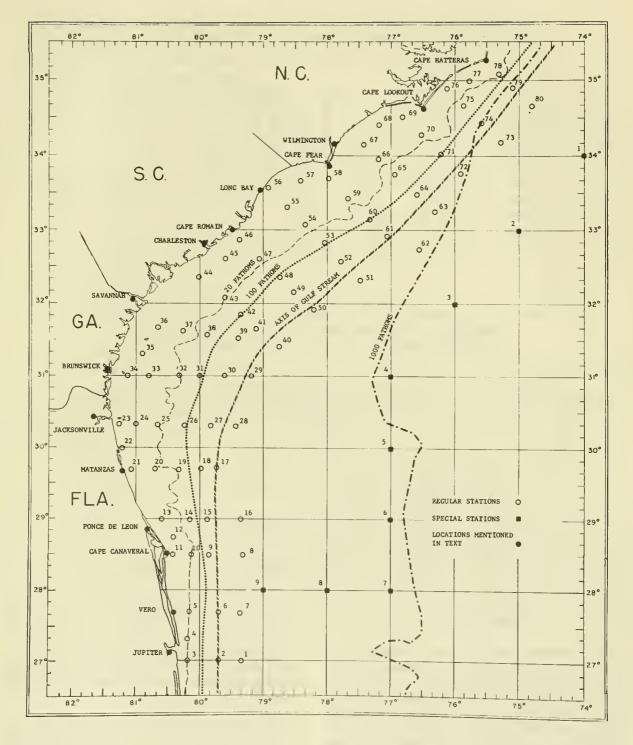
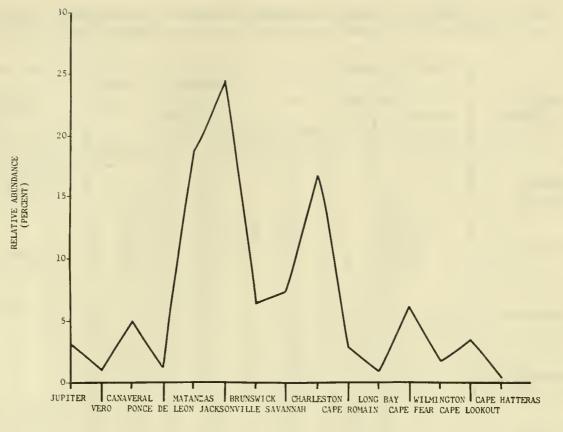


Figure 1.--Basic station plan Theodore N. Gill cruises, 1953-54.

Other crab larvae noted from all collections were Polyonyx sp., Emerita sp., llepatus sp., Portunus sp., Panopeus sp., Eurypanopeus sp., Neopanope sp., Menippe sp., Rhithropanopeus sp., Pinnotheres sp., Dissodactylus sp., Pinnixa Sesarma sp., Uca sp., and Leucosiidae plus some which resembled the Japanese genus Ethusozoea. Also some larvae were present which could not be identified. Table 1.--Cruises of the *Theodore N. Gill*, with unoccupied stations listed by number, South Atlantic coast of the United States, 1953-54

Cruise	Date	Unoccupied stations									
2 3 5 6 7 8	Feb. 10 - Mar. 10, 1953 Apr. 16 - May 15, 1953 July 15 - Aug. 16, 1953 Oct. 1 - Nov. 14, 1953 Jan. 20 - Feb. 25, 1954 Apr. 14-29, 1954 June 9 - July 13, 1954 Aug. 27 - Oct. 1, 1954 Nov. 3 - Dec. 12, 1954	9, 10, 12-22, 27-31, 63-68, 76, 78-80 50-52 73, 74, 78-80 17, 71-74, 78-80 27, 29-32, 45-57, 60, 72-74, 78-80 18-80 75 40-42, 76 31-34, 64, 73-80									


Table	2Plank	ton samp	ples ex	amined	for crab	larvae,	genus
	Callinectes	from T	heodore	N. Gil	ll cruises	s, South	
	Atlantic	coast d	of the	United	States, I	1953-54	

Cruise	Samples by station number											
	Regular	Special										
2 3 4 5 7 8	3, 4, 11, 24, 25, 32, 35, 38, 47, 59-71 1-49, 53-78, 80 1-42, 44-61, 63-72, 75-77 1-16, 18-43, 45-50, 55-58, 67-69 4, 6, 10, 12-14, 19, 20, 25, 37, 48, 54, 55, 66 1-49, 51-74, 76-80 1-7, 9-39, 43-63, 65-75, 79-80 10, 13, 19, 20, 23, 24, 36, 37, 43-46, 51, 54,56-58,67,71	1-9 5-9 5 5-9 										

DISCUSSION

The spawning period, under natural conditions, of the four *Callinectes* species occurring on the southeastern United States is not definitely known. The occurrence of early stage larvae in plankton collections from the *Gill* cruises indicates that spawning occurs throughout the year (figs. 5 and 6). Based on the limited range of each species as given by Rathbun (1930), the early stage larvae found from February to November in Florida waters probably included *C. sapidus* and *C. ornatus*, with possibly *C. danae*. The early stage larvae found from April to September or from May to November, depending on the area, in Georgia, South Carolina, and North Carolina waters probably was a combination of *C. sapidus* and *C. ornatus*. This, in general, may indicate a difference in spawning period between areas or differences among species in the same area in spawning time and length of spawning period.

The temperature and salinity tolerance of *Callinectes* larvae are uncertain. Costlow and Bookout (1959) successfully hatched *C. sapidus* in the laboratory at temperature-salinity combinations of 20° , 25° , 30° C., and 21.1 to $32.0 \%_{\circ \circ}$. The presence of first stage larvae in plankton samples from the *Gill* cruises indicates successful hatching by one or more of the species over a wide range of temperatures--from 18.1° to 29.2° C., in FlorIda waters,

SECTIONS

Figure 2.--Relative abundance of *Callinectes* larvae (combined stages) by area collected by *Theodore N. Gill* cruises, South Atlantic coast of the United States, 1953-54.

from 19.7° to 29.2° C. in Georgia waters, and from 22.0° to 28.2° C. in South Carolina waters (table 4 and fig. 5). The minimummaximum salinity, when the *Gill* cruise collections were taken, was 33.4-36.0 $\%_{00}$. In general, peak spawning occurred in water 27° to 29° C.

Peak numbers of first stage larvae appeared in April, June, July, and November in Florida waters; July, August, and September in Georgia waters; and May, July, August, and September in South Carolina and North Carolina waters. This occurrence of early stage larvae by month, however, may only reflect the time at which tows were made.

Costlow and Bookout (1959) reported that mortality was highest during the first zoeal stages in all temperature-salinity combinations. Once the second molt had been completed, however, some of the larvae lived to metamorphose to the crab. In the *Gill* cruise material, the large numbers of early stage larvae indicate a similar mortality under natural conditions for early stage zoeae. Also, when several third and fourth stage zoeae were present, advance stage zoeae were usually found in the same collection.

Whether most spawning occurs near the beaches and zoeae develop offshore is uncertain. The abundance and distribution on the east-west line from the beaches to 60 or more miles offshore followed the same pattern at all stations in Florida, Georgia, and South Carolina. Large numbers of first and second stage zoeae occurred near the heaches, with progression to advanced stage zoeae occurring 20 and 40 miles offshore. Megalops were usually in greater abundance offshore '40 or more miles (fig. 4). In North Carolina waters

Table 3.-- Callinectes larvae, in plankton samples from Theodore N. Gill cruises, South Atlantic coast of the United States, 1953-54

					Nun	iber c	of la	rvae			
State and section	Cruise	Sta- tion.				Zoe	a				Mega-
			lst	2d	3d	4th	5th	6th	7th	Sth	lops
Florida: Jupiter Vero	3,4 1,2,3,8 1,2,8 3,4,8	1 3 4 5	- 65 14 8	- 6 1	-		-				2 - - 1
Canaveral	4,5,8 8 3 2,3,4,8,9 2	6 7 19 9 10 11	- - - 86 7					-	-		15 1 2 1 2
Ponce de Leon	2,3,8 2,3,8,9 2,4 3,4,8	12 13 14 15	45 21 11 1	- 1 - 1		-	1 1 1		-	-	
Matanzas	4 2 2,3,9	16 18 19	- - 1	- - 5		- -	-	-		- -	1 1 1
Jacksonville	3,7,8 2,3,4,7,8 2,3,7,8 2,3,7,8 2,3,4,7,8,9 1,2,4,8 2,3,8	20 21 22 23 24 25 26	15 112 246 146 70 9 1	1 79 56 5 80 4	10 - 1 136 16 4	2 - 171 6 1	- - 93 4 4	- - 17 1 2		- - 1 1	1 4 4
Georgia: Brunswick	3 3 3 2,3 7,8 3,7,8	27 28 29 30 31 32			- 1 - - 23		1	1 - 6			1 - 1 2 1
Savannah	3,7,8 2,3,4,7,8 2,3,7,8 3,7,8 3,8 3,8 3,8 8	33 34 35 36 37 38 39	23 25 20 70 8 -	9 1 2 28 24 -	23 - 1 40 4	17 - - 31 3 -	12 - 15 11 -	0 - 1 5 3 1	- - 17 2	7	2 1 4 1 10 5 - 1

See footnote at the end of the table.

Table 3.-- Callinectes larvae in plankton samples from Theodore N. Gill cruises, South Atlantic coast of the United States, 1953-54--Continued

						Numbe	er of	larva	ae		
State and section	Cruise	Sta- tion	7000								Mega-
			lst	2d	3d	4th	5th	6th	7th	8th	lops
South Carolina: Charleston	2,3,7 7,8 2,3,8 2,3,8 2,3,8	42 43 44 45	- 88 323	- - 16 8	2 1 7	- - -	1 1 1 -		2 -	3 - -	21 1 -
Cape Romain. Long Bay	2,3,8 2,3,7 7 3,7	46 47 48 51	69 - - -	82-	1 - -	1 - -		- - - 1			- 1 1 3
	8 2,5,7,8 2,5,7,8 3,7,8	52 53 54 55 57	- - 1 1 8	- - 1 1	- 1 -	-	- 2 -				- 1 4 3 4
North Carolina: Cape Fear	3,7,8,9 7,8 3,8 2,7 7	58 59 60 61 62	143 3 -	4	- 7	- 3 1 -	- 9		- 3	-	8 - 1 4 1
Wilmington	2 3,7 3 2,8 3,4,8,9	63 64 65 66 67		- - 8 3	- - - 1		- - - 1		- - - 1	-	1 2 3 2 5
Cape Lookout	2,7,8 2,3,7,8 3,7,8 3,8 3,8 3,8 7 8	68 69 70 71 72 73 74	735-	3 9 1 - -	9 2		1 6		1 2 - 1 1		- 1 3 2 4 1
Cape Hatteras	2,3,8 7 2,7,8 8 8	74 75 76 77 78 79	- 23 2 -	- 1 3 -	- - 1 2 -	- - 1 1		-	-	-	5 2 1 1 -

¹ Special station

Table 4.--Number of each stage *Callinectes* larvae, in plankton samples from *Theodore N. Gill* cruises by area and month, South Atlantic coast of the United States, 1953-54

Temperature and salinity recorded for surface to 1 meter

		Mega-	lops		1 1	I	Ч	11	1	1	IJ	1	1	2	-1	T	ı	4	Ч	m	2	m	I	Ч
			8th		1 }	1	I	1 1	I	I	1	1	1	Ч	T	I	1	I	1	1	I	1	T	1
			7th		1 1	I	I	1 1	T	1	1	Ч	I	С	I	3	1	Ч	L	I	I	1	1	1
	arvae		6th		1 1	1	I	1 1	I	I	I	~7	Ч	12	I	1	1	Ч	I	Ч	Ч	1	ł	I
	of l	Zoea	5th		1 1	I	I	1 1	l	I	1	4	54	35	I	I	I	~	I	~	4	1	1	Ч
	Number of larvae		4th		11	I	I	1 1	1	I	I	2	105	59	I	I	I	Ч	I	1	9	ı	I.	1
	Ň		Зđ		1 1	1	Ч	1 1	I	t	1	20	78	38	I	1	to	4	ι	I	¢O	ı	I	-
			2đ	(י רי	2	143		t	I	2	29	ш	38	I	¢O	t	Ч	I	ı	4	Ч	4	I
			lst	t I	107	216	154	0 ~	1 ~1	I	9	4	Ч	27	20	124	I	1	t	ı	10	-1	Ч	1
,	Denth of	hauls		Meters	- - - - - - - - - - - - - - - - - - -	0-10	Surface-27	O-17	Surface	0-60	0-38	0-15	0-25	0-69	0-65	0-15	0-13	0-67	0-73	0-65	0-82	0-69	0-16	0-52
		Salinity		00/	35.5-36.2	35.1-35.5	35.4-35.9	34.7	36.0	36.2	36.1-36.3	35.5-35.9	35.8-36.0	35.9-36.4	33.5-35.9	36.2-36.4	36.1	36.1-36.3	35.9	35.8-36.0	35.6-36.4	35.8-36.0	36.1	35.9
		Temperature		° C.		3-27.7		26.4			21.1-24.9	-27.4		28.1-29.1	41	21.2-25.2	18.1	21.6-25.8	28.4		28.1-28.9		24.7	28.8
		Month			February April	June	July	September October	November	January	April	June	July	September	October	November	February	April	June	July	September	October	November	July
	4 4 4 7	and	а 1 са	Florida:	Beaches					Offshore							Offshore	40 miles						Offshore 60 miles

cruises Table 4.--Number of each stage *Callinectes* larvae, in plankton samples from *Theodore N. Gill* by area and month, South Atlantic coast of the United States, 1953-54--Continued

8th 1 1 1 1 1 1 Т 1 1 101 E I I 1 1 E 1 1.1 Т 1 1 £. 7 th91 ł Т ł 1 I. 1 Т \sim 1 н 1 ī. -1 t Т 1 I. Number of larvae 6th I I I H 1 1 0 00 I N H 1 I. 1 1 - - -1 1 1 1 1 E E 5 th1 0 H 1405 Zoea I H I I I H I I I I 1 1 1 T T 1 4th Т Т 1 I 27 i m 1 I. 1 1 1 H Т 1 1 1 4 - 1 ī 1 Т 1 2 8 0 1 **H** 1 100 1 1 00 1 1 110 3d 1 1 110 1 1 - 15 1.0 26 27 - \square Т 1 Т 1 1 -1 1 H Q 2d 1 1 Т L 1 ł, lst 1045 12212 г I Н £. ł 1 326 30 I - I 1 1 0 гο 1 124 Surface-20 0-20 0-0-8 4 0- 6 0-11 0-86 0-14 0-22 0-17 0-13 0-26 0-43 8 -0 0-15 0-24 0-44 Surface Depth of \mathcal{C} Surface Surface-14 tO Surface-5 9 0 Meters 6 6 hauls 35.7-35.9 36.0 34.9-35.0 35.8-36.1 34.4-35.7 36.0-36.1 34.6 35.6 36.2 35.4 34.7 35.7 34.3 35.9 35.7 35.8 36.1 36.3 33.4-33.9 33.7-34.5 35.1-36.1 34.2-35.4 34.8-35.2 Salinity 000 14.3 22.3 27.1-27.9 28.1-28.2 25.8-27.4 28.7-29.2 26.8 22.0-22.3 28.1-28.2 26.1-27.0 Temperature 27.5 28.6 27.2-27.5 27.8 27.6 27.7 28.0 28.0 22.7 28.0 7.9I 22.1 27.5-28.2 23.1 28.7-29.2 ° U August September September September September September September February October Month August August August August April April July July July July June June June May May May South Carolina: Offshore.... Beaches Offshore... Beaches Offshore... Offshore... State area 20 miles 40 miles 60 miles and or more 20 miles Georgia:

H m L I

19

INIIM

- I I

NH I

HINHI

I I I

Temperature and salinity recorded for surface to 1 meter

cruises by Table 4.--Number of each stage *Callinectes* larvae, in plankton samples from *Theodore N. Gill* area and month, South Atlantic coast of the United States, 1953-54--Continued

6400 Mega-HHQ I 12514 ~ - I ~ ~ ł 1 V H H 20 S - 1 lops 8 thI 1 3 I Т T. t Ч 5 ī T. I. ÷. t 1 t. 1 1 1 1 1 02 Т 1 7 thI. T I I. ÷. t T $\overline{}$ 1 ī t T. 1 T. t 1 i. ŝ I. 1 1 -Number of larvae Т 1 1 1 02 6th T. 1 1 1 1 1 1 1 1 1 r. Т 1 1 1 T. τ. 1 1 1 5th I 10 I. 3 ł t. 1 Т Ł 4 1-4 1 1 ¥. 1 Т Ł 1 ÷ t. T. 1 J. Zoea 4th $1 \propto$ 9 I. т T 1 Т 1 T. \checkmark Т t ł. ł I. I. T. 1 t 1 1 t. 1 1 H Ŧ INH I S I H 1 01 T. 1 Т T. 1.1 Т. 1 10 ÷. Т ŧ 4 15 r -Т 3d I m Q 1 Т. 1 1 1 1.1 t 1 1 H ι. 1 1 1 1 1 - 1 1 = 1L. 1 1 2d lst 18 18 32 103 12 1 t. ł T. Т 1 \sim L 2 t I 1 3 1 t, 1 I. Met er s 0-10 0-82 0-69 0-10 0-10 0-10 0-10 0-18 0-15 0-13 0- 8 0-22 77-0 0-65 0-102 0-52 0-60 0470 Surface 0-44 0-77 Surface 0-60 Surface Surface-19 Surface-5 Depth of hauls ° ∕°36.3 34.6-35.6 35.3-35.7 35.6-36.0 36.0 36.3 36.0 36.0 35.5 35.9 36.1 36.4 36.5 34.2-34.8 35.6-36.5 36.0-36.2 35.2-36.2 34.3-35.6 35.1-36.6 35.6-35.8 35.8-36.4 35.9-36.0 35.9-36.3 36.2-36.3 35.8-36.1 35.8-36.0 35.9-36.2 Salinity 21.2 36.8-27.2 27.7-28.1 25.3-28.2 18.9 27.6-28.7 27.8-28.2 °C. 18.5 28.9 24.5 27.4 29.1 27.2 15.6 16.4 26.8 27.4-27.6 26.6-27.6 25.6-26.6 22.0-22.1 20.0-21.1 25.0-27.2 27.3-27.7 25.7-26.3 24.4-28.3 24.0-25.0 27.1-28.2 Temperature September September September September September September November December February December Month August August August August August August July July July July July July May May May May May North Carolina: Offshore... Beaches Offshore... Offshore... Offshore... Offshore... 20 miles... 40 miles ... 60 miles 60 miles State 40 mile and more area or more OL

[Temperature and salinity recorded for surface to 1 meter]

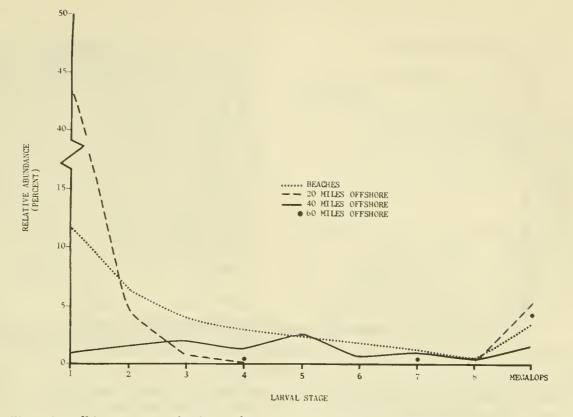


Figure 3.--Offshore relative abundance of larval stages of *Callinectes* in plankton samples from *Theodore N. Gill* cruises, North Carolina, 1953-54.

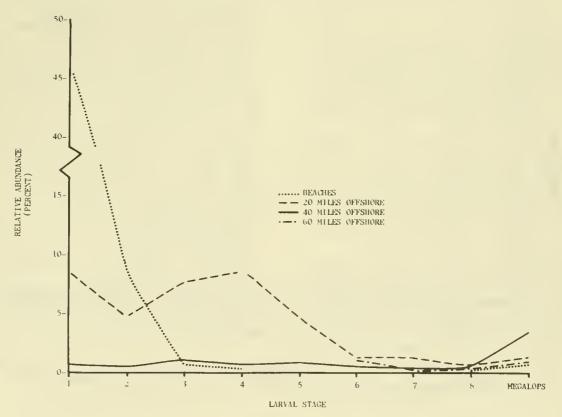


Figure 4.--Offshore relative abundance of larval stages of *Callinectes*, in plankton samples from *Theodore N. Gill* cruises, Florida, Georgia, and South Carolina, 1953-54.

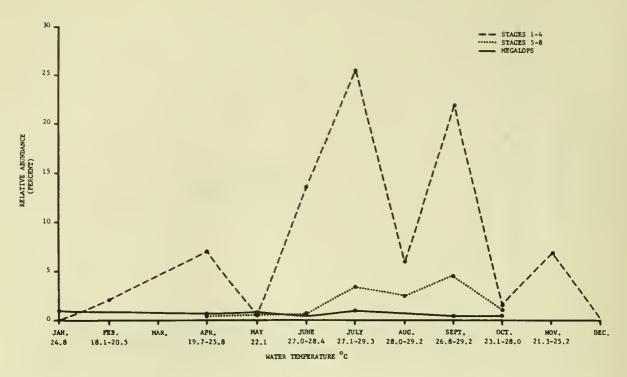


Figure 5.--Relative abundance of early and late stage zoeae and megalops, genus *Callinectes* by month in plankton samples from *Theodore N. Gill* cruises, Florida and Georgia, 1953-54.

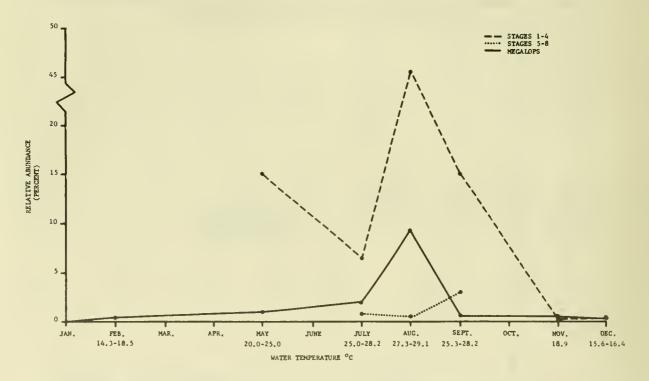


Figure 6,--Relative abundance of early and late stage zoeae and megalops, genus *Callinectes*, by month in plankton samples from *Theodore N. Gill* cruises, South Carolina and North Carolina, 1953-54,

large numbers of early stage zoeae occurred 20 miles offshore, and near the beach stations all stage zoeae and the megalops were found in relatively equal numbers (fig. 3). The 20-mile offshore stations were the most productive in the southern States, whereas in North Carolina the beach stations were the most productive. The reason for this difference is not known, though it may be a salinity or temperature combination or a current pattern. In North Carolina waters most beach stations were along the Outer Banks, separated from the mainland by sounds, whereas to the south the beach stations were adjacent to the mainland with fresh-water drainage emptying directly into the ocean.

Some differences were noted in comparing Collinectes larvae from Cill cruise collections to C. sapidus larvae at known stages of development (from the work of Costlow and Bookout). In some Callinectes a minute seta is present under the lateral spine on the telson at all stages of development, but this seta is absent on C. sapidus. A few of the advanced stage zoeae had slightly longer setae and longer exopodites on their antenna than C. sapidus. In others the lateral spines on the abdomen were slightly longer on the third segment from the telson, and the dorsal spine was straighter and longer than found on C. sapidus. In a few, the exopodite of the antenna varied in position from that of C. sapidus. In others 10 setae were present on the second maxilliped of the fourth stage zoeae instead of 9 for *C. sapidus*; a ninth spine on the inner margin of the telson on fifth stage zoeae instead of appearing on sixth stage *C. sapidus* zoeae; thoracic appendages extending below the carapace in sixth stage zoeae instead of seventh stage C. sapidus; and no setae on the pleopods in eighth stage zoeae as in *C. sapidus*. These inconsistencies may identify the presence of more than one *Callinectes* species and may be morphological features which can be used for taxonomic separation.

- ANDERSON, WILLIAM W., and JACK W. GEHRINGER.
 - 1957a. Physical oceanographic, biological, and chemical data, South Atlantic coast of the United States, *Theodore N. Gill* cruise 3, U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 210, 208 p.
 - 1957b. Physical oceanographic, biological, and chemical data, South Atlantic coast of the United States, M/V *Theodore N. Gill* cruise 4. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 234, 192 p.
 - 1958a. Physical oceanographic, biological, and chemical data, South Atlantic coast of the United States, M/V *Theodore N. Gill* cruise 5. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 248, 220 p.
 - 1958b. Physical oceanographic, biological, and chemical data, South Atlantic coast of the United States, M/V *Theodore N. Gill* cruise 6. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 265, 99 p.
 - 1959a. Physical oceanographic, biological, and chemical data, South Atlantic coast of the United States, M/V *Theodore N. Gill* cruise 7. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 278, 277 p.
 - 1959b. Physical oceanographic, biological, and chemical data, South Atlantic coast of the United States, M/V *Theodore'N. Gill* cruise 8, U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 303, 227 p.

ANDERSON, WILLIAM W., and JACK W. GEHRINGER.

1959c. Physical oceanographic, biological, and chemical data, South Atlantic coast of the United States, M/V *Theodore N. Gill* cruise 9. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 313, 226 p.

ANDERSON, WILLIAM W., JACK W. GEHRINGER, and EDWARD COHEN.

- 1956a. Physical oceanographic, biological, and chemical data. South Atlantic coast of the United States, M/V *Theodore N. Gill* cruise 1. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 178, 160 p.
- 1956b. Physical oceanographic, biological, and chemical data, South Atlantic coast of the United States, *Theodore N. Gill* cruise 2. U.S. Fish and Wildlife Service, Special Scientific Report--Fisheries No. 198, 270 p.

COSTLOW, JOHN D., JR., and C. G. BOOK-OUT.

1959. The larval development of *Callinectes* sapidus Rathbun reared in the laboratory. Biological Bulletin, vol. 116, no. 3 (June), p. 373-396. HOPKINS, SEWELL H.

1944. The external morphology of the third and fourth zoeal stages of the blue crab, *Callinectes sapidus* Rathbun. Biological Bulletin, vol. 87, no. 2, p. 145-152. [Contribution No. 20, Virginia Fisheries Laboratory, Gloucester Point, Va.]

LUNZ, G. ROBERT.

1958. Notes on a non-commercial crab of the genus *Callinectes* in trawl catches in South Carolina. Bears Bluff Laboratories, Wadmalaw Island, S.C. Contribution No. 27 (May) p. 3-17.

RATHBUN, MARY J.

1930. The cancroid crabs of America of the Families Euryalidae, Portunidae, Atelecyclidae, Cancridae, and Xanthidae. Smithsonian Institution. U.S. National Museum, Bulletin 152, p. 98-132.

SNODGRASS, R. E.

- 1956. Crustacean metamorphoses. Smithsonian Miscellaneous Collections, vol. 131, no. 10, p. 1-78.
- VAN ENGEL, W. A.
 - 1958. The blue crab and its fishery in Chesapeake Bay. U.S. Fish and Wildlife Service, Commercial Fisheries Review, (June) vol. 20, no. 6, p. 6-17. [Contribution No. 79, Virginia Fisheries Laboratory, Gloucester Point, Va.]

MS #1266

Created in 1849, the Department of the Interior—America's Department of Natural Resources—is concerned with the management, conservation, and development of the Nation's water, fish, wildlife, mineral, forest, and park and recreational resources. It also has major responsibilities for Indian and Territorial affairs.

As the Nation's principal conservation agency, the Department works to assure that nonrenewable resources are developed and used wisely, that park and recreational resources are conserved for the future, and that renewable resources make their full contribution to the progress, prosperity, and security of the United States—now and in the future.