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Abstract.-oA simple analytical
technique is developed for estimating
the predictability of recruitment, that
is, correlations between recruitment
and stage-specific mortalities or abun­
dances. The method requires the input
ofestimates bf the variability of stage­
specific mortalities, which may be cal­
culated from mean stage-specific mor­
talities by applying a published regres­
sion. It is shown that modification of
this regression to compensate for sam­
pling error in field measurements of
abundance significantly reduces the
estimated standard deviation oflog-re­
cruitment, which is an important fac­
tor in the predictability calculations. It
is concluded that the prospects for pre­
dicting recruitment from egg or larval
surveys or from environmental vari­
ables are quite poor for fish stocks
showing the typical distribution ofmor­
tality across stages,

Manuscript accepted 7 May 1995.
Fishery Bulletin 93:657-665(1995),

657

The problem of predicting recruit­
ment remains central to fisheries
science (e.g. Bradford, 1992). Ap­
proaches to this task may involve
finding environmental correlates of
recruitment or the field sampling of
prerecruit life history stages. In this
study we present simple analytical
formulae that permit one to esti­
mate the potential explainable vari­
ance ofrecruitment without the use
of detailed, specific data.

Certain environmental factors
may be correlated with recruitment.
Wind speed has been proposed as a
determinant ofrecruitment because
storm-driven mixing can disperse
larvae and their prey, reducing food
availability (Lasker, 1975, 1981;
Buckley and Lough, 1987; Peter­
man and Bradford, 1987). Larval
food supply may also be influenced
by the lag between appearance of
larvae and the peak abundance of
their prey (Cushing, 1990). The in­
tensity of turbulence may control
the frequency of contact between
larvae and their prey (Rothschild
and Osborn, 1988), Larvae may be
exported to inhospitable waters by
the action of wind driven currents
(Nelson et aI., 1977) or by the in­
cursion ofGulfStream rings (Flierl
and Wroblewski, 1985; Myers and
Drinkwater, 1989). (For thorough
discussions ofenvironmental influ­
ences on recruitment see Fogarty
[1993] or Wooster and Bailey
[1989].) In each example noted

above, some measurable physical
quantity may be plausibly postu­
lated to be a proxy for (say) larval
mortality, in a qualitative sense; it
is our aim to quantify the expected
predictive power ofan environmen­
tal variable. Alternatively, but much
more expensively, larval mortality
could be estimated from field stud­
ies (Butler, 1991). We calculate the
likely strengths of the correlations
between mortality for an early life
history stage and recruitment. A
related problem that is addressed
is the correlation between recruit­
ment and abundance in an early life
history stage, which can be deter­
mined from field studies (Peterman
et aI., 1988; Bradford, 1992). This
treatment is an analytical comple­
ment to the simulation studies pre­
sented in Bradford (1992).

In the analysis to follow we first
show how variability of mortality
may be estimated from mean mor­
tality while accounting for the ef­
fect of sampling error in the field
measurements. We then proceed to
formulate simple relationships per­
mitting the calculation of the cor­
relation coefficients between log­
transformed or raw recruitment
and stage-specific mortality or
abundance, using only estimates of
variability in stage-specific mortal­
ity. These two sets of analyses are
then combined to provide estimates
of the predictability of recruitment
for a number of fish species.
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Methods and analysis

Variability of mortality

To calculate correlations between stage-specific mor­
talities (or abundances) and recruitment, we required
estimates of variability of mortality for each stage.
Bradford (1992) compiled from the literature a large
set of data on mortality rates and their interannual
variabilities for the prerecruit stages ofmarine fishes.
From this consolidation of data, Bradford regressed
the interannual variance of daily mortality on its
mean (averaged over years). We adopt the following
notation: Mrepresents an estimate ofM from a single
year's survey (often only two abundance estimates
are used to calculate M>; M represents the average
over a number of years of M values; Var(M) is the
estimate of the variance of the mortality calculated
from a number ofyears ofSf data. Note that Var(M)
is not equal to the true variance, Var(M), an issue
dealt with below. Bradford found the following fit,
holding across both stages and species: In[Var(M)] =
2.231 In M - 1.893 (r2 =0.90; P<O.OOOl>. We can re­
write this relation as
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where t i is the time of the ith observation. This re­
duces to the right-hand side of Equation 3 when n=2,
and decreases asymptotically as lJn for large n. For 10
evenly spaced observations, the estimation error vari­
ance will be approximately reduced by one-half, com­
pared with the case oftwo observations. To a good ap­
proximation, Equation 3 will provide a good estimate
ofthe estimation errorvariance because only a few per­
cent ofthe data used by Bradford had n larger than 10.

PredictabiUty of recruitment: no density
dependence

We can write recruitment as

where t refers to a specific year, E is the total num­
ber of eggs produced, and Ci is the cumulative mor­
tality in stage i. To be specific, we designate i =1 for
the egg stage, i =2 for early larvae, i =3 for late larvae,
and i = 4 for juveniles. In accord with Equation 5, the
abundance of prerecruits, N i , at the end of stage i, is

This very appealing relationship specifies an almost
constant CV for mortality; however, it is unclear ifit
is affected by measurement error.

When mortality is calculated from the difference
of two field estimates of log abundance each with
error E, the following relationships hold:

Var(M) =0.15M 2.
2

• (1)
These equations form the basis of the forthcoming
analysis.

Let q(t) =~ + f1CiCt), and

InE(t) =InE + f1In ECt),

where N represents the true abundance, 0'£ is the
standard deviation ofthe estimation error E, and T =
t 2 - t1• Approximately 70% ofthe mortality estimates
in Bradford (1992) were obtained as the difference
of two abundance estimates.

When mortality is estimated from a regression
equation, by using a slope oflog numbers versus time
with n observations equally spread over time inter­
val T, then we can use the standard formula in re­
gression for the variance ofthe estimate ofa slope to
obtain

0'2 0'2
__---"-E__ = 2 E , (4)
~n Ct._t)2 Tncn+1l(2n+l_n+l)
"",",i=l ~ Cn-1l2 6 4

It follows from Equation 6 that

Equations 7 and 8 are general, they hold whether or
not correlations are present between stages. We make
immediate use of these equations to examine the
predictability of recruitment in the absence ofinter­
stage correlations, a simple case which serves well
to illustrate the technique.

In the following calculations we concentrate on
environmentally induced recruitment variations and
neglect the contribution of interannual variations in
egg production. Accordingly, we remove the stock ef­
fect from data-based estimates of recruitment vari­
ability before comparison with model-based values.
Only trivial modifications are necessary to include
the egg production factor should this be desired. In
the absence ofinterstage correlations ofmortality, it
is easily shown that
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(9) The correlation coefficients of interest may also be
calculated:

this relation holds for i =1,2,3; for i =4, one has a
correlation coefficient of 1.0, because we have stipu­
lated that abundances are evaluated at the end of a
given stage. Corresponding to Equation 11 we have

where a gauges the strength of the density-depen­
dence and E (which should not be identified with the
E introduced in section 2) represents the portion of
juvenile mortality uncorrelated with late-larval
abundance. It follows that

(17)

(16)0".
rci=-(1-a)-CI- (i =1,2,3)

O"lnR

r.
m

· =(1- a) O'ln(nil (. 1,2 3)1= , ,
O'lnR

r
c
4 =_ -a[(O"Cl)2 + (O"C2)2 + (O'c3 )2] + (O'C4)2

0"1nRO'c4

The coefficients r ni are given by

and, again, r n4 = 1.
This treatment may be generalized to any case in

~hichthere exists a linear relation, analogous to Equa­
tion 13, among the stage-specific mortalities and log
abundances. One could easily examine the case where
two or more stage-specific mortalities are positively
correlated, an effect that would enhance predictability.
However, a relationship of this sort will also increase
O'lnR, an outcome which is undesirable, as we show in
the results section, when calculated values ofO'lnR are
compared with those estimated from fisheries data.

Predictability of raw recruitment

Thus far, we have formulated relationships bearing
on the predictability, from prerecruit mortalities or
abundances, oflog-transformed recruitment. It seems
intuitively likely that raw recruitment will be con­
siderably less predictable, which is unfortunate be­
cause it is the untransformed recruitment whi~h is
sought for fisheries management purposes. In this
section we undertake a quantitative investigation of
the predictability of recruitment. The results that
follow do not depend on the presence or absence of
density dependence (or other interstage correlations).

Let r;i be the coefficient for the correlation between
R and q. We wish to find a relationship between this
quantity and the coefficient for the correlation between
In R and Ci , rci' This quantity, r~, is calculated from

(13)

(14)

(12)

(11)

r. . _ O"ci •
CI

O"lnR

r. . = O"l!l(nil •
m ,... ,

VlnR

Predictability of recruitment: density
dependence

We prescribe density dependence of the form dis­
~ussedby Myers and Cadigan (1993, a and b), which
IS the same form as that used in key factor analysis
(Varley and Gradwell, 1960; Manly, 1990; Bradford,
1992). In this formulation, mortality during the ju­
venile stage is increased (decreased) for years in
which larval abundance is high (low). Specifically,

where 0'£ is the standard deviation of E. With this
formulation the quantities of interest can be readily
calculated.

The quantities O'ln(nil remain as given in Equation
9, for ~ =1,2,3; for i =4, again, O'lnlnil =OinR' which is
now gIVen by

where O'ln(nil is the standard deviation of In N· and
. h P

O'ci IS t e standard deviation of Ci. Correspondingly,

(0"1nR)2 =(O"CI)2 +... + (O"c4)2. (10)

We designate the correlation coefficient relating log
recruitment and log abundance in stage i to be r .
and the corresponding coefficient relating log recrui'i~
~ent and stage-specific mortality to be rci' With Equa­
tions 7, 8, 9, and 10, it is easily demonstrated that

(19)

(0"1nR)2 =(l-2a)[(O"Cl)2 + (O"C2)2 + (O"C3)2] (15)

+(0"c4)2.

The joint probability p(R,Ci ) is obtained through

d(lnR)
p(R,Ci ) =p(lnR,Ci ) dR '
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and, by assum.ing that In Rand C are normal,
p(1n R,Ci ) m.ay be obtained from standard texts:

sources cited in Bradford (1992), the sampling pe­
riod for the surveys .E!0viding mortality estimates
and then plotted In M versus In T in order to test
for the existence ofa power law relationship between
these two variables (Fig. 1). The regression (Fig. 1)
yields In M =-0.991 In T + 0.776, or, equivalently

Equations 20 and 19 may be substituted into Equa­
tion 18 to obtain an expression for r;i'

The integrations in Equation 18 can be straight­
forwardly executed to show that

(24)- -1M=2.17T .

Even for a given life history stage, there can be great
differences in the estimation error for abundance.
For the Peterman (1981) salmon smolt study, GE ==
0.08, whereas for the juvenile groundfish surveys
examined in Myers and Cadigan (1993, a and b), GE

This apparent tendency of M and T-l to covary may
stem from the existence of excluded regions of the
M, T-l plane. If M is small, mortality will be de­
tectable only if sampling times are well separated,
implying that small M corresponds to large T. Simi­
larly, if M is large, the interval between samples
cannot be great, because the abundance will possi­
bly decline rapidly below the threshold ofdetectabil­
ity; thus, large M corresponds to small T.

We can now use Equation 24 to obtain a relation
for the true variance of M, Var(M), by substituting
Equations 1 and 3 and then substituting Equation
24 into the result, with the outcome

(21)

It is evident from this expression that ifGlnR is small,
then rci = rei'

An identical result holds for the coefficient of cor­
relation between R and In N i , designated r~i; it is
given by

The coefficient of correlation between R and N i, des­
ignated r,ti, can be found through a procedure analo­
gous to that employed in the calculation of r;i' The
result is

... ... ...... .. .
-2

(23) .
I!tl •. .

I.
In the limit that O'ln(nil«l, Equation 23 reduces to
r:ri, = r~i'

-6

. I· •

.:.. . ...... .
Resul,ts

Variability of mortality 2 3 4 5 6 7

To obtain a relationship between the true variance
ofmortality, Var(M), and mean mortality we can sub­
stitute Equation 3 into Equation 1. However, it must
be bome in mind that there is likely to be a relation­
ship between M and T (Taggart and Frank, 1990).
To address this problem., we extracted, from the

logT

Figure 1
The natural logarithm of the daily mortality rate
versus the natural logarithm of the sampling dura­
tion for prerecruit stages of marine fish, based on
sources listed in Bradford (1992).
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(26)

where O'm is the standard deviation ofM.
Finally, we wish to utilize Equation 26 to obtain a

relationship between the interannual variability in
cumulative mortality in a given stage and the mean
cumulative mortality. Since the M values in
Bradford's data base are largely stage averages, the
cumulative mortality is just C = M ts ' where t s is the
stage duration. It also follows that the standard de­
viation of cumulative mortality O'c' is given by O'c =
O'mts' Applying t~se relations to Equation 26, we
arrive at O'c = 0.2 C , where we have placed a bar over
the C to indicate that we are relating the interannu.al
variability ofC (represented by O'c) to its mean value
( C). We can be more specific, since Bradford's re­
gression applies across stages, and make the stan­
dard deviation and mean specific to each stage i:

bers, but somewhat arbitrarily, we assume, for the
range M = 10-2 to 10-1 d-1, that the true variance
represents 25% of the estimated variance of M, so
that Var(M> = 0.04 M 2 or

2.0

2.01.0 1.5

0.5 1.0 1.5

SO of estimatior:l error ( a. >

15

10

5

0.5

All but North Sea
15

()' 10c
Gl

"0- 5Gl

IIIt
a

0.0 0.5

North Sea
a
6

4

2

1 Bradford, M. Dept. 1994. Fisheries and Oceana, West Van­
couver Laboratory, 4160 Marine Dr., West Vancouver, B.C. V7V
lNG, Canada. Personal commun.

The coefficient in Equation 27 is only half as large
as that in Bradford's regression (Le. the square root
of the factor 0.15 which appears in Equation 1). This
adjustment of slope, arising from correction for esti­
mation error, could be too severe (Bradford and Ca­
bana, in press; Bradford1); nevertheless, we take
Equation 27 at face value, use it to predict O'lnR' and
compare the derived values to data. In the discus­
sion we comment on the influence of the slope param­
eter in Equation 27 on the predictability calculations.

Predictability of recruitment: no density
dependence

In Table 1 we present the estimates of the correlation
coefficients derived from Equations 11 and 12; in the
final column the calculated O'lnR' from Equation 10,
appears. If we had used relation (Equation 1) in the
calculation ofO'lnR' without adjusting for measurement
error, then the calculated values of O'lnR would be one
and a halftimes as large. It is evident that (Fig. 3) O'lnR

is overestimated for cod, anchovies, and plaice. Myers
and Cadigan (1993, a and b) have shown that density­
dependent juvenile mortality can be expected to ap­
preciably attenuate larval variability in cod and plaice.

Figure 2
Histograms of the standard deviation of the esti­
mation error of log abundance for the juvenile
groundfish survey data treated in Myers and
Cadigan (1993, a and b).

has a median value of about 0.75 (Fig. 2). Of neces­
sity, the discussion ofthe importance ofmeasurement
error cannot be precise. We examine the effect of 0'£

in the interval 0.3 to 0.5, a range about midway be­
tween 0.08 and 0.75, on the variance ofM estimates.

If the error in the log-transformed survey abun­
dances is characterized by 0'£ =0.3 (corresponding to
a CV of approximately 30% in the untransformed
abundances), then for the range of mortalities in
Bradford's regression, AI = 10-4 to OAd-1, Equation
25 shows that estimation error accounts for 30% (up­
per end of range) to 100% (lower end of range) of the
variance in M. In other words, the true variance in
M amounts to between 0% (lower end of range) and
70% (upper end of range) ofthe variance ofM. If0'£ =
0.5, then the true variance represents 0% (lower end
of range) to 20% of the estimated variance of M. Of
more interest is the range of mortalities for major
fish species, entered in Table 1 of Bradford (1992),
if =10-2 to 10-1 d-1. For this range, with 0'£ = 0.3, we
find that the true variance constitutes about one-half
of the estimated variance of M. If 0'£ = 0.5, then the
true variance is estimated to make no contribution
to the estimated variance. On the basis ofthese num-

(Jci = 0.2Ci . (27)
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Figure 3
CA) Histograms of the standard deviation of the log-recruitment residuals from a Ricker fit to the
stock-recruit relation for four species ofmarine fish. CB) Histograms of the standard deviation oflog
recruitment Cwithout adjustment for stock size) for four species of marine fish.

Predictability of recruitment: density
dependence

It is evident from. Equation 15 that the effect ofposi­
tive a is to reduce GlnR' which is desirable here, be­
cause the formulation with a =0 overestimated GlnR

for cod and plaice (Table 1).
We now select cod for closer examination, since

there are reliable estimates for the strength of den­
sity dependence in this species (Myers and Cadigan
[1993a)). Our parameter a corresponds to l-A. in
Myers and Cadigan (1993a). They found that A. was
typically about 0.5 for a cod stock, suggesting a =
0.5. With this specification we find from Equation
15 that O'lnR =0.58, which is in good agreement with
Figure 3A. For this case, a = 0.5, the correlation be­
tween t:J.C4 and t:J.lnN3 is 0.6, so that about 36% of the
variance in juvenile mortality is related to larval
abundance (see Eq. 13).

With a fixed we have recalculated, rei and rni' for
cod using the equations above, and have displayed
them in Table 2 along with their counterparts calcu-

lated for Table 1 (for which a = 0 was assumed). It is
apparent that the prescribed density dependence has
appreciably lowered the correlation coefficients.
There is a particularly large reduction in r e4' stem­
ming from the fact that the juvenile mortality has
two components which tend to offset one another (in
the limit £ = 0, in Equation 13, juvenile mortality
will actually be positively correlated with recruit­
ment). Thus, realistic levels of density dependence
(Myers and Cadigan, 1993a) have the effect of sub­
stantially reducing the predictability of log-recruit­
ment from prerecruit mortalities or abundances.

Predictability of raw recruitment

For GlnR = 0.5 we find from Equation 21, r;i / rei =
0.94 and for GlnR = 1.0 we have r;i / rei = 0.76. It is
evident that the predictability of raw recruitment
( r;i) declines relative to the predictability of log re­
cruitment (rei) as GlnR increases.

In Table 3 we have completed the presentation for
the cod case, showing the r;i,r~i,r;;' in comparison to
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Discussion
Table 1

Calculated parameters relevant to the predictability of recruitment analysis,
for four fish species: a,i is the standard deviation of total mortality for stage i;
CJJn(nil is the standard deviation of log abundance in stage i; alnR is the stan­
dard deviation of the log recruitment; rd is the coefficient of correlation be­
tween log recruitment and mortality for stage i; rni is the coefficient ofcorrela­
tion between log recruitment and log abundance in stage i. The quantities
alnR, rd, and rni were calculated by assuming no inter-stage correlations.

CV for mortality

The incorporation of estimates of
measurement error into the relation­
ship between variability ofmortality
and mean mortality indicates that
the slope coefficient (see Eq. 27),
which is the mortality CV; may be
substantially altered by measure­
ment error. However, removal of the
error component does not destroy the
intuitively appealing approximate
proportionality between variability of
mortality and its mean.

In the presence or absence of den­
sity dependence the slope parameter
in Equation 27 does not affect the
predictability oflog recruitment; see
Equations 11, 12, 16, and 17. Increas­
ing this parameter inflates 0In{nil and
0ei but it also increases O'InR by the
same proportion, leaving the corre­
lation coefficients rni and rei un­
changed.Thisinvarianceoftheco~

relation coefficients with respect to
the mortality CV is a useful result
stemming from our treatment of the
predictability problem. The predict­
ability ofraw recruitmentis influenced
by the mortality CV; because 0InR de­
pends on this CV and because 0InR af­
fects the correlation coefficients for raw
recruitment (Eqs. 21 and 22).

The true size of the mortality CV cannot be deter­
mined with certainty, because the degree ofinflation
of the true CV by measurement error cannot be ac­
curately ascertained. However, Equation 27, which
specifies a mortality CV ofonly 0.2, gives reasonable
estimates for the magnitude ofthe recruitment vari­
ability (OInR)' Comparison of Table 1 and Figure 3A
shows that Equation 27 (with Equation 10) over­
predicts the median 0InR in three cases (cod, ancho­
vies, and plaice). Underestimation of recruitment
variability due to ageing errors by 20-30% (Bradford,
1991; Bradfordl ) could rectify this discrepancy. For
cod and plaice it is likely that density dependence is
in part responsible for the discrepancy between cal­
culated (from Equation 27) and empirical values
of 0lnR (see Myers and Cadigan, 1993, a and b). In
any case, the approximate agreement between cal­
culated and observed values of0InR is powerful veri­
fication for the general validity of Bradford's (1992)
regressions.

alnR = 0.97

alnR = 0.96

CJJnR = 1.13

alnR = 0.91

Egg Early larvae Late larvae Juveniles

Cod
a,i 0.22 0.32 0.58 0.58

CJJn(nil 0.22 0.39 0.70 0.91

Irei I 0.24 0.35 0.64 0.64

Tni 0.24 0.43 0.77 1.0

Herring
Oci 0.21 0.16 0.48 0.79

aln(ni) 0.21 0.26 0.55 0.96

Ird I 0.22 0.17 0.49 0.82

Tn; 0.22 0.28 0.57 1.0

Anchovy
ad 0.35 0.32 0.79 0.65

alnlni) 0.35 0.47 0.92 1.13

Irei I 0.31 0.28 0.70 0.57

Tn; 0.31 0.42 0.82 1.0

Plaice
aei 0.52 0.21 0.70 0.39

alnlni) 0.52 0.56 0.90 0.97

Ir,i I 0.53 0.22 0.72 0.40

Tni 0.53 0.57 0.92 1.0

the rei' rni' It is clear in these examples that predict­
ability is lost when one works with the untrans­
formed recruitment or abundance.

Peterman et a1. (1988) have investigated the pre­
dictability of recruitment from surveys of prerecruit
abundances. Equations 22 and 23 shed some light
on how predictability is influenced by log transform­
ing the prerecruit abundances. Recall that when
O'Inlnil« 1, then r,:j = r~i' i.e. the raw recruitment is
predicted equally well by abundance or log abun­
dance. However, if 0lnlni) is considerably larger than
0InR' then r~; > r~i (e.g. for 0InR =1.0, 0Inlni) =2.0, rni =
0.5, then r~i =0.38, whereas r~i =0.18). Conversely,
if0InR is considerably larger than 0In(ni)' then, r~i > r~i

(e.g. for 0InR = 2.0, 0Inln;) = 1.0, rni = 0.5, then r~i =
0.14 and r,ti = 0.18). This implies that whether or
not one will achieve a better correlation between re­
cruitment and log abundance (of prerecruits) than
between recruitment and abundance depends on the
relative magnitudes of 0InR and 0In{ni)"
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Table 2
The coefficients of correlation for log recruitment of cod
lsee Table 1) versus stage-specific mortaHty, Tei> and for
log recruitment versus stage-specific log abundance, Tni.

The label "no d.d." implies absence ofdensity dependence;
the label "d.d." signifies that the parameters were calcu­
lated for the density-dependent case.

Early Late
Egg larvae larvae Juveniles

ITei I (no d.d.) 0.24 0.35 0.64 0.64
ITei Ild.d.) 0.19 0.28 0.50 0.28

ITni I(no d.d.) 0.24 0.43 0.77 1.0
ITni ICd.d) 0.19 0.33 0.60 1.0

Research needs

For research purposes one may seek correlations
between recruitment and an environmental variable
assumed to be a proxy for mortality during some
prerecruit stage. It is apparent that there is no mean­
ingful distinction between log recruitment and raw
recruitment for the purposes of correlation analysis
provided O'lnR :s; 0.4. For the optimal case of minimal
density dependence, correlations between log recruit­
ment and mortality seldom exceed 0.6 to 0.7 (Table
1). This implies that any environmental variable that
is to serve as a proxy for mortality must be very tightly
correlated with mortality if there is to be a significant
correlationbetween the proxyvariable and recruitment.
Similar results were found by Bradford (1992).

Management needs

The criterion for successful recruitment prediction
for stock management suggested by Walters (1989)
requires that the proxy should explain 80% of the
variance in log recruitment, or, equivalently, rci, rni ==
0.9. Equations 11 and 12 allow a ready appraisal of
the likelihood of meeting this criterion; the applica­
tion of these equations yields the results in Table 1,
indicating that this criterion is never fulfilled un­
less one samples late in the juvenile phase. The in­
clusion of density dependence (Eqs. 16 and 17) gen­
erally reduces the correlation coefficients rei and rni'

These findings agree with those ofBradford (1992).
A management strategy requiring predictions of

recruitment (rather than log recruitment) is not
likely to be viable if the stock under consideration
has high recruitment variability. For a stock with
O'lnR =1.0, if80% ofthe log recruitment variance can
be explained by a proxy, only 46% (Eq. 21 or 22) of
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Table 3
The coefficients of correlation for log recruitment of cod
versus stage-specific mortality, Tei; for recruitment versus
stage-specific mortality, T:;; for log recruitment versus
stage-specific log abundance, Tn;; for recruitment versus
stage-specific log abundance, T~i; and for recruitment ver­
sus stage-specific abundance, T,;j. All examples shown are
calculated for the density-dependent mortality case.

Early Late
Egg larvae la,rvae Juveniles

ITei I 0.19 0.28 0.50 0.28
I T~; I 0.17 0.26 0.46 0.26

ITn; I 0.19 0.33 0.60 1.0
I T~; I 0.17 0.30 0.55 0.92

ITn; I 0.19 0.33 0.60 1.0
I T,;j I 0.17 0.30 0.55 1.0

the variance of recruitment itself will be explained
by this proxy. For a O'lnR of 1.5, appropriate to some
herring stocks, only 21% of recruitment variance
could be explained by a proxy accounting for 80% of
log recruitment variance. These calculations bear on
the question ofwhether or not large year classes can
be predicted (Bradford and Cabana, in press; Ander­
son, 1988). Capturing the size of a large year class
requires an estimate of raw (rather than log-trans­
formed) recruitment; however, those stocks which
produce the most notable year classes (those with
large O'lnR) are the least predictable.

Summary

The analysis presented here complements that of
Bradford (1992). We have shown that correction for
measurement error can appreciably reduce the CV
for mortality, while not destroying the appealing pro­
portionality between variability of mortality and
mean mortality. We have demonstrated that in many
cases the predictability of recruitment can be deter­
mined analytically. It is evident from our treatment
that raw recruitment is considerably less predictable
than log recruitment for stocks with high recruitment
variability. Our results concur with those ofBradford,
suggesting that the prospects of predicting recruit­
ment from egg or larval surveys or from environmen­
tal variables are quite poor. However, it must be borne
in mind that some fish stocks will deviate from the
general pattern, and thus it is quite conceivable that
there will be fish stocks for which a critical stage
exists, allowing recruitment predictions from (say)
larval abundances.
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