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ABSTRACT

Three alternative statistical models are proposed for estimating the parameters of the generalized pro­
duction model by the method of least squares. A stochastic representation of the generalized produc­
tion model is constructed and simulation (or the Monte Carlo Method) is employC'd to infer the effects
of random variability on the variation in catch. The use of residuals examination for selecting the
appropriate statistical modd for least-squares estimation of tllP generalized production model param­
eters is demonstrated for the yellowfin tuna fishery in the eastern tropical Pacific Ocean. In both the
simulation and actual fishery, statistical Model 3-assuming catch residual variance is proportional to
the catch squared-best fulfills the assumptions of least-squares theory and should, therefore, provide
the best least-square parameter estimates.

A simple case of Bernoulli's equation has been
suggested as a model for the growth of an or­
ganism by Richards (1959), Chapman (1961),
and Taylor (1962)

where XI represents either weight or length at
time t, and H, K, and m are parameters which
may be given some physiological significance.
Recently equation (1) has been advanced inde­
pendently by Chapman (1967) and Pella and
Tomlinson (1969) as a simple model for assess­
ing the relation between exploitation and yield
(or catch) from a living resource

where P, is the population size (biomass or num­
bel's), [ is the amount of fishing effort, 'l is the
coefficient of catchability, and H, K, and mare
parameters. It is assumed that f is constant
over the time period that equation (2) is used.
Therefore, 'l[ c= P, the instantaneous fishing
mortality coefficient, and 'lIP, Ct the catch.
Equation (2), referrerl to herein as the gener­
alizerl prorluction model after Pella and Tomlin­
son (1969), includes the logistic model used by

(1)

form < 1
(2)

for m > 1- HPlm + KP, - 'l[Pt

dP /dt == HP,m - KP, - qfP,

dP/dt

Mathematical models are powerful tools which
are being used increasingly in resource man­
agement. A knowledge of mathematics allows
a resource manager to construct from gathered
data a representation of the real system and,
coupled with statistical theory, allows estima­
tion of the parameters of his model. Then, as
is impossible in the real system, a manager may
experiment on his model and derive outcomes
which aid decisions about management of the
real system. Results of model experimentation
usually depend greatly on the formulation of the
model and to some degree on the accuracy of
the parameter estimates. Often precise statisti­
cal parameter estimation lags behind mathemati­
cal formulation, primarily because many math­
ematical models are robust, i.e., decisions are
independent of parameter accuracy. This is one
reason for the development of deterministic
rather than stochastic models. However, it
seems that it is always desirable to obtain the
best possible parameter estimates from the data
at hand.
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Graham (1935), Schaefer (1954, 1957), and
others when m = 2, and the exponential model
discussed by Fox (1970) if the limit is taken
asm~l.

This type of production modeling is a stock
assessment approach which has extreme math­
ematical and data requirement simplicity.
Therein lies its primary virtue; for example,
equation (2) contains only four parameters
whereas the simplest Beverton and Holt (1957)
type of model providing the same relation con­
tains at least nine parameters. Estimation of
the parameters of equation (2) requires only
catch and fishing effort data while at the very
least, the Beverton and Holt approach addition­
ally requires age structure information. Dis­
cussion of the different assumptions for imple­
menting each approach can be found in Schaefer
and Beverton (1963). The generalized produc­
tion model provides for a wide variety of shapes
for the production curve and thus coupled with
its mathematical simplicity represents an im­
portant tool for successfully managing exploi­
tation.

Procedures for estimating the parameters of
production models can be found in Schaefer
(1954, 1957), Ricker (1958), Chapman, Myhre
and Southward (1962), Gulland (1969), and
Pella and Tomlinson (1969). However, it ap­
pears that in all cases, except Schaefer (1957),
random variation about the deterministic pre­
dictions of the production model has been largely
ignored in choosing a statistical model for esti­
mating the parameters. Perhaps this is because
of the apparent formidable nature of such var­
iation. On the other hand, such variation may
often be approximated in a simple manner to
allow better estimates of the parameters than
if ignored altogether. It is conceded that the
generalized production model is at the very best
only a good approximation of the actual biologi­
cal dynamics, but this should not imply that
better parameter estimates are unwarranted, un­
less its prime virtue of mathematical simplicity
is compromised in the course of such action.

Several statistical models for estimating the
parameters of mathematical models of biological
relationships have been discussed variously by
Zar (1968), Glass (1969), Hatley (1969), and
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Pienaar and Thomson (1969). While to the
nonstatistician these papers may bear a strong
resemblance to quibbling over apparent minor
differences of results in the face of large data
variability, the improper statistical model can
lead to misleading conclusions or to significant
errors, as several of the above authors demon­
strated. Statistical models differ on the assump­
tion about the manner in which variation or
error enters the deterministic biological model.
The technique employed by Pienaar and Thom­
son (1969) to assess fulfillment of the assump­
tions about variation is the graphing and ex­
amination of residuals, the differences between
the observed data and those predicted by the
model. Extensive discussion on the examination
and analysis of residuals can be found in Ans­
combe (1961), Anscombe and Tukey (1963),
and Draper and Smith (1966).

This paper presents a discussion of the nature
of simple random variability and its relation to
estimating the parameters of the generalized
production model. An illustration of residuals
examination in selecting the appropriate sta­
tistical model for the parameter estimating
technique of Pella and Tomlinson (1969) is in­
cluded. Data from the fishery for yellowfin tuna,
Thunnus albacares, in the eastern tropical Pa­
cific Ocean were utilized in the illustration.

STATISTICAL MODELS

Schaefer (1957) recognized that the produc­
tion model is not deterministic and represented
environmentally induced variation as an additive
term consisting of a random variable 1] multi­
plied by population size. In terms of the gen­
eralized production model

m
dP/dt = KPt - HPt - qfPt +- TJPt • (3)

His parameter-estimating procedure used a finite
difference approximation of equation (3) di­
vided through by Pi for the case when m = 2.
By summing over many time periods the effects
of variation are eliminated since the expected
value (or mean) of 1] is zero. Schaefer'S form­
ulation of the error term, while reasonable and
convenient for his estimating technique, pro-
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duces a complex statistical model on integrating
equation (3). Therefore, his statistical model
was given no further consideration.

Pella and Tomlinson (1969) also mentioned
that the generalized production model is not
deterministic. They pointed out several sources
of error in Schaefer's finite difference approxi­
mation of population change and estimation pro­
cedure, and advanced a "least-squares" searching
procedure as an alternative. In doing so, how­
ever, apparently no consideration was given to
statistical implications of their technique. The
Pella-Tomlinson procedure integrates equation
(2) over the time period during which the fish­
ing effort is assumed constant, 6. t, to give

P,... [H (H Rl-m)
t = K (±) q! - K (±) q! - 0

1

X e+(K (±) qf) (l-m) ]r=m (4)

where Po is the population size at the beginning
of the time period, and the upper signs applying
when m < 1 and the lower when m > 1. Start­
ing with initial guesses of the pa,.rameter values,
an estimated catch history, f Ci} where i =
1 ... n time periods, is calculated from the known
fishing effort history, f Ii I ' by the formula

N 1 '" '"
Cl = q/l' ~ 2(Pi.J + PI, }+l) • 6ti/N (5)

j=l

where Pl,} are found from equation (4) over
j = 1 ... N subintervals of each time interval i.
The fitting criterion, S, is computed from the
known catch history, {Cll, of n time periods as

n n
S = ~ (Cl - CI )2 = ~ E

2 (6)
i=l i=l I

where the E! are residuals. The initial parameter
guesses are then modified in a searching routine
with their computer program GENPROD until
those parameter values which minimize S are
located.

The statistic S is a "least-squares" criterion.
For the parameters of a nonlinear model which
minimize S to be the best least-squares estimates,
the residuals, El, must: 1) be independent, 2)

have an expected value (or mean) of zero, and
3) hav~constant variance (Le., not correlated
with t, Ci , or f;)." Consequently, the proper sta­
tistical model for the Pella-Tomlinson fitting
technique must both fulfill the three assumptions
and be biologically rational. It is also important
that the statistical model be simple, Le., one
which requires no additional parameters to be
estimated.

Ignoring for the moment that equation (5)
is an approximation, the choice of equation (6)
as the least-squares estimate criterion tacitly
assumes

Ci Ci + Ei (7)

giving

Pi
-.
Pi + (l!q!l) El (8)

where P = J~P dt for ease of notation. Equa­

tion (7), referred to hereafter as statistical
Model 0, is biologically tantamount to assuming
random variation in population size approaches
being infinitely great in an unexploited popula­
tion. This denies the concept of an environ­
mentally limited maximum population size or
"carrying capacity" which is usually a founda­
tion of the production model. Therefore, Model 0
assumed by Pella and Tomlinson is intrinsically
unattractive even though it may be a reasonable
approximation at intermediate exploited pop­
ulation levels.

There are three simple statistical models
(among many) which are commonly assumed,
biologically reasonable, and involve calculating
S as a weighted sum of squares or from trans­
formed data.

Modell. Additive Error

(9)

so

Cl = Ci + (q!i) . Eli (10)

• Additionally, if the E! are normally distributed then
it can be shown that the least-squares estimates are
also the maximum likelihood estimates which have min­
imum variance as the number of data grows large-­
hence are global best estimates (e.g., see Draper and
Smith, 1966).
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giving

n
8 1 = ~ [(C; - C,)/f;]2 (11)

i = 1

as the appropriate criterion to be minimized.

Model 2. Multiplicative Error

P-· - p"". . 6'
L ~- ~ ~I-

(12)

lation size decreases with population size and
that variation in catch increases with the size
of the catch. Models 2 and 3 approximate the
stochastic representation of equation (2) sug­
gested by Pella and Tomlinson [their equation
(14)]

dP/dt =- 'Y)r [(±)HPtTll (=t=) KP t ]

- 'Y)2(I!Pt (19)

so

C; C; . E2' (13)

where 'Y)1 and 'Y)2 are continuous random variables.
Other statistical models obviously could be

constructed, such as

or

In C; In C; -+- In E2; (14)

.-::- -::-c
Pi -I- P; . E; (20)

as the appropriate criterion to be minimized.

Model 3. Additive Proportional Error

n
8:1 cc= ~ [(C; - C;)/C;]2 (18)

i = 1

as the appropriate criterion to be minimized.
Modell assumes constant variation at all pop­

ulation levels. This is perhaps the least biologi­
cally reasonable of the three suggested alterna­
tive statistical models since it is easier to conceive
that under equilibrium conditions a population
will fluctuate more radically near its environ­
mentally limited maximum size than at smaller
sizes under constant exploitation. Model 1 is
usually employed as a statistical model when
variation is expected to arise from experimental
or measurement error. Assuming adequate sta­
tistics of catch and fishing effort exist, it is more
likely that variation will arise from environ­
mental influences on the parameters of the model.
Models 2 and 3 assume that variation in popu-

An analytical solution for the appropriate sta­
tistical model is not possible since the actual
causes of variability and the relationships to
their effects on the generalizecf procfuction model

STOCHASTIC SIMULATION

where G could assume any value-Models 1 and
3 are actually special cases with G = 0 or 1
respectively. However, this would introduce
another parameter to be estimated. The four
previously described statistical models will
suffice.

Returning to the point that equation (5) is
a numerical approximation of integration, equa­
tions (7), (10), (13), (14), and (17) are not
strictly true for the Pella-Tomlinson procedure.
Accurate representations would include an ad­
ditional error term due to linear approximation.
However, as provided for, the linear approxi­
mation error may be reduced by increasing the
value of N in equation (G). As will be dem­
onstrated later, this error is very small in re­
lation to the magnitude of the E; even at small
values of N. The choice of N, on the other hand,
can be critical to obtaining good estimates of
several parameters.

We now have three alternative statistical
models which fulfill the goals of simplicity and
biological rationality to various degrees. It re­
mains to be determined which of them fulfills
the assumptions of least-squares theory for ob­
taining the best parameter estimates.

(17)

(16)

. E:li

n ~

~ (In C; - In C;)2 (15)
i = 1

8 2 =

---. "'"p; c.= p; -+- p, . E3;

so

giving

giving
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are unknown. However, a commonly used ap­
proach, simulation (or the Monte Carlo method),
may be employed to infer probable effects of
variability and lead to selection of the "best"
statistical model. This simulation study con­
sisted of constructing a stochastic (or proba­
bilistic) analogue of the generalized production
model and then simulating the catches at var­
ious levels of constant fishing effort. Inferences
will be drawn about the propriety of all four
statistical models from residual variation pro­
duced in the catches. Also, the sensitivity of
catch residual variation to parameter variation
will be demonstrated.

The generalized production model can be writ­
ten in a form that is more easily discussed bio­
logically

dP/dt = PtK[(p",m-l_ptm-l)/p",m-l]
- qfPt (21)

The signs (+ or -) are set for convenience
assuming m > 1. The usual biological in­
terpretation of the constants is as follows:
K is "the intrinsic rate of natural increase",
P '" = (KIH) Ij(m-

I
) is the asymptotic environ­

mentally limited maximum population size or
"carrying capacity", and m is the determinant
of the proportion of P 00 at which the maximum
rate of production occurs. The stochastic an­
alogue of equation (21) is

dP/dt = P tK[(7T,,-1 - P t,,-l)/7T"-I]

- ylPt (22)

where fK, 7T, !-t, y f are stochastic variables with
expected values (or means) 1K, P "" m, q I re­
spectively, and distributions and variances to
be specified. The parameters of equation (21)
were considered to be stochastic variables since
they are actually average conditions determined
by many environmental inter-relationships.

The distributions and variances of the sto­
chastic variables are unknown as are their
expected values to be estimated from the fishery
data. Some broad inferences about the distri­
butions can be made, however, from biological
and mathematical implications of the production
model. The "intrinsic rate of natural increase",

K, was assumed to be approximately normally
distributed [,-N (K,cr21)], becHuse K is the re­
sultant rate of a linear combination of rates­
birth rate - death rate (P in numbers), or birth
rate + growth rate - death rate (P in biomass)
--so may be either positive or negative at any
given time. Negative values for 7T and yare
biologically and physically meaningless so they
were assumed to be approximately log-normally
distributed [,-.'logN(P ",' cr22) and ,-.'logN(q,cr'3)
respectively]. The integrated forms of equa­
tions (2), (21), or (22) do not exist for m = 1;
therefore !-t was assumed to be given by [1 +
(m - 1) g] where g was assumed to be approx­
imately log-normally distributed with a mean
of one [,-.'logN(1, cr'4)]. This resulted in!-t
having a mean of m with a range of minus in­
finity to one, or one to plus infinity, depending
on whether m is less or greater than one.

Integrating equation (22) from Po to P t yields

this is the stochastic analogue of equation (4).
Expected values and arbitrary variances
(cr21, cr22, cr23, a-2d were chosen to allow:

Stochastic Expected Approximate
variable value 99 '/r' range

K 5.60 5.30-5.90
fL 2.00 1.95-2.06
'IT (lOS) 1.40 1.07-1.83
y (l0-·5) 7.00 6.63-7.39

The expected values were rounded approximate
values obtained in the example following this
section. In the same manner as the previously
described Pella-Tomlinson technique, equations
(5) and (23) were used to simulate a 48-year
catch history at each of 13 levels of fishing effort.
The continuous stochastic variable case was ap­
proximated by setting N = 10 in equation (5).
At each iteration, the stochastic variables
{K, 7T, !-t, y f were drawn at random from their
respective probability distributions, produced
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6

FIGURE I.-Standard deviation of the residuals, Ea,

plotted against the detenninistic catch, C, for statistical
Model 3. • = fishing effort below maximum sustainable
yield (MSY) level. 6. = fishing effort above MSY level.
@ = fishing effort at MSY level.

duces the maximum sustainable yield (MSY)
(C = 196 X 106

). Regression analysis reveals
that variance about regression, SllX2, is highly
significantly different between below and above
MSY levels (F = 9.90; 4, 4 df; Pr <0.01), but
the regression coefficients, b, are not significantly
different (t = 1.47; 5 df; Pr >0.20) -Table 2.
The "above MSY" regression has a y-intercept,
which must be zero, significantly different from
zero (t = 3.30; 4 df; Pr <0.05). It appears
that Model 3, like Model 2, is valid up to
58,000 :::;; f < 65,000 (Figure 1).

20050 100 150

Deterministic Cotch (xI08 )

~
Q 5
~..
;;
"~ 4....
a:

o

with a random number generator by the multi­
plicative congruential method (subroutine
RAND, University of Washington Computer
Center). The variances and means of residuals
and log-residuals were calculated at each fishing
effort level.

The results of the simulation trials are given
in Table 1. It was obvious from the formulation
of equation (23) that Model O-assuming con­
stant residual variance-was inappropriate, the
simulation trials add confirmation. Model 1­
assuming residual standard deviation propor­
tional to fishing effort-is also rejected over any
moderate range of fishing effort. A close approx­
imation, however, is obtained for f :::;; 22,000.

Model 2-assuming constant log-residual var­
iance-appears to be valid up to 58,000 :::;; f <
65,000, where a trend of increasing variance be­
gins. The hypothesis of common log-residual
variance for f :::;; 65,000 was tested by Bartlett's
t-test (Snedecor and Cochran, 1967). The result
is not significant (uncorrected X2 = 7.72, 9 df,
Pr >0.50). Including the log-residual variance
for f = 70,000, however, significance is ap­
proached (corrected X2 = 16.35, 10 df,
Pr <0.10).

Model 3-assuming residual standard devia­
tion proportional to catch-fulfills the assump­
tion about as well as Model 2. The proportional
relationship between the residuals standard de­
viations and deterministic catch (Figure 1) ap­
pears to be different between catches given by
fishing effort below and above that which pro-

TABLE 1.-Results of the stochastic catch simulation trials of the generalized production model.

Fi.hing Deterministic
Deterministic Mean residual Residual variance
population

"fforl catch size

I
i In < SOCE) SO(ln .)

(10") (10") (10") (10- 0) (1012) (10-<)

I if j>

1,000
5,000

10,000
15,000
22,000
29,000
40,000
51,000
56,000
65,000
70,000
75,000
79,000

9.6775
45.9375
85.7500

119.4375
156.3100
181.1775
196.0000
181.1775
156.3100
119.4375
85.7500
45.9375
9.6775

138.25
131.25
122.50
113.75
101.50
89.25
70.00
50.75
38.50
26.25
17.50
8.75
1.75

-0.0706
-0.0599

0.0143
0.2155

-0.7088
-1.1/61
-0.6563

0.5173
-0.1051

0.5438
0.2865

-0.3734
-0.2770

-0.7765
-0.1713
-0.0218

0.1357
-0.4956
-0.6551
-0.3646

0.2404
-0.1044

0.3927
0.2577

-0.9846
-3.4017

0.0844
1.7538
5.7506

13.0288
20.4779
24.6701
22.6228
30.1457
18.4686
/8.1894
11.5283
7.2114
0.8834

9.1231
8.3187
7.8882
9.0945
8.3884
7.5760
5.9845
9.1269
7.6021

12.5489
15.4564
34.2285

102.6439
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TABLE 2.-~egression analysis for statistical Model 3 of standard deviation of catch residuals, S (Ea), on determin­
istic catch, C, with levels of fishing effort below and above that which produces the maximum sustainable yield (MSY).

Effort
level

regression

Below MSY
Above MSY

0.020892
0.206746

TABLE 3.-Catch residual variance produced by variation
in each stochastic variable of the generalized production
model.

In conclusion, the assumption of statistical
Models 0 and 1 were rejected by the simulation
study. Statistical Models 2 and 3 were found
to be valid over a wide and similar range of
fishing effort. Their range of validity includes
up to and well beyond the level of fishing effort
producing the MSY (f = 40,000), the most likely
range in which a fishery would operate. Em­
ploying Model 3 has a theoretical advantage over
Model 2 in a least-squares estimating procedure.
With Model 3, the actual residual variance is
minimized. Whereas with Model 2 the log-re­
sidual variance is minimized and the parameters
are best least-squares estimates only in the trans­
formed model. The theoretical advantage of
Model 3 may serve as a criterion for choosing it
when no other criteria exist.

Several additional simulation trials were made
to demonstrate the relative degree of influence
that random variability in each parameter ex­
erts on the variance of the catch residuals. The
upper two standard deviations of each stochastic
variable was set equal to 25% of their mean,
the level of fishing effort was set at 40,000 (MSY­
producing level), and four trials of 500 time
periods each were made. Each parameter in turn
was allowed to vary with the remaining three
constant (Table 3). The variation in catch was
most sensitive to varying the exponent, m, and
least sensitive to varying the catchability coeffi­
cient, q. This, of course, implies the relative
precision of the parameters if they had been ac-
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tual estimates. One should not, however, gener­
alize on the order of precision since these results
obtain specifically for the assumed probability
distributions and expected values. This exercise
does demonstrate a frequently employed method
for implying which parameters, given their esti­
mates, are most critical and perhaps deserving of
additional independent estimation.

The data of catch, catch per unit effort, and
fishing effort from the eastern tropical Pacific
yellowfin tuna fishery (Pella and Tomlinson,
1969; Table 6) are plotted in Figure 2. Appar­
ently the population and fishery dynamics are
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FIGURE 2.-Data from the eastern tropical Pacific yellow­
fin tuna fishery, 1934-67, plotted as (A) catch VB. fishing
effort, and (B) catch per unit effort VS. fishing effort.
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4.20·7.00 36.8604 9.7958
1.12-1.75 30.7556 8.1498
5.60·8.75 17.1333 4.4781

I Residual variance
Appraxlmate ~-=---.,...----
95% range I S· (E) I S· (In E)

- (lOll) (l0-<)

2.00
5.60
1.40
7.00

Expected
value

Stocha.t1c
variable

'"K
... (l()l)

r (10-1)

575



well described by a production model-good re­
lationships are observed in Figure 2. These data
were used by Pella and Tomlinson in exempli­
fying their technique; for comparative purposes
the same data are utilized here. The results of
this section, however, should be considered as
just an example and not a recommendation on
management.

The parameters of the generalized production
model for the tuna fishery were estimated by the
Pella-Tomlinson computer program, GENPROD,
replacing the fitting criterion, 8, with those of
each alternative statistical model [equations
(11), (15), and (18)]. Each parameter was
searched to five digits or until the improvement
in 8 was less than 0.01 j; at three levels of nu­
merical approximation in equation (5)­
N = 1,3,5- (Table 4). Increasing the precision
of numerical approximation greatly changed the
parameter estimates between N = 1 and 3, but
only slightly between N = 3 and 5. The most
sensitive parameter is H, followed in order by
K, q, m, and r. Consequently, the estimates
of the average environmentally limited maxi­
mum population size, P '" , and average optimum
population size Popt , vary with the level of pre-
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clsron. Pella and Tomlinson indicated that un­
reasonable estimates were obtained for the
catchability coefficient, q, (presumably with
N = 1) and made an arbitrary selection of a
"reasonable" estimate. "Reasonable" catcha­
bility coefficients are obtained here with N = 3,
making unnecessary the arbitrary selection of
a reasonable estimate. The management impli­
cations of maximum equilibrium catch, Cmvx , and
optimum fishing effort, fopt, are surprisingly
robust to the degree of precision of the numerical
approximation. Schaefer (1957) mentioned
previously, however, that these two management
implications are robust to changes in the esti­
mate of q in his estimating method; Pella and
Tomlinson also mentioned the phenomenon for
their technique. The 8 criteria values were re­
duced about 71< or less by choosing N = 3, as
against N = 1 and reduced a negligible 0.2%
or less by choosing N = 5 (81 and 82 increased
minutely due to the level of precision chosen for
8). Obviously, the error due to approximation
in equation (5), as previously stated, is negli­
gible for these data with N ;?: 3.

Turning to the effects of the alternative sta­
tistical models (with N = 5), it may be seen

TABLE 4.-Parameters and management implications of the generalized production model for the eastern tropical
Pacific yellowfin tuna fishery, 1934-67, estimated with the Pella-Tomlinson technique (GENPROD) using four dif­
ferent statistical models and three levels of precision, N, in equation (5).

Parameters Management implications

Model iii Ii K I, q P", ClOax lopt Popt S
Criterion

Pounds Pounds Boat Pounds
(lO-S) (10-') (I()6) (10') days (10')---

N = 1

20 1.4 45.-_ 182.6 35,300 1.78__ XI016
0 1.4 2900.1 33.26 .820 27.00 44.6 182.6 35,200 19.2 1.7858Xl0'8
I 1.9 0.17064 15.21 .904 21.69 52.7 186.2 33,210 25.8 4.7140XIO'
2 1.6 34.502 16.65 .879 18.10 64.0 182.5 34,500 29.2 8.2214XIO-'
3 2.0 0.00748 7.57 .865 11.50 101.2 191.5 32,900 50.6 7.8762Xl0-'

N ~ 3

0 1.5 59.999 7.65 .842 7.36 162.7 184.5 34,660 72.3 1.7197XIOt,
I 2.2 0.00013 5.90 .921 10.00 113.0 188.6 32,200 58.6 4.5291 X 10'
2 1.8 0.17092 5.86 .952 7.70 147.4 184.0 33,800 70.7 8.0355X 10-'
3 2.0 0.00408 5.59 .835 8.50 136.9 191.5 32,900 68.5 7.3769XI0-'

N = 5

0 1.5 55.802 7.28 .843 7.10 170.4 183.9 34,200 75.7 1.7185Xl016

I 2.2 0.00010 5.38 .921 9.1 I 124.0 188.7 32,210 64.3 4.5296X 10'
2 1.8 0.15820 5.61 .926 7.40 153.9 184.1 33.700 73.8 8.0371XIO-'
3 2.1 0.00054 5.06 .845 8.10 142.7 192.6 32,700 72.7 7.3608X I0- 1

1 • = PlP 00

• Pella and Tomlinson (1969; Table 5).
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that the most sensitive estimate is H, followed
in succession by the estimates of m, K, q, and T.

The estimates of the management implications
Gm• x and fopt are, for all practical purposes, the
same among statistical models, but less similar
than among levels of precision. This may be
offered as an argument against considering al­
ternative statistical models. But consider the
plot of the data in Figure 2; one could draw
an average line by eye through the data and
arrive at estimates of Gm• x and fopt just as ac­
curate as those estimated by the sophisticated
least-squares search technique. The point is that
with good data most rational statistical pro­
cedures should provide similar estimates of Gmax

and fopt. One cannot be certain that this will
be so with data of lesser quality or different
range. The values of m which determine the
shape of the yield curve, on the other hand, are
very different between Models 0 and 3. This
could have a significant effect on an economic
analysis of the yield curve.

In the absence of other criteria for choosing
a particular statistical model, the "fit"-least
sum of squared residuals-is often selected
(Glass, 1969), and is perhaps a reasonable cri­
terion if the goal is interpolation. The goal here
is to obtain the best possible parameter estimates
in order to make, in essence, extrapolations or
predictions. In the latter case the best criterion
is not the "fit", but the degree of assumption
fulfillment. Statistical Model 3 provided esti­
mates that were least influenced by the addition
of error-comparing the parameters' precision
between N equalling 1 and 5-inferring the
greatest confidence in its estimates. It was also
seen from the simulation study that Model 3
best fulfilled the assumptions of a least-squares
procedure. Model 3, ironically, "fits" the data
the worst, although only by about 6%.

Pienaar and Thomson (1969) have suggested
the utilization of an important tool for selecting
a statistical model which best fulfills the as­
sumptions of the estimating procedure-resid­
uals examination. Various plots of the residuals
suggested by Draper and Smith (1966) were
made for the four statistical models (Figure 3).
Each statistical model gives a mean residual
near zero fulfilling one of the least-squares as-

sumptions (Figure 3A). Plots of residuals
against time (Figure 3B) indicate: 1) variation
increases with time in Model 0 from 1934
through 1961, violating the assumption of con­
stant residual variance; 2) Model 1 tends to
over-correct as there is a propensity for var­
iation to decrease from 1940 through 1967; and
3) Models 2 and 3 are nearly identical in con­
trolling time-oriented variation. Runs-consec­
utive residuals of the same sign-are evident
in all four models, indicating violation of the
assumption of residual independence. There
are only ten runs in Model 3 giving a proba­
bility less than 0.01 that the arrangement of
signs is random (Figure 3B). Draper and Smith
(1966) suggest, however, that unless the ratio
of degrees of freedom to number of observations
is small (here 29/34), the effect can be ignored.
The dependence of consecutive residuals is un­
doubtedly due to vitiation of the assumption of
no time lags in the fish population. With changes
in fishing effort the age structure of the popu­
lation is altered as well. It might be possible
to averag-e out these effects by considering a
time period longer than one year, say the aver­
age life-span of an individual. That would be
about 3 years for a yellowfin tuna, the approx­
imate mean length of the runs. However, that
would also reduce the number of observations
to eleven and the fishing effort, assumed con­
stant in integration of the model, would vary
considerably.

An increase in residual variation with deter­
ministic catch is obvious for Model 0 (Figure
3C), again violating the assumption of constant
residual variance. As in the time plot, Model 1
tends to over-correct for the phenomenon ex­
hibited by Model O. Models 2 and 3 stabilize
the variance as might be expected. In the final
plot, residuals against fishing effort, the same
conclusions may be reached (Figure 3D).

Models 2 and 3 apparently fulfill the assump­
tions of the least-squares procedure while Models
o and 1 violate the assumption of constant re­
sidual variance. Invoking the previously men­
tioned criterion for choosing between Models 2
and 3, the best statistical model for this fishery
is Model 3.
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The referee of this paper has raised an im­
portant point regarding application of the var­
ious statistical models to actual fishery data.
In a non-overexploited fishery, generally, the
quality and level of catch and effort values in­
crease with time. Relatively speaking, Model 0
in this case places greater weight on more recent
data than do Models 1, 2, or 3, and in the ab­
sence of any other criteria it might represent
the intuitive choice. However, if the quality
of the data were a more significant contributor
to unequal residence variance than the statistical
model, one would expect, in this case, a decrease
in the residuals plotted for Model 0 against time,
catch, and fishing effort in contrast to the appar­
ent increase for the yellowfin tuna fishery (Fig­
ure 3). If one has reason to suspect a significant
difference in quality of the data, as would be
suggested by a decrease in the residual plots
of Model 0, perhaps a solution is to partition
the data at the point in time where a significant
quality increase occurs. Then fit each set of
data individually placing greater weight on the
parameter estimates for the more recent set.
The specter of the suitability of employing pro­
duction models over long time periods is also
raised by this point. But it is outside the scope
of this paper and the reader is referred to the
papers cited previously.

SUMMARY

In using a least-squares procedure for esti­
mating parameters of a mathematical model,
such as the Pella-Tomlinson technique, there are
three assumptions about the residuals for ob­
taining the best least-squares estimates: 1) the
residuals are independent, 2) the residuals have
an expe,~ted value of zero, and 3) the variance
of the residuals is constant (Anscombe and
Tukey, 1963; Draper and Smith, 1966; Snedecor
and Cochran, 1967). We have observed from
the simulation study that two (of four alterna­
tive) simple statistical models which are bio­
logically sound-Model 2 (using a logarithmic
transformation) and Model 3 (weighting by the
inverse of the squared deterministic catch)­
fulfill the statistical assumptions for obtaining

good least-squares estimates of the generalized
production model parameters over a wide range
of fishing effort.

On applying these four statistical models in
estimating the parameters of the generalized
production model for the eastern tropical Pacific
yellowfin tuna fishery, residuals examination re­
vealed that the same two statistical models,
Models 2 and 3, fulfilled the least-squares esti­
mation assumptions. Models 0 (assumed by
Pella and Tomlinson, 1969) and 1 did not. Model
3 was selected as the best model since it involves
the direct minimization of the actual residual
variance, and is therefore considered to be theor­
eticaJly superior to Model 2.

Finally, anyone using the generalized pro­
duction model and the Pella-Tomlinson estimat­
ing technique should be aware of, in addition
to the proper statistical model, the effect of the
value of N in equation (5) on the parameter
estimates.
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