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cropogonias undulatus) stock off the U.S. Atlantic coast 
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Corrections:

On page 56, Equation 6 is missing an equal sign in the 
calculation of the deviance statistic D. The equation 
should read as follows:

D Θ( ) = −2logL Θ( ) = −2log P(O|Θ)[ ]

On page 70, the age symbol in Equation A2 should be 
a, instead of � (alpha). Equation A2 should read as 
follows:

Fa = β L∞ 1− exp(−K(a− a0))[ ]{ }γ
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Abstract—Atlantic Croaker (Micropo-
gonias undulatus) production dynam-
ics along the U.S. Atlantic coast are 
regulated by fishing and winter water 
temperature. Stakeholders for this re-
source have recommended investigat-
ing the effects of climate covariates in 
assessment models. This study used 
state-space biomass dynamic models 
without (model 1) and with (model 2) 
the minimum winter estuarine tem-
perature (MWET) to examine MWET 
effects on Atlantic Croaker population 
dynamics during 1972–2008. In model 
2, MWET was introduced into the in-
trinsic rate of population increase (r). 
For both models, a prior probability 
distribution (prior) was constructed for 
r or a scaling parameter (r0); imputs 
were the fishery removals, and fall bio-
mass indices developed by using data 
from the Multispecies Bottom Trawl 
Survey of the Northeast Fisheries Sci-
ence Center, National Marine Fisheries 
Service, and the Coastal Trawl Survey 
of the Southeast Area Monitoring and 
Assessment Program. Model sensitivity 
runs incorporated a uniform(0.01,1.5) 
prior for r or r0 and bycatch data from 
the shrimp-trawl fishery. All model 
variants produced similar results and 
therefore supported the conclusion of 
low risk of overfishing for the Atlantic 
Croaker stock in the 2000s. However, 
the data statistically supported only 
model 1 and its configuration that 
included the shrimp-trawl fishery 
bycatch. The process errors of these 
models showed slightly positive and 
significant correlations with MWET, 
indicating that warmer winters would 
enhance Atlantic Croaker biomass pro-
duction. Inconclusive, somewhat con-
flicting results indicate that biomass 
dynamic models should not integrate 
MWET, pending, perhaps, accumula-
tion of longer time series of the vari-
ables controlling the production dy-
namics of Atlantic Croaker, preferably 
including winter-induced estimates of 
Atlantic Croaker kills. 

The Atlantic Croaker (Micropogo-
nias undulatus) is a demersal sci-
aenid species common in estuarine 
and coastal waters of the U.S. Atlan-
tic coast (Chao and Musick, 1977). 
This species is abundant off the U.S. 
mid- and southeast Atlantic coast, 
where it forms a single genetic popu-
lation and management stock-unit 
supporting important commercial 
and recreational fi sheries (Atlantic 
States Marine Fisheries Commission 
[ASMFC]1). Exploitation of Atlan-
tic Croaker began in the 1800s, but 
coastwide (New Jersey–east Florida) 
commercial removals and bycatch 
estimates have been consistently 
reported only since 1950 and recre-
ational harvests and catches since 
1981. These statistics show periodic, 
sudden highs and lows over the time 
series (Fig. 1A). 

Although fi shing can have a signif-
icant impact on the Atlantic Croaker 
population (ASMFC1; Hare et al., 
2010), Hare and Able (2007) advo-
cated the hypothesis that population 
“outbursts” and harvest variability of 
Atlantic Croaker are largely driven 
by long-term trends in winter tem-

1 ASMFC (Atlantic States Marine Fish-
eries Commission). 2010. Atlantic 
Croaker 2010 benchmark stock assess-
ment. ASMFC, Washington, D.C., 336 p. 
[Available from  http://www.sefsc.noaa.
gov/sedar/download/Atlantic%20Croak-
er%20Stock%20Assessment%20Report.
pdf?id=DOCUMENT, accessed January 
2012.]  

perature. This idea was consistent 
with the observations that juvenile 
(age-0) Atlantic Croaker spend their 
first winter (December–March) in 
estuarine nursery habitats where 
winter water temperatures appear 
to regulate juvenile Atlantic Croak-
er survival and year-class strength 
(Norcross and Austin;2 Lankford 
and Targett, 2001a, 2001b; Hare 
and Able, 2007; Hare et al., 2010). 
The mechanistic link between abun-
dance of juvenile Atlantic Croaker 
and water temperature led Hare and 
Able (2007) to develop a conceptual 
model in which sequential warm 
winters result in high juvenile sur-
vival rates. Such high rates of juve-
nile survival would in turn lead to 
large year-classes that increase the 
population size. The reverse would 
be true of cold winters. These au-
thors found positive, often signifi cant 
correlations between spring juvenile 
and adult (age-2) abundances and 
minimum winter estuarine tempera-
ture (MWET) and between coastwide 
adult catch and either MWET or the 
North Atlantic Oscillation. 

2 Norcross, B.L., and H.M. Austin. 1981. 
Climate scale environmental factors af-
fecting year class fl uctuations of Chesa-
peake Bay croaker, Micropogonias undu-
latus. Special Scientifi c Report 110, 78 
p. Virginia Institute of Marine Science, 
College of William and Mary, Gloucester 
Point, VA. [Available from  http://web.
vims.edu/GreyLit/VIMS/ssr110.pdf.]
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Their results supported a hypothesis put forward 
by Joseph (1972) and concurred with the fi ndings of 
Norcross and Austin.2 Joseph (1972) analyzed the fl uc-
tuations of commercial landings for Atlantic Croaker 
from the Mid-Atlantic Bight (1890–1967) and discussed 
4 possible causes of their sudden decline after 1945 
(i.e., recruitment overfi shing, habitat degradation by 
humans, multispecies interactions, and environmental 
forcing due to natural events). He dismissed the fi rst 
three causes as potential driving forces of the declin-
ing landings and attributed that decline to extremely 
low winter temperatures that had decimated overwin-
tering age-0 Atlantic Croaker in estuarine nursery 
habitats. He documented evidence that large landings 
had been associated with warming of sea temperatures 
and that the historical declines in landings had always 
followed cooling trends. On the basis of this informa-
tion, he originally proposed the overwintering mortal-
ity hypothesis in juvenile Atlantic Croaker during cold 
winters, resulting in weak year-classes and future, low 
population sizes. 

This hypothesis has been repeatedly adopted in 
subsequent studies. In this respect, Norcross and Aus-
tin2 showed that the abundance of juvenile Atlantic 
Croaker in Chesapeake Bay (Virginia) during summer 
positively correlated with estuarine water tempera-
ture during the previous winter. They associated the 
increase in catch in the mid-1970s with warmer winter 
temperatures and a decrease in catch in the late-1970s 
with colder winter temperatures.

With the exception of the study by Hare et al. 
(2010), studies of the population dynamics and man-
agement of Atlantic Croaker have ignored environmen-
tal effects on the processes modeled (Barbieri et al., 
1997; Lee, 2005; ASMFC3,1). On the basis of a mecha-
nistic recruitment–winter temperature hypothesis (de-
scribed above), Hare et al. (2010) developed a coupled 
climate–population dynamics model. This model is an 
age-structured production model in which recruitment 
is generated through a stock-recruit relation, and the 
age composition is simulated to be conditional on the 
closest correspondence between predicted and observed 
harvests. The climate effects are log-linearly incorpo-
rated into the model through a Ricker spawning-stock 
function with a temperature (i.e., MWET) variable. The 
coupled model indicates that both exploitation and cli-
mate changes signifi cantly affect Atlantic Croaker 
abundance. Importantly, Hare et al. (2010) found a 
signifi cant correlation between the observed Atlantic 
Croaker recruitment and MWET, which thereby sup-
ports the mechanistic recruitment hypothesis of Hare 
and Able (2007).

The Atlantic Croaker stock in U.S. Atlantic waters 
can be considered data-moderate. In fact, this stock has 

3 ASMFC (Atlantic States Marine Fisheries Commission). 
2005. Atlantic Croaker stock assessment and peer review 
reports. ASMFC, Washington, D.C, 370 p. [Available from 
 http://www.asmfc.org/, accessed January 2012.]

been associated with many data sets, some of which 
were characterized by considerable uncertainty in their 
estimates and representativeness. For example, the 
ASMFC stock assessment subcommittees (ASMFC3,1) 
identifi ed numerous small-scale (i.e., bay- or sound-
specifi c) and 2 large-scale (i.e., spanning wide areas, 
many years, or both) survey indices of abundance, one 
coastwide or regional fi shery-dependent index (i.e., the 
total catch per unit of effort [CPUE] from the National 
Marine Fisheries Service [NMFS] Marine Recreational 
Fisheries Statistics Surveys [MRFSS]), and various 
sources of fi sh kills and length data. 

Evaluation of these data sets and assessment pro-
cedures revealed the following. The small-scale indices 
of abundance possibly refl ected better local than coast-
wide dynamics. The fi rst stock assessment (ASMFC3) 
lacked catch-at-age (CAA) data and dealt with confl ict-
ing trends in regional indices of abundance. The south-
eastern (North Carolina–east Florida) shrimp trawl 
fi shery (SESTF) bycatch, commercial fi shery discards, 
and scrap (or bait) fi shery landings are currently con-
sidered signifi cant but have been poorly characterized. 
The development of the MRFSS CPUE appeared unre-
liable and raised concerns about its value as relative 
index of stock abundance (ASMFC1). In this context, 
differing decisions and assessment choices have been 
adopted. Preference has been given to large-scale sur-
vey indices and, in order to characterize recruitment, 
to a few small-scale indices developed from survey data 
collected in the so-called overwintering core area for ju-
veniles. The fi rst stock assessment of Atlantic Croaker 
(ASMFC3) relied on an age-structured production mod-
el (1973–2002).

Because of the diffi culties encountered in reconciling 
the confl icts between regional indices, regional models 
have been developed, thereby splitting the stock into 
the “northern” and “southern” management units. The 
model for the south Atlantic region, however, did not 
perform satisfactorily. Because that portion of the stock 
could not be assessed, emphasis was placed on the 
“northern” stock. In contrast, the 2010 assessment sub-
committee (ASMFC1) did not fi nd evidence to support 
a north–south separation of the stock and conducted 
an assessment encompassing data for the coastwide 
stock. Moreover, this subcommittee developed matri-
ces of CAA for 1988–2008 only and explored various 
assessment approaches, including continuity runs, but 
ultimately chose a statistical CAA model that uses the 
aforementioned CAA data. 

The results of that model form the basis for current 
management. Unfortunately, inadequate estimates of 
the SESTF bycatch and scrap fi shery landings particu-
larly hampered the determination of overfi shed status 
of the stock. Meanwhile, various ASMFC stock-assess-
ment subcommittees and review panels documented 
information about climate effects on the population dy-
namics of Atlantic Croaker. They consequently recom-
mended that stock assessment models investigate envi-
ronmental covariates to improve understanding of the 
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dynamics in question and management implications. 
Hare et al.’s (2010) work provides guidance, serving as 
a preliminary study with respect to the recommenda-
tion for age-structured models. 

The primary purpose of this study was to investi-
gate whether biomass dynamic models (BDMs) could 
capture the MWET effects on the population dynamics 
of Atlantic Croaker off the U.S. Atlantic coast and to 
determine how this result effected the status determi-
nation of the stock. Use of BDMs was aimed to address 
ASMFC’s need and Hare et al.’s (2010, p. 
461) suggestion regarding exploration of 
alternative models incorporating MWET, 
given that BDMs have the potential to 
track environmental perturbations (Keyl 
and Wolff, 2008). Unlike Hare et al. (2010), 
who dealt only with the “northern” stock of 
Atlantic Croaker, consistent with ASMFC,3 
BDMs here incorporated relevant data 
for the coastwide stock in accordance with 
ASMFC.1 Analyses relied upon a Bayes-
ian state-space modeling framework with 
software from the Bayesian inference 
Using Gibbs Sampling (BUGS) Project. 

The influence of MWET on Atlantic 
Croaker stock biomass and productivity 
was investigated by two complementary 
approaches. First, process errors were in-
troduced into a traditional BDM so that 
it could be determined whether those er-
rors refl ected environmental anomalies, 
assumed here to be largely dominated by 
changes in winter estuarine temperature 
(Joseph, 1972; Hare and Able, 2007; Hare 
et al., 2010) and, hence, showed some re-
lationship with MWET. Second, we inves-
tigated the effects of explicitly incorporat-
ing MWET into a BDM—that would yield 
effects on both population dynamics and 
management parameters.

Materials and methods

Data

This study relied on fi shery and survey 
data used in ASMFC1 BDMs, except for 
the MRFSS CPUE because its develop-
ment was questionable and because it was 
not considered a reliable index for stock 
biomass. The fishery-dependent remov-
als (Fig. 1A) included 1) coastwide aggre-
gates of commercial fi shery landings and 
commercial fi nfi sh bycatch and discards 
(1972–2008), 2) coastwide recreational 
kills (1981–2008), 3) North Carolina scrap 
landings (1981–2008), and 4) SESTF by-
catch (1972–2008). 

The NMFS, the Atlantic Coastal Cooperative Sta-
tistics Program, and individual state fi shery agencies 
have participated in collecting commercial landings 
data using various temporal resolutions and reporting 
requirements and processes. Reported commercial land-
ings for all gear types (including the landed SESTF 
bycatch) were obtained from the Atlantic Coastal Co-
operative Statistics Program Data Warehouse and, in 
3 cases, from individual state reports. The commercial 
fi nfi sh bycatch or discards were estimated for gill nets 

Figure 1
Time series for the period of 1972–2008 of (A) commercial, recre-
ational, and scrap (bait) fishery removals and bycatch of the south-
eastern (North Carolina–east Florida) shrimp trawl fishery (SESTF) 
for Atlantic Croaker inhabiting the U.S. Atlantic coast; (B) biomass 
indices for Atlantic Croaker inhabiting the U.S. Atlantic coast, spe-
cifically the National Marine Fisheries Service–Northeast Fisheries 
Science Center (NEFSC) fall index and the Southeast Area Monitor-
ing and Assessment Program (SEAMAP) fall index; and (C) winter 
air temperature for Virginia as a proxy for minimum winter estua-
rine temperature.
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and otter trawls by using the geometric mean of the 
ratios of observed discards to reported landings. These 
ratios were developed from the NMFS Observer Pro-
gram data set. 

The recreational kills consisted of type A (dead fi sh 
brought ashore and available for identifi cation by in-
terviewers), type B1 (fi sh not brought ashore, hence 
not seen by samplers, but were used as bait or were 
discarded dead), and type B2 (fi sh released alive; they 
were of small sizes, with a 10% assumed release mortal-
ity). They were obtained from data-collection programs 
operated by the NMFS MRFSS since 1981. Estimates 
of North Carolina scrap fi shery landings were provided 
by the North Carolina Division of Marine Fisheries, 
which is the only state agency that routinely sampled 
such a fi shery since 1986 (the 1981–85 estimates were 
based on the proportion of Atlantic Croaker in the un-
classifi ed fi nfi sh bait landings during 1986–90). 

Atlantic Croaker also are one of the major compo-
nents of the SESTF bycatch, but the magnitude of the 
SESTF Atlantic Croaker discards is highly uncertain. 
The related estimates were produced by using a simple 
fi sh-catch to shrimp-catch ratio for study materials col-
lected in North Carolina and South Carolina, and the 
resulting catch ratio was expanded to the entire coast. 
Such estimates largely exceeded the reported landings 
in most years (Fig. 1A) but were considered extremely 
crude and unreliable. For this reason, ASMFC1 omit-
ted the SESTF bycatch in BDMs and included them 
in the age-structured model for sensitivity runs only. 
Likewise, the SESFT bycatch estimates were used here 
for sensitivity analyses.

Biomass indices (Fig. 1B) included the fall (Sep-
tember–November) components of the Multispe-
cies Bottom Trawl Survey (1972–2008) of the NMFS 
Northeast Fisheries Science Center (NEFSC) and the 
Coastal Trawl Survey (1990–2008) of the multiagency 
Southeast Area Monitoring and Assessment Program 
(SEAMAP). The NEFSC and SEAMAP indices were 
chosen because the corresponding surveys showed 
wide geographic coverage, temporal coverage, or both; 
have been conducted consistently; and have provided 
evidence of regular encounters with Atlantic Croaker 
of different age groups (ASMFC;1 Appendix 1). More-
over, unlike the coastwide MRFSS CPUE, the NEFSC 
and SEAMAP indices were considered refl ective of the 
Atlantic Croaker stock size and trajectory (ASMFC1). 
Although various model runs used the MRFSS CPUE 
during the 2010 stock assessment, this index raised 
many concerns and therefore it was excluded from the 
fi nal assessment model (ASMFC1). 

MWET was added as a variable of environmental 
forcing of the Atlantic Croaker population dynamics. 
Winter air temperature data for Virginia—a Chesa-
peake Bay region state—were extracted from the web-
site of the Southeast Regional Climate Center ( http://
www.sercc.com/climateinfo_files/monthly/Virginia_
temp.html, accessed May 2012). Air temperature is 
considered a good proxy for estuarine water temper-

ature because of the effi cient ocean-atmosphere heat 
exchange in estuarine systems (Hare and Able, 2007). 
On the U.S. Atlantic coast, winter temperatures of one 
location (here, the Chesapeake Bay region) are a good 
proxy for the entire coast owing to a strong coherence 
among local winter temperatures (Joyce, 2002; Hare 
et al., 2010). As shown in Hare and Able (2007) and 
Hare et al. (2010), MWET corresponded with the mini-
mum monthly mean air temperature from December 
to March. Specifi cally, MWET values were the mean 
temperatures of the coldest months during the winter 
seasons. The Chesapeake Bay region’s MWET (Fig. 1C) 
was suited for a study of its effects on the Atlantic 
Croaker population dynamics because the Chesapeake 
Bay region is a major overwintering nursery area for 
the species (Hare et al., 2010). 

Biomass dynamic models

The analyses covered the 1972–2008 period, consistent 
with the years for which data for BDM implementa-
tions were available in the 2010 stock assessment 
(ASMFC1). Two Bayesian state-space biomass dynamic 
models (BSSBDMs) were developed and used: a dis-
crete BSSBDM without MWET (model 1, M1) and a 
discrete BSSBDM that integrated MWET (model 2, 
M2). Both models used a one-year time (t) step. A 
state-space model describes 2 interrelated time series 
of state and observation processes (Buckland et al., 
2004), both of which account for random errors. The 
state process defi ned the stochastic temporal dynamics 
of the unobserved (or latent) age-aggregated stock size 
of Atlantic Croaker that is due to natural variation. 
The corresponding error, referred to as process error, 
is the joint effect of random multiplicative factors (e.g., 
fl uctuations in life history parameters, trophic inter-
actions, environmental disturbance). The process error 
in M1 included all forms of environmental variations 
and, in M2, environmental variations over and above 
the variations pertaining to MWET. The observation 
errors (arising from measurement and sampling errors) 
related only to observed indices of biomass. These indi-
ces were assumed to be a linear function of the latent 
biomass.

Consistent with Meyer and Millar (1999) and Millar 
and Meyer (2000), M1 and M2 described the process-
es under consideration through a set of 3 probability 
density functions (PDFs) g(.) and h(.), given the latent, 
beginning-of-the-year exploitable biomass (Bt), the sets 
of unknown model parameters (Θ ), the set of known 
covariates (C), and observed indices of biomass by year 
(Oit; i = NEFSC index, SEAMAP index):

 g1972(B1972|Θ)

 Initial (1972) state PDF (1a)

 gt(Bt+1|Bt,Θ ,C)

 State PDF (t = 1973, …, 2008) (1b)
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 hit(Oit|Bt,Θ) 

 Observation process PDF 
 (i = 1, …, 2; t = 1972, …, 2008). (1c)

Specifi cally, C = R ∪ W; R = {Rt}, the set of total 
fi shery removals (t=1972, …, 2008); and W = {Wt}, the 
set of MWET time series (t= 972, …, 2008). For M1, Bt 
was exposed only to fi shing (C = R). For M2, Bt was af-
fected by both fi shing and water winter temperature (C 
= R ∪ W). For simplicity, the fi sheries removals were 
assumed to be known perfectly. The SEAMAP index 
during 1972–89 was treated as an unobserved random 
variable because it was unavailable across that period. 

The deterministic, time-discrete part of biomass ex-
pectation in M1 and M2 is expressed as

 
E(Bt+1) = Bt+1 = Bt + Gt − Rft

f
∑ ,

 
(2)

where f = a subscript for fi shery and, during year t;
 Gt = production that quantifi es the overall change 

in biomass due to somatic growth, re-
cruitment, and natural mortality; and 

 Rft =  fi shery-specifi c removals. 

Gt is a function of Bt, the intrinsic rate of popula-
tion increase (r), and the carrying capacity (B∞). The 
 Graham-Schaefer (or logistic) form was chosen to quan-
tify Gt because of its simplicity (it has 2 parameters, r 
and B∞) and because it is a central case among possi-
ble shapes of production models (Prager, 1994). There-
fore, for M1,

 
Gt = rBt 1− Bt

B∞

⎛
⎝⎜

⎞
⎠⎟
.
 

(3a)

In biomass dynamic modeling with environmental 
effects, environmental factors can act on the stock pro-
ductivity (i.e., on r, B∞, or both), the fi sheries’ or sur-
veys’ catchabilities, or both (Fréon, 1988; Jacobson et 
al., 2005; Jensen, 2002, 2005). MWET was normalized 
and introduced into the parameter r because MWET 
affects Atlantic Croaker productivity through growth 
or recruitment during the prerecruit stage (Hare and 
Able, 2007). The approach followed the framework 
of log-linearly adding environmental covariates into 
fi sheries models (e.g., Hilborn and Walters, 1992) and 
assuming implicit controlling effects of MWET on re-
cruitment (Iles and Beverton, 1998; Levi et al., 2003). 
Therefore, for M2, the year-specifi c intrinsic rate of in-
crease (rt) is

 rt = r0e�Wt,  (3b)

where α is a coeffi cient controlling (linearly) the infl u-
ence of MWET on Atlantic Croaker productivity and 
r0 is a scaling parameter. In common with similar ap-
plications (e.g., Maunder and Watters, 2003), α was 
limited to values greater than zero because MWET is 
positively correlated with juvenile production (Norcross 
and Austin2; Hare and Able, 2007). 

To improve the effi ciency of the Markov Chain Mon-
te Carlo (MCMC) estimation algorithm implemented 

in BUGS, the state-space formulations of M1 and M2 
were expressed in terms of depletions, bt (bt = Bt/B∞),  
herein considered to be “true” and assumed to have log-
normal distributions (Meyer and Millar, 1999; Millar 
and Meyer, 2000):

 
b1972 ∼ LN log b̂1972( ),τp

2⎡
⎣

⎤
⎦

 for M1 and M2, (4a)

 

bt+1 ∼ LN log (1+ r)b̂t − rbt
2 − b∞ Rft

f
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,τp

2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 for M1 (t = 1973, …, 2008),4 (4b)

 

bt+1 ∼ LN log (1+ rt )b̂t − rtb̂t
2 − b∞ Rft

f
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,τp

2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 for M2 (t = 1973, …, 2008), (4c)

where b {t = the expected depletion in year t, treated as 
deterministic; 

 b∞ = 1/B∞; and 

 τp
2  = the precision (inverse of the variance, 

σp
2 ) of the process error.

For the observation error model (Eq. 1c), each bio-
mass index (itj) was assumed to be proportional to the 
year- and period (j)-specifi c biomass and to be log-
normally distributed about its expected, model esti-
mate ( îtj ):

 
itj ∼ LN log îtj( ),τ ij

2⎡
⎣

⎤
⎦  

(5a)5 

  
îtj = Aij�ibtB∞.

 (5b)

For the NEFSC index, j=1 (1972–93) when the index 
varied at low levels with no obvious trend or 2 (1994–
2008) when the index showed an overall increasing 
trend (Fig. 1B). In fact, this index indicates that At-
lantic Croaker accessibility and vulnerability changed 
between these periods. For the SEAMAP index, j = 1 
(1990–2008) because the index varied without trend 
(Fig. 1B). In Equation 5a,

τij
2  = the observation error precision (τij

2 = 1 / σij
2 , σij

2  
is the observation error variance) by period.

In Equation 5b, 

4 Equation 4 a–c corresponds with BUGS parameteriza-
tions and code. The usual stochastic formulation of Equ-

tion 4b, for example, is bt+1 = (1+ r)b̂t − rb̂t
2 − b∞ Rft

f
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
eεt ,

where εt ∼ N 0,σp
2( )  and 1+ r( )b̂t − rb̂t

2 − b∞ Rft
f
∑ = b̂t+1.  The

 expected (deterministic) biomass ( B̂t+1 ) and the stochas-
tic (true) biomass (Bt+1 ) in year t+1 are B̂t+1 = b̂t+1B∞  and 
Bt+1 = bt+1B∞ = b̂t+1B∞eεt .  The same formulation applies for 
Equation 4, a and c.

5 The usual stochastic formulation of Equation 5a is itj = îtje
ωijt , 

with ω ijt ∼ N 0,σ ij
2( ).
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Aij = the stock availability coeffi cient by period, as-
sumed to refl ect all biological and ecological 
factors affecting the stock; 

�i = the survey’s global effi ciency, assumed to be 
constant and to measure human and techno-
logical factors of the survey while catching ani-
mals available in the sampled strata.

The assumption of constant �i implies a time-invari-
ant sampling protocol, which has broadly prevailed for 
each survey program during the time frame considered. 
Both Aij and �i modify the survey catchability by pe-
riod (qij), which was expressed as qij = Aij�i. Note that, 
for each survey, q ranges from zero to one; in other 
words, A ∈ [0,1] and � ∈ [0,1]; q = 0 if A = 0 (unavail-
able animals during the survey) or � = 0 (ineffi cient 
survey).

Model parameters, derived quantities, and parameter esti-
mation procedure

The sets of parameters were Θ = r,b∞,σ p
2,σ ij

2, Aij,φi,b̂1972{ }
for M1 and Θ = r0,α ,b∞,σ p

2,σ ij
2, Aij, φi,b̂1972{ }  for M2.

The derived metrics included b1972,…,b2008; B∞; B1972,
…,B2008 (assumed to follow a lognormal distribution); 
SEAMP1972,…,SEAMP1989; qij; the expected maximum 
sustainable yield, MSY  (MSY  = rB∞/4); the expected 
biomass and harvest rate at MSY  (B {MSY = B∞/2 and 
H {MSY = r/2); the biomass and fi shery-specifi c harvest 
ratios  Bt/B {MSY and Hft/H {MSY; and for M2, r1972,…
,r2008. The previous metrics for management strictly 
relate to M1. For M2, B {MSY = B∞/2 and the ratio Bt/
B {MSY are still valid, but other metrics are year-specifi c 
(Fréon, 1988; for comparable alternatives, see Jacobson 
et al., 2005; Jensen, 2005) and de facto log-linearly re-
lated to MWET: MSY t  = rtB∞/4, H {MSYt = rt/2, and the 
harvest ratio is Hft/H {MSYt. Each fi shery-specifi c har-
vest rate was estimated as Hft = Rft/Bt. The total har-
vest rates and harvest ratios were calculated similarly, 
across fi sheries.

The BSSBDM parameters were assumed to be mu-
tually independent. The Bayes theorem (e.g., Hilborn 
and Mangel, 1997) was used to estimate the poste-
rior distributions of the BSSBDM parameters and of 
the derived metrics or statistics of interest. The use 
of the Bayes theorem fi rst required specifi cation of 
prior PDFs, P(Θ ), about knowledge or hypotheses on 
Θ  (Table 1), independent of information contained in 
biomass indices. The models were then fi tted to the ob-
served data of biomass indices (O) by using a likelihood 
(or sampling density) function, L(Θ ) = P(O|Θ ) and, in 
the process, updated P(Θ ) into the joint posterior prob-
ability, P(Θ|O). 

A prior PDF was developed for the parameter r only 
(Appendix 2) on the basis of Atlantic Croaker demo-
graphics (Appendix 3). This PDF was applied to both 
M1 and M2 but stood for r0 in M2 (Table 1). To aid 
direct comparison of models, priors for other param-
eters were specifi ed similarly with noninformative dis-
tributions (here gamma, uniform, or normal; henceforth 

denoted G, U, and N, respectively). Similar to the role 
played by b∞ in lieu of B∞, priors were assigned to aij = 
1/Aij and ϕi = 1/�i  to increase the mixing speed and ef-
fi ciency of the Gibbs sampler underlying BUGS; Aij and 
�i were derived a posteriori. The choice of noninforma-
tive priors (Table 1) was dictated by ignorance of most 
parameters, but those priors have been constrained to 
fall within bounds suspected to give support to plau-
sible parameter values. For example, B∞ was assumed 
to be uniformly distributed between 10× and 100× the 
observed total fi shery removals. 

The Gibbs sampler, a MCMC, numerically inten-
sive technique implemented in the WinBUGS software 
(vers. 1.4.3;6 Lunn et al., 2000), was used to sample 
parameter vectors from the joint posterior distribu-
tions. WinBUGS was run, without starting values, from 
R software (vers. 2.15.3; R Development Core Team, 
2013) by employing the package R2WinBUGS (Sturtz 
et al., 2005).

The key issue in MCMC simulations is determi-
nation of when the chain has adequately converged 
(i.e., when the random draws, also called samples, or 
iterations, truly represent the posterior distribution). 
In theory, convergence occurs when the number of it-
erations increases to infi nity, but an infi nite number 
of iterations poses problems of computer storage and 
computing time. Moreover, MCMC samples are charac-
terized by autocorrelation of initial values within the 
chain. In practice and by convention, convergence can 
be achieved by lengthening the chain, autocorrelation 
can be reduced by discarding some initial draws (the 
burn-in period), and disk space is preserved by keeping 
one draw every several iterations (thinning). The burn-
in period and the thinning interval also must be long. 

In this study, 3 independent chains, each with 
100,000 iterations, a burn-in period of 50,000 draws, 
and a thinning interval of 10 (1 in every 10 values 
was kept) were simulated and led to satisfying conver-
gence diagnostics. Therefore, 5000 iterations for each 
chain were saved and used for inference. Convergence 
of MCMC simulations to posterior distributions was 
checked by inspecting the traces, autocorrelation plots, 
and Gelman-Rubin (G-R) statistic. In R2WinBUGS, the 
G-R statistic is called a potential scale-reduction factor 
or R { statistic; at convergence, R { � 1, 1.1 being an ac-
ceptable threshold (Sturtz et al, 2005). This statistic is 
considered suffi cient in most practical situations (Rivot 
et al., 2004). The fi nal marginal posterior PDFs were 
summarized in terms of the mean, standard deviation, 
median, and the 2.5th and 97.5th percentiles, which 
defi ne the 95% Bayesian central interval (95% BCI). A 
95% BCI means that there is exactly a 0.95 probability 
that the true value of a parameter lies within that in-
terval given the model, data, and priors (Ellison, 2004; 
Grobois et al., 2008; Kéry, 2010). 

6 Mention of trade names or commercial companies is for iden-
tifi cation purposes only and does not imply endorsement by 
the National Marine Fisheries Service, NOAA.

�i

�i
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Model confi gurations

Models M1 and M2 consisted of the base-case scenarios 
when using the prior PDF developed for the parame-
ters r or r0 and excluding the SESTF bycatch. Sensitiv-
ity to M1 and M2 outcomes was performed by using an 
alternative prior for r or r0, U(0.01,1.5), and including 
the SESTF bycatch (also treated as “known”) among 
fi shery removals. The prior r or r0~U(0.01,1.5) has 
been tested on Whitemouth Croaker (Micropogonias 
furnieri) exploited in southern Brazil (Vasconcellos and 
Haimovici, 2006) and spans the range of possible r val-
ues for marine fi sh populations (Jensen et al., 2012). 
Models M1 and M2 confi gured with r or r0~U(0.01,1.5) 
were denoted as M1rU and M2rU, respectively; those 
models involving the SESTF bycatch were termed M1B 
and M2B. 

A reviewer recommended that a diffuse normal pri-
or centered on 0 for the MWET coeffi cient (α) would 
be appropriate. Consequently, an alternative prior 
α~N(0,0.02) was used to examine its effects on infer-
ences and especially on the statistics of model com-
parison. These models were denoted M2N, M2rUN, 

and M2BN. For these models, estimates of α were con-
strained to be greater than –5 and the precision of 0.02 
was so chosen to refl ect moderate ignorance as advised 
by Kéry (2010) and Kéry and Schaub (2012).

Model goodness of fi t and comparisons of models

The standardized median residuals by year for biomass 
or depletion (stdrt) and for biomass indices (stdωijt) 
were calculated as 

stdrt = log Bt( )− log B̂t( )⎡
⎣

⎤
⎦ / sd ⇔

stdrt = log bt( )− log b̂t( )⎡
⎣

⎤
⎦ / sd,

where sd = the standard deviation of residuals in log-
space for biomass or depletion; and

 stdωitj = ωitjτij with ωitj = log(itj) – log(i {tj).

Their time trajectories were monitored to check wheth-
er the stock biomass or depletion and the biomass indi-
ces conformed to the assumed lognormal distributions. 
Upon visual inspections of their scatter points, normal 
linear regressions were used to fi t their trends. 

Table 1

Specifi cations of the probability density functions (PDFs) of priors for parameters implemented in Bayesian state-space bio-
mass dynamic models: without minimum winter estuarine temperature, MWET(model 1, M1), and with MWET (model 2, M2) 
for Atlantic Croaker off the U.S. Atlantic coast, 1972–2008. The lognormal, gamma, and uniform prior PDFs are symbolized 
by LN, G, and U, respectively. Priors are vague except for the parameter r (M1) or the parameter r0 (M2). Tuning indices 
were the National Marine Fisheries Service–Northeast Fisheries Science Center (NEFSC) fall index and the Southeast Area 
Monitoring and Assessment Program (SEAMAP) fall index.

Parameter Defi nition PDFs of priors for M1 or M2

r Intrinsic growth rate LN(−0.756,0.0086)1

r0 Scale factor of the intrinsic growth rate LN(−0.756,0.0086)1,2

α Coeffi cient of the linear effect of MWET G(0.01,0.001)2

b∞ Inverse of carrying capacity (B∞) U(0.0000005,0.000005)
  U(0.0000004,0.000004)3

σp
2  Process error variance G(0.01, 0.001)

σNEFSC72–93
2  Observation error variance for NEFSC index, 1972–1993 U(0.01,1)

σNEFSC94–08
2  Observation error variance for NEFSC index, 1994–2008 U(0.01,1)

σSEAMAP
2  Observation error variance for SEAMAP index, 1990–2008 U(0.01,1)

aNEFSC72–93  Inverse of the stock availability coeffi cient inferred 
 from NEFSC index (ANEFSC72–93), 1972–93 U(0.01,10)

aNEFSC94–08  Inverse of the stock availability coeffi cient inferred 
 from NEFSC index (ANEFSC94–08), 1994–2008 U(0.01,10)

aSEAMAP  Inverse of the stock availability coeffi cient inferred 
 from SEAMAP index (ASEAMAP), 1990–2008 U(0.01,10)
�NEFSC Inverse of the NEFSC survey’s global effi ciency (�NEFSC), 1972–2008 U(0.01,1000)
�SEAMAP Inverse of the SEAMAP survey’s global effi ciency (�SEAMAP), 1990–2008 U(0.01,1000)

b̂1972  The 1972 expected depletion U(0.1,10) 

1 The 25th and 75th percentiles of this prior in arithmetic scale were 0.413 and 0.512, respectively.
2 Prior for a parameter specifi c to M2.
3 When the southeastern (North Carolina–east Florida) shrimp trawl fi shery bycatch were included.
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The Bayesian approach to fi tting the linear regres-
sions and assessing their adequacy for the temporal 
trends in standardized residuals was adapted after 
Kéry (2010). The adequacy in question was based on 
the posterior predictive checks as refl ected in Bayes-
ian P-values and plots of the sum-of-squares for trends 
in replicated (“perfect”) standardized residuals against 
the sum-of-squares for trends in actual standardized 
residuals. When a model is adequate for the actual 
data, about half of the points lie above a 1:1 line on 
the plot. Equivalently, the Bayesian P-value is “close” 
to 0.5, and values “near” zero or one indicate doubtful 
fi t of the model. Unfortunately, the range of Bayesian 
P-values for a good fi t is unclear (Kéry and Schaub, 
2012). By analogy to Ono et al.’s (2012) similar statis-
tic, a Bayesian P-value of 0.45–0.55 was assumed close 
to 0.5. 

The types of association between various standard-
ized residuals and year were identifi ed on the basis of 
1) the signs of the posterior means and medians of the 
trend slopes, 2) the location of zero in the posterior 
distributions of slopes (i.e., whether the 95% BCI of 
these slopes covered zero), and 3) the computation of 
the probability of decline, P*. This probability should 
be “close” to 0.5 (i.e., zero centered at the 95% BCI) for 
the lack of trend; its larger value (typically approach-
ing one) indicated a negative trend and vice-versa for a 
smaller value approaching zero. The previous 3 proce-
dures were jointly used to draw pragmatic conclusions 
because it was unclear what value of P* indicated that 
a trend was not strong enough to be considered posi-
tive or negative. 

The deviance information criterion (DIC) and the 
Bayes factor (BF) were used to compare various BSSB-
DMs. Although DIC can be problematic in MCMC sim-
ulations, it is the most popular method of a Bayesian 
model fi t and selection that is routinely implemented 
in the WinBUGS software. Typically, DIC selects among 
models by trading off goodness of fi t and model com-
plexity (Spiegelhalter et al., 2002; Wilberg and Bence, 
2008) when competing models are fi tted to the same 
data sets. It is given by

DIC = 2D − D̂ = D + pD,

D Θ( ) = −2logL Θ( )− 2log P(O|Θ)[ ],
pD = D − D̂,  

(6)

where D = deviance (measure of goodness of fi t);
 D « = the posterior mean deviance; 
 D̂   = the deviance of posterior means of the el-

ements in Θ ; and 
 pD = the “effective number of parameters.”

The statistic pD is unstable to estimate, is not an inte-
ger, does not necessarily correspond with the number 
of parameters and, although it should be positive, can 
even be negative. The latter problem usually arises 
separately or jointly from ill-specifying priors or an ill-
fi tting model (data-prior confl ict), and is symptomatic 

of suspicious inferences or of non-normal posteriors of 
the parameters on which priors have been placed (Spie-
gelhalter et al., 2002). 

The model with the smaller DIC is better supported 
by the data. In practice, comparisons of models are per-
formed by using the difference in DIC (�DIC) among 
the competing models. As a rule of thumb, �DIC>10 in-
dicates models with no support for the model with the 
higher DIC; if 3<�DIC<7, the model with the higher 
DIC has considerably less support; and �DIC<2 indi-
cates lack of substantial differences between models 
compared. All models with �DIC<2 units from the low-
est DIC model should receive consideration in making 
inferences (Spiegelhalter et al., 2002). 

The BF comparing how well any two models Mx (as-
sociated with the null hypothesis) and My (correspond-
ing to the alternative hypothesis) fi tted the biomass 
indices was

 
BFyx =

P O|My( )
P O|Mx( ) ,  

(7a)

where P(O|M) = the marginal likelihood for M ∈ {Mx, 
My} and was approximated as (Newton and Raftery, 
1994; Kass and Raftery, 1995):

 
P̂(O|M) =

1
S

P(O|Θs)−1

s=1

S
∑

⎡

⎣
⎢

⎤

⎦
⎥
−1

,
 

(7b)

where S = the number of simulations and 

 P(O|Θs) = e−0.5D(Θs).

The model that predicted the biomass indices better 
was considered to have more evidence supporting them 
and, hence, was preferred. Model preference relied on 
the guidelines of Kass and Raftery (1995) inferred from 
the natural log of BF (LBF), LBFyx = 2log(BFyx). Here, 
BFyx <1 ⇔ LBFyx < 0 supported Mx; evidence for Mx 
was considered negligible if 1 < BFyx <3 ⇔ 0 < LBFyx 
< 2; and BFyx ≥ 3 ⇔ LBFyx ≥ 2 supported My.

The competing models included the same types of 
fi shery removals. However, they differed in whether 
they included MWET, in the type of priors used, or in 
whether they included the SESTF bycatch. 

Environmental anomalies

Assessing MWET effects on the Atlantic Croaker popu-
lation off the U.S. east coast relied upon 3 approaches. 
First, in Equation 4 for M1, M1rU, and M1B, any po-
tential environmental effects were implicitly lumped in 
the posterior process errors of these models, εt (εt = 
log(Bt) – log(B {t) ⇔ εt = log(bt) – log(b {t)). These errors 
were expected to be theoretically positively correlated 
with MWET because MWET is considered to be the 
dominant environmental factor affecting the popula-
tion dynamics of the species. The relationship between 
the posterior process errors and MWET was checked 
by regressing the credible medians of εt+1, for year t+1, 
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against MWET recorded from December of year t to 
March of year t+1, given that 1) juvenile, fi rst-overwin-
tering Atlantic Croaker born in year t recruit during 
the spring–summer months of year t+1 (ASMFC1) and 
2) the winter water temperatures prevailing during 
late year t–early year t+1 determine the t year-class 
strength and infl uence recruitment and average bio-
mass in year t+1 (Hare and Able, 2007; Hare et al., 
2010). 

Second, variability of productivity for the Atlantic 
Croaker stock in response to climate anomaly was 
exam ined by regressing the credible medians of sur-
plus production, Gt (Gt = Bt+1 – Bt + f

ΣRft), and instan-
taneous surplus production, ρt (ρt = log[(Gt + Bt)/Bt]), 
against MWET, because Gt and, especially, ρt are sen-
sitive to environmental change (Jacobson et al., 2001; 
Mueter and Megrey, 2006). Finally, a linear effect of 
MWET was considered statistically supported if zero 
was outside the 95% BCI of the coeffi cient controlling 
MWET impacts, consistent with runs of models M2N, 
M2rUN, and M2BN.

Visual inspections of the scatter points indicated 
that simple linear regressions were appropriate to fi t 
the relationships between the process error, surplus 
production, or instantaneous surplus production and 
MWET. The fi tting and adequacy of these regressions, 
the types of association between the regressed vari-
ables, and the linear effect of MWET were determined 
by the techniques outlined above (see also Grosbois et 
al., 2008; Wilson et al., 2011). 

Stock status 

The ratios Ht/H {MSY (Ht = f
Σ Hft) and Bt/B {MSY were com-

pared with the 1:1 ratio—herein considered a criterion 
of status determination—to judge whether overfi shing 
was occurring (Ht/H {MSY >1) or whether the stock was 
overfi shed (Bt/B {MSY <1). The probability that Ht/H {MSY 
>1, P(Ht/H {MSY >1), and the probability that Bt/B {MSY 
<1, P(Bt/B {MSY <1), were used to estimate the risks of 
overfi shing and of overfi shed status, respectively (Jiao 
et al., 2009). P(Ht/H {MSY >1) and P(Bt/B {MSY <1) cor-
responded with the proportions of iterations where the 
most credible means of Ht/H {MSY >1 and the most cred-
ible means of Bt/B {MSY <1. The previous risk of over-
fi shing relate to M1, M1rU, and M1B. The risk of over-
fi shing for M2 and its variants was P(Ht/H {MSYt

 >1). 
These control rules do not conform to the legal sense 
used by the NMFS, but they are consistent with the 
rules considered in the ASMFC1 BDMs. 

Results

Goodness of fi t and comparisons of models

The standardized median residuals for stock biomass 
and biomass indices were comparable and trended sim-
ilarly across models (Fig. 2). Their credible estimates 

ranged from −1.8 to 1.2, except for the disproportion-
ate (−5.2 to −4.2) 1972 residuals for the NEFSC index, 
which indicated excessive overestimation of the corre-
sponding observed values (Fig. 2, C and D). The latter 
residuals were clearly outliers and were omitted in the 
residual diagnostics. 

The plots of discrepancy checks (not shown) and the 
Bayesian P-values (0.52–0.55) indicated that the fi t-
ted linear regressions were adequate for the trends in 
various standardized residuals. The negative posterior 
means and medians of all trend slopes evidenced con-
sistent, negative trends in the residuals. Regardless, at 
a 0.95 probability, those trends stabilized at zero (i.e., 
the 95% BCIs of their slopes included zero). Moreover, 
the probabilities of decline were closer to 0.5 than to 
one (P*=0.58–0.74 for biomass, P*=0.52–0.68 for NEF-
SC index, and P*=0.62–0.64 for SEAMAP index; the 
largest P*-values were associated with residuals from 
M1rU and M2rU), and, indeed, the posterior distribu-
tions of those slopes were bell-shaped and centered 
near zero. This result agreed with fair fi ts of biomass 
indices that were nearly identical across models (Fig. 
3) and indicated that the lognormal distribution was a 
reasonable assumption for the latent biomass and ob-
served indices.

The means of most parameters were slightly differ-
ent from the medians owing to right-(or left-) skewed 
posterior marginal distributions (to conserve space, 
the related details were not provided but are avail-
able upon request). Such distributions were therefore 
slightly better summarized by the percentiles. For 
competing models with or without MWET, the poste-
rior means and percentiles of the parameters were of 
the same magnitude. In comparison with base M1 and 
M2, M1 and M2 sensitivity runs showed the follow-
ing aspects about the stock productivity, management 
benchmarks, and initial depletion. Use of the prior r 
or r0~U(0.01,1.5) led to 1) nearly doubling the rate of 
population increase (note: median r=median r0≈0.47 
for base M1 and M2, respectively), ĤMSY, and MSY ; 2) 
predicting similar posterior medians for B∞ (≈220,000 
t) and B̂MSY ; and 3) estimating lower (75–78%) poste-
rior medians of the 1972 depletion, b {1972 (note: b {1972 = 
0.07 for base M1 and M2). 

Inclusion of the SESTF bycatch yielded comparable 
posterior medians for r, r0, or ĤMSY but increased the 
credible estimates of B∞ and MSY  by about 1.27 times 
and doubled the 1972 depletion (b1972). As a result, for 
M2 variants in particular, year-specifi c posterior medi-
ans of the parameters r and ĤMSY estimated by using 
M2rU were nearly twice the medians produced by M2 
and M2B (Fig. 4); year-specifi c MSY  from M2B were 
on average 1.3 times higher than those estimates from 
M2 but averaged 81% of those estimates from M2rU. 
It was also observed that, in all models with MWET, 
the r (and related metric) time series mimicked the 
MWET trend well, but those time series where the 
prior G(0.01,0.001) was used for the MWET coeffi cient 
α varied less than those time series estimated with the 
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Figure 2 
Time series of standardized median residuals for (A and B) biomass, 1972–2008; (C and D) the 
National Marine Fisheries Service–Northeast Fisheries Science Center fall index, 1972–2008; 
and (E and F) the Southeast Area Monitoring and Assessment Program fall index, 1990–2008 
derived for the Atlantic Croaker stock off the U.S. Atlantic coast by using Bayesian state-space 
biomass dynamic models: without minimum winter estuarine temperature, MWET (model 1, M1; 
left panels), and with MWET (model 2, M2; right panels). Residuals relate to model base runs, 
M1 (Base) and M2 (Base), and to their sensitivity runs: in other words, M1 and M2 using the 
prior U(0.01,0.15) for the intrinsic rate of population increase r or the scaling parameter r0, 
M1rU and M2rU; and M1 and M2 including the southeastern (North Carolina–east Florida) 
shrimp trawl fishery bycatch, M1B and M2B. M2N, M2rUN, and M2BN are M2, M2rU, and M2B 
in which the prior for the coefficient controlling MWET effects was centered on zero with a preci-
sion of 0.02.
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prior α~N(0,0.02) (Fig. 4). The stock availability coef-
fi cient associated with the NEFSC index (hence, the 
NEFSC Bottom Trawl Survey catchability) was 8 times 
higher during 1994–2008 (ANEFSC94–08 = 0.7–0.8) than 
during 1972–93 (ANEFSC72–93 ≈0.11). The stock avail-
ability coeffi cient, global effi ciency (≈1.11×10−3), and 
catchability by survey and period were insensitive to 
model confi gurations.

The components of the DIC statistics (Table 2) 
for models without MWET were the NEFSC index, 
SEAMAP index, depletion time series, and process 
error variance. They included the coefficient α for 
models incorporating MWET. Model fi ts were largely 
dominated by biomass indices (98–99% of DIC sta-
tistics, of which the NEFSC index amounted to 68–
73%). The total estimates of pD were positive and 
consistent across models, supporting the evidence 

that all models generally had the same number of 
parameters. 

Other DIC statistics for models of the study were 
greater for (base and sensitivity) M2 than for (base and 
sensitivity) M1 and, among model confi gurations, were 
the least for M1rU and M2rU. The former result for 
competing models, with or without MWET, was mainly 
due to the extra parameter α that clearly had no ex-
planatory power. The DIC associated with α was 4.17 
for all M2s and represented 92–101% of �DIC (Table 
2). For the competing models with alternative priors 
for the parameter r or r0, lower DIC statistics for M1rU 
and M2rU resulted from the decrease in D « and D { for 
biomass indices—a decrease that largely contributed to 
�DIC. This fi nding indicates an improvement in fi t as 
also evidenced by a slight increase in the correspond-
ing pD. However, this situation was counterbalanced by 

Figure 3
Time series of the predicted posterior medians with 95% central intervals for (A and B) the Na-
tional Marine Fisheries Service–Northeast Fisheries Science Center fall index and (C and D) the 
Southeast Area Monitoring and Assessment Program fall index for the Atlantic Croaker stock 
off the U.S. Atlantic coast, derived from Bayesian state-space biomass dynamic models: without 
minimum winter estuarine temperature, MWET (left panels) and with MWET (right panels), 
1972–2008. Filled circles are observed data; solid, dotted, and dashed lines relate to model base 
runs and model sensitivity runs with the prior U(0.01,0.15) for the intrinsic rate of population 
increase r or the scaling parameter r0, and including the southeastern (North Carolina–east 
Florida) shrimp trawl fishery bycatch, respectively. Models in which the prior for the coefficient 
controlling MWET effects (α) was centered on zero with a precision 0.02 produced similar cred-
ible estimates. These estimated values were not plotted for clarity.
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an increase in D « and D { associated with the depletion 
component, with D { > D « leading to negative pD values. 
This result was symptomatic of an ill-specifi ed (inap-
propriate?) prior, ill-fi tted models, or was symptomatic 
of both and, hence, of unreliable inferences from M1rU 
and M2rU runs, although the corresponding overall pD 
estimates were positive. 

The DIC statistics for M2N, M2rUN, and M2BN did 

Figure 4
Time series of the predicted posterior medians of the intrin-
sic rate of population increase (r) for the Atlantic Croak-
er stock off the U.S. Atlantic coast derived from Bayesian 
state-space biomass dynamic models incorporating the 
minimum winter estuarine temperature (M2), 1972–2008. 
Results relate to (A) M2 base runs, (B) M2 sensitivity runs 
with the prior U(0.01,0.15) for the scaling parameter r0 
(M2rU), and (C) M2 sensitivity runs with the southeastern 
(North Carolina–east Florida) shrimp trawl fishery bycatch 
(M2B). M2N, M2rUN, and M2BN are M2, M2rU, and M2B in 
which the prior for the coefficient controlling MWET effects 
(α) was centered on zero with a precision of 0.02. The 95% 
central intervals of r were not plotted for clarity.
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not include negative pD estimates. On the basis of 
�DIC, they were comparable with those DIC sta-
tistics for their counterparts without MWET and, 
therefore, should be considered for making infer-
ences (Table 2). In short, except M2N, M2rUN, and 
M2BN, |�DIC|∈[4.13,5.70]: models with greater 
DIC were substantially less well supported despite 
among-model similarity of residual patterns and 
magnitude (Fig. 2). (Should the actual deviance 
for the parameter α be dropped from the DIC for 
M2, M2rU, and M2B, then |�DIC|<<2. This result 
would indicate lack of differences between models 
with and without MWET (M1, M1rU, and M1B), 
and both types of models should be considered for 
making inferences. However, because α would still 
have no explanatory power [i.e., the DIC for M2, 
M2rU, and M2B would still be slightly larger than 
the DIC for M1, M1rU, and M1B], the parsimonious 
models [without MWET] would still be preferred). 
On the other hand, the LBF statistic consistently 
rejected models with the prior r or r0~U(0.01,1.5), 
models incorporating MWET, or both models; 
even upon some evidence against models without 
MWET, this evidence was weak (Table 2). 

Therefore, comparisons of models indicated that 
the complexity of (base and sensitivity) M2 brought 
about by the introduction of MWET was not war-
ranted by the data. Furthermore, the models with 
the prior r or r0~U(0.01,1.5) were discredited on 
the grounds that the values for their depletion 
component were negative and because of the dis-
agreement between DIC and LBF statistics. Prefer-
ence was given to results from the LBF statistic for 
2 reasons. The BF is among the formal solutions 
to the model-choice problem (Plummer, 2008). Al-
though Equation 7b is computationally unstable, 
it is consistent as the simulation size S increases 
and, in practice, often gives results that are accu-
rate enough for interpretation on the logarithmic 
scale (Kass and Raftery, 1995). The whole process 
of model comparisons with DIC and BF (LBF) sta-
tistics therefore selected M1 and M1B only. Unless 
otherwise indicated, the following results related 
to M1 and M1B.

Extent of climate forcing

The plots of discrepancy checks (not shown) and 
the Bayesian P-values (0.53–0.55) indicated that 
the fi tted linear models were adequate for the rela-
tionships between 1) the process errors and MWET, 

2) surplus production and MWET, and 3) instanta-
neous surplus production and MWET (Fig. 5). These 
relationships were positive because positive values had 
most of the mass under the posterior, bell-shaped dis-
tributions of their slopes. This result was refl ected in 
positive credible means and medians of those slopes 
and by large posterior probabilities of increase 
(P*>0.88).
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Table 2

Results of a comparison of Bayesian state-space biomass dynamic models based on the deviance information criterion (DIC) 
and Bayes factor (BF) or log Bayes factor (LBF): without minimum winter estuarine temperature, MWET (base model 1, M1), 
and with MWET (base model 2, M2) for the Atlantic Croaker population off the U.S. Atlantic coast, 1972–2008. Sensitivities 
to M1 involving the prior U(0,01,1.5) for the intrinsic rate of population increase r and inclusion of the southeastern (North 
Carolina–east Florida) shrimp trawl fi shery (SESTF) bycatch led to models M1rU and M1B, respectively. Sensitivities to 
M2 involving the prior U(0,01,1.5) for the scaling parameter r0 and inclusion of the SESTF bycatch led to models M2rU 
and M2B. M2N, M2rUN, and M2BN are M2, M2rU, and M2B in which a diffuse normal prior centered on zero, with a pre-
cision of 0.02, was used as sensitivity to the prior for the coeffi cient controlling the effect of MWET α. D « and D [ are mean 
model deviance and model deviance at the parameter mean, respectively; pD is the effective number of parameters; �DIC is 
the difference in DIC among competing models. The models compared by using BF and LBF are the same as those models 
compared by using �DIC.

Model Component 1 D «
 D [ pD 

DIC �DIC  BF LBF

M1 NEFSC  318.42 308.59 9.84 328.26   
 bt 0.71 0.51 0.20 0.90   
 SEAMAP 114.79 110.40 4.39 119.17   
 σp

2  5.04 5.04 0.00 5.04   
 Total 438.95 424.53 14.42 453.37   
M1rU NEFSC  314.14 304.02 10.12 324.26   
 bt 1.19 1.28 –0.08 1.11   
 SEAMAP 113.01 108.53 4.48 117.49   
 σp

2  5.04 5.04 0.00 5.04   
 Total 433.38 418.87 14.52 447.90 M1 vs. M1rU: −5.47 1.02 0.05
M1B NEFSC  330.48 321.10 9.38 339.86   
 bt 0.31 0.10 0.21 0.51   
 SEAMAP 117.26 113.65 3.61 120.87   
 σp

2  5.04 5.04 0.00 5.04   
 Total 453.07 439.88 13.20 466.27   
M2 NEFSC  318.30 308.54 9.76 328.06   
 bt 0.71 0.46 0.25 0.96   
 SEAMAP 115.17 110.83 4.34 119.51   
 α 4.17 4.17 0.00 4.17   
 σp

2  5.04 5.04 0.00 5.04   
 Total 443.39 429.05 14.34 457.73 M1 vs. M2: 4.36  1.28 0.49
M2rU NEFSC  313.66 303.57 10.10 323.76   
 bt 1.20 1.22 -0.02 1.19   
 SEAMAP 113.49 109.10 4.39 117.88   
 α 4.17 4.17 0.00 4.17   
 σp

2  5.04 5.04 0.00 5.04   
 Total 437.56 423.10 14.47 452.03 M1rU vs.M2rU: 4.13 0.05 −6.15
       M2 vs. M2rU: −5.70  0.04 −6.59

The process errors from M1 and M1B increased 
with MWET at a 0.95 probability given that zero was 
outside the 95% BCIs of the mean slopes (0.133 and 
0.124) of the corresponding relationships: those 95% 
BCIs were (0.017, 0.247) and (0.035, 0.212), respective-
ly. Here, P*>0.98. On average, these relationships ex-
plained 14% and 19.5% of the variation in the process 
errors. In contrast, the 95% BCIs of the slopes for the 
relationships between surplus production or instanta-
neous surplus production and MWET included zero. 
The increase in these productivity metrics with MWET 
was therefore negligible at a 0.95 probability.

Estimates from M2N, M2rUN, and M2BN of the 
posterior credible medians of the coeffi cient for MWET 

(α) were 0.42, 0.29, and 0.50, respectively, suggest-
ing positive effects of MWET on the Atlantic Croaker 
production dynamics. However, the related 95% BCIs 
equaled (−0.57, 1.25), (−0.48, 1.22), and (−0.32, 1.19): 
these effects were negligible at a 0.95 probability. This 
result was consistent with that associated with the BF 
statistic.

Model trends 

The biomass ratios, Bt/B {MSY (Fig. 6, A and B), trended 
like the depletions (Bt/B∞; not shown), which them-
selves tracked the variations of the NEFSC index well. 
They were characterized by low precision before 1990, 
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Table 2 (continued)

Model Component 1 D «
 D [ pD 

DIC �DIC  BF LBF

M2B NEFSC  330.08 320.71 9.37 339.46   
 bt 0.28 0.07 0.22 0.50   
 SEAMAP 117.95 114.63 3.68 121.63   
 α 4.17 4.17 0.00 4.17   
 σp

2
 5.04 5.04 0.00 5.04   

 Total 457.52 444.25 13.27 470.80 M1B vs. M2B: 4.52  0.10 −4.51
M2N NEFSC  317.22 307.33 9.89 327.11   
 bt 0.82 0.51 0.31 1.13   
 SEAMAP 115.64 111.40 4.23 119.87   
 α 0.55 0.55 0.00 0.55   
 σp

2
 5.04 5.04 0.00 5.04   

 Total 439.26 424.83 14.43 453.69 M1 vs. M2N: 0.32  2.32 1.69
M2rUN NEFSC  313.96 303.66 10.26 324.22   
 bt 1.27 1.16 0.11 1.38   
 SEAMAP 113.97 109.69 4.28 118.24   
 α 0.55 0.55 0.00 0.55   
 σp

2
 5.037 5.037 0.00 5.037   

 Total 434.77 420.12 14.65 449.42 M1rU vs. M2rUN: 1.53  1.76 1.13
M2BN NEFSC  328.73 319.19 9.54 338.28   
 bt 0.36 0.09 0.27 0.63   
 SEAMAP 118.23 114.49 3.74 121.98   
 α 0.55 0.55 0.00 0.55   
 σp

2
 5.04 5.04 0.00 5.04   

 Total 452.91 439.36 13.56 466.47 M1B vs. M2BN: 0.20  2.06 1.45

1 The components accounted for in DIC calculations for models without MWET were the Northeast Fisheries Science Center 
(NEFSC) fall index, the Southeast Area Monitoring and Assessment Program (SEAMAP) fall index, the depletion time series bt, 
and the process error variance σp

2 ; the components for models incorporating MWET also included the coeffi cient α. Note that 
the DIC calculations should only include the components for indices and the depletion, but WinBUGS unexpectedly included the 
process error variance and α as well.

especially when the commercial removals, the SESTF 
bycatch, or both suddenly increased. (Following low 
biomasses in the early 1970s and 1980s, the models 
predicted large but imprecise depletion levels that 
were needed to support the upsurge of the fi sheries 
removals). The biomass ratios indicate an overfi shed 
stock of Atlantic Croaker in most years except in the 
mid-1970s, mid-1980s, and perhaps in 1991, 2004, and 
2007 when the NEFSC index had peaked after years of 
low total fi shery removals.

The harvest ratios, Ht/H {MSY (Fig.6, C and D), showed 
trends opposite of the biomass ratios, and their preci-
sion was generally consistent over time. They indicated 
that the Atlantic Croaker stock likely experienced over-
fi shing during 1993–2001.

The risks for the Atlantic Croaker stock being over-
fi shed (Fig. 6, E and F) coincided with the lowest es-
timates for the NEFSC index and culminated in years 
when both this index was lowest and the estimates 
of total fi shery removals in the preceding years were 
highest (e.g., 1972–74, 1978–83, and 1995–2001). This 
result refl ected the model structures and behaviors in 
that, in a given year, the estimated stock biomass was 

largely driven by that year’s NEFSC index and the to-
tal fi shery removals of the preceding year. On the other 
hand, the models interpreted the magnitude of total 
fi shery removals as a signal of overfi shing risk: this 
one was highest in years of larger total fi shery remov-
als (1993–2001), lowest otherwise (Fig. 6, E and F). For 
the period of 2002–08, the risk of overfi shing averaged 
0.2 and the risk of the overfi shed status averaged 0.7.

Biomass depletions, ratios, and overfi shed risks 
were insensitive to model variants, including the re-
jected ones, because all models fi tted the biomass indi-
ces equally. The harvest ratios and risks of overfi shing 
trended similarly across models. In some years, howev-
er, the latter statistic was largest for models including 
the SESTF bycatch.

Discussion

We used BDMs to improve understanding of the cli-
mate effects on Atlantic Croaker production dynamics 
along the U.S. Atlantic coast. An age-structured pro-
duction model has been applied to address the same 
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Figure 5
Relationships between the posterior medians of (A and B) process errors, (C and D) surplus 
production (SP), and (E and F) instantaneous surplus production (ISP) and the normalized 
minimum winter estuarine temperature, MWET. The process errors, SP, and ISP were gener-
ated from the Bayesian state-space biomass dynamic model without MWET (model 1, M1; 
left panels) and from M1 including the southeastern (North Carolina–east Florida) shrimp 
trawl fishery bycatch (right panels) for the Atlantic Croaker stock off the U.S. Atlantic coast, 
1972–2008. They were treated as observed data. Their fitting with simple linear regressions 
generated the predicted process errors, SP, and ISP. The insert in panel A shows the legend, 
including for the 95% Bayesian central intervals (95%BCI), common to all plots.
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Figure 6 
Time series of the predicted posterior medians (thick lines) with 95% central intervals (thin 
lines) of (A and B) the biomass ratio and (C and D) total harvest ratio; (E and F) plots of the 
overfished risk, P(Bt/BMSY<1), against the risk of overfishing, P(Ht/HMSY>1), for the Atlantic 
Croaker stock off the U.S. Atlantic coast. Various stock indicators were derived from Bayesian 
state-space biomass dynamic models without minimum winter estuarine temperature (model 1 
M1; left panels) and from M1 including the southeastern (North Carolina–east Florida) shrimp 
trawl fishery bycatch (right panels). The horizontal thick line in panels A–D represents the 1:1 
ratio beyond which the stock was considered overfished or experiencing overfishing. In the bot-
tom plots, black circles indicate high overfishing–overfished risks (1972, 1980, and 1993–2001), 
open circles represent low overfishing–overfished risks (1975–77 and 1984–86), and gray circles 
correspond to low overfishing risks–high overfished risks (other years).
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issue (Hare et al., 2010). However, diversifying inves-
tigation models was in part consistent with ASMFC’s 
assessment needs and Hare et al.’s (2010) suggestion 
for this fi shery resource when faced with changes in 
anthropogenic activity (here, fi shing), environmental 
forcing, and also with parameter uncertainty. BDMs 
are typically suitable when fi shery data are limited to 
aggregate catch and effort or indices of stock biomass 
(Hilborn and Walters, 1992; Prager, 1994). Regardless, 
even in “data-rich” jurisdictions, various stock-assess-
ment teams customarily implement them to support 
the results of the more sophisticated, data-hungry 
models. Jacobson et al. (2002) and MacCall (2002) rec-
ommended their systematic use as supplemental as-
sessment tools because, in spite of their simplicity and 
alleged lack of realism, they can be the basis of useful 
management actions (Ludwig and Walters, 1985; Laloë, 
1995). 

Investigations have focused on the alleged winter-
temperature effects on Atlantic Croaker productivity 
that occur during the prerecruit stages of the species 
(Joseph, 1972; Norcross and Austin2; Lankford and Tar-
gett, 2001a, 2001b; Hare and Able, 2007; Hare et al., 
2010). Age- and stage-structured fi sheries models are 
used to investigate environmental effects on popula-
tion changes through the deviations from an “average” 
or “virgin” recruitment or through stock-recruitment 
models, where environmental covariates, along with 
unexplained random errors, are assumed to infl uence 
the recruitment processes and variability (e.g., Iles and 
Beverton, 1998; Levi et al., 2003; Maunder and Watters, 
2003; Hare et al., 2010). These effects can be incorpo-
rated into density-dependent, density-independent, or 
both types of parameters of stock-recruitment models. 

By analogy to stock-recruitment models, MWET 
was introduced into the parameter r that, in surplus-
production models, is the counterpart of the density-
independent parameter of stock-recruitment models, 
and process errors characterized all model parameters. 
Preference was given to the Bayesian state-space mod-
eling framework because of its anticipated fl exibility 
in addressing simultaneously various types of errors 
and parameter uncertainty and because it was deemed 
suitable for shedding light on the ability of BDMs to 
detect MWET effects. A corollary of these investiga-
tions was the examination of the extent of such effects 
on the Atlantic Croaker stock status.

Focusing MWET effects on r was, in conjunction with 
available fi shery data (i.e., fi sheries removals and sur-
vey indices only), the simplest scenario of implemented 
BDMs. However, this procedure was also dictated by 
the need of parsimony in statistical analysis, thereby 
favoring simple models. If there were supporting data 
and evidence on changes in habitat conditions—usu-
ally affecting B∞, in other words, the density-dependent 
parameter (e.g., Jacobson et al., 2005)—or in fi sheries 
effective effort and catchability, it may have also been 
convenient to consider their effects and interactions on 
Atlantic Croaker productivity. Information about these 

factors ultimately needs to be gathered and equally ac-
counted for in future analyses. 

The analysis led to mixed outcomes. On the one 
hand, the positive and signifi cant correlations between 
the process errors from M1 or M1B and MWET sup-
ported the hypothesis that MWET may be playing a 
role in biomass variability of Atlantic Croaker on the 
U.S. Atlantic coast. Increased growth or increased re-
cruitment during years of warmer winters would there-
fore enhance biomass production in subsequent years. 
However, such relationships were weak in that only 
14% and 19.5% of process errors were related to the 
variation in MWET. On the other hand, there were pos-
sible positive relationships between surplus production 
or instantaneous surplus production and MWET, but 
the relationships were statistically insignifi cant. The 
lack of a relationship between surplus production and 
an environmental covariate, however, is not unusual. 

In contrast, it was surprising that instantaneous 
surplus production vs. MWET and surplus production 
vs. MWET exhibited similar and insignifi cant rela-
tionships. Instantaneous surplus production is usu-
ally more sensitive to environmental change than is 
the corresponding surplus production (Jacobson et 
al., 2001). Likewise, the hypothesis of MWET effects 
on the Atlantic Croaker production dynamics had no 
support of the 95% BCIs for the coeffi cient controlling 
MWET effects (α) upon specifying its prior as α~N(0, 
0.02). Weakness and absence of the aforementioned 
relationships corroborated the fact that BSSBDMs in-
corporating MWET (although conceptually interesting 
and ecologically plausible) did not statistically outper-
form those BSSBDMs without MWET nor did it predict 
signifi cantly different metrics of stock status. In com-
parison with Hare et al.’s (2010) results, this study re-
vealed that correlations between MWET and a metric 
of Atlantic Croaker productivity can appear and disap-
pear or be weak with a modeling approach.

Surplus production models with environmental ef-
fects have sometimes improved understanding and de-
scription of the performance of fi shed populations and 
ecosystems when all key control variables and causal 
mechanisms have been unambiguously identifi ed, un-
derstood, and accounted for (e.g., Fréon, 1988; Evans 
et al., 1997; Yáñez et al., 2001; Jacobson et al., 2005; 
Mueter and Megrey, 2006; Thiaw et al., 2009; some con-
tributions in Bundy et al., 2012). Exceptions to such 
favorable situations exist (Laloë, 1988; Fogarty et al., 
2012; this study). Here, BDMs failed to detect MWET 
effects adequately because of 4 possible major reasons. 
First, in the process errors–MWET relationships, the 
remaining, unexplained 81–86% of the variation in the 
process errors may be rooted in other, yet unknown 
environmental anomalies. This outcome indicated the 
possibility that MWET (inter)acted with other ecologi-
cal factors (e.g., change in other habitat conditions). 

Second, random errors and a well-established under-
lying environmental anomaly may not be linked lin-
early or may even be unrelated because environmental 
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fl uctuations are not necessarily random (Jensen, 2002; 
Sinclair and Crawford, 2005). Environmental varia-
tions may themselves be driven by other, direct or in-
direct anthropogenic or natural events, as would have 
happened for MWET (e.g., Connelly et al.7; Fogarty et 
al.8). Third, elusive relationships may have been due 
to the shortness of the time series for the regressed 
variables. 

Finally, surplus-production models are oversimplifi -
cations of the population dynamics in the form of just 
2 or 3 parameters (Laloë, 1995; Keyl and Wolff, 2008). 
Other possible reasons for the blurring or weakening 
of the impacts of MWET on Atlantic Croaker produc-
tivity could be the noisy nature of the tuning indices 
especially since 1990, the lack of fi shing effort that 
precluded the partitioning of any roles between fi shing 
intensities and MWET, and the functional relationship 
between the parameter r and MWET. In reality, this 
function is unknown, and alternative functional forms 
(e.g., Fréon, 1988; Stenseth et al., 2002; Rose, 2004; 
Hatton et al., 2006) are conceivable and deserve test-
ing as well.

Overall, the trends generated by this study behaved 
like those trends obtained through runs of nonequilib-
rium production models with A Stock Production Model 
Incorporating Covariates (ASPIC, vers. 5.34. 9, which 
is included in the NOAA Fisheries Toolbox,   http://nft.
nefsc.noaa.gov/ASPIC.html) software and Excel spread-
sheets (ASMFC1). Various implementations of BDMs 
also produced similar estimates of the initial depletion, 
MSY, and BMSY, and conveyed a common message that 
the Atlantic Croaker stock was exposed to a relatively 
low risk of overfi shing in the 2000s. But this analysis 
showed differences from ASMFC’s1 implementations 
about the opposing stock status prior to the 2000s (Fig. 
6). Contrary to ASMFC’s1 results, this study indicates 
frequent episodes of overfi shing, often with high risks 
of being overfi shed, that marked the Atlantic Croaker 
stock during the period of records. Likewise, overfi sh-
ing of the Atlantic croaker stock may have been high 
during 1993–2001 (along with high risks for this stock 
being overfi shed) but were low in most years before 
1993.

The causes underlying these discrepancies would 
require dedicated experimental designs for BDM per-

7 Connelly, W., L. Kerr, E. Martino, A. Peer, R. Woodland, and 
D. Secor. 2007. Climate and saltwater sport fisheries: 
prognosis for change. Technical Report Series No. TS-537-07 
of the University of Maryland Center for Environmental Sci-
ence. Ref. No. [UMCES]CBL 07-119. Chesapeake Biological 
Laboratory, UMCES, Solomons, MD. [Available at:  http://
www.seasonsend.org/pdfs/Saltwater%20Fisheries.pdf; ac-
cessed May 2012.]

8 Fogarty, M., L. Incze, R. Wahle, D. Mountain, A. Robinson, 
A. Pershing, K. Hayhoe, A. Richards, and J. Manning. 2007. 
Potential climate change impacts on marine resources of 
the northeastern United States. Northeast Climate Impacts 
Assessments (NECIA). [Available at:  http://www.northeast-
climateimpacts.org/pdf/miti/fogarty_et_al.pdf; accessed May 
2012.] 

formance analyses, which were not the focus of this 
study. However, all other things being equal (i.e., no 
errors pertaining to fi shery removals and parameter 
estimation), the confl icts in the performance of, for ex-
ample, ASPIC and the BDMs used in this study, can 
be attributed to model uncertainty (Caddy and Mahon, 
1995; Harwood and Stokes, 2003), itself inherently em-
bedded in the general scientifi c uncertainty (Ralston et 
al., 2011; Rothschild and Jiao, 2011). 

These confl icts may have been jointly or separately 
rooted in at least 3 major factors. The fi rst factor was 
the difference in BDM structures (continuous formula-
tion for ASPIC vs. discrete formulation in this study) 
and the way the corresponding estimation approaches 
(frequentist vs. Bayesian) dealt with uncertainty. The 
second factor related to the BDM behaviors resulting 
from the constrained starting values (ASPIC), nonuse 
of starting values (this study), and differing estimable 
parameters. The third and, perhaps, most important 
(Polacheck et al., 1993; Ono et al., 2012) factor was the 
error structures assumed including the specifi cations 
of the priors’ PDFs (observation error for ASPIC vs. 
observation and process errors in this study). Note that 
observation errors are year-specifi c, whereas process 
errors can propagate over time (Kimura et al., 1996).

This study generated inconclusive, somewhat con-
fl icting results about MWET effects on the production 
dynamics of Atlantic Croaker. Specifi cally, these effects 
were associated with a coeffi cient without explanatory 
power or with various linear relationships that proved 
weak or negligible in justifying addition of a related 
parameter in BDMs. If BDMs are to be used for assess-
ing the Atlantic Croaker stock, it appears reasonable to 
continue performing them without considering MWET. 
Unambiguously discerning the extent of MWET effects 
through BDMs will perhaps be possible when longer 
time series of relevant fi shery data, winter estuarine 
temperature (or, preferably, direct estimates of kills 
caused by cold winter), and other environmental fac-
tors will be gathered and accounted for together. 

Conclusions

Given the well-established effects of the changes in 
winter water temperatures on the production dynamics 
of Atlantic Croaker along the U.S. Atlantic coast, the 
title of Keyl and Wolff ’s (2008) article deserves para-
phrasing: what can (assessment) models do to track 
such effects, modify the perception of the stock, and 
better guide management? The present study has at-
tempted to answer this question through state–space 
BDMs with and without MWET. BDMs incorporating 
MWET were not statistically supported by the data 
and did not outperform BDMs without MWET. The 
retained BDMs without MWET were associated with 
process errors, surplus production, and instantaneous 
surplus production that indicated that MWET had pos-
itive effects on Atlantic Croaker productivity. However, 
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these effects were statistically signifi cant but weak 
(i.e., explaining smaller amounts of the variation in the 
dependent variables) or insignifi cant, hence negligible. 
With the available data, BDMs failed to fully capture 
MWET effects on the Atlantic Croaker population, al-
though these effects are notorious. Accumulation of 
longer time series of data on fi sheries, surveys, winter 
water temperature, and other relevant covariates (e.g., 
indices of habitat conditions, winter-induced kills of 
juveniles), warrant further investigations on BDM per-
formance and their ability to detect cold winter effects 
on the Atlantic Croaker population dynamics along the 
U.S. Atlantic coast. 
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Appendix 1

Characteristics of the Bottom Trawl Surveys of the North-
east Fisheries Science Center (NEFSC), National Marine 
Fisheries Service, and of the multiagency Southeast Area 
Monitoring and Assessment Program (SEAMAP) Coastal 

Attributes NEFSC SEAMAP

Start year 1963 1986

Area coverage Cape Hatteras (North Carolina, NC)–Cape Cod 
(Massachusetts)

Cape Hatteras (NC)–Cape Canaveral (Florida)

Targets Finfi sh and invertebrates Finfi sh, elasmobranchs, sea turtles, invertebrates, 
and algae 

Objectives Monitor trends in abundance, distribution, and life 
history traits 

Monitor trends in abundance and reproductive 
conditions

Covariates Latitude, longitude, salinity, temperature, weather, 
and hydrographic parameters

Salinity, water and air temperatures, weather, 
and hydrographic parameters

Design Stratifi ed random (strata: depth ranges; inshore vs. 
offshore)

Stratifi ed random (strata: depth contours; depth 
ranges2)

Sampling gear #36 Yankee otter trawl (5-fathom legs; 1,000-lb poly-
valent door; 0.5-inch codend liner)

Trawl body: #15 twine and 47.6-mm stretched 
mesh codend: #30 twine and 41.3-mm stretched 
mesh codend 

Tow duration 30 minutes 20 minutes (daylight hours)

Sampling intensity Fall (inshore) surveys since 1963; spring surveys since 
1968; intermittent summer and winter surveys 

Surveys in spring (April–May), summer (July), 
and fall (October)

Evaluation Fall surveys regularly encountered Atlantic Croaker 
since 1972; targeted multiple age classes (0–13 year-
old fi sh)

Most zero tows in spring surveys; only fall sur-
veys were consistent since 1990; targeted multi- 
ple age classes (0–6 year-old fi sh)

1 Formerly known as Shallow Water Trawl Surveys; conducted by the South Carolina Department of Natural Resources, Marine 
Resources Division.

2 Deeper strata (10–19 m) sampled during 1989–2000; abandoned in 2001 to concentrate on shallower depth zones.

Surveys1. Data obtained from these surveys were used 
to develop biomass indices for the population of Atlantic 
Croaker (Micropogonias undulatus) off the U.S. Alantic 
coast during the period of 1972–2008.
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Appendix 2

A prior probability distribution was developed for 
the intrinsic rate of population increase for Atlantic 
Croaker (Micropogonias undulatus) off the U.S. Atlan-
tic coast. 

The basic demographics of Atlantic Croaker (Ap-
pendix 3) were combined in a Leslie matrix projection 
framework (McAllister et al., 2001) to construct a prior 
probability density function for the intrinsic rate of 
population increase, r (Table 1). The mean reproduc-
tive rate-at-age (Ra) was scaled by 10−5 to ensure that 
for all year (50)×replicate (2000) combinations, the 
resulting r values ranged from 0.01 to 1.5, as seems 
plausible for marine fi sh populations (Vasconcellos and 
Haimovici, 2006; Jensen et al., 2012):

 Ra = 10−5 (paSRaFa). (A1)

where pa, SRa, and Fa are age-specifi c proportion of 
mature individuals, sex-ratio (assumed to be 0.5), and 
mean fecundity, respectively. Implicit in the scaling 
factor of 10−5 for Ra was the assumption that about 
11.513 represented the cumulative mortality from egg 
fertilization to the recruiting age-group (here age-0) in 
the Leslie population model. Fecundity-at-age was es-
timated as

 Fα = β L∞ 1− exp(−K(α −α0))[ ]{ }γ , (A2)

where β and γ are parameters of the fecundity (number 
of eggs)–total length (mm) relationship; L∞, K, and a0 
are parameters of the von Bertalanffy growth function. 

Lognormal distributions were assumed for both nat-
ural mortality and reproductive rate-at-age (i.e., they 
were log-transformed and treated as expected means). 

Monte Carlo samplings were performed with R soft-
ware (vers. 2.15.3; R Development Core Team, 2013) 
with an age-independent coeffi cient of variation (CV) 
equal to 0.3 for both parameters (however, a CV=0.3 
for the reproductive rate was insensitive to the natural 
mortality CV ∈ [0.1, 1.0] in terms of r summary sta-
tistics and distributions). The CVs used were a single 
realization of all possible CV combinations for natural 
mortality and reproductive rate. They were preferred 
because, unlike the r estimates in many other trials, 
the corresponding r estimates fell within and spanned 
the 0.01–1.5 interval (note: reproductive rate CVs<0.3 
yielded truncated r distributions; reproductive rate 
CVs>0.3 led to r distributions with long tails far be-
yond 1.5). The stochasticity introduced in natural mor-
tality rates was subsequently propagated into the sur-
vival rate and expected survivorship-at-age.

For each replicate, the scalar number for the initial 
(year-1) population-at-age of female Atlantic Croaker 
was 1000. McAllister et al.’s (2001) Equations 9–14 or 
Hammond and Ellis’ (2005) Equations 1–5 were ap-
plied as appropriate. During the sampling, there were 
negative values of r. These values usually result from 
generating stochastic reproductive rates and survivor-
ship values independently of one another, including 
coupled low values of these parameters, the combina-
tion of which can lead to a population that cannot sus-
tain itself (McAllister et al., 2001; Hammond and Ellis, 
2005). The fi nal prior probability density function for 
r (Table 1) was developed after discarding those nega-
tive r values and ensuring that the age structure of 
the projected population was stable (population stabil-
ity occurred since year-3). 

Appendix 3

Dem ographic inputs for the construction of the prior prob-
ability distribution of the intrinsic rate of population 
increase for Atlantic Croaker (Micropogonias undulatus) 
off the U.S. Atlantic coast. The von Bertalanffy growth 

parameters are the asymptotic length (L∞), the growth 
rate (K), and the theoretical age when length is zero (a0). 
The parameters of the fecundity (number of eggs)–length 
relationship are the coeffi cient (β) and the exponent (γ). 

Attribute Value or range Source

Age (a, years) 0–15+ ASMFC1

von Bertalanffy growth parameters:   ASMFC1

L∞ (mm) 431
K (mm×year−1) 0.214
a0 (years) −2.35 
Fecundity (F)–length(L) relationship: F = βLγ  Morse (1980)
β 0.002594179 
γ 3.361 
Maturity-at-age (ages: 0–15+ years) 0, 0.9, 1…… Barbieri et al. (1994)
Natural mortality-at-age (year−1; age: 0–15+) 0.461, 0.374, 0.324, 0.293, 0.272, 0,257, 0.246, 0.238, ASMFC1

 0.232, 0.227, 0.223, 0.220, 0.218, 0.216, 0.215, 0.214


