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Abstract–Otolith thermal marking 
is an efficient method for mass mark­
ing hatchery-reared salmon and can 
be used to estimate the proportion of 
hatchery fish captured in a mixed-stock 
fishery. Accuracy of the thermal pattern 
classification depends on the promi­
nence of the pattern, the methods used 
to prepare and view the patterns, and 
the training and experience of the per­
sonnel who determine the presence or 
absence of a particular pattern. Esti­
mating accuracy rates is problematic 
when no secondary marking is avail­
able and no error-free standards exist. 
Agreement measures, such as kappa 
(κ), provide a relative measure of the 
reliability of the determinations when 
independent readings by two readers 
are available, but the magnitude of κ 
can be influenced by the proportion of 
marked fish. If a third reader is used 
or if two or more groups of paired read­
ings are examined, latent class models 
can provide estimates of the error rates 
of each reader. Applications of κ and 
latent class models are illustrated by 
a program providing contribution esti­
mates of hatchery-reared chum and 
sockeye salmon in Southeast Alaska. 
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The ability to induce patterns in salmon The process by which a reader de­
otoliths by manipulating water temper- termines the presence or absence of a 
atures has proved to be an efficient thermal mark in an otolith can be char­
means for marking large numbers of acterized as one of pattern recognition 
salmon (Volk et al., 1990). When salmon and image matching. Prior to examin­
embryos or alevins are exposed to ing otoliths of unknown origin, the read­
a rapid drop in temperature, otolith ers gain familiarity with the patterns 
growth is temporarily disrupted, and likely to be encountered by carefully 
this results in a discontinuity in the examining fry otoliths that were ob­
otolith’s microstructure. When viewed tained after thermal marking but prior 
under transmitted light microscopy, to their release into the wild. Because 
this discontinuity appears as a dark there can be wide variation in the ap­
ring. By controlling the number of tem- pearance of the thermal marks within 
perature drops and the timing between a mark group (due in part to differenc­
drops, a coded pattern of dark rings es in developmental stages at marking), 
can be recorded on the otolith and this a single mark group may be represent­
pattern can be recovered from otoliths ed by a variety of patterns. As a result, 
of older fish by removing the overlay- secondary characteristics and measure­
ing material and exposing the otolith ments of the patterns are sometimes 
core. For hatcheries that release a large necessary to identify an otolith to a 
number of fish, this type of marking mark group. The examination is also 
method has shown to be particularly used to confirm that all the hatchery 
cost effective for marking 100% of the fish have been successfully marked. 
releases (Munk et al., 1993). The process of making a determina-

Several fisheries management pro- tion on otoliths from returning adult 
grams in Alaska use thermal marking salmon can become problematic be­
to estimate hatchery contributions to cause wild salmon may also contain 
commercial fisheries (Hagen et al., otolith patterns that can mimic the fea­
1995). Typically, several hundred salm- tures imposed through thermal mark­
on otoliths are systematically collected ing. Referred to as “noisy patterns,” 
during each two- or three-day com- their presence can increase the rate of 
mercial opening during the fishing sea- false positives. Conversely, if the hatch­
son. The otoliths and sampling data ery employs poor temperature control 
are shipped to a processing laboratory or unintended disruptions occur around 
where a subsample of otoliths (generally the period of marking, it may be diffi­
50 to 100) are processed immediately cult to identify the otolith as that of a 
to meet in-season management needs; 
a portion of the remaining otoliths are 

* Contribution PP-184 of the Alaska De­processed later to provide an overall es- partment of Fish and Game, Commercial 
timate of hatchery contribution to the Fisheries Division, Juneau, Alaska 99802­
fisheries. 5526. 
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hatchery fish, and this would increase the rate of false 
negatives. Differences between readers in skill and train­
ing level, and how they process otoliths, can add to the un­
certainty in estimating the accuracy of the readings and 
the rates of false positives and negatives. 

Otolith marking generally takes place without any sec­
ondary marking, such as fin-clipping or coded-wire-tag­
ging; therefore the accuracy of a reading cannot directly 
be determined through conventional methods that make 
use of a “gold standard” (known origin sample) or other 
error-free classification methods. To ensure that the in­
formation provided to the Alaskan fisheries managers is 
accurate, each otolith is independently examined by two 
readers, and a third reading is used to resolve differenc­
es between the first two readings. The resolved readings 
are used to estimate the contribution of hatchery fish, 
and the presumption of accuracy is based on the premise 
that, through multiple readings, all marked fish are ei­
ther correctly identified or that errors, if present, are in­
consequential. Developing the analytical tools to deter­
mine the veracity of that assumption is the objective of 
this investigation, and by establishing such tools, quality 
control standards for recovering thermal marks can be 
developed. 

In developing the tools to measure the quality of otolith 
readings, three questions are addressed: 

1 How to assess the reliability of otolith readings when 
no standards are available. 

2 How to estimate the proportion of hatchery marks when 
there is disagreement between two or more readers. 

3 How the precision of the estimate of the proportion is 
influenced by classification error. 

We discuss two approaches: 1) indices of agreement typi­
cally used in reliability studies, and 2) latent class models 
where classification errors are estimated for each reader 
even though the true error rate is considered unknown. 
The data requirements and their attendant assumptions 
are presented for each approach. The methods are illus­
trated by examining among-reader comparisons of chum 
salmon (Oncorhynchus keta) and sockeye (Oncorhynchus 
nerka) salmon otoliths collected from programs that moni­
tor inseason contributions of hatchery fish in several com­
mercial fisheries in Southeast Alaska (Hagen et al., 1995). 
The results are used to provide recommendations for mon­
itoring the quality of otolith readings for thermal marking 
programs. 

Methods 

Standard available 

A sample of n otoliths, which are examined by two readers, 
can be cross-classified as hatchery (H) or wild stock (W) 
as in Table 1. Suppose we wish to estimate the accuracy 
rate (probability of making a correct classification) or con­
versely, the error rate (probability of making a wrong clas­
sification). If we know nothing about reader 1, but reader 

Table 1 
Notation used to show the cross-classification of a sample 
of n otoliths by two readers to either hatchery (H) or wild 
stock (W) assignment. Row and column sums are indicated 
by the subscript “.” 

Reader 2 

H W 

Reader 1 H nHH nHH nH. 
W nWH nWW nW. 

n.H n.W n 

2 is infallible (or is considered a “gold standard”), unbiased 
estimates of the accuracy and error rates of reader 1 and 
the proportion of hatchery stocks (p) are given by 

ˆ ( )  ˆ ( )  ˆ1 1πH H  = nHH n⋅H, πW H  = nWH / n⋅H = 1 −πH H  

ˆ ( )  ˆ ( )  ˆ1 1πW W  = nWW n⋅W, πH W  = nHW / n⋅W = 1 −πW W  

ˆ =p n⋅H n , 

1(where, for example, π( )  
W|H refers to the probability that 

reader 1 classifies an otolith as W when its true state is H). 
These estimates reflect the fact that reader 2 is infallible; 
the accuracy rates (π̂H|H, π̂ 

W|W) and the error rates (π̂W|H, 
π̂ 

H|W) are conditional on the numbers of hatchery or wild 
stock otoliths as determined by reader 2. 

No standard available 

If a standard is not available, an unbiased estimate of 
p can be obtained if the accuracy rates for reader 1 are 
known. The estimate is 

( )  ( ) ( )1 1=p̂* (nH n +πW|W − 1) (πH
1
|H + πW|W − 1), 

where nH is the number of otoliths classified as hatchery 
otoliths. If the accuracy rates are estimated, then p̂* will 
no longer be unbiased, but will be much less biased than 
the estimator nH/n and will in general have a much 
smaller mean-squared error (Rogan and Gladen, 1978). 
For a Bayesian approach to this problem, see Viana et al. 
(1993) and Joseph et al. (1995). 

Agreement measures When accuracy rates are unavail­
able, statistics that measure “agreement” between readers 
are often calculated (e.g. Fleiss, 1981). One such index is 
simply the proportion of observed agreement (Po), defined 
as 

Po = (nHH + nWW) n. 

Another index, called kappa (κ), corrects Po for the degree 
of agreement that is expected by chance alone. It is defined 
as 
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κ = (Po − Pe ) (1 − Pe ), 

where Pe = expected agreement = (nHn.H + nWnW)/n2. The 
divisor, 1 – Pe, constrains κ to be less than or equal to one, 
and if all agreement is due to chance (Po =Pe), then κ equals 
zero. Note that with κ, independence between readers is 
assumed in order to calculate expected agreement. 

An example of how agreement indices can be used to 
monitor readings is shown in Figure 1, which displays κ 
and its standard error for 2874 chum otoliths readings di­
vided into 27 groups based on different reader pairs and 
capture locations. Included are Po ’s for four of the groups. 
The results indicate that κ levels were similar between the 
different groups, suggesting overall consistency in read­
ings, although some of the groups had lower values, which 
in practice would invite further investigation. 

The Po ’s in Figure 1 have a different rank order than the 
κ values. This apparent discrepancy highlights a potential 
problem in interpretation when using agreement indices 
to draw conclusions. To help illustrate this point, consider 
the following examples (Table 2). Table 2A is generated as 
the expected counts, given πH|H = 0.9 and πW|W = 1.0 for 
both readers, and p = 0.1. In this case, Po = 0.98 and κ = 
0.89. On the other hand, Table 2B is generated under the 
same assumptions except that πH|H = 0.5. In this case Po 
drops only slightly to 0.95, whereas κ drops to 0.47. Be­
cause the hatchery stock is rare, the inability of the read­
ers to detect the mark is not well reflected by Po, whereas κ 
reflects it better by correcting for the high level of chance 
agreement. 

Now let πH|H = 0.9 and πW|W = 0.9 for both readers, and 
P= 0.5 (Table 2C). In this case, Po = 0.82 and κ = 0.64. On 
the other hand, Table 2D is generated under the same as­
sumptions except that P= 0.05. In this case, Po remains 
unchanged at 0.82, but κ drops to 0.25. 

In none of the above examples is the index “wrong.” 
Rather, as is the case with most indices, interpretation is 
affected by the values of the underlying parameters. In 
the latter example (Table 2, C–D), even though Po is the 
same for C and D, the scale it is being compared with has 
changed, thus changing the value of κ. This increases the 
difficulty of comparing κ across populations with differ­
ent underlying proportions. Note also that Table 2D could 
have been derived from πH|H = 0.5 and πW|W = 0.944 for 
both readers, and p = 0.19. Thus, without additional infor­
mation, it is impossible to draw reliable conclusions about 
reader accuracies or the proportion of hatchery marks. 

Although agreement measures can be ambiguously in­
terpreted, in practice they can still serve a useful moni­
toring role during routine comparisons when the circum­
stances of the readings are fairly well characterized. The 
interpretive difficulties with indices such κ and Po become 
apparent when trying to translate agreement measures 
into statements about the accuracy of different readers 
and about the influence of reading error on the contribu­
tion estimates. 

Latent class models An alternative approach is to try 
to estimate πH|H and πW|W for each reader, along with p. 
Although at first thought this may seem impossible, it can 
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Figure 1 
The values of κ (±1 SE) from 27 groups of paired read­
ings of chum salmon otoliths (total=2874). The groups 
are based on pairs of different readers examining oto­
liths collected at different times and locations. The pro­
portion of agreement (Po) is shown next to group 4, 7, 9, 
and 12 for comparison with the value of κ. 
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be shown that either by setting a few constraints or by col­
lecting additional information, estimation is indeed pos­
sible. This problem falls into the category of latent class 
modeling (e.g. Everitt, 1984; Bartholomew, 1987; McCutch­
eon, 1987; Clogg, 1995). Latent class models (LCMs) belong 
to a family of latent variable models that hypothesize the 
existence of unobservable “latent” variables, about which 
information can be obtained only though measurements on 
observable “manifest” variables. LCMs specifically restrict 
the latent and manifest variables to be categorical. In 
the present situation, the latent variable is the true class 
(H or W) to which the otolith belongs, whereas the mani­
fest variables are the readers’ classifications. Such models 
have been used for assessing reliability of diagnostic tests 
in the medical field over the last 20 years (see Walter and 
Irwig, 1988; Formann, 1996, for reviews). 

Returning to the problem with two readers, neither of 
which is a standard, there are five essential parameters to 

1 1( )  (2) ( )  (2)estimate: πH|H,πH|H,πW|W,πW|W , and p, with only 3 df (four 
pieces of data, nHH, nHW, nWH, nWW, minus one because the 
sample size, n, is fixed). Thus, the model is overparameter­
ized, and either constraints on the parameters or more da­
ta are needed. Possible constraints include 1) considering 

1( )  (2)that two of the parameters are known (e.g. πW|W = πW|W = 1; 
i.e. both readers always call a wild stock correctly, there 
are no “false positives”), or 2) considering that two sets of 

1 1( )  (2) ( )  (2)parameters are equal (e.g. πH|H,πH|H,πW|W = πW|W ; i.e. the 
accuracy rates are the same for both readers). 

Although there may be times when such constraints are 
realistic, in general they will not be; therefore more infor-
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mation will be necessary. One way to generate more in­
formation is to have a third independent reader (Walter, 
1984). With three readers, there are seven essential pa­

( ),( ),(3) 1rameters: πH|H ,πW|W 
1 2  ( ),(2),(3) and p. There is also 23 – 1 = 7 

df, so that all the parameters are estimable. Estimation 
is most commonly done by the method of maximum likeli­
hood. 

If readings are assumed to be independent among read­
ers and among otoliths, the likelihood function is 

∏ ( )  ( )  ( ) _ (1 ( )  ( )  ( )  nijk 
.∏ 1 3 

i|H∏ { pπ πj|
2
Hπk|H + −  p)πi|

1
W π j|

2
Wπk|

3
W } 

i=H,W j=H,W k=H,W 

This likelihood function must be maximized numerically 
and methods for this computation will be discussed later. 

If more than three readers are used, there are extra de­
grees of freedom that can be used to assess goodness-of-fit. 

Table 2 
Examples from cross-classification data generated as 
expected counts from a sample of 1000 otoliths based on 
different accuracy rates for identifying hatchery fish (πH|H) 
and wild fish (πW|W) under different mark proportions (p). 
The examples used illustrate differences between observed 
agreement (Po) and chance-corrected agreement (κ ) under 
different underlying conditions. 

A Reader 2 

H W 

Reader 1 H 81 9 90 πH|H = 0.9 Po = 0.98 
W 9 901 910 πW|W = 1.0 κ = 0.89 
Total 90 910 1000 p = 0.1 

B Reader 2 

H W 

Reader 1 H 25 25 50 πH|H = 0.5 Po = 0.95 
W 25 925 950 πW|W = 1.0 κ = 0.47 
Total 50 950 1000 p = 0.1 

C Reader 2 

H W 

Reader 1 H 410 90 500 πH|H = 0.9 Po = 0.82 
W 90 410 500 πW|W = 0.9 κ = 0.64 
Total 500 500 1000 p = 0.5 

D Reader 2 

H W 

Reader 1 H 50 90 140 πH|H = 0.9 Po = 0.82 
W 90 770 860 πW|W = 0.9 κ = 0.25 
Total 140 860 1000 p = 0.05 

For example, with four readers there will be nine param­
eters with 15 df, leaving 6 df for goodness-of-fit. Pearson chi­
square or likelihood ratio G2 tests would both be applicable. 

Another way to generate additional information was 
proposed by Hui and Walter (1980). Suppose there are two 
or more strata with different hatchery proportions in each 
strata. For example, catch could be stratified temporally 

( )  ( )k kor spatially. If it is assumed that πH|H and πW|W remain 
constant over strata, then a solution for just two readers 
may be obtained. For example, if there are two readers and 

( ),( ) ,πW|W , 1 2  ( ),( )two strata, then there are six parameters: πH|H 
1 2  

p1, and p2, with 2(22 – 1) = 6 df. Increasing the number of 
strata increases the degrees of freedom; e.g. three strata 
for two readers gives 3(22 – 1) = 9 df for 7 parameters. The 
likelihood function for two readers and S strata is 

S 
( )  ( ) (1 ( )  ( )  ngij 

.∏ 1∏ { ps π πj|
2
H + −  pg )πi|

1
W π j|

2
W }∏ i|H 

g=1 i=H,W j=H,W 

A third way to supply additional information is to take 
a Bayesian approach (see “Discussion” section). By speci­
fying prior distributions of the model parameters, unique 
estimates can be obtained (Joseph et al., 1995). 

A critical assumption in the above models is that read­
ings are independent. Specifically, the reading of each oto­
lith by a given reader is independent of any other reading 
by the same reader, and each reading by various readers 
on a given otolith is independent given the true state of 
the otolith. In principle, the latter assumption may be dif­
ficult to meet especially if all readers examine the same 
otolith. The fact that the otolith is not prepared indepen­
dently by each reader could induce a dependence among 
the readers. Also, variability in the readability of the mark 
due to the marking process can induce a dependence. Such 
dependence can bias the estimators of π and p (Vacek, 
1985). Note that this latter assumption of independence is 
also required for κ. 

One remedy for the problem of dependence due to prepa­
ration is to require independent preparations. This however, 
requires additional otoliths and with only two otoliths per 
fish, this would limit the number of readers to two. But 
in practice, this may not be a large concern. Typically, the 
second reader has the option to provide additional process­
ing effort to the first otolith or, if needed, to process the 
second otolith. In almost all cases additional preparation 
is not done and readers feel they are able to extract suf­
ficient information about the presence or absence of a mark 
from each other’s preparations. In addition, reader accura­
cy rates obtained by LCM do not appear to vary systemati­
cally with the reading order, which also suggests that prep­
aration-induced dependency is not a significant factor. 

Dependency associated with variability in the appear­
ance of the mark may be harder to address. A general so­
lution is to model the dependence with additional param­
eters (e.g. Vacek, 1985; Qu et al., 1996; Yang and Becker, 
1997; Qu and Hagdu; 1998; Albert et al., 2001). Modeling 
dependence requires either more readers or more strata. 
These modeling approaches are complicated and are cur­
rently evolving (see Albert et al., 2001). Alternatively, ad-
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ditional latent classes may be added (Christensen et al., 
1992; Formann, 1994), e.g. a third class of otoliths from 
ambiguous sources. 

In the previous discussion concerning three or more 
readers, we implied that readers were different individu­
als. This need not be so; what is required are three or more 
independent readings. If it were possible for the same in­
dividual to read the same otolith more than once, indepen­
dently, then the number of different readers could be re­
duced. If independence could not be met, the dependence 
could be modeled, as discussed above. 

Another critical assumption, but one that should be met 
most of the time, is that the individual accuracy rates 
are known to be either greater than or less than the 
error rates (e.g. πH|H > πW|H and πW|W > πH|W, which im­
plies that πH|H and πW|W are either greater than or less 
than 0.5) because of an inherent symmetry in the problem 
that results in the same likelihood function being gener­
ated when the error rates are switched with the accuracy 
rates. 

Computation Formulas for estimating κ and its standard 
error are straightforward (Fleiss, 1981). Estimates can 
also be obtained from several software packages including 
PROC FREQ in SAS (SAS Institute, 1989). 

Maximizing either of the likelihood functions for the 
LCMs requires a numerical procedure. The most straight­
forward is to use an optimization routine such as “Solver” 
in Excel (Microsoft Corporation, 1993) or “nlminb” in S-
PLUS (Statistical Sciences, 1995). Alternatively, the EM 
algorithm (Dempster et al., 1977; Dawid and Skene, 1979; 
McLachlan and Krishnan, 1997) can be easily used. The 
simplicity of the EM algorithm follows from the recogni­
tion that the LCM is an example of a finite mixture prob­
lem, specifically, in this case, a mixture of multivariate 
Bernoulli distributions with mixing parameter p (Everitt, 
1984). Use of the EM algorithm for such mixture prob­
lems in fisheries is well documented, e.g. for stock compo­
sition estimates (Millar, 1987; Pella et al., 1996) and for 
age-length keys (Kimura and Chikuni, 1987). A more ef­
ficient alternative to the EM algorithm is to use iteratively 
reweighted least squares (Agresti, 1990). This method is 
relatively easy to implement in software such as PROC 
NLIN in SAS (SAS Institute, 1989). Perhaps the most di­
rect and efficient way would be to use LCM software. We 
are not aware of any routines for LCMs in any major 
statistical package at present, but several independent 
LCM packages exist (for a review, see Clogg, 1995; and for 
an Internet listing see http://ourworld.compuserve.com/ 
homepages/jsuebersax/index.htm). 

As with many maximum likelihood problems, where nu­
merical methods must be used, complications can arise. 
Constraints may at times be needed to ensure that pa­
rameter estimates fall in acceptable intervals (e.g. [0,1] 
for p and [0.5,1] for the π’s). Also the likelihood function 
may have local maxima, which means that several runs 
with varying starting values may be necessary to identify 
the global maximum. Finally, estimates of standard er­
rors may entail additional computing. PROC NLIN in SAS 
provides asymptotic (i.e. large-sample) standard errors. 

Jackknife and bootstrap estimates are relatively easy to 
program, the jackknife being much less computationally 
intensive. 

Finally, the Bayesian programs discussed in Joseph et 
al. (1995) can be found at http://www.epi.mcgill.ca/Joseph/ 
software.html. 

Examples 

The first example analyzes the results of three readers 
examining 570 chum otoliths. The samples were taken 
from a common location, and the readers were familiar 
with the patterns. Each reading was made without knowl­
edge of prior readings. The data, along with pairwise κ 
estimates and the LCM parameter estimates (using PROC 
NLIN in SAS; see appendix for code) are presented in 
Table 3. 

These results indicate that the third reader is signifi­
cantly (α=0.05) less able to correctly identify a hatchery 
mark when it is present and that there are no significant 
differences among readers in their ability to detect a wild 
mark when it is present. These conclusions are readily ap­
parent from the table of results, and although the pairwise 
κ ’s are consistent with these results, they are more dif­
ficult to interpret. With the variance due to sampling es­
timated to be (0.7379)(1 – 0.7379)/(570 – 1) = 0.0003399, 
misclassification error contributes only 0.36% to the total 
variance. 

The second example consists of two readers with four 
spatial strata. Samples were obtained from sockeye salm­
on caught in four neighboring Alaskan gillnet fisheries 
in central Southeast Alaska. The data and the LCM esti­
mates are shown in Table 4. These estimates indicate that 
the readers are not statistically different in their ability to 
detect hatchery marks, whereas the second reader is bet­
ter able to distinguish wild marks. With eight parameters 
and 12 df, there are 4 df available for a goodness-of-fit test. 
Pearson’s chi-square yields 4.83, which with 4 df, has a 
p-value of 0.306, thus indicating an acceptable model fit. 
Misclassification error contributes from about 8% to 14% 
to the total variance in the estimates of the proportion of 
hatchery stock. 

Design considerations 

Design of an otolith reading program is complicated by 
misclassification error. An important consideration is the 
precision of the estimates, in particular the precision of the 
estimate of p. Table 5 shows the asymptotic standard error 
of p̂ for various combinations of p, πH|H, and πW|W for the 
three-reader model with unknown accuracies, and the one-, 
two-, and three-reader models with accuracies assumed 
known. Although this table is derived for a sample of 1000 
otoliths, the ratio of any two standard errors within the 
table would be the same for any sample size (assuming the 
sample size is large enough to approximate the asymptotic 
conditions). It is evident that misclassification inflates the 
standard error over the usual binomial case (right-most 
column). The table also makes clear the increase in the 
uncertainty of estimating p when the accuracies also have 
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Table 3 
Cross-classification data and results for 570 chum otoliths examined by three readers showing the parameter estimates and stan­
dard errors from the latent class model, followed by a comparison of the differences among reader pairs by using kappa and the 
latent class model (LCM) accuracy rates. The data show that the high agreement among readers as to hatchery and wild classifica­
tion (e.g. HHH=406 and WWW=135) is reflected in the overall high accuracy rates estimated from the LCM. However the model 
also shows that reader 3 has a significantly lower accuracy rate in detecting hatchery marks (π(3)

H|H=0.969) than the other readers. 

Reading Count LCM Parameter Estimate SE 

HHH 406 π(1)
H|H 0.998 0.002 

HHW 13 π(2)
H|H 0.998 0.002 

HWH 1 π(3)
H|H 0.969 0.008 

WHH 1 π(1)
W|W 0.958 0.017 

HWW 6 π(2)
W|W 0.986 0.010 

WHW 2 π(3)
W|W 0.957 0.017 

WWH 6 p 0.738 0.018 
WWW 135 

Reader pairs κ SE Difference in πH|H SE Difference in πW|W SE 

1 and 2 0.954 0.014 0.000 0.004 –0.028 0.020 
1 and 3 0.882 0.022 0.029 0.009 0.000 0.024 
2 and 3 0.901 0.021 0.029 0.009 0.028 0.020 

Table 4 
Cross-classification data for 2340 sockeye otoliths examined by two readers and stratified by four fishing districts, showing the 
estimates of the latent class parameters and their standard errors. Between-reader comparison is based on whether the difference 
in accuracy estimates are significantly different than zero. The results indicate that the readers were not statistically different in 
detecting hatchery marks (πH|H ) but were statistically different in detecting wild marks (πW|W). LCM = latent class model. 

Fishing districts 

108–30 –50 –41 –30 

HH 127 85 20 
HW 9 21 5 
WH 6 5 1 
WW 382 832 411 
n 436 943 437 

LCM parameter Estimate SE Reader difference SE 

πH|H
(1) 0.980 0.013 

0.017 0.025
πH|H

(2) 0.964 0.021 
πW|W

(1) 0.984 0.005 
–0.013 

πW|W
(2) 0.997 0.003 

p108–30 0.366 0.024 
p108–50 0.257 0.020 
p106–41 0.096 0.010 
p106–30 0.047 0.011 

108 106 106

152 
11 
2 

271 
524 

0.006

to be estimated in the three-reader case. For example, if ers are obtained, dropping one or even two readers may be 
πH|H = πW|W = 0.8 for all three readers, one would have to appropriate, although the assumption must be made that 
have almost twice (0.035/.019=1.84) the sample size to esti- the accuracy rates will be constant for the remainder of 
mate a p of about 0.5. Once accuracy estimates for the read- the program. Maintaining two readers will allow for that 
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Table 5 
Asymptotic standard errors for the estimated proportion of marked fish, p̂ , for various combinations of accuracy rates in identify­
ing hatchery fish, πH|H, and wild fish, πW|W, and mark proportion p, for a sample of 1000 otoliths. Values are reported for the cases 
where accuracy rates, π, are the same and assumed known for one, two, or three readers, and for the case where π’s are estimated 
for three readers. Table illustrates how misclassification will increase standard errors in the estimate of hatchery proportion. 

πH|H 0.8 0.9 1.0 

πW|W 0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0 

p 
3 readers 0.1 0.032 0.016 0.011 0.023 0.013 0.010 0.018 0.011 0.009 
(π’s estimated) 0.3 0.034 0.021 0.017 0.024 0.017 0.015 0.020 0.015 0.014 

0.5 0.035 0.023 0.019 0.023 0.018 0.016 0.019 0.016 0.016 
0.7 0.034 0.024 0.020 0.021 0.017 0.015 0.017 0.015 0.014 
0.9 0.032 0.023 0.018 0.016 0.013 0.011 0.011 0.010 0.009 

3 readers 0.1 0.013 0.011 0.010 0.011 0.010 0.009 0.010 0.010 0.009 
(π’s known) 0.3 0.018 0.016 0.015 0.017 0.015 0.015 0.015 0.015 0.014 

0.5 0.019 0.018 0.016 0.018 0.017 0.016 0.016 0.016 0.016 
0.7 0.018 0.017 0.015 0.016 0.015 0.015 0.015 0.015 0.014 
0.9 0.013 0.011 0.010 0.011 0.010 0.010 0.010 0.009 0.009 

2 readers 0.1 0.015 0.013 0.010 0.013 0.011 0.010 0.011 0.010 0.009 
(π’s known) 0.3 0.020 0.018 0.015 0.018 0.016 0.015 0.015 0.015 0.014 

0.5 0.022 0.019 0.016 0.019 0.018 0.016 0.016 0.016 0.016 
0.7 0.020 0.018 0.015 0.018 0.016 0.015 0.015 0.015 0.014 
0.9 0.015 0.013 0.011 0.013 0.011 0.010 0.010 0.010 0.009 

1 reader 0.1 0.023 0.017 0.011 0.020 0.015 0.010 0.018 0.014 0.009 
(π’s known) 0.3 0.026 0.021 0.017 0.022 0.019 0.016 0.020 0.017 0.014 

0.5 0.026 0.022 0.019 0.022 0.020 0.017 0.019 0.017 0.016 
0.7 0.026 0.022 0.020 0.021 0.019 0.017 0.017 0.016 0.014 
0.9 0.023 0.020 0.018 0.017 0.015 0.014 0.011 0.010 0.009 

assumption to be checked because there will now be extra 
degrees of freedom to assess goodness-of-fit (there are 3 
df, but only one parameter, p, needs to be estimated). Esti­
mates of p can still be obtained with one reader, but there 
can be no check of the assumptions. Also, there can be a 
significant increase in uncertainty in the estimate in using 
only one reader. 

Discussion 

There are numerous classification problems in fisheries 
that require the judgment of trained individuals. In many 
of those situations no “gold standard” is available to test 
those judgments, and it becomes necessary to apply other 
methods to determine the veracity of the classifications. 
Reading thermally marked otoliths is a particularly good 
example of this problem because thousands of classifica­
tion decisions are needed each year to provide estimates of 
hatchery contributions. 

The common approach for assessing the quality of the 
readings, in the absence of having samples of known origin, 
has been to collect independent and multiple readings on 
the samples, and to presume that agreement between read­
ings can serve as a proxy for reading accuracy. Agreement 

indices such as κ are very easy to compute, and they have 
utility in that they can serve as flags to indicate reading 
problems. However, as was shown here, they also suffer dif­
ficulties in interpretation. Also, the indices in themselves 
do not provide inferences about the relative skill of differ­
ent readers in pulling out a particular set of patterns. 

Latent class models provide an approach with readily 
interpretable quantities for a modest computational cost. 
Classification accuracies or errors are direct, meaningful 
parameters unlike an index of agreement. In addition, es­
timates of p are available. These models can be readily ex­
tended to the case of more than two outcomes, e.g. multiple 
hatchery marks. These models could also be useful in oth­
er applications, such as in aging fish or in the identifica­
tion of any character for which there is no “gold standard” 
(e.g. field identification of species or sex). A somewhat sim­
ilar analysis has been proposed for aging (Richards et 
al., 1992), although the link to LCMs was not discussed. 
LCMs can handle fairly complicated situations, including 
ordered classes (Croon, 1990), continuous manifest vari­
ables, and parameter constraints (see Clogg, 1995, and 
Krzanowski and Marriott, 1995, for reviews). 

We have not discussed the Bayesian approach to these 
problems in great detail, but we believe it has much to 
offer in that it can incorporate prior information, either 
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in the form of expert opinion (e.g. Demissie et al., 1998) 
or in the form of results of earlier analyses (e.g. Viana 
et al., 1993). Rather than assuming that estimated accu­
racies are “known,” one can incorporate the uncertainty 
in the estimates into the prior distributions. In addition, 
the Bayesian approach does not rely on asymptotic results 
that may behave poorly with small samples. We have also 
not assessed the possible bias due to the lack of indepen­
dence in the readings. When suitable software becomes 
available, this assumption should be checked. 

In our examples above, misclassification error contribut­
ed relatively little to the overall uncertainty. In these ap­
plications, where estimates of hatchery contribution were 
used to make management decisions, the accuracy of read­
ings were within an acceptable range. However, the criteria 
used to establish quality control standards in any program 
need to be developed in the context of how the information 
is to be used along with other sources of uncertainty. 

In conclusion, we believe that the use of agreement mea­
sures in combination with latent class models can con­
tribute significant information about both the proportions 
of interest and the quality control aspects of an otolith­
marking program. Furthermore these approaches could 
have application to similar areas in fisheries which re­
quire judgments that are not free of error. 
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Appendix 

The following SAS (version 6.12) code was used to estimate 
parameters in the three-reader model discussed above. This 
program makes use of iteratively reweighted least squares 
to maximize the likelihood function. Observed values (e.g. 
the number of HHH) are equated with the corresponding 
expected value from the model and a weighted least squares 
fit is computed by using PROC NLIN. This computation is 
iterated to convergence of the parameter estimates. Weights 
are inverses of the predicted values at each iteration. Indi­
cator variables for each possible outcome are generated so 

that a model in typical regression form can be written. 
Bounds on the parameter estimates may be needed to con­
strain the estimates to the appropriate intervals. Note that 
the asymptotic standard errors provided by SAS will be 
correct if the option SIGSQ=1 is specified. However, the 
printed degrees of freedom and the associated confidence 
intervals are not correct for this application. The residual 
weighted sum of squares listed by SAS is the chi-squared 
goodness-of-fit-statistic. The option, OUTEST, outputs point 
estimates and the the estimated covariance matrix for the 
parameters. SAS code for the multistrata model used in the 
second example is also available from the authors. 

/* SAS Code for estimating 3-reader, 1-stratum model */ 

data a; 

array x{8} x1-x8; 

input y; 

ntot+y; /* accumulating sample size */ 

if _n_=8 then call symput(‘ntot’,ntot); /* put total into macro var */ 

do i=1 to 8; 

if i=_n_ then x{i}=1; else x{i}=0; /* set up indicator variables */ 

end; 

cards; 

406 /* H H H */ 

13 /* H H W */ 

1 /* H W H */ 

1 /* W H H */ 

6 /* H W W */ 

2 /* W H W */ 

6 /* W W H */ 

135 /* W W W */ 

; 

proc nlin data=a nohalve sigsq=1 outest=est; /* sigsq=1 for correct se’s */ 

parms a1=.9 a2=.9 a3=.9 b1=.9 b2=.9 b3=.9 p=.6; /* starting values */ 

e1=a1*a2*a3*p+(1-b1)*(1-b2)*(1-b3)*(1-p); /* a is accuracy for H */ 

e2=a1*a2*(1-a3)*p+(1-b1)*(1-b2)*b3*(1-p); /* b is accuracy for W */ 

e3=a1*(1-a2)*a3*p+(1-b1)*b2*(1-b3)*(1-p); 

e4=(1-a1)*a2*a3*p+b1*(1-b2)*(1-b3)*(1-p); 

e5=a1*(1-a2)*(1-a3)*p+(1-b1)*b2*b3*(1-p); 

e6=(1-a1)*a2*(1-a3)*p+b1*(1-b2)*b3*(1-p); 

e7=(1-a1)*(1-a2)*a3*p+b1*b2*(1-b3)*(1-p); 

e8=(1-a1)*(1-a2)*(1-a3)*p+b1*b2*b3*(1-p); 

model y=(e1*x1+e2*x2+e3*x3+e4*x4+e5*x5+e6*x6+e7*x7+e8*x8)*&ntot; 

bounds 0.5<=a1<=1, 0.5<=a2<=1, 0.5<=a3<=1, 0.5<=b1<=1, 0.5<=b2<=1, 

0.5<=b3<=1, 0<=p<=1; 

_weight_=1/model.y; 

run; 


