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Abstract—We examined the feasibil-
ity of distinguishing trawlable from 
untrawlable bottom using acoustic 
backscatter data from a calibrated 
single-beam echosounder to better 
define and map continental shelf ar-
eas of the Gulf of Alaska (GOA) that 
are too rough and rocky to be sam-
pled by the National Marine Fisher-
ies Service’s biennial bottom trawl 
groundfish survey. Bottom classifi-
cation algorithms were applied to 
backscatter data collected from ar-
eas of known trawlability to provide 
9 metrics of bottom type from small 
sections of bottom (~50 records with-
in a 15-min trawl tow). Prediction 
models, based on both generalized 
additive models (GAMs) and gener-
alized linear models (GLMs), were 
developed to relate the bottom type 
metrics to the known state of traw-
lability. The models were then tested 
to judge their performance on new 
data by using 33% cross validation. 
Although the best GAM had a high-
er correct prediction rate (82.4%) 
than the best GLM (76.9%), under 
cross validation both models had 
nearly the same correct prediction 
rate (75.0%). This result is a suffi-
ciently high prediction rate to allow 
the development of better trawlabil-
ity maps by applying the model to 
data collected along acoustic track 
lines during the GOA bottom trawl 
surveys.

The Alaska Fisheries Science Cen-
ter of the National Marine Fisher-
ies Service has conducted a bottom 
trawl survey in the Gulf of Alaska 
(GOA) biennially since 1999 to as-
sess the distribution and abundance 
of groundfish for fisheries manage-
ment (von Szalay and Raring, 2016). 
The survey area, which consists of 59 
strata based on depth, benthic habi-
tat, and management areas, spans 
the continental shelf and upper con-
tinental slope from the Islands of 
Four Mountains eastward to Dixon 
Entrance, and from nearshore wa-
ters to a depth of 1000 m (Fig. 1). Al-
though the purpose for the survey is 
to randomly sample this area under 
the assumption that the entire area 
is trawlable (can be sampled with 
the Poly-Nor’eastern 4-seam survey 
trawl), in practice, this concept is an 
approximation because the GOA is a 
mosaic of habitat types. Some habi-
tats are untrawlable; that is, they are 
too rocky, rugged, or steep to allow a 
fully random choice of sampling loca-
tions when using the standard sur-
vey trawl. Furthermore, the GOA has 
never been mapped with sufficient 
spatial resolution to permit identi-
fication of bottom types that would 
preclude successful trawling. Conse-
quently, the locations of untrawlable 

bottom (in the varying opinions of 
experienced GOA survey vessel cap-
tains) and even the proportion of the 
area comprising such habitat is not 
known. The relative abundance of 
each species is therefore currently 
estimated by extrapolating the mean 
abundance in trawlable areas to 
the entire survey area. A potential 
problem with this approach is that 
it may result in biased estimates of 
abundance because fish density is a 
function of habitat type, which is cor-
related with trawlability (Yoklavich 
et al., 2000; Pirtle et al., 2015). The 
bias is likely positive for flatfish and 
other fish species, which prefer rela-
tively smooth and sandy bottoms in 
trawlable habitats (McConnaughey 
and Smith, 2000; Busby et al., 2005), 
and negative for rockfish (Sebastes 
spp.) and other fish species, which 
prefer rough, rocky bottoms in un-
trawlable habitats (Richards, 1986; 
Stein et al., 1992; Clausen and Heif-
etz, 2002; Jagielo et al., 2003; Zim-
mermann, 2003; Jones et al., 2012).

An alternative survey design now 
being considered by the Alaska Fish-
eries Science Center for the GOA 
is one in which the abundance es-
timates derived from survey trawl 
catches, based on catch weight per 
unit of swept area, would be extrapo-
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lated only to areas that are trawlable, and some new 
sampling methods (e.g., the use of acoustic, longline, 
or camera gear) would be applied to the untrawlable 
areas (Rooper et al., 2010; Williams et al., 2010; Jones 
et. al., 2012; Thorson et al., 2013). To implement this 
sampling design, the relative proportions of trawlable 
and untrawlable areas must be known, proportions 
that require a technique for identifying and quantify-
ing trawlable and untrawlable habitats (Cordue, 2007).

Previously, the approach to identify the trawlability 
status of an area was based on the historical perfor-
mance of the survey within individual cells of a grid of 
5×5 km cells superimposed on the survey area. These 
cells, which number ~14,000, are the potential sam-
pling units of the survey. To be considered trawlable, 
a sampling cell must have been successfully trawled 
(with a Poly-Nor’eastern 4-seam survey trawl in stan-
dard fishing configuration and without sustaining any 
damage throughout the tow) by a survey vessel dur-
ing a prior GOA bottom trawl survey. To be considered 
untrawlable, a sampling cell must be judged so on the 
basis of the vessel captain’s assessment of the echo-
gram, which is a real-time image of the backscatter 
data collected from a hull-mounted single-beam echo-
sounder on a survey vessel. Any seabed feature that 

a vessel captain deems likely to result in moderate to 
severe damage to fishing gear or prevents the fishing 
gear from maintaining proper configuration and bottom 
contact throughout a tow provides a valid reason for 
declaring a sampling cell untrawlable. Nine categories 
of untrawlable seabed features have been identified: 1) 
hard+rocky substrate, 2) steep slopes, 3) rolling sea-
bed, 4) pinnacles, 5) unnavigable areas, 6) snags, 7) 
ledges, 8) presence of underwater cable, and 9) pres-
ence of fixed fishing gear. 

Captains of survey vessels have learned to recognize 
bottom features visible on echosounder traces and that 
could damage a survey trawl (Poly-Nor’eastern 4-seam 
bottom trawl with roller gear; Stauffer, 2004). There-
fore, a sampling cell is classified as untrawlable if the 
captain fails to find a suitable bottom, at least 1 km 
in length, after systematically searching a sampling 
cell for 2 h, a duration that is considered sufficient to 
cover a sampling cell. Although consistent with the op-
erational survey procedures of the bottom-trawl sur-
vey, this approach provides a qualitative and relatively 
slow assessment of seafloor character (only 42% of the 
survey area classified by this method to date). 

We are exploring the use of acoustics to detect bot-
tom features associated with trawlability to increase 

Figure 1
Map of the survey area for the bottom trawl survey conducted biennially in the 
Gulf of Alaska by the National Marine Fisheries Service since 1999, confined by the 
1000-m isobath (dotted line). The area confined by the 300-m isobath (solid line) 
represents the area where acoustic data within a grid of cells were used to predict 
trawlability. Green circles represent acoustic data segments from trawlable areas, 
and red circles represent acoustic segments from untrawlable areas.
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the rate and precision at which the bottom-trawl sur-
vey sampling cells are classified to improve our ability 
to efficiently sample areas that are trawlable and avoid 
untrawlable ground. One approach described by Weber 
et al. (2013) and Pirtle et al. (2015), involves modeling 
trawlability as a function of seafloor metrics derived 
from bathymetry and backscatter data collected from 
multibeam acoustic surveys conducted by the National 
Marine Fisheries Service. Because no multibeam acous-
tic data are collected during the GOA trawl survey, we 
considered another method for this study, one that is 
based on the analysis of calibrated, single-beam acous-
tic backscatter data. The Alaska Fisheries Science Cen-
ter has routinely collected these data since 2005 on all 
chartered fishing vessels used to conduct the bottom 
trawl survey. Although single-beam acoustic backscat-
ter from the seabed has been analyzed in a number of 
studies to distinguish a variety of habitat types (Kloser 
et al., 2001; Anderson et al., 2002; Freitas et al., 2003; 
Riegl et al., 2005; Bartholomä, 2006), we consider the 
response variable as binary, as simply distinguishing 
between trawlable and untrawlable bottoms. The ob-
jectives for this study were 1) to examine the feasibil-
ity of developing a trawlability prediction model based 
on backscatter data from areas of known trawlability 
and 2) to evaluate the use of applying the model to 
predict trawlability in unknown areas on the basis of 
measured backscatter properties of acoustic data col-
lected along track lines of future surveys conducted by 
the same vessel and with the same echosounder that 
was used to collect data for this study. 

Materials and methods

The acoustic data were collected aboard the 38.4-m 
stern trawler FV Sea Storm during the 2013 GOA bot-
tom trawl survey by using a Simrad1 ES60 echosound-
er (Kongsberg Maritime AS, Horten, Norway) equipped 
with a 7.1° beam width, 38-kHz, split-beam transducer, 
which operated at a ping rate of 1 Hz and pulse du-
ration of 1.024 ms. The echosounder was calibrated 
on-axis with a copper sphere according to standard 
procedures described by Foote et al. (1983). A total of 
238 individual acoustic data segments were used in the 
analysis, half from trawlable and half from untraw-
lable areas. The trawlable and untrawlable segments 
were randomly selected from a pool of segments span-
ning the entire range of the survey area that satisfied 
the basic criteria identified in the next paragraph for 
the sampling cells containing the segments (Fig. 1). 
An acoustic data segment is an echosounder-insonified 
section of a vessel track line, and all segments from 
both trawlable and untrawlable areas consisted of data 
collected over 15-min time intervals, corresponding to 
the duration of a standard trawl haul. Although the 

1	Mention of trade names or commercial companies is for iden-
tification purposes only and does not imply endorsement by 
the National Marine Fisheries Service, NOAA.

depth range of the biennial bottom trawl groundfish 
survey extends to water depths as deep as 1000 m, the 
depths associated with the segments of this specific 
study were all less than 300 m because unacceptably 
slow ping rates (producing poor echogram resolution of 
the seabed) are required for deeper depths. Depths less 
than 300 m comprised 90% of the survey area (Fig. 1).

As with the selection process for trawlable and un-
trawlable segments, the sampling cells containing the 
selected segments were chosen randomly from a pool 
of cells satisfying certain criteria. Among the trawlable 
cells, only sampling cells that represented areas that 
had been successfully towed without any documented 
incidents such as tears in nets or trawl door entangle-
ments with the bottom on at least 2 separate surveys 
were included in the analysis. Among the untrawlable 
cells, only sampling cells classified as untrawlable owing 
to 1 of the 5 hard or rough categories, or combination 
categories (i.e., hard+rocky, rolling seabed, pinnacles, 
snags, ledges) were used in the analysis. Cells classi-
fied as unnavigable were not used because acoustic data 
cannot be collected from areas that the survey vessel 
cannot navigate. Furthermore, the fixed fishing gear 
and underwater cable categories are for cells with man-
made obstructions; these cells do not necessarily have 
acoustic signatures that identify them as untrawlable, 
yet it would be ill advised to trawl in these areas. An-
other major reason for considering an area untrawlable 
is that it is considered too steep. However, for the pur-
poses of this analysis, such cells were not considered 
because acoustic features associated with steep slopes 
have been shown to be distinct from those of more level 
areas, regardless of substrate type (von Szalay and Mc-
Connaughey, 2002). Furthermore, steep slope areas are 
primarily confined to relatively deep waters (>200), and 
the models developed in this study are intended only 
for use in the continental shelf portion of a survey area.

The raw acoustic data files were processed before 
analysis to remove noise in the form of triangle wave 
dither that degrades the ES60-generated raw files, by 
using the known period and amplitude of the dither 
(Ryan and Kloser2). The triangle wave-corrected raw 
files were subsequently analyzed by using the seabed 
classification module in Echoview, vers. 6.1.72 (Echo-
view Software, Pty. Ltd., Hobart, Australia). Seven set-
tings, which are used by an algorithm within the soft-
ware to detect the bottom by using the data collected 
(bottom line pick), were specified before we derived 
classification data. The values of the settings used in 
this study (Table 1) were the defaults recommended by 
Echoview under most circumstances, except for the val-
ue for the minimum volume backscatter strength (min 
Sv for good pick), which was modified for this study 
after consulting with an Echoview Software represen-

2	Ryan, T., and R. Kloser. 2004. Quantification and correction 
of a systematic error in Simrad ES60 echosounders, 9 p. 
ICES FAST, Gdansk. [Available from Marine and Atmospher-
ic Research, Commonwealth Scientific Industrial Research 
Organisation, GPO Box 1538, Hobart, TAS 7001, Australia.]
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Table 1

Settings of the bottom-line-picking algorithm in Echo-
view software used before classification of seabed habi-
tats. These values “told” the software how to detect 
the bottom (pick the bottom line) in the acoustic data 
collected during the National Marine Fisheries Service 
biennial bottom trawl survey of the Gulf of Alaska.

Setting	 Value

Start depth (m)	 10
Stop depth (m)	 500
Min Sv for good pick (dB)	 −80.00
Discrimination level	 −40.00
Back step range	 0.00 
Peak threshold (dB)	 −40.00
Minimum threshold (dB)	 −70.00

Table 2

Definitions of the 9 standard parameters used in the Echoview algorithms for classification of seabed habitats. 
These feature parameters were covariates in all models used in this study to predict whether sampling areas 
in the Gulf of Alaska were trawlable.  X=affirmative.

		  Depth 
Parameter	 Definition	 normalized

First echo		
	 Roughness	 Tail energy. Integration of the tail of the first echo. Exclusively due to 	 X
		  incoherent backscattering from facets inclined towards the transducer 	
	 First bottom length	 Total duration of the first bottom echo (bottom line depth to bottom 	 X
		  echo threshold at 1 m).	
	 Bottom rise time 	 Attack duration (bottom line sample to the peak sample of the first echo).	 X
	 Depth	 Water depth	
	 Max Sv	 Maximum energy. Maximum volume backscatter strength	
	 Kurtosis	 Tailedness. Sharpness of the first echo peak	
	 Skewness	 Asymmetry around the first echo peak	
		
Second echo		
	 Hardness	 Total energy of the second echo (integration of the complete second 	 X
		  acoustic bottom return).	
	 Second bottom length	 Total duration of the second echo (bottom line depth to bottom echo 	 X
		  threshold at 1 m).	

tative. Next, the Echoview algorithm for background 
noise removal was applied to the data by using a sig-
nal-to-noise ratio setting of 10 and a maximum noise 
level subject to a removal setting of 0 dB. Echoview 
algorithms for bottom classification were then used to 
derive the 9 standard feature parameters from the first 
and second echo returns of the signal from the bottom. 
Echoview Software has determined that these feature 
parameters distinguish general seabed features. No 
attempt was made to narrow the 9 features down to 
those believed to be most relevant in distinguishing 
trawlability. The bottom echo threshold at 1 m, which 
is used to determine the end of the first and second 

echoes, was set to −125 dB and the reference normal-
ization depth was set to 300 m.

The names of the feature parameters derived from 
the first echo are: roughness, first bottom length, bot-
tom rise time, depth, maximum Sv (max Sv), kurtosis, 
and skewness; the names of the parameters derived 
from the second echo are: hardness and second bottom 
length (Table 2). Information on how Echoview process-
es backscatter data, including definitions of the terms 
used to derive the 9 feature parameters, and equations 
defining the parameters can be found in the help file 
for the software (available from website). Each of the 
238 acoustic data segments consisted of ~50 records, 
where a record is made up of the 9 acoustic feature pa-
rameter values derived from groups of 10 consecutive 
pings. In this study, a record is the basic classification 
unit of an acoustic segment. The parameter values of 
the individual records were modeled directly without 
using the classification feature in the Echoview bottom 
classification module, which uses principal component 
and cluster analyses to categorize individual records 
into a user-specified number of bottom types.

Trawlability was modeled as a function of the 9 acous-
tic feature parameters by using both generalized linear 
modeling and generalized additive modeling functions 
in R, vers. 3.2.0 (R Core Team, 2015). A binomial error 
distribution was assumed for both types of models.

Three different classes of generalized linear models 
(GLMs) were evaluated by using the minimum value of 
the Akaike’s information criterion (AIC) to choose the 
best-fitting model within each class (Table 3). The 3 
classes consisted of models with all linear terms, mix-
tures of linear and polynomial terms, and mixtures of 

http://support.echoview.com/WebHelp/Reference/Algorithms/Bottom_classifcation/Bottom_classification_algorithms.htm
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linear and interaction terms. When interaction terms 
were introduced, the choice of which terms to include 
in each interaction was based on their correlation. 
Specifically, the correlation between skewness and first 
bottom length, skewness and kurtosis, and between 
hardness and max Sv were high at 0.92, 0.97, and 0.82, 
respectively, and were therefore examined for poten-
tial interaction effects. The step function in R, which 
calculates the AIC value of models starting with the 
full model that used all 9 parameters and then in a 
stepwise fashion eliminates 1 parameter at a time, was 
applied to each candidate model to determine whether 
a simpler, reduced model would result in a better fit. 
The best GLM among the 3 classes was then chosen as 
the one with the lowest AIC value.

Three classes of generalized additive models (GAMs) 
were also evaluated, again with the minimum AIC val-
ue to choose the best-fitting model within each class 
(Table 3). The 3 classes consisted of models with all un-
constrained smoothing terms, models with constrained 
smoothing terms, and models with mixtures of uncon-
strained and bivariate smoothing terms (interaction 
terms). Constraining the smoothing functions consisted 
of setting the maximum number of knots allowed (in 
all cases, 4 knots). Choice of the variables used in the 
interaction terms was again based on the magnitude 
of the correlation between variables. Model selection 
for the GAMs proceeded with a process similar to that 
used for the GLMs, but was done manually because 
a step function is unavailable for GAMs. Instead, we 
used the P-values from the analysis of variance of the 
model to sequentially eliminate nonsignificant terms. 
In the event of more than 1 nonsignificant term, the 
term with the least significance was first eliminated, 
then the reduced model was refitted and further non-
significant terms were sequentially removed. The best 
overall GAM was again chosen among the best models 
within each class on the basis of minimum AIC.

After selecting the best candidate GLM and GAM, 
we compared them in terms of their ability to correctly 
classify data not used in the model building process. 
The best model (i.e., the one with the highest predic-
tive accuracy) when applied to the training data is not 
necessarily the best choice when applied to new data. 
To assess the relative robustness of the models when 
subjected to new data, we used 33% holdout cross vali-
dation (Arlot and Celisse, 2010; Maunder and Harley, 
2011), which proceeded as follows. Random samples 
of 160 segments, split equally between trawlable and 
untrawlable data, were selected without replacement 
from the pool of 238 acoustic segments. These data 
were then used as a training sample to construct pre-
diction functions by fitting the best GLMs and GAMs. 
The remainder of the sample was used as a proxy for 
new data. Each of the fitted models was then applied 
to the new data to estimate the probability that each 
of the ~50 records within each segment was trawlable 
by using the “predict” function in R. Probabilities >0.5 
was used as a criterion to classify individual records 
as trawlable. Likewise, the criterion used to classify 
entire segments as trawlable was that the proportion of 
records classified as trawlable was also >0.5. After the 
trawlability of all segments was estimated, the values 
were compared with the trawlability classification of 
the sampling cells. The proportion of correctly classi-
fied segments was then calculated. This process was 
repeated 100 times and the average proportion of cor-
rect classification was used as a measure of how well 
each model predicted trawlability. 

Results and discussion

On the basis of the minimum value of AIC, the best 
GAM, with 7 unconstrained smoothing terms and 1 
interaction term, produced an overall (trawlable and 

Table 3

Classes of generalized linear models (GLMs) and generalized additive models (GAMs) evaluated for goodness of fit in this 
study for the use of acoustic data to predict whether sampling areas in the Gulf of Alaska are trawlable. The best model in 
each category is shown in boldface. An asterisk (*) indicates an interaction term. The parameters include roughness, hard-
ness, first bottom length (length 1), second bottom length (length 2), bottom rise time, depth, maximum volume backscatter 
strength (Sv), kurtosis, and skewness. NS=not significant; poly=polynomial ; S=smooth; d=degree of polynomial; k=number 
of knots.   

	 Roughness	 Hardness	 Length 1	 Length 2	 Rise time	 Depth	 Max Sv	 Kurtosis	 Skewness

GLM
	 Model 1	 linear	 linear	 linear	 linear	 linear	 linear	 NS	 linear	 linear
	 Model 2	 poly (d=3)	 linear	 poly (d=2)	 linear	 linear	 linear	 NS	 linear	 poly (d=2)
	 Model 3	 linear	 linear	 *skewness	 linear	 linear	 linear	 linear	 linear	 *length 1

GAM
	 Model 1	 S()	 S()	 S()	 S()	 S()	 S()	 S()	 S()	 S()
	 Model 2	 S(k=4)	 S(k=4)	 S(k=4)	 S(k=4)	 S(k=4)	 S(k=4)	 NS	 NS	 S(k=4)
	 Model 3	 S()	 S()	 *skewness	 S()	 S()	 S()	 S()	 S()	 *length 1
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untrawlable segments combined) classification ac-
curacy of 82.4% (Table 4). In contrast, the best GLM 
with 5 linear terms and 3 polynomial terms, but no 
interaction terms, produced an overall classification 
accuracy of only 76.9%, suggesting that the GAM was 
superior to the GLM. However, after subjecting these 
2 models to cross validation to estimate their expect-
ed classification accuracy with new data, a different 
picture emerged with respect to their relative perfor-
mance. Although the prediction accuracy of the GAM 
declined substantially (from 82.4% to 75.0%; Table 
4) in the cross validation, the prediction accuracy of 
the GLM remained relatively stable (76.9 to 75.0%). 
This difference indicates that the GAM, because of its 
greater number of estimated parameters, over-fitted 
the original data. Because the cross-validated predic-
tion accuracy did not differ between models, the more 
stable and simpler GLM was chosen as the best model. 
A map showing the classification results of this model 
is provided in Figure 2.

One potential shortcoming with our method for pre-
dicting bottom trawlability is that it cannot be applied 
to the deeper parts of the survey area because of the 
requirement for a second echo in the acoustic data. 
The second echo is needed by the Echoview software to 
estimate 2 of the 9 parameters (hardness and second 
bottom length) and therefore contributes to prediction 
accuracy. However, resolution of the second echo in the 
acoustic data depends on water depth and ping rate, 
and the ping rate is limited to at least 1 Hz for vessel 
captains to recognize bottom features that are likely 
to result in net damage. This limitation on ping fre-
quency, in turn, limits the maximum depth to ~375 m 
at which our method could be applied. However, much 
of the deep areas of the continental slope tend to be 
relatively steep, which adversely affects the classifica-

tion accuracy of single-beam systems (von Szalay and 
McConnaughey, 2002), and would therefore have been 
excluded anyway. Despite these limitations, only a rel-
atively small portion of the survey area (~10%) needs 
to be excluded (Fig. 1). 

Unlike earlier acoustic software for determining 
bottom types, such as the programs that were part 
of the QTC VIEW (Ellingsen et al., 2002) and Rox-
Ann (Greenstreet et al., 1997) seabed classification 
systems, the Echoview bottom typing module requires 
calibration of the echosounder so that the strength of 
the bottom echo can be interpreted directly . Because 
GOA survey vessels routinely perform an echosounder 
calibration with copper spheres at the beginning and 
ending of each survey, this additional requirement 
did not add an additional burden for the collection of 
acoustic data and presumably provided additional in-
formation that improved our ability to determine bot-
tom trawlability. 

Although the primary motivation for this study was 
to develop a method that can be used to estimate the 
relative proportions of trawlable and untrawlable areas 
in the GOA bottom trawl survey area so that abun-
dance estimates derived from survey trawl catches are 
extrapolated only to trawlable areas, another appli-
cation of this method is to improve survey efficiency. 
The current survey design process involves randomly 
selecting stations within the survey grid that have 
been either declared trawlable, on the basis of crite-
ria specified in the introduction, or whose trawlability 
status is unknown. Stations that have been declared 
untrawlable are not part of the sampling pool. The se-
lection of stations that are unclassified with respect to 
trawlability contributes to an inefficient survey method 
because these stations are sampled with equal prob-
ability and yet may result in much fruitless search 

Table 4

Goodness of fit, based on Akaike’s information criterion (AIC), prediction accuracy of untrawlable 
and trawlable sampling cells (sampling units) in the survey area, overall prediction accuracy, 
and prediction accuracy after cross-validation of the 3 generalized linear models (GLMs) and 
3 generalized additive models (GAMs) evaluated in this study for the use of acoustic data to 
predict whether sampling areas in the Gulf of Alaska are trawlable. The best model in each 
category is shown in boldface. 

		  Untrawlable	 Trawlable	 Overall	 Cross 
		  prediction	 prediction	 prediction	 validation 
	 AIC	 rate (%)	 rate (%)	 rate (%)	 prediction (%)

GLM
	 Model 1	 12,353	 82.0	 70.6	 76.3	
	 Model 2	 12,230	 84.0	 69.7	 76.9	 75.0
	 Model 3	 12,351	 84.0	 71.4	 77.7	

GAM
	 Model 1	 10,435	 81.5	 82.4	 82.0	
	 Model 2	 11,496	 81.9	 75.2	 78.6	
	 Model 3	 10,343	 81.5	 83.2	 82.4	 75.0
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Figure 2
Bottom classification results of the best generalized linear model for 238 acoustic 
data segments that were collected in the Gulf of Alaska and used in the building 
and validation of this model. The segments, each represented by a symbol on the 
map at its collection area, are divided into 4 categories: area correctly classified 
as trawlable (green circles), area correctly classified as untrawlable (red circles), 
untrawlable area incorrectly predicted as trawlable (green x’s), and trawlable area 
incorrectly predicted as untrawlable (red x’s).

Bering Sea

North Pacific Ocean

Islands of
Four Mountains

Model classifications

effort for trawlable ground in sampling cells that ul-
timately turn out to be untrawlable. Much of this inef-
ficiency can be eliminated by minimizing the number 
of untrawlable sampling cells that make up the unclas-
sified category of the sample of survey stations. This 
can be achieved by applying our model to the unclas-
sified sampling cells so that a tentative trawlability 
status can be assigned to them. However, because of 
the lower confidence in the trawlability status of these 
sampling cells, it would not be appropriate to assign 
them binary sampling probabilities (0 or 1) as is done 
with sampling cells whose trawlability status is deter-
mined by traditional means. On the other hand, it is 
not necessary to assign equal sampling probabilities 
to these model-classified cells as is currently the case 
with the unclassified sampling cells. Instead, higher 
sampling probabilities would be assigned to sampling 
cells that our model predicts to be trawlable than to 
those that our model predicts to be untrawlable. The 
ratio of these sampling probabilities is a function of the 
prediction accuracy of the model.
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