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Surveys are an important source of 
information for most fish stock assess-
ments. They provide indices of abun-
dance often used in mathematical 
models of the population to estimate 
absolute stock size and to provide 
future catch advice or to evaluate 
catch options for fishery managers 
(Kimura and Somerton, 2006). Survey 
indices are measures that we expect 
to be proportional to, or to indicate, 
stock size. The expected value of a 
random index Ry available for year y is 
related to stock size (Sy) by the model 
E(Ry)=qSy. The constant of proportion-
ality, q, is usually referred to as the 
catchability of the index. Although we 
cannot directly infer stock size from 
a time series of indices R1, . . . ,RY, we 
can infer trends in stock size when 
q is the same each year. The survey 
observation is commonly referred to as 
a set (as in set the gear), or a tow when 
a trawl is used. The average survey 
catch for all sets provides an index of 
stock size. If the same survey proto-
cols are used from year to year then 
the catchability of the index should 
remain relatively constant. The catch-
ability may depend on length or age of 
fish, and we consider such extensions 
later in this article.

There are many stock assessment 
models that are based on survey indi-
ces (e.g., see Quinn and Deriso, 1999) 
and information on fishing and nat-
ural mortality, to estimate absolute 
stock size. For most models it is neces-

sary to have a fairly long time-series 
of survey indices, often 10 years or 
more. Over such time frames it may 
be necessary to change survey pro-
tocols. This could be due to a need to 
replace the survey vessel, or to change 
gears for new priority species, etc. 
When such changes occur, it is use-
ful to have information about how the 
catchability of the new survey protocol 
compares to the old protocol.

Performing simultaneous paired-
tow surveys using both protocols (e.g., 
old and new vessels, old and new fish-
ing gears) provides direct data on 
how the catchabilities compare (e.g., 
Kimura and Zenger, 1997) Another 
approach is to simply fish side by 
side using both protocols and use the 
paired-catch data to estimate the ra-
tio of catchabilities. We refer to this 
ratio as the relative efficiency,

 ρ =
q
q

c

t
,  (1)

where qc and qt =  the catchabilities 
of the old (control, 
c) and new (test, t) 
survey protocols. 

Notations are given in Table 1. If the 
fish densities entering both trawls are 
the same, or similar, and densities 
at different tow sites vary consider-
ably, then for the same number of 
tows a paired-tow calibration study 
should produce better results than the 
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Abstract—Paired-tow calibration 
studies provide information on 
changes in survey catchability that 
may occur because of some necessary 
change in protocols (e.g., change in 
vessel or vessel gear) in a fish stock 
survey. This information is important 
to ensure the continuity of annual 
time-series of survey indices of stock 
size that provide the basis for fish 
stock assessments. There are several 
statistical models used to analyze the 
paired-catch data from calibration 
studies. Our main contributions are 
results from simulation experiments 
designed to measure the accuracy of 
statistical inferences derived from 
some of these models. Our results 
show that a model commonly used to 
analyze calibration data can provide 
unreliable statistical results when 
there is between-tow spatial varia-
tion in the stock densities at each 
paired-tow site. However, a gener-
alized linear mixed-effects model 
gave very reliable results over a 
wide range of spatial variations in 
densities and we recommend it for the 
analysis of paired-tow survey calibra-
tion data. This conclusion also applies 
if there is between-tow variation in 
catchability.
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Table 1
Definitions of variables and acronyms for models used to estimate relative efficiency from comparative fishing data.

Rij Random variable for catches obtained at the i’th paired-tow station by survey protocol j=c (control) or j=t (test)
rij Observation of Rij
Ri Ric+Rit
Rijk Catches at the i’th tow station and k’th length class by survey protocol j
Rik Total catch (from both vessels) at length class k from set i, Rick+Ritk
n Total number of paired-tow stations
ni Number of length classes caught in the i’th pair of tows
n* Total number of sets and length classes, n nii

* = ∑
λij Fish densities encountered at station i and tow j
δi log(λic /λit)
qj Probability an encountered fish is captured, j=c, t
ρ Relative efficiency, ρ=qc/qt
β log(ρ)
p Probability a captured fish was caught by the control protocol
Dij Tow duration at the i’th paired-tow station by vessel j
Fijl Subsampling fraction for length l fish
Zil Logit offset, Zil=log(DicFicl /DitFitl)
φ Binomial over-dispersion
σ2 Random effect variance
CIs Confidence intervals
GLIM Generalized linear model
MLE Maximum likelihood estimation
GLMM Generalized linear mixed model
PQLE Penalized quasi-likelihood estimation
CV Coefficient of variation
VO Vessel-effect over-dispersed binomial model estimation
VM Vessel-effect binomial model with random intercept for each set; marginal MLE
VP Vessel-effect binomial model with random intercept for each set; PQLE
VLO Vessel- and length-effects over-dispersed binomial model estimation
VLMi Vessel- and length-effects binomial model with random intercept for each set; marginal MLE
VLPi Vessel- and length-effects binomial model with random intercept for each set; PQLE
VLMis Vessel- and length-effects binomial model with random intercept and slope for each set; marginal MLE
VLPis Vessel- and length-effects binomial model with random intercept and slope for each set; PQLE

simultaneous survey approach. This is analogous to the 
common paired versus unpaired experiment situation 
(e.g., Devore, 1991). Pelletier (1998) reviewed estimation 
methods used in many vessel calibration experiments.

The basic data obtained from paired-tow calibration 
studies are the catches Rij obtained at the ith paired-
tow station (i=1, . . . ,n) by survey protocols j=c (control) 
or j=t (test). Let λij denote the fish densities encoun-
tered at station i and tow j. These densities may be 
different because of small-scale spatial heterogeneity in 
stock densities. We assume that each tow catches fish 
with probabilities qc and qt which are the same from 
site to site (i.e., i), and that catches are Poisson random 
variables with means

 E R q E R qit t it i ic c ic i i( ) , ( ) exp( ),= = = =λ µ λ ρµ δand  (2)

where δi = log(λic/λit). 

If both vessels encounter exactly the same stock densi-
ties at each tow station, then δi=0, i=1, . . . , n.

When there is no spatial heterogeneity in stock den-
sities, ρ can be estimated by using a Poisson general-
ized linear model (GLIM; e.g., McCullagh and Nelder, 
1989). This is essentially the approach used by Benoît 
and Swain (2003), although they adjusted for extra-
Poisson variability in the catches. There are 2n ob-
servations that can be used to estimate the n density 
parameters (µ) and ρ. Pelletier (1998) used a similar 
approach, with a negative binomial mean-variance as-
sumption, which is a type of Poisson over-dispersion. 
These approaches are complicated because the number 
of µ parameters can be large if many tow stations are 
sampled, and the situation is worse if there are length 
effects. 

A better approach for inferences about ρ (see section 
4.5 in Cox and Snell, 1989, and example 3.1 in Reid, 
1995) when catches are Poisson random variables is 
to use the conditional distribution of Ri,c, given Ri = 
Ric+Rit. Let ri be the observed value of Ri. The condi-
tional distribution is binomial with a probability mass 
function 
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− −1  (3)

where p =  ρ/(1+ρ) is the probability a captured fish is 
taken by the control vessel. 

The only unknown parameter in this distribution is ρ. 
The n nuisance µ parameters are eliminated in Equation 
3. There are n conditional observations that can be used 
to estimate ρ. For the binomial distribution E(Ric)=rip 
and Var(Ric)=rip(1–p). This approach is commonly used 
in commercial fishing gear size-selectivity studies (e.g., 
Millar 1992). 

Paired-tow experiments do not eliminate spatial het-
erogeneity between the stock densities fished by each 
vessel. This heterogeneity leads to Poisson over-disper-
sion which has to be properly accounted for to provide 
reliable statistical inferences. Similarly, the relative 
efficiency may vary somewhat from site to site and this 
must also be accounted for. It is well-known in fishing 
gear selectivity studies that not accounting for over-
dispersion and correlation leads to confidence intervals 
that are too narrow and spurious statistical significance 
(Fryer, 1991; Millar et al., 2004).

An approach to deal with over-dispersion is to use 
quasi-likelihood (e.g., McCullagh and Nelder, 1989) 
with a Poisson over-dispersion parameter φ, Var(Rij)= 
φ E (Rij), or a binomial over-dispersion parameter, 
Var(Ric|Ri=ri)= φ rip(1–p). Confidence intervals (CIs) 
are adjusted based on an estimate of φ. This was the 
approach used by Benoît and Swain (2003) to account 
for extra-Poisson variation, and Lewy et. al. (2004) to 
account for extra-binomial variation. Benoît1 observed 
that using an over-dispersion parameter did not com-
pletely account for the true variability in the data and 
too often led to the false statistical conclusion that ρ 
≠1. Benoît used randomization approaches to test for 
statistical significance of vessel effects. We consider 
this approach further in the Discussion section. 

A reasonable assumption for spatial heterogeneity 
in stock densities is that λic and λit in Equation 2 are 
independent and identically distributed gamma random 
variables with means λi and variances τλ2

i. If Ric|λic 
and Rit|λit are Poisson distributed, then the marginal 
distributions of Ric and Rit are negative binomials (e.g., 
see Cameron and Trivedi, 1998). This distribution is 
often suggested to be appropriate for modeling the vari-
ability of measurement error in trawl survey catches 
(e.g., Gunderson, 1993). This implicitly provides a ra-
tionale for assuming stock densities are gamma dis-
tributed. Dowden2 showed that τ=0.049, 0.223, 0.372 

corresponds to Var(δi)=0.1, 0.5, and 0.9, and that the 
distribution of δ (see Eq. 2) is well approximated by 
a normal distribution with σ2=Var(δi). In this case a 
generalized linear mixed-effects model (GLMM; e.g., 
McCulloch and Searle, 2001) can be used to estimate ρ 
and account for spatial heterogeneity in stock densities. 
GLMMs contain both fixed and random effects, and 
usually the random effects are assumed to have normal 
distributions. We refer to models with no random ef-
fects as fixed effects models (e.g., GLIMs).

GLMMs are frequently used to account for heteroge-
neity in fishing gear size-selectivity data (e.g., Fryer, 
1991; Fryer et al., 2003; Millar et al., 2004). Fryer et 
al. (2003), Cadigan et al.3 and Holst and Revill (2008) 
used GLMMs with paired-tow calibration data. Cadigan 
et al.3 compared models with and without random ef-
fects for vessel calibration data for seven species, and 
suggested that GLMMs provided results that were more 
reliable. Cadigan et al.3 concluded that vessel effects 
were not significantly different from zero; however, dif-
ferent conclusions could be drawn from some of their 
GLIM results.

There are a variety of approaches available for fitting 
GLMMs. A common approach is marginal maximum-
likelihood estimation (MLE), which is limited in the 
complexity of random effects that can be accommodated. 
A more flexible approach is penalized quasi-likelihood 
estimation (PQLE). Bolker et al. (2009) provided some 
advantages and disadvantages of these methods. They 
also provided many references, including some for soft-
ware packages. In some situations, PQLE is known to 
produce biased estimates of fixed-effect parameters 
like ρ.

In this article we extend the analyses for one of 
the stocks considered by Cadigan et al.3. By means 
of simulation studies we examine which of the ap-
proaches—the GLIM, GLMM with marginal MLE, or 
GLMM with PQLE—provides more reliable statistical 
inferences about ρ. We focus on the bias in estimates 
of ρ, on the accuracy of CIs, and on the power to de-
tect if ρ ≠ 1 (i.e., a true difference in catchabilities 
between vessels). Our purpose is to recommend the 
most reliable approach, at least for paired-tow sur-
vey calibration studies similar to those in Cadigan et 
al.3. We focus on methods to accommodate within-pair 
variations in stock densities, but our methods are also 
applicable when there is between-set variations in rela-
tive efficiency.

1 Benoît, H. P. 2006. Standardizing the southern Gulf of 
St. Lawrence bottom trawl survey time series: Results of 
the 2004–2005 comparative fishing experiments and other 
recommendations for the analysis of the survey data.  DFO 
Can. Sci. Advisory Secretariat Res. Doc. 2006/008.  [Available 
from http://www.dfo-mpo.gc.ca/csas/csas/publications/res-
docs-docrech/2006/2006_008_e.htm, accessed April 2009.] 

2 Dowden, J. J. Generalized linear mixed effects models with 
application to fishery data.  M.A.S. practicum report, 128 
p. Memorial Univ. Newfoundland. St. John’s, Newfoundland 
and Labrador, Canada. 

3 Cadigan, N. G., S. J. Walsh, and W. Brodie. Relative 
efficiency of the Wilfred Templeman and Alfred Needler 
research vessels using a Campelen 1800 shrimp trawl in 
NAFO Subdivision 3Ps and Divisions 3LN. DFO Can. Sci. 
Advisory Secretariat Res. Doc. 2006/085. [Available from 
http://www.dfo-mpo.gc.ca/csas/Csas/Publications/ResDocs-
DocRech/2006/2006_085_e.htm, accessed April 2009.]
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Materials and methods

We focus on statistical inferences for ρ (i.e., Eq. 1) based 
on data obtained from paired-tow vessel calibration 
studies like those described in Cadigan et al.3. Briefly, 
in their study, data from paired-tows were collected 
to quantify potential differences in the catchabilities 
of two research survey vessels fishing with the same 
trawl and other protocols. Ranges of catch sizes, fish 
sizes in the catch, and tow depths were sought for the 
distributions of the species likely to be encountered. 
Tow stations were selected randomly as part of research 
surveys. High density aggregations were not specifically 
targeted because information was required on differ-
ences in catchability when stock densities were both 
high and low—a variability in densities that typically 
occurs in research surveys. The full details of this cali-
bration study are given in Cadigan et al.3. We use their 
data on witch flounder (Glyptocephalus cynoglossus) as 
a case study to illustrate methods.

The focus in Cadigan et al.3 was on the relative ef-
ficiency of two vessels fishing with otherwise identical 
protocols (gears, speed, tow duration, etc.). Hence, in 
this article we refer to vessel effects, but more generally 
the effects relate to differences in fishing protocols.

The first step in analyzing calibration data is to ex-
amine whether there is an effect on total catch per set. 
In the next section we describe a model for this pur-
pose. Effects on the length compositions of the catches 
are considered later in this article. 

Vessel effect

A common approach used for analyzing comparative 
fishing data is binomial regression with an adjust-
ment for over-dispersion. This is one of the options we 
considered. In the conditional binomial model defined 
by Equation 3, the logit function of the binomial prob-
ability (p) is

 log log( ) ,
p

p1 −






= =ρ β  (4)

and β can be estimated as the intercept with a logit 
link function by using software for binomial regres-
sion. The range of β is (–∞, ∞). We derived CIs for ρ by 
exponentiating intervals for β and therefore CIs for ρ 
should have better coverage properties, and they at least 
would never include infeasible values. We used version 
9.1.3 of SAS/STAT (SAS, Cary, NC.) PROC GENMOD 
software to estimate this model, and we used the option 
(dscale) that estimates φ as the deviance divided by the 
degrees of freedom. We also selected the option (lrci) that 
provides two-sided CIs based on the profile likelihood 
function. We refer to this GLIM model and estimation 
approach as the VO (vessel-effect binomial model with 
over-dispersion) approach.

If there is spatial heterogeneity in stock densities, 
then the model for the logit proportion of catch taken 
by the control vessel at station i is

 log ,
p

p
i

i
i1 −







= +β δ  (5)

Usually it is reasonable to assume that the ratio of stock 
densities varies randomly from site to site. Earlier we 
claimed it was reasonable to assume δi~N(0, σ2), i=1, 
. . . n. In this case equation 5 defines a standard GLMM 
and there are many approaches and software packages 
available to estimate β and σ2 (e.g., Bolker et al., 2009). 
We examined the robustness of statistical inferences 
about ρ to the normal approximation for δ (see Simula-
tions section) when δ is actually a log ratio of gamma 
random variables. 

We used two different packages to estimate the 
GLMMs. The first was SAS/STAT PROC NLMIXED, 
which fits nonlinear mixed models, including binomial 
logistic regression, using marginal MLE. We refer to 
this model and estimation procedure as the VM (vessel 
effect and random set-effects binomial model with mar-
ginal MLE) approach. The second was the more flexible 
SAS/STAT PROC GLIMMIX, which fits GLMMs using 
PQLE. We refer to this as the VP (vessel effect and 
random set-effects binomial model with PQL estima-
tion) approach. We used the default estimation method 
in PROC GLIMMIX, which is a restricted pseudolikeli-
hood estimation with an expansion around the current 
estimate of the best linear unbiased predictors of the 
random effects. Both packages provide Wald-type CIs 
for fixed-effect parameters such as β. 

Vessel and fish-length effects

Length effects are expected if there is a change in the 
survey trawl, but they could also occur with only a 
change in the survey vessel. Length-based models for 
paired-tow comparative fishing data are straightforward 
extensions of the models in the previous section. The data 
are extended to include the paired catches at length, Rijk, 
i=1, . . . , n; j=1,2; k=1, . . . ni, where ni is the number of 
length classes caught in the i’th pair of tows.

If it is reasonable to assume that there are no be-
tween-pair differences in the length distributions of 
fish encountered by both vessels, then binomial logistic 
regression models are appropriate. Usually the effect 
of length will be such that relative efficiency changes 
monotonically with length, l. If the change is linear 
in β=log(ρ), then a binomial GLIM with a logistic link 
can be used to estimate the intercept and slope; that is, 
β ≡ β(l) =β0+β1l in Equation 4, where β is taken to be a 
function of length, β(l). If the length effect is more com-
plicated, then alternative models may be required (see 
Fryer et al., 2003; Holst and Revill, 2008); however, in 
this article we focus only on linear models.

If there is spatial heterogeneity in stock densities, 
then the situation is more complicated. If the heteroge-
neity is such that one vessel encounters more fish than 
the other, but otherwise the length distributions are 
the same, then the use of a random intercept binomial 
GLMM is appropriate:
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where pik =  the probability that at site i a 
length lik captured fish came 
from the control vessel. 

Holst and Revill (2008) used a random 
intercepts model, although their models 
for fixed lengths effects were more com-
plicated than what we consider. However, 
if there are differences in the length dis-
tributions encountered by both vessels 
then Equation 6 will not be appropriate. 
The differences will usually be such that 
δ=log(λc/λt) varies smoothly with length. 
Several hypothetical examples are also 
shown in Figure 1. This type of spatial 
heterogeneity can be approximated by lin-
ear functions, whose slopes (δ1) and inter-
cepts (δ0) vary randomly from set to set. 
A GLMM for this model is
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This is a common GLMM used in fishing 
gear selectivity studies. If the means of the 
densities are the same and the only dif-
ference is the height of the distributions, 
then the δ log ratio would be a horizontal 

 CI l SE l= ± × { }



exp ˆ( ) . ˆ( ) .β β1 96  (9)

Occasionally in comparative fishing the duration (Dij) 
of the tows may differ somewhat between vessels. Also, 
because of operational time constraints the catches 
may have to be subsampled for some species. The sub-
sampling fraction (Fijl) may depend on size as well. 
To account for these effects we added an offset (Z) to 
Equations 6 and 7, Zil=log(DicFicl /DitFitl). For length-
pooled analyses of vessel effects we added the offset 
Zi=log(DicFic /DitFit) to Equation 5, where Fij is the total 
subsampling fraction.

Simulations

Vessel effects The design of the simulation experiments 
mimicked the design for the data analyzed by Cadigan 
et al.3, that is, we simulated data for the seven species 
that they considered, and for the same number of tows 
and total catches for both paired-tows (R). This design 
is summarized in Table 2. Therefore, for example, in 

Figure 1
(A) Hypothetical length distributions of fish encountered by the control 
(c) and test (t) fishing protocols from paired-tow fishing experiments, 
to illustrate the impact of within-pair variations in stock densities 
on the relative efficiency of the test compared to the control protocol. 
Line types correspond to pairs of tows. Thin vertical lines indicate 
mean length per tow and coefficients of variation equal to 0.5. (B) Cor-
responding log density ratios (i.e., δ’s) are shown for ranges of lengths 
where the average density (in A) was greater than 0.01.
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line in Figure 1, which is the type of effect accounted 
for in Equation 6.

We used the same SAS software to estimate the 
length-based GLIMs and GLMMs. We denote the 
length-based model with no random effects as VLO. 
Mixed-effects random intercept models are denoted as 
VLi, (i.e., Eq. 6), and models with random intercepts 
and slopes are denoted as VLis. Models and estimation 
methods are denoted as VLMi, VLPi, VLMis, and VLPis 
(see Table 1) depending on whether marginal MLE or 
PQLE is used.

Standard errors for β(l)=β0+β1l=log{ρ(l)} can be con-
structed from the estimates of β0 and β1, and their 
estimated covariances: 

 SE l l lˆ( ) var( ˆ ) cov( ˆ , ˆ ) var( ˆ )β β β β β{ } = + +0 0 1 12 22 1 2{ } /
.  (8)

These standard errors can be used to produce approxi-
mate 95% pointwise CIs for ρ(l):
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Table 2
Paired-tow fishing simulation parameters based on the species in Cadigan et al.3 n is the total number of paired-sets, n* is the 
total number of sets and length classes, R=Rt+Rc is the total catch by the test (t) and control (c) vessels, and Rt/Rc is the ratio of 
catches from each vessel. The mean, median and coefficient of variation (CV) are for total catch (R). R25 and R75 are the lower 
and upper 25th percentiles of R. See Table 1 for definitions of notations.

Species n n* R Rt/Rc mean median R25 R75 CV

American plaice  105 2035 11,494 1.051 109.5 40.0 9 169 126 
(Hippoglossoides platessoides) 

Atlantic cod 91 1132 3926 1.067 43.1 4.0 2 31 217 
(Gadus morhua) 

Deepwater redfish  63 1030 12,069 1.207 191.6 88.0 14 379 104 
(Sebastes mentella) 

Greenland halibut  56 585 1359 1.243 24.3 13.5 4 36 120 
(Reinhardtius hippoglossoides) 

Thorny skate  79 990 2394 1.124 30.3 9.0 3 20 226 
(Raja radiata) 

Witch flounder  57 970 5046 1.334 88.5 52.0 6 151 108 
(Glyptocephalus cynoglossus) 

Yellowtail flounder  24 536 5795 1.250 241.5 159.0 5 503 102 
(Limanda ferruginea) 

the simulation based on American plaice (Hippoglos-
soides platessoides), data were generated for 105 paired-
tows with an average R of 109.5. Twenty-five percent 
of the sets had R≤9, and 25% of sets had R≥169. The 
number of paired-tows in the seven sets of simulations 
varied from 25 to 105 which is a practical range con-
sistent with many comparative fishing studies (e.g., 
Table 2 in Pelletier, 1998). The catches ranged from low 
(Atlantic cod, Gadus morhua) to high (yellowtail floun-
der, Limanda ferruginea). Some of the stocks had very 
skewed catches; for example, Atlantic cod and thorny 
skate (Raja radiata) had mean catches that exceeded 
their 75th percentiles.

The simulations were similar to a parametric boot-
strap procedure; however we varied β and σ2 to examine 
how the accuracy of statistical inferences varied with 
changes in these parameters. The values of β ranged 
from 0 to 2 by increments of 0.25, with β=0, or ρ=1, 
representing no vessel effect, and β=2, or ρ=7.4, repre-
senting a test vessel catchability that was 14% of the 
control vessel. Note that this range in β is much larger 
than the results in Cadigan et al. (Table 7 in Cadigan 
et al.3). Their largest absolute estimate was 0.08; how-
ever, these simulations were designed to examine the 
accuracy of statistical inferences for small and large 
vessel effects. The levels of σ2=0, 0.1, 0.5, and 0.9 rep-
resented no to high spatial heterogeneity and broadly 
reflected the range of estimates in Cadigan et al. (Table 
7 in Cadigan et al.3). The lowest estimate of σ2 in Cadi-
gan et al.3 was 0.10 for Greenland halibut (Reinhardtius 
hippoglossoides), and the highest estimate was 0.99 for 
Atlantic cod.

Simulated catches for the control vessel (Rc) were 
generated as binomial random numbers; the number of 
trials was equal to the observed R in Cadigan et al.3 

and probability was based on Equation 5. The δs were 
generated randomly from a normal distribution with 
mean zero and variance σ2. The simulated test vessel 
catch was Rt=R–Rc. Note that the total catches for each 
paired-tow, R, . . . , Rn, were the same in each simula-
tion; hence, our simulation results were conditioned on 
these values.

We examined the robustness of the GLMM results to 
the assumption of a normal distribution for the random 
effects, δ, when in fact δ was the log of a ratio of two 
independent and identically distributed gamma random 
variables with Var(δ)=σ2.

Estimates and 95% CIs for β were obtained from 
2000 simulations. We approximated the estimation bias 
as the median β from the simulations minus the true 
simulation value. Bias results based on means were 
very similar. The coverage accuracy of the CIs was 
measured as the proportion of simulations in which the 
CI contained the true value of β. If the 95% CIs are ac-
curate, then the simulation proportion should be close to 
0.95. We also computed the proportion of simulations in 
which β was less than the lower CI, and the proportion 
in which β was greater than the upper CI. If the CIs 
are two-sided accurate, then these proportions should 
both equal 0.025.

We performed other simulations using a much finer 
scale for β to examine the power of detecting a vessel 
effect based on the proportion of simulations whose CIs 
did not cover zero when the true β was greater than 
zero.

Vessel and fish-length effects These simulations were 
similar to those described in the last section. We simu-
lated data for the seven species and with the same 
number of tows and total catches-at-length for both 
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paired-tows (Rl). However, there was 
an additional simulation factor for the 
slope of the length effect. We standard-
ized lengths in the data from Cadigan 
et al.3:

 l
l l

l lstd =
−
−

50

75 25
,  (10)

where lα =  the αth percentile of the 
len g t h s  f r om a l l  s e t s , 
weighted by total catch, for 
each species. 

This standardization allowed us to use 
the same slopes in simulations for dif-
ferent species; we considered β1=0, 0.5, 
1.0 to represent no, medium, and large 
length effects. This scale increased the 
number of simulations three-fold. The 
length-based models were also slower to 
estimate because of the larger size of the 
data sets (see n* in Table 2), and to save 
time we reduced the number of simula-
tions to 1000.

We simulated data from Equation 7. 
We set σ 2

1=σ 2
2 =σ 2 and used the same 

values as before, σ2=0, 0.1, 0.5, and 0.9. 
However, we fitted both Equation 6 and 
Equation 7 to the simulated data. This 
procedure allowed us to examine the ac-
curacy of statistical inferences from the 
random intercept model, which is a com-
mon mixed effects model, when slopes 
were random as well. We summarized 
the simulations for β(lstd)=β0+β1lstd at 
three points, lstd=0, 0.5, and 1.0, which 
reflects relative efficiency at median to 
large lengths.

Results

Case study The GLIM estimate of β=log(ρ) (Table 3; VO model) 
was significantly less than zero indicating that the con-
trol vessel had a catchability that was significantly less 
than the test vessel. However, both GLMM estimates 
(VM, VP) were somewhat larger and not significant, in-
dicating that the test and control vessels catchabilities 
were not significantly different. The VM and VP esti-
mates of β and σ 2 were very similar. The PQL software 
(PROC GLIMMIX) we used did not provide standard 
errors for the estimate of σ 2, but the marginal MLE 
software (PROC NLMIXED) did.

The length-based models provided similar results, 
with the GLIM model (VLO) producing significant dif-
ferences whereas the mixed models did not. Note that 
the length-based estimates are very different from those 
in Cadigan et al.3 because we standardized lengths (i.e., 

Figure 2
Comparative fishing survey results for witch f lounder (Glyptocephalus 
cynoglossus). (A) Catches from the test and control vessels with 57 
paired-tows. Thick line segments connect the offset adjustments for 
differences in tow duration and subsampling of catches (see text for 
further detail) and indicate equal catchability (i.e., ρ=1); that is, if 
ρ=1, the scatter of points should be centered around the offset adjust-
ments. Solid circles indicate paired-sets with substantially different 
catches. (B) Total catch per 1-cm length classes over all sets, for the 
test vessel, the test vessel adjusted for tow duration and subsampling, 
and the control vessel.
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We illustrate methods using data for witch flounder 
from Cadigan et al.3. There is some evidence that the 
catchability of the control vessel was less than the test 
vessel. For example, there were five sets (solid circles 
in Fig. 2 where the test vessel caught more than 100 
fish but the control vessel caught fewer than 100 fish. 
Rarely were catches by the control vessel much larger 
than the test vessel. However, in most paired-tows the 
catches by both vessels, when adjusted for tow distance 
and subsampling, were similar. The length distribu-
tions over all sets (Fig. 2, bottom panel) did not indicate 
that potential differences in catchabilities were length 
dependent because catch differences were approximately 
equally distributed over a broad range of sizes.
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Table 3
Parameter estimates, standard errors (SE), and lower 
and upper 95% confidence interval limits from various 
models for paired-tow comparative fishing data. See Table 
1 for definitions of model acronyms and parameters. The v 
and l parameter subscripts indicate a vessel or fish-length 
effect. 

Model Parameter Estimate SE Lower Upper

VO βv –0.153 0.069 –0.290 –0.018
 φ 5.888 —   — —

VP βv –0.094 0.093 –0.279 0.091
 σv

2 0.301 0.088 — —

VM βv –0.097 0.093 –0.283 0.089
 σv

2 0.302 0.089 0.124 0.480

VLO βv –0.166 0.037 –0.239 –0.094
 βl –0.053 0.052 –0.154 0.048
 φ 1.628 — — —

VLPi βv –0.102 0.092 –0.286 0.082
 βl 0.058 0.052 –0.045 0.160
 σv

2 0.296 0.086 — —

VLMi βv –0.105 0.092 –0.290 0.079
 βl 0.058 0.052 –0.047 0.164
 σv

2 0.295 0.086 0.121 0.468

VLPis βv –0.099 0.094 –0.288 0.090
 βl 0.059 0.080 –0.098 0.215
 σϖ

2 0.299 0.088 — —
 σl

2 0.119 0.061 — —

VLMis βv –0.103 0.095 –0.294 0.088
 βl 0.061 0.081 –0.101 0.224
 σϖ

2 0.303 0.091 0.121 0.484
 σl

2 0.122 0.065 –0.008 0.252

Eq. 10) but Cadigan et al.3 did not. The 25th, 50th, and 
75th length percentiles were 22, 29, and 34 cm. CIs for 
ρ(l) based on Equation 9 were derived for lstd=0, . . . , 2 
(Fig. 3). The VLO model suggested ρ(l) decreased with l 
and was significantly different from one over the range 
of lengths. The four mixed models all indicated a slight 
increase in ρ(l) with l but were not significantly differ-
ent from one for any length. The CIs for the random 
intercept model (Eq. 6) were shorter than those for the 
random intercept and slope models, especially when 
lstd>1. The marginal MLE CIs (VLMi, VLMis) were 
slightly wider than PQLE CIs (VLPi, VLPis). 

Simulations

Vessel effect Simulation results were very similar for 
the seven species. We present the best and worst cases 
in Figures 4 and 5. The VO model performed poorly 
even when there was small spatial heterogeneity in 
stock densities (i.e., σ2=0.1). The likelihood ratio CIs 
had poor coverage properties and the probability that 
they contained the true value of the vessel effect (β) was 
much less than the 95% nominal value. When σ2 and β 

were large this method produced biased estimates of β 
and very inaccurate CIs. Note that to facilitate compari-
son of the methods the y-axis was fixed to be less than 
the range of some of the GLIM results, particularly in 
Figure 5. The VP CIs were more accurate, except when 
σ2≥0.5 for the thorny skate simulation (Fig. 5). For larger 
values of β the CIs from this method covered less than 
95%, about 80% for σ2=0.9 and β =2. The bias was nega-
tive which meant that the lower and upper bounds were 
too small. The VM CIs were quite reliable across the 
range of values for σ2 and β, and for all seven simulation 
scenarios (i.e., species). The log gamma ratio simulation 
results were almost identical to the normal simulations 
results and are not presented.

We performed simulations at a finer scale of β to de-
termine the size of a vessel effect that could be detected 
with a power of 0.8 or 0.95, based on the VM model. 
The power was computed from the proportion of CIs 
that did not cover zero. The results are shown in Table 
4, expressed in terms of percent change, 100×(ρ–1). 
For example, when σ 2=0.5 there was a 95% chance of 
detecting a 44% increase in catchability with data like 
that for American plaice. 

Vessel and length effects The VLO model performed 
poorly compared to the mixed models and those results 
are not presented. We examined statistical inferences 
for β(lstd) based on the VLMi, VLPi, VLMis, and VLPis 
models. Note that simulated data were generated by 
using Equation 7 but fitted with both Equation 6 and 
Equation 7; hence, the results based on Equation 6, i.e. 
VLMi and VLPi, will ref lect model mis-specification 
biases. Results were similar for each simulation scenario 
(i.e., species). We present results for β(lstd) only for the 
Atlantic cod scenario, small and medium spatial vari-
ability (σ =0.1, 0.5), no or large lengths effects (β1=0, 
1), and at the center of the length distribution (lstd=0; 
Fig. 6 or at a larger value (lstd=1; Fig. 7).

The random intercept models gave unreliable results 
especially when lstd=1. The total random effect variance 
based on Equation 7 increased with length and this was 
not accounted for by the VLMi or VLPi models. The poor 
performance of CIs for β(lstd) derived from the VLMi 
and VLPi models was caused by both bias in estimates 
of β(lstd) and bias in estimates of the variance of the 
estimator for β(lstd). These biases are a complicated 
function of β0, β1, σ 2 and lstd.

The PQL estimation bias was similar to the results of 
the vessel effects only simulation (not shown for Atlan-
tic cod) when lstd=0, which is not surprising because the 
conditional distributions based on Equation 5 and Equa-
tion 7 are essentially the same in this case. However, 
when lstd=1 the VLPis model gave less accurate results 
compared to those when lstd=0. The VLMis model gave 
reliable results in all simulation settings.

The worst case VLMis result for the lower 95% CI cov-
erage was for the deepwater redfish (Sebastes mentella) 
scenario in which the simulation coverage was 0.057 
(nominal value is 0.025) when β0=0.5, β1=1, σ 2=0.5, 
and lstd=0. The worst case result for the upper interval 
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Figure 3
95% confidence intervals for the relative efficiency of the test vessel 
compared to the control vessel for catches (in numbers) of witch 
flounder (Glyptocephalus cynoglossus). Relative efficiency was modeled 
as a function of length l, ρ(l)=exp(β0+β1l), and length was standard-
ized, lstd=(l – l50)/(l75–l25), where lα was the α×100% percentile of the 
lengths caught in all sets. The five models indicated by different 
line patterns and shading are described in Table 1. Two lines of 
the same pattern and shading are plotted for the lower and upper 
confidence interval endpoints. The thin horizontal line represents 
equal catchability, ρ(l)=1. 

0.0 0.5 1.0 1.5 2.0

0.6

0.8

1.0

1.2

1.4

 VLO
 VLPi
 VLMi

 VLPis

 VLMis

R
el

at
iv

e 
ef

fic
ie

nc
y

Standardized length (lstd)

Table 4
The size of a vessel effect (i.e., change in relative efficiency, ρ–1, in %) that can be detected with power=0.8 or 0.95. Columns are 
for values of σ2 (i.e., the random effect variance) and rows are for species simulation scenarios.

 Power=0.8 /σ2 Power=0.95 /σ2

Species 0.0 0.1 0.5 0.9 0.0 0.1 0.5 0.9

American plaice (Hippoglossoides platessoides) 5 13 23 32 9 24 44 64

Atlantic cod (Gadus morhua) 10 18 33 42 17 33 68 92

deepwater redfish (Sebastes mentella) 5 15 30 43 7 27 60 99

Greenland halibut (Reinhardtius hippoglossoides) 16 23 39 54 28 44 86 134

thorny skate (Raja radiata) 13 20 34 45 23 38 71 101

witch flounder (Glyptocephalus cynoglossus) 8 17 34 49 13 31 72 113

yellowtail flounder (Limanda ferruginea) 8 25 62 101 13 50 164 372

was 0.055 when β0=2, β1=0, σ 2=0.9, and 
lstd=0 for Atlantic cod. In 95% of the simu-
lations for all species the absolute error for 
the lower CI was less than 0.013, and for 
the upper interval it was less than 0.016. 
This demonstrates that CIs from the VLMis 
model were almost always very accurate.

Discussion

Our simulation results demonstrated that 
the commonly used over-dispersed bino-
mial logistic regression model did not 
provide accurate statistical inferences for 
paired-trawl calibration data when there 
was spatial variation in stock densities. 
In practice, such variations will occur and 
therefore this approach is not recommended. 
Fortunately, our simulations showed that 
a binomial logistic regression model that 
included random site effects in addition 
to fixed vessel effects did provide accurate 
inferences for a wide range of spatial varia-
tions in stock densities. This conclusion also 
applied to pooled or length-based analyses. 
We recommend this binomial generalized 
linear mixed-effects model (GLMM) for 
analyzing comparative fishing data. When 
assessing for length effects, we recommend 
using a binomial GLMM with between-site 
random variation in both the vessel and 
length effects. 

Between-set variability in catchability 
is commonly observed in covered-codend 
experiments (e.g., Fryer 1991, Millar et. al. 
2004) that directly measure catchability. 
This will also produce between-site vari-
ability in ρ. Trenkel and Skaug (2005) assumed that 
the Poisson density for fish abundance was spatially 
constant on a small scale (~1000 km2), and that be-

tween-haul variation in catchability caused all addi-
tional Poisson over-dispersion in bottom-trawl survey 
catches. Cadigan et al.2 demonstrated that this type of 
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Figure 4
Paired-tow comparative fishing simulation results for log relative efficiency (β) of the test 
vessel compared to the control vessel. Simulations were based on the yellowtail f lounder 
(Limanda ferruginea) scenario and data were generated for different assumed values of 
β (i.e., β0) and spatial heterogeneity (σ2) in fish densities encountered in each tow. Three 
models of spatial heterogeneity, described in Table 1, were used to estimate β, and three 
line patterns are used to show the results from each model. Panel columns are for levels of 
σ2 (i.e., σ2=0 in A, E, I, and M, etc.) and the x-axis of each panel are for levels of β. Bias 
(A–D) is the simulation median estimate of β minus β0. CI indicates confidence interval, 
and P(β ∈ CI) indicates the probability the CI contains β, etc. References lines (solid) are 
shown in each panel, at zero (A–D), 0.95 (E–H), and 0.025 (I–P). 
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variability has a similar effect to that of spatial hetero-
geneity in stock densities encountered by both vessels at 
a trawl station. Hence, these two sources of variability 
are confounded in paired-trawl experiments and the 
random effects represent the cumulative impacts of both 
types of variability. For reasons outlined in the previous 
paragraph, we recommend the GLMM approach when 
there is between-set variability in catchability. 

Our power analyses indicated that 50% changes in 
catchability could not be detected with high probability 
(i.e., 0.95) for some species. For example, with data like 

that obtained for Atlantic cod (see Table 2, and Cadigan 
et al.3) the power was fairly low. For this stock, the es-
timate of σ 2 was 0.99 and our power analysis indicated 
that we could detect only large changes in catchability 
(>90%) in this situation. Estimates of σ2 were closer to 
0.5 for most other species, in which case the power to 
detect a 50% change in catchability would be between 
0.8 and 0.95. The exception was for yellowtail floun-
der which would have even lower power when σ2=0.5 
because of the smaller number of positive sets (n=24) 
for this species. Changes in catchability between 20% 
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Figure 5
Paired-tow comparative fishing simulation results for log relative efficiency (β) of the test 
vessel compared to the control vessel. Simulations were based on the thorny skate (Raja 
radiata) scenario and data were generated for different assumed values of β (i.e., β0) and 
spatial heterogeneity (σ2) in fish densities encountered in each tow. Three models of spatial 
heterogeneity, described in Table 1, were used to estimate β, and three line patterns are 
used to show the results from each model. Panel columns are for levels of σ2 (i.e., σ2=0 
in A, E, I, and M, etc.) and the x-axis of each panel are for levels of β. Bias (A–D) is the 
simulation median estimate of β minus βo. CI indicates confidence interval, and P(β ∈CI) 
indicates the probability the CI contains β, etc. References lines (solid) are shown in each 
panel, at zero (A–D), 0.95 (E–H), and 0.025 (I–P). 
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and 50% would be important in stock assessment, and 
our simulation results indicated that more sets would 
be necessary to detect such changes in a comparison 
of paired-tow fishing data when the amount of spatial 
heterogeneity is similar to the levels in Cadigan et al.3. 
If spatial heterogeneity could somehow be removed or 
kept low, then 50% changes in catchability could be 
detected with high power. 

Another common approach to analyze comparative 
fishing data is to log transform catches and use normal 
linear models for analysis; however, this approach does 

not often adequately account for the stochastic nature 
of the data (e.g., counts) and involves arbitrary choices 
to deal with zero catches. However, the lognormal ap-
proach may be reasonable and appropriate in some 
situations, or when the focus is on catch weights (e.g., 
Kingsley et al., 2008).

We studied two methods to estimate GLMMs. One 
was based on maximizing the marginal likelihood, in-
tegrated over the random effects. The other approach 
was penalized quasi-likelihood estimation based on a 
linearization of the model and a double optimization 
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Figure 6
Paired-tow fishing simulation results for log relative efficiency (β) of the test vessel compared 
to the control vessel. Simulations were based on the Atlantic cod (Gadus morhua) scenario 
and fish-length–based data were generated for different assumed values of β(l)=β0+β1l and 
spatial heterogeneity (σ2) in fish densities encountered in each tow. Lengths were standard-
ized, lstd=(l – l50)/(l75–l25), where lα was the α×100% percentile of the lengths caught in all 
sets. Four models of spatial heterogeneity, described in Table 1, were used to estimate β(l), 
and four line patterns and shadings are used to show the results from each model at lstd =0. 
Panel columns are for levels of σ2 and β1 (i.e., σ2=0 and β1=0 in A, E, I, and M, etc.) and 
the x-axis of each panel are for levels of β0. Bias (A–D) is the simulation median estimate 
of β minus β0. CI indicates confidence interval, and P{β(lstd)∈CI} indicates the probability 
the CI contains β(lstd), etc. References lines (solid) are shown in each panel, at zero (A–D), 
0.95 (E–H), and 0.025 (I–P). 
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procedure. The advantage of the latter approach was 
its ability to accommodate more complicated types of 
random effects like those with autocorrelation. However, 
our simulations results indicated that estimates and 
CIs from the linearization method were less reliable 
than those from the marginal likelihood approach. We 
recommend the marginal approach to estimate GLMMs 
for comparative fishing data.

We demonstrated that statistical inferences from 
GLMMs based on normal distribution random effects 
were equally as accurate when the random effects were 
actually the log of a ratio of two independent and iden-
tically distributed gamma random variables, which we 
hypothesize is a real and important source of over-
dispersion in vessel calibration studies. This is good 
because otherwise we could not recommend the stan-
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dard GLMM approach. However, this does not mean 
that GLMMs are always robust to mis-specifications of 
random effects (e.g., Heagerty and Kurland, 2001). We 
demonstrated this in our length-based simulations.

We demonstrated that the random intercept model 
gave inaccurate statistical inferences (bias and CIs) if 
there was between-set random variations in length ef-

fects. This is a type of model mis-specification. However, 
we did not fully examine the other side of this result, 
which is bias caused by assuming between-set random 
variation in length effects when in fact none exists. 
Results from simulations with σ2=0 for both vessel and 
length effects showed that the random intercept and 
slope model (i.e., VLMis) provided reliable statistical 
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Figure 7
Paired-tow fishing simulation results for log relative efficiency (β) of the test vessel compared 
to the control vessel. Simulations were based on the Atlantic cod (Gadus morhua) scenario 
and length based data were generated for different assumed values of β(l)=β0+β1l and spatial 
heterogeneity (σ2) in fish densities encountered in each tow. Lengths were standardized, 
lstd=(l – l50)/(l75–l25), where lα was the α×100% percentile of the lengths caught in all sets. 
Four models of spatial heterogeneity, described in Table 1, were used to estimate β(l), and 
four line patterns and shadings are used to show the results from each model at lstd =1. 
Panel columns are for levels of σ2 and β1 (i.e., σ2=0 and β1=0 in A, E, I, and M, etc.) and 
the x-axis of each panel are for levels of β0. Bias (A–D) is the simulation median estimate of 
β minus β0+β1. CI indicates confidence interval, and P{β(lstd)∈CI} indicates the probability 
the CI contains β(lstd), etc. References lines (solid) are shown in each panel, at zero (A–D), 
0.95 (E–H), and 0.025 (I–P).
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inferences when no random effects exist, and we specu-
late that the same result will hold when only random 
intercept effects exist. Hence, we recommend the VLMis 
approach when there is either within-pair variation in 
the density of fish or in their length compositions. 

A type of model we did not consider involves large-
scale within-pair random variations in the densities 
of fish encountered by both vessels, and smaller-scale 
length-specific random variations in length composi-
tions. When plotted like Figure 1, log density ratios 
would appear as a scatter of points about horizontal 
lines. The intercepts of the horizontal lines would de-
pend on the large-scale random variation in the fish 
densities, and the variation in the scatter about these 
horizontal lines would depend on the smaller-scale 
length-specific random variations in length composi-
tions. These types of effects can be modeled with hier-
archical random effects (i.e., set, and length within set). 
This procedure would be fairly straightforward with a 
PQL approach but more difficult with marginal MLE. 
The reliability of estimates (relative efficiency and vari-
ance parameters) is uncertain. Even more complicated 
hierarchical random-effect models for both vessel and 
catch length-composition effects could be considered. 
This was beyond our scope but important to understand 
for reliable statistical inference. In reality, random ef-
fects in log density ratios may also have non-normal 
and skewed distributions, and it would be helpful to 
understand the robustness of VLMis to these types of 
model mis-specifications. 

Another sensible simulation procedure is to specify 
the stock densities fished by both vessels from site to 
site, and generate random catches for both vessels. The 
stock densities could be specified by using a variety of 
spatial models, as long as the within-pair and between-
pair variations in densities are reasonably consistent 
with what one might expect in practice. However, this 
would not be a conditional simulation because the total 
catches by both vessels (and for all sets) would vary 
from simulation to simulation. It would still be use-
ful to examine if the conditional CIs are accurate in 
this more general setting. However, the results from 
our conditional simulations were very similar for each 
of the seven species scenarios we considered and we 
anticipate they would also be accurate in the more 
general setting. 

Cadigan et al. (2006) used a random effect for δ≡δ(l) 
that was autocorrelated in length l, corr{δ(l),δ(l’)}=γ|l – l’|.  
This is a strategy to model smooth functions (e.g., 
Brown and de Jong, 2001). We used a simpler approach 
based on the assumption that δ(l) varied linearly with l. 
A GLMM in which δ(l) is autocorrelated can be fitted by 
using PQL software, but is time consuming to simulate 
and therefore we decided to focus on Equation 7 which 
is much easier to estimate.

Another approach to estimate relative efficiency (i.e., 
Pelletier, 1998) is maximum likelihood based on the 
negative binomial (NB) distribution. We have pursued 
this approach; however, there are complications in esti-
mating the NB over-dispersion parameter based on the 

joint likelihood of both trawl catches and this problem 
affects the accuracy of CIs. The conditional approach is 
also more complicated for the NB distribution. We will 
report on this elsewhere.

Fryer et al. (2003) showed how to use spline methods 
for smooth, but otherwise nonparametric, estimates of 
relative efficiency. This is a useful estimation approach, 
especially to check the adequacy of a parametric model. 
The simple logistic-linear model we considered may be 
sufficient to test whether there is a significant length-
dependent vessel effect but the logistic-linear model 
may not be sufficiently flexible for reliable estimation 
of relative efficiency over all lengths.

Lewy et. al. (2004) advocated paired-trawls along the 
same trawl track-line to avoid complications due to spa-
tial variations in stock densities. However, such trawling 
introduces a different complication which involves dis-
turbance of the fish densities encountered by the second 
vessel because of the fishing activity of the first vessel.

Another potential advantage of GLMMs is less sensi-
tivity to outliers. Figures 14 and 15 of Cadigan et al.2 
indicated that GLMM estimates of β were less sensitive 
to outliers than GLIM estimates. This lack of sensi-
tivity is a considerable advantage because identifying 
outliers is time consuming in practice when conversion 
factors are estimated for many species. In addition, 
standard errors may be too small when observations 
are incorrectly deemed to be outliers and removed from 
the analysis. Atlantic cod and thorny skate had mean 
total catches (for both vessels) that exceeded the 75th 
percentile (Table 2), indicating that there were a few 
large catches that may have undue influence on esti-
mates. The GLMMs seem better suited for this type of 
data. It would be useful to test these methods through 
simulation to assess robustness to outliers. The random-
ization approach used by Benoît1 is another appropriate 
and robust procedure (e.g., Cox and Hinkley, 1974, p. 
180–181) to test for the statistical significance of vessel 
effects, and we recommend this approach in addition to 
the use of GLMMs. However, it does not provide robust 
estimates of vessel effects and the approach cannot 
replace a GLMM. 
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