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Most approaches to f ishery man-
agement rely on results from stock 
assessment. Data-limited situations, 
however, may not conform to conven-
tional assessment methods, necessitat-
ing other approaches to management 
(Kruse et al., 2005). One possible 
approach with data-limited stocks is 
to assign them to assemblages that 
are managed as units. Ideally, each 
assemblage would include at least 
one data-rich species that could be 
assessed and serve as a status indi-
cator of the entire unit. Managing 
assemblages by means of indicator 
species is arguably a small but prac-
tical step in the direction of ecosys-
tem-based management (Hall and 
Mainprize, 2004).

Assemblages may be defined by 
similarities in such biological charac-
teristics as life history, trophic behav-
ior, or home range. For the purpose 
of fishery management, however, an 
assemblage should consist of spe-
cies caught together, if regulations 
on fishing are to benefit assemblage 
members. This is particularly true if 
regulations are focused on an indica-
tor species but the intent is also to 
control the harvest of other species 
in the assemblage.

Indicator species have been used 
in management of both terrestrial 
and marine systems (Simberloff, 
1998; Zacharias and Roff, 2001). The 
term “indicator species” has no single 
definition (Landres et al., 1988); it is 
used here as suggested by the Na-
tional Standard Guidelines of U.S. 
federal fishery management, which 
states that where maximum sustain-
able yield (MSY) cannot be specified 
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Abstract—For many f ish stocks, 
resource management cannot be based 
on stock assessment because data are 
insufficient—a situation that requires 
alternative approaches to manage-
ment. One possible approach is to 
manage data-limited stocks as part 
of an assemblage and to determine the 
status of the entire unit by a data-rich 
indicator species. The utility of this 
approach was evaluated in analyses of 
15 years of commercial and 34 years 
of recreational logbook data from reef 
fisheries off the southeastern United 
States coast. Multivariate statisti-
cal analyses successfully revealed 
three primary assemblages. Within 
assemblages, however, there was 
little evidence of synchrony in popu-
lation dynamics of member species, 
and thus, no support for the use of 
indicator species. Nonetheless, assem-
blages could prove useful as manage-
ment units. Their identification offers 
opportunities for implementing man-
agement to address such ecological 
considerations as bycatch and species 
interrelations.

for each stock of a mixed-stock fish-
ery, then “MSY may be specified on 
the basis of one or more species as 
an indicator for the mixed stock as a 
whole or for the fishery as a whole.” 
(Federal Register, 1998) According 
to this usage, the stock status of the 
indicator is extrapolated to represent 
that of other species in the assem-
blage, or analogously, other stocks of 
the same species. Such an approach 
requires the assumption that popu-
lation trends of an indicator species 
reflect those of others in the assem-
blage.

The approach of managing multi-
species assemblages by means of in-
dicator species raises two fundamen-
tal questions. First, can assemblages 
be identified? As mentioned, species 
of an assemblage would need to be 
caught together if regulations are to 
affect the entire unit. Second, if an 
assemblage can be identified, do its 
members have similar stock dynam-
ics? If not, focusing management on 
the indicator species may not pro-
vide the intended benefits to other 
stocks. 

We address both questions, using 
as a case study the snapper-grouper 
complex off the southeastern United 
States. As defined for management, 
the complex contains 73 species (Ap-
pendix), the majority of which cannot 
be assessed with currently available 
data. The objectives of this study are 
1) to identify assemblages of finfish 
species within the snapper-grouper 
complex and 2) to examine synchrony 
of stock dynamics within assemblag-
es. To accomplish the first objective, 
multivariate statistical techniques 
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were applied to data from recreational and commercial 
fisheries, and to accomplish the second, indices of abun-
dance were computed and tested for correlation. 

Materials and methods

Data used in multivariate analyses

To identify assemblages of species within fishery land-
ings, statistical grouping techniques were applied to 
two fishery data sets, one recreational (headboat) and 
one commercial. Both data sets encompassed areas from 
Cape Hatteras, North Carolina to Key West, Florida. 
These data were chosen because of their importance 
for stock assessment of species in the snapper-grouper 
complex.

The recreational sector was represented by logbook 
data reported by headboat operators and verified by 
port samplers. Headboats are large, for-hire vessels 
that typically accommodate 20–60 anglers on half- or 
full-day trips. Data collection began in 1972 with a 
focus on coastal waters off North and South Carolina. 
The area of collection was extended in 1976 to include 
the coastal waters of Georgia and northern Florida, 
and again in 1978 to include those of southern Florida. 
We used 1972–2005 headboat data. Records from each 
trip contained information on number of anglers, trip 
duration, date, geographic area, and landings (number 
fish) of each species. 

The commercial sector was represented by logbook 
data reported by commercial anglers with snapper-
grouper permits. We used 1992–2006 commercial data; 
however, 2006 was a partial year (data through Sep-
tember). Records contained information similar to those 
in the headboat data set, but landings were reported 
in weight (pounds). Excluded were nonsensical records 
suspected to be misreported or misrecorded. Analyses 
of commercial data were restricted to trips with han-
dline gear (~87% of records) to avoid the possibility 
of confounding estimated assemblages with effects of 
gear. Furthermore, these analyses included only trips 
of one-day duration (~50% of records) to minimize the 
possibility that catch in a trip was taken from widely 
separated geographic areas with potentially different 
assemblages. 

Species assemblages

Following Lee and Sampson (2000), we used more than 
one statistical technique to identify species assemblages. 
We applied three techniques: ordination and two types of 
cluster analysis. For all three techniques, the Sørenson 
(also called Bray-Curtis) measure of dissimilarity (dis-
tance) between species was used (McCune and Grace, 
2002). In comparison to other measures, Sørenson dis-
tance has been found more robust in ecological studies 
(Field et al., 1982; Faith et al., 1987) and provides more 
ecologically interpretable results (Beals, 1973). Perhaps 
for these reasons, it has been considered appropriate in 

studies of fish assemblages (e.g., Mueter and Norcross, 
2000; Gomes et al., 2001; Williams and Ralston, 2002). 

To compute dissimilarities, we formatted each data 
set as a matrix, with rows representing species and 
columns representing vessel-months. That is, each ele-
ment (cij) of the matrix quantified the amount (in units 
of number fish for headboat or pounds for commercial) 
of a species (i) landed by each vessel pooled over one 
month (vessel-month j). The duration of a month was 
chosen as a reasonable compromise between maximiz-
ing the variety of species landed (longer duration) and 
minimizing the number of different locations fished 
(shorter duration). Locations fished per vessel were 
generally consistent within a month, but could have 
changed on the time scale of seasons (perhaps follow-
ing fish migrations, for example). Species were removed 
if they appeared in fewer than 1% of all trips because 
rare species may distort inferred patterns (Koch, 1987; 
Mueter and Norcross, 2000). This restriction left 25,293 
records of vessel-month-species in the headboat data set 
and 143,426 in the commercial data set.

Before computing dissimilarities, data were trans-
formed with the root-root transformation to moderate 
the influence of abundant species:

 ′ = =c c cij ij ij
4  (1)

This transformation has been preferred for density and 
biomass data, particularly when used in connection 
with the Sørenson measure of distance (Field et al., 
1982). After transformation, a matrix of dissimilari-
ties between species was computed with the Sørenson 
measure of distance:
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where Dih = the distance between species i and h; and 
 J = the number of columns (vessel-months).

To identify species assemblages, the ordination method 
of nonmetric multidimensional scaling (NMDS) was ap-
plied to the matrix of dissimilarities (Kruskal, 1964). As 
stated by McCune and Grace (2002), “Nonmetric multi-
dimensional scaling is the most generally effective ordi-
nation method for ecological community data and should 
be the method of choice, unless a specific analytical goal 
demands another method.” NMDS searches for positions 
of n objects (here, n species) in d dimensions such that 
dissimilarities in ordination space are close to those of 
the original space. We extracted the first two dimensions 
of ordination space (d=2) for graphical presentation.

In addition to ordination, we applied nonhierarchical 
and agglomerative hierarchical cluster analyses. The 
nonhierarchical cluster analysis was used to partition 
species into groups, based on the method of k-medoids, a 
more robust version of the classical method of k-means 
(Kaufman and Rousseeuw, 1990). The k-medoids ap-
proach attempts to identify k objects from the data set 
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that best represent all objects. Clusters are created 
by assigning each object in the data set to its nearest 
representative (i.e., medoid). 

As with any nonhierarchical method, the number 
of clusters k must be specified a priori. We applied a 
range of values and selected the k most concordant with 
the data, as quantified by highest average silhouette 
width. The silhouette width of each species measures 
its goodness of clustering. For any given k, silhouette 
widths averaged over species within clusters indicate 
relative strength of assemblages; across k, the highest 
average width computed from all species corresponds to 
the optimal number of clusters (Rousseeuw, 1987). To 
examine uncertainty in the optimal number, a bootstrap 
procedure was applied in which columns (vessel-months) 
of the original data matrices were resampled with re-
placement to produce n=1000 bootstrapped matrices 
of the original dimension, and then n=1000 average 
silhouette widths were recomputed for each k.

The hierarchical cluster analysis was included to 
provide a comparison with clusters computed by k-me-
doids and to quantify associations among species, as 
represented by dendrograms. The hierarchical analysis 
was based on the linkage method of McQuitty (McCune 
and Grace, 2002). 

Indices of abundance

Indices of abundance were computed to examine 
synchrony of dynamics among stocks and thus, to 
investigate the basic assumption that an indicator spe-
cies could be used to infer dynamics of other species 
in the assemblage. This investigation focused on the 
three strongest assemblages (i.e., strongest coherence 
among members), as measured by average silhouette 
widths from the cluster analysis. Because the strongest 
assemblages were examined, this investigation is a 
best-case scenario. If strongly associated populations 
do not exhibit synchronous dynamics, one should not 
assume that weakly associated populations do otherwise. 

Ideally, indices of abundance should be computed 
from fishery independent data; however, for many spe-
cies here, such data were unavailable or insufficient. In 
this study, indices were computed from the headboat 
data set. Fishing effort from headboats is applied gener-
ally toward many species, rather than toward specific 
targets. Because effort is nondirected, any confounding 
effects of density-dependent catchability are likely to 
be minimized, and in this regard, headboat data are 
similar to fishery-independent data.

Indices of abundance were computed from catch and 
effort data in units of number of fish landed per angler-
hour. Data were considered from 1978, the first year of 
full area coverage, to 2005. For each species, a trip was 
included only if a species from the relevant assemblage 
was landed. Thus, many trips were excluded, and some 
trips were included that had effort but zero catch. This 
approach represents effective effort more accurately 
than if all trips were included (a situation that would 
inflate the assumed effort) or if trips were restricted to 

those that landed the species in question (a situation 
that would deflate the assumed effort). 

To compute indices of abundance, catch and effort da-
ta were standardized using a generalized linear model 
(Hardin and Hilbe, 2001). The explanatory variables for 
the model were year, month, and geographic area. To 
ensure adequate sample sizes by geographic area, sam-
pling areas were aggregated into four regions: North 
Carolina, South Carolina, Georgia−northern Florida, 
and southern Florida (south of Cape Canaveral). The 
response variable was catch per effort, assumed to be 
distributed with delta-lognormal error structure (Lo et 
al., 1992; Stefánsson, 1996; Maunder and Punt, 2004). 
In this structure, the proportion of positive values is 
modeled with binomial error, and positive values them-
selves are modeled with lognormal error. Indices were 
not computed for species that were caught in fewer 
than 20% of trips on the relevant assemblage, to avoid 
estimation error associated with inflation of zero values 
(Lampert, 1992). Because this criterion excludes rarely 
caught species, evidence of synchrony in our results 
should be viewed as a necessary but not sufficient con-
dition for the use of indicator species.

Synchrony in dynamics between any two stocks was 
measured by the Spearman’s rank correlation coeffi-
cient, computed both from 1) the indices of abundance 
and 2) the first-differenced time series of log-abun-
dances (zt):

 z U U
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where Ut = the index value of a stock at time t. Positive 
correlation of the indices themselves would indicate 
similar trends in abundance over time. The use of first 
differences, as in Equation 3, rather than raw or relative 
abundance, puts emphasis on annual population growth 
rates and may reduce spurious correlation (Bjørnstad 
et al., 1999). Positive correlation of growth rates would 
indicate that stocks not only have similar patterns of 
productivity (growth, recruitment, and mortality), but 
that they also respond similarly to interannual variation 
in fishing effort or catchability. 

Significance levels of correlation coefficients were 
obtained nonparametrically with n=10,000 randomiza-
tions of zt (Prager and Hoenig, 1989; Edgington, 1995; 
Bjørnstad et al., 1999). A coefficient that ranks suffi-
ciently high in relation to the randomizations could be 
considered significantly positive, and a coefficient that 
ranks low, significantly negative. Significance was de-
termined with a two-tailed test at the α=0.1 level with 
Bonferroni correction.

Results

Species assemblages

Multidimensional scaling did not reveal strongly isolated 
groups of species in ordination space (Fig. 1). It did, 
however, reveal consistency of ordination in the sense 
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that many species had similar neighbors across headboat 
and commercial data sets. For example, in both data 
sets, lane snapper was near blue runner, gray snapper, 

Figure 1
Nonmetric multidimensional scaling of species from the (A) head-
boat and (B) commercial sectors. Distances between points are 
approximately proportional to the dissimilarities between species. 
Abbreviations are explained in the Appendix.
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mutton snapper, and yellowtail snapper (see Appendix 
for scientific names). This repeatability of results pro-
vides evidence of species assemblages.

The k-medoid cluster analyses identified 
k=14 clusters as most compatible with the 
headboat data and k=7 clusters as most com-
patible with the commercial data (Fig. 2). 
These optimal numbers of clusters were not 
cleanly defined because peaks in average 
silhouette widths lacked distinction (Fig. 2). 
In general, assemblages were similar across 
data sets, at least for species that were pres-
ent in both data sets (Table 1). 

Hierarchical cluster analyses provided as-
sociations among species that were consistent 
with the assemblages of k-medoid analyses. 
In hierarchical analysis of the headboat data 
(Fig. 3), three assemblages had the strongest 
similarities among member species, labeled 
here as the deepwater assemblage (blueline 
tilefish, snowy grouper, speckled hind, and 
yellowedge grouper), southern assemblage 
(blue runner, gray snapper, lane snapper, 
mutton snapper, and yellowtail snapper), 
and northern assemblage (bank sea bass, 
black sea bass, knobbed porgy, gag, gray 
triggerfish, greater amberjack, red porgy, 
red snapper, scamp, tomtate, vermilion snap-
per, white grunt, and whitebone porgy). In 
hierarchical analysis of the commercial data, 
the same three assemblages were identified 
with few differences in constituent species 
(Fig. 4). In both data sets, these assemblages 
had the strongest coherence among member 
species, as measured by each cluster’s av-
erage silhouette width (Table 1). Thus, the 
deepwater, southern, and northern assem-
blages were examined further for synchrony 
in indices of abundance.

Indices of abundance

Although data through 2005 were considered, 
indices of the deepwater assemblage were 
derived through 1993, because 1994 began 
regulations that would have invalidated 
catch per effort as an index of abundance 
(i.e., one speckled hind per vessel per trip). 
Deepwater species that met the criterion of 
at least 20% positive trips were speckled 
hind, snowy grouper, and blueline tilefish. 
All southern species met the 20% positive 
trip criterion, however small sample sizes 
of these species north of Cape Canaveral, 
Florida, necessitated combining geographic 
areas into two regions: southern Florida and 
all other areas. Northern species that met the 
20% criterion were white grunt, gag, tomtate, 
black sea bass, vermilion snapper, and gray 
triggerfish. 
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Figure 2
Average silhouette width (lines with circles) from k-medoid 
cluster analysis of species in (A) the headboat sector and 
(B) the commercial sector. Lower and upper lines (without 
circles) represent 5th and 95th percentiles, respectively, from 
n=1000 bootstrap replicates. Average silhouette width mea-
sures goodness of clustering; higher values indicate better 
concordance with data.
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In general, indices of abundance were not syn-
chronous (Table 2). Within the deepwater as-
semblage, snowy grouper was positively but not 
significantly correlated with blueline tilefish, 
and neither species was strongly correlated with 
speckled hind. Within the southern assemblage, 
correlations between species were mostly negative; 
however, those between yellowtail, lane, and gray 
snappers were positive and significant, indicating 
synchrony in this subset. Within the northern as-
semblage, about half of the correlations between 
species were negative, and only the correlation 
between vermilion snapper and black sea bass 
was positive and significant. These results offer 
little evidence of synchrony in population trends 
within assemblages.

Similarly, first-differenced indices of abundanc-
es were out of synchrony (Table 3). Correlations 
between species were both positive and nega-
tive; only one was significantly negative (between 
snowy grouper and speckled hind), and one was 
significantly positive (between gray triggerfish 
and vermilion snapper). These results from first-
differenced time series do not support the hypoth-
esis of synchrony in annual population growth 
rates within assemblages. 

Discussion

It is unlikely that sufficient resources will ever be 
available to monitor, assess, and manage every fish 
stock individually. Thus, managing assemblages 
by means of indicator species has intuitive appeal. 
It begins a shift from single-species management 
toward ecosystem-based approaches and provides a 
scientific and managerial shortcut by supplanting 
the need to monitor and assess every managed stock. In 
the United States, for example, the Magnuson-Stevens 
Fishery Conservation and Management Reauthorization 
Act of 2006 (MSRA, 2006) requires that annual catch 
limits be established to end and prevent overfishing by 
2011 in all fisheries (by 2010 for fisheries where overfish-
ing is occurring), yet many stocks cannot be assessed 
and their status is therefore unknown. Conceivably, 
setting catch limits by assemblage rather than stock-
by-stock could satisfy the statute 1) without substantial 
new resources devoted to both data collection programs 
and stock assessment and 2) within the time frame 
allowed. 

Despite its possible appeal, the use of indicator spe-
cies to extrapolate trends of other species should be 
viewed with considerable skepticism. From the per-
spective of niche theory, fishes that coexist are able 
to do so, in part, because they have adapted to use 
different niches in their shared environment (May and 
MacArthur, 1972; Leibold, 1995). Consequently, species 
within assemblages differ in reproductive character-
istics, foraging behavior, habitat requirements, and 
population-level responses to such factors as competi-

tion, predation, disease, and environmental variation 
(Landres et al., 1988). Because of these differences, 
population trends of one species (or stock) do not readily 
extrapolate to others in the assemblage (e.g., Niemi et 
al., 1997; Shaul et al., 2007). For empirical and theo-
retical reasons, several authors have concluded that the 
use of indicator species should be avoided, unless sup-
ported by strong evidence from the system in question 
(Landres et al., 1988; Niemi et al., 1997).

From another perspective, even without strong evi-
dence of synchrony, indicator species may still be use-
ful if applied in a restrictive sense. That is, if fishing 
effort occurs at the level of assemblages, regulations 
to reduce effort on one species (the indicator) could 
transmit to others of unknown status. The cost of this 
approach would be the forgone yield of any species that 
could sustain increased rates of exploitation. Ideally, 
the indicator species should be the weakest link of the 
assemblage, although defining weakest link could be 
problematic, along with choosing the correct species 
(Simberloff, 1998). Furthermore, there may be limited 
data for the species that is the weakest link of a ma-
rine fish assemblage. If achievable, however, such a 
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Table 1
Clusters of species in headboat and commercial landings, listed in order of strongest to weakest cluster, as measured by each 
cluster’s average silhouette width (in parentheses). Clusters were partitioned around k=14 (headboat) or k=7 (commercial) 
medoids—values determined by highest average silhouette widths computed from all species. See Appendix for the scientific 
names of species.

Headboat clusters Commercial clusters

One (0.22)
Bank sea bass
Black sea bass
Gag
Gray triggerfish
Greater amberjack
Knobbed porgy
Red porgy
Red snapper
Scamp
Tomtate
Vermilion snapper
White grunt
Whitebone porgy

Two (0.19)
Blue runner
Bluestriped grunt
French grunt
Gray snapper
Jolthead porgy
Lane snapper
Mutton snapper
Red grouper
Yellowtail snapper

Three (0.18)
Blueline tilefish
Snowy grouper
Speckled hind
Yellowedge grouper

Four (0.11)
Almaco jack
Banded rudderfish
Graysby
Queen triggerfish
Rock hind

Five (0.09)
Nassau grouper
Yellowfin grouper
Yellowmouth grouper

One (0.17)
Black sea bass
Gag
Gray triggerfish
Margate
Red grouper
Red porgy
Red snapper
Scamp
Vermilion snapper
White grunt

Two (0.14)
Black grouper
Blue runner
Gray snapper
Greater amberjack
Mutton snapper
Yellowtail snapper

Three (0.07)
Almaco jack
Banded rudderfish
Blueline tilefish
Silk snapper
Snowy grouper
Tilefish
Yellowedge grouper

Four (0.04)
Hogfish
Jolthead porgy
Rock hind

Five (0.02)
Knobbed porgy
Ocean triggerfish
Red hind

Six (0.07)
Cubera snapper
Warsaw grouper

Seven (0.04)
Blackfin snapper
Cottonwick
Sand tilefish
Silk snapper

Eight (0.03)
Black margate
Coney
Porkfish

Nine (0.00)
Bar jack
Black grouper
Hogfish
Margate
Ocean triggerfish
Red hind
Saucereye porgy
Schoolmaster

Ten (0.00)
Atlantic 
spadefish

Eleven (0.00)
Crevalle jack

Twelve (0.00)
Dog snapper

Thirteen (0.00)
Longspine porgy

Fourteen (0.00)
Scup

Six (0.01)
Bluestriped grunt
Crevalle jack
French grunt
Lane snapper
Whitebone porgy

Seven (0.00)
Lesser amberjack

restrictive use of indicator species could be considered 
a precautionary approach to management. 

In this study of reef fishes off the southeastern United 
States, we found little evidence of synchrony in popu-
lation dynamics, and thus, no support for the use of 

indicator species. One possible reason for these negative 
results is that the study area was too broad; however, 
similar findings have been documented at smaller spa-
tial scales (Parker and Dixon, 1998). A second reason 
is that the indices of abundance did not accurately 
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Figure 3
Dendrogram from hierarchical cluster analysis of species in the headboat sector. 
Height measures similarity among species within a branch, with a value of 1.0 rep-
resenting the lowest similarity. Scientific names are provided in the Appendix.
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represent actual relative abundances because indices 
were computed from fishery-dependent (headboat) data 
(Arreguin-Sánchez, 1996; Harley et al., 2001). Fishery-
independent data would have been preferable; however, 
for most species in this study, such data were of small 
sample size, short survey duration, or were nonexistent. 
We contend that the headboat data set was the best 
available for computing indices of abundance because 
of its relatively large sample size, long duration, and 

wide geographic coverage. In addition, headboat effort is 
expended generally toward a complex of species rather 
than specific stocks, and that generality minimizes any 
confounding effect of density-dependent catchability. A 
third possible reason for the negative results is that the 
population dynamics were truly out of synchrony. From 
a practical perspective, the actual reason, whether it 
stemmed from inadequate data or real dynamics, is 
of secondary concern. Foremost, positive evidence of 
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synchrony in this reef fish complex has yet to be estab-
lished, and we therefore urge precaution before using 
indicator species.

We did find positive evidence of species assemblages 
on the basis of landings, but these were not necessar-
ily ecological assemblages. Although assemblages in 
landings may ref lect those in nature, the two could 
differ if some species are preferentially retained from 
the catch or are more vulnerable to exploitation. Still, 

assemblages in landings have direct implications from 
the perspective of managing fisheries, in terms of 
reducing bycatch and controlling fishing effort across 
species. 

Nondimensional scaling analysis revealed that the 
species assemblages are not strongly coherent. Such 
loose structure has also been found in assemblages 
north of our study area (Mahon et al., 1998). Nonethe-
less, agreement between the headboat and commer-

Lesser amberjack

Silk snapper

Tilefish

Yellowedge grouper

Snowy grouper

Blueline tilefish

Banded rudderfish

Red grouper

White grunt

Scamp

Gray triggerfish

Vermilion snapper

Red porgy

Black sea bass

Gag

Red snapper

Almaco jack

Greater amberjack

Rock hind

Hogfish

Jolthead porgy

Knobbed porgy

Red hind

Ocean triggerfish

Whitebone porgy

Bluestriped grunt

Lane snapper

Crevalle jack

Blue runner

Gray snapper

Yellowtail snapper

Black grouper

Mutton snapper

Margate

French grunt

4.
0

5.
0

6.
0

7.
0

8.
0

9 .
0

Height

Figure 4
Dendrogram from hierarchical cluster analysis of species in the commercial sector. 
Height measures similarity among species within a branch, with a value of 1.0 rep-
resenting the lowest similarity. Scientific names are provided in the Appendix.
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Table 2
Synchrony in indices of abundance of reef fishes off the southeastern United States from headboat data. Assemblages are labeled 
as Deepwater, Southern (south of Cape Canaveral, Florida), and Northern (north of Cape Canaveral, Florida). Values are correla-
tion coefficients and proportions of coefficients (in parentheses) from n=10,000 randomizations that were smaller than the corre-
lations presented, such that values near 1.0 indicate significance of positive coefficients and values near 0.0 indicate significance 
of negative coefficients. Asterisks note significance at the α=0.1 level after Bonferroni correction (two-tailed test). Abbreviations 
for species names are explained in the Appendix.

Deepwater SnwGpr BluTlf SpkHnd

SnwGpr 1.00 0.45 (0.96)  0.08 (0.62)
BluTlf — 1.00 –0.06 (0.41)
SpkHnd — — 1.00

Southern BluRun YtlSnp LanSnp GrySnp MtnSnp

BluRun 1.00 –0.16 (0.21) –0.06 (0.38) –0.11 (0.28) –0.23 (0.11)
YtlSnp — 1.00  0.73*(1.00)     0.78*(1.00) –0.56*(0.00)
LanSnp — — 1.00      0.82*(1.00) –0.65*(0.00)
GrySnp — — — 1.00 –0.64*(0.00)
MtnSnp — — — — 1.00

Northern BlckSB WhtGnt Tomtat GryTrf VrmSnp Gag

BlckSB 1.00 –0.67*(0.00)   0.24 (0.89) –0.35 (0.04)     0.47*(0.99)   0.37 (0.97)
WhtGnt — 1.00 –0.41 (0.02)   0.43 (0.99) –0.35 (0.04) –0.35 (0.03)
Tomtat — — 1.00   0.03 (0.56)  0.36 (0.97)   0.19 (0.83)
GryTrf — — — 1.00 –0.08 (0.34) –0.14 (0.23)
VrmSnp — — — — 1.00 –0.04 (0.42)
Gag — — — — — 1.00

cial data sets implies that the assemblages, although 
loosely structured, are not arbitrary. Moreover, ad-
ditional analyses conducted as part of this study re-
vealed assemblages that were quite similar to those 
presented. These analyses included the use of an alter-
native transformation [log(x+1)], alternative measure 
of distance (binary dissimilarities), alternative link-
age method with the hierarchical analysis (average 
linkage), commercial data from multiday trips (two, 
three, or four-plus days), and data by trip (i.e., trips not  
aggregated over months). 

The three clusters with the most coherence were 
deepwater, southern, and northern assemblages. The 
ranges of these assemblages likely correlate with physi-
cal characteristics (as our chosen labels imply). Several 
of the assemblage species have been found to be linked 
through latitude, depth, and hard bottom habitat (Sed-
berry and Van Dolah, 1984; Cuellar et al., 1996). Such 
information should be beneficial for managing assem-
blages as units, allowing regulations to be focused on 
relevant geographic areas.

Although the status of many stocks in the snapper-
grouper complex is unknown, it is evident from most 
stock assessments that overfishing is occurring. In ag-
gregate, these assessment results indicate overfishing 
of the ecosystem in general (Murawski, 2000). The av-
erage level of overfishing and its variance, along with 

considerations of life histories and vulnerabilities, may 
indicate appropriate degrees of reduction in fishing ef-
fort across assemblages. The use of multiple species as 
probes into ecosystem health is likely more robust than 
the use of a single indicator species.

As single-species management loses fashion, its ideal 
replacement of full ecosystem management remains 
theoretically appealing, yet impractical given current 
data and understanding of marine ecosystems. Prog-
ress toward ecosystem management will likely occur in 
increments (Hall and Mainprize, 2004). Where assem-
blages exist, managing them as such offers a practicable 
step for implementing ecosystem considerations, includ-
ing bycatch and species interrelations. Although the 
results of our study do not support the use of indicator 
species, they provide information on fish communities 
fundamental to the judicious application of assemblage 
management.
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Table 3
Synchrony in first differences of indices of abundance of reef fishes off the southeastern United States from headboat data. 
Assemblages are labeled as Deepwater, Southern (south of Cape Canaveral, Florida), and Northern (north of Cape Canaveral, 
Florida). Values are correlation coefficients and proportions of coefficients (in parentheses) from n=10,000 randomizations that 
were smaller than the correlations presented, such that values near 1.0 indicate significance of positive coefficients and values 
near 0.0 indicate significance of negative coefficients. Asterisks note significance at the α=0.1 level with Bonferroni correction 
(two-tailed test). Abbreviations for species names are explained in the Appendix. 

Deepwater SnwGpr BluTlf SpkHnd

SnwGpr 1.00 0.31 (0.87)   –0.61*(0.01)

BluTlf — 1.00 –0.14 (0.31)

SpkHnd — — 1.00

Southern BluRun YtlSnp LanSnp GrySnp MtnSnp

BluRun 1.00 –0.25(0.11) –0.10 (0.32) –0.11 (0.31) –0.25 (0.11)

YtlSnp — 1.00    0.24 (0.89) –0.08 (0.35)  0.25 (0.90)

LanSnp — — 1.00 –0.19 (0.17)  0.37 (0.97)

GrySnp — — — 1.00 –0.06 (0.38)

MtnSnp — — — — 1.00

Northern BlckSB WhtGnt Tomtat GryTrf VrmSnp Gag

BlckSB 1.00 0.05 (0.61)  0.16 (0.78) 0.18 (0.82)  0.10 (0.70) –0.06 (0.38)

WhtGnt — 1.00 –0.09 (0.33) 0.20 (0.84) –0.06 (0.37) –0.22 (0.14)

Tomtat — — 1.00 0.08 (0.65)    0.23 (0.88)  0.02 (0.47)

GryTrf — — — 1.00  0.50*(1.00) –0.11 (0.28)

VrmSnp — — — — 1.00   0.21 (0.86)

Gag — — — — — 1.00

headboat operators who submitted logbook data. The 
data sets were provided to us by K. Brennan (headboat) 
and K. McCarthy (commercial). 
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Appendix
Species in the snapper-grouper complex off the southeastern United States, as managed under the Snapper Grouper Fishery 
Management Plan of the South Atlantic Fishery Management Council. 

Common name Scientific name Short name

Almaco jack Seriola rivoliana AlmJck
Atlantic spadefish Chaetodipterus faber AtlSpf
Banded rudderfish Seriola zonata BndRud
Bank sea bass Centropristis ocyurus BankSB
Bar jack Caranx ruber BarJck
Black grouper Mycteroperca bonaci BlkGpr
Black margate Anisotremus surinamensis BlkMrg
Black sea bass Centropristis striatus BlckSB
Black snapper Apsilus dentatus BlkSnp
Blackfin snapper Lutjnaus buccanella BfnSnp
Blue runner Caranx chysos BluRun
Blueline tilefish Caulolatilus microps BluTlf
Bluestriped grunt Haemulon sciurus BstGnt
Coney Epinephelus fulvus Coney
Cottonwick Haemulon melanurum Cotwck
Crevalle jack Caranx hippos CrvJck
Cubera snapper Lutjanus cyanopterus CbrSnp
Dog snapper Lutjanus jocu DogSnp
French grunt Haemulon flavolineatum FrnGnt
Gag Mycteroperca microlepis Gag
Goliath grouper Epinephelus itajara GolGpr
Grass porgy Calamus arctifrons GrsPgy
Gray snapper Lutjanus griseus GrySnp
Gray triggerfish Balistes capriscus GryTrf
Graysby Epinephelus cruentatus Grysby
Greater amberjack Seriola dummerili GrAjck
Hogfish Lanchnolaimus maximus Hogfsh
Jolthead porgy Calamus bajonado JltPgy
Knobbed porgy Calamus nodosus KnbPgy
Lane snapper Lutjanus synagris LanSnp
Lesser amberjack Seriola fasciata LsAjck
Longspine porgy Stenotomus carprinus LgsPgy
Mahogany snapper Lutjanus mahogoni MhgSnp
Margate Haemulon album Margat
Misty grouper Epinephelus mystacinus MstGpr
Mutton snapper Lutjanus analis MtnSnp
Nassau grouper Epinephelus striatus NssGpr
Ocean triggerfish Canthidermis sufflamen OceTrf
Porkfish Anisotremus virginicus Prkfsh
Puddingwife Halichoeres radiatus Puddwf
Queen snapper Etelis oculatus QenSnp
Queen triggerfish Balistes vetula QenTrf
Red grouper Epinephelus morio RedGpr
Red hind Epinephelus guttatus RedHnd
Red porgy Pagrus pagrus RedPgy
Red snapper Lutjanus campechanus RedSnp
Rock hind Epinephelus adscensionis RckHnd
Rock sea bass Centropristis philadelphicus RockSB
Sailors choice Haemulon parrai SlsChc
Sand tilefish Malacanthus plumieri SndTlf
Saucereye porgy Calamus calamus ScyPgy

continued
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Appendix (continued)

Common name Scientific name Short name

Scamp Mycteroperca phenax Scamp
Schoolmaster Lutjanus apodus Schmst
Scup Stenotomus chrysops Scup
Sheepshead Archosargus probatocephalus Shphed
Silk snapper Lutjnaus vivanus SlkSnp
Smallmouth grunt Haemulon chrysargyreum SmtGnt
Snowy grouper Epinephelus niveatus SnwGpr
Spanish grunt Haemulon macrostomum SpnGnt
Speckled Hind Epinephelus drummondhayi SpkHnd
Tiger grouper Mycteroperca tigris TgrGpr
Tilefish Lopholatilus chamaeleonticeps Tilfsh
Tomtate Haemulon aurolineatum Tomtat
Vermilion snapper Rhomboplites aurorubens VrmSnp
Warsaw grouper Epinephelus nigritus WrsGpr
White grunt Haemulon plumieri WhtGnt
Whitebone porgy Calamus leucosteus WtbPgy
Wreckfish Polyprion americanus Wrkfsh
Yellow jack Caranx bartholomaei YelJck
Yellowedge grouper Epinephelus flavolimbatus YdgGpr
Yellowfin grouper Mycteroperca venenosa YlfGpr
Yellowmouth grouper Mycteroperca interstitalis YlmGpr
Yellowtail snapper Ocyurus chrysurus YtlSnp


