The Status of Endangered Whales: An Overview

HOWARD W. BRAHAM

Introduction

The Marine Mammal Protection Act (MMPA) of 1972 is the principal U.S. statute for conserving and protecting marine mammals. Under it, the National Marine Fisheries Service (NMFS) of the Department of Commerce's National Oceanic and Atmospheric Administration is responsible for research on and management of all whales, dolphins, and porpoises (collectively called cetaceans) within the U.S. 200-mile Fishery Conservation Zone.

Of the 45 species of cetaceans found in U.S. waters, eight are considered so depleted that the special protection of the Endangered Species Act (ESA) of 1973 is needed beyond the MMPA. These eight, among the world's nine largest cetaceans, are collectively called the “great whales.” Listed as “endangered” under the ESA, they include the gray whale, *Eschrichtius robustus* (Liljeborg, 1861); blue whale, *Balaenoptera musculus* (Linnaeus, 1758); fin whale, *B. physalus* (Linnaeus, 1758); sei whale, *B. borealis* Lesson, 1828; humpback whale, *Megaptera novaeangliae* (Borowski, 1781); right whale, *Balaena glacialis* (Muller, 1776); bowhead whale, *B. mysticetus* Linnaeus, 1758; and sperm whale, *Physeter macrocephalus* (Linnaeus, 1758) (Fig. 1). The ninth great whale, Bryde’s whale, *Balaenoptera edeni*, is not listed as either endangered or threatened.

Endangered Species Act

On 10 November 1978, the U.S. Congress passed Public Law 95-632 (Section 4(c)), amending the Endangered Species Act of 1973. One of the changes required the Secretaries of Commerce and Interior to review the status and degree of endangerment of all species listed in the Act at least once each 5 years to determine whether any listed species should be 1) removed from the list, 2) changed from “endangered” to “threatened,” or 3) changed from “threatened” to “endangered.”

In November 1982, the NMFS began a status review of the 19 endangered and threatened species under its jurisdiction, including the eight endangered great whales. The papers in this special section of the Marine Fisheries Review summarize the status reviews of those eight species and provide the biological basis for any final management decisions. Full NMFS status reviews will be made available separately, and will include management conclusions and recommendations for any changes in the listing of any species under the ESA.

These eight papers thus review current knowledge of distribution, migration, stock identity, life history and ecology, exploitation (principally commercial whaling), population, abundance, and management concerns of the endangered great whales. We do not present a comprehensive review of the literature, but rather provide summaries of the most accurate and current data. No new analyses were conducted of population trends. The editors sought to assemble and publish these papers to achieve the widest dissemination of the information to the public and to the scientific and academic communities.

This introductory paper gives a brief overview of the status review process, summarizes estimates of abundance and general status of stocks, and acknowledges the help of many individuals in conducting the reviews and preparing the succeeding eight papers.

Listing Factors

Under the Endangered Species Act of 1973, a species is considered “endangered” if it is in danger of extinction throughout all or a significant portion of its range, as a result of any one of the five factors specified in Section 4(a)(1) (Table 1). A species is considered “threatened” if it is likely to become endangered in the foreseeable future due to any of those same factors.

Historically, most of the great whales qualified as “endangered” as a result of overexploitation during commercial whaling (listing factor number 2). The results of that exploitation, reflected in the change from initial
Figure 1. — The eight endangered great whales.
Table 2.—Initial (precommercial whaling) and current population size estimates of large whales currently listed as "endangered" under the ESA. Stock or regional group estimates are those summarized in the following eight papers in this special section of the Marine Fisheries Review 46(6):7-64 (n.e. = no published estimate).

<table>
<thead>
<tr>
<th>Species, stocks, or reporting area(s)</th>
<th>Initial</th>
<th>Current</th>
<th>Approximate percent of initial</th>
<th>Species, stocks, or reporting area(s)</th>
<th>Initial</th>
<th>Current</th>
<th>Approximate percent of initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray whale</td>
<td></td>
<td></td>
<td></td>
<td>Humpback whale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern North Pacific</td>
<td>15,000-20,000</td>
<td>13,450-19,210</td>
<td>Recovered</td>
<td>E. North Atlantic</td>
<td>n.e.</td>
<td>n.e.</td>
<td>n.e.</td>
</tr>
<tr>
<td>Western North Pacific</td>
<td>n.e.</td>
<td>n.e.</td>
<td></td>
<td>W. North Atlantic</td>
<td>>4,400</td>
<td>5,257-6,289</td>
<td>Recovered</td>
</tr>
<tr>
<td>Blue whale</td>
<td>1,100-1,500</td>
<td>100</td>
<td>6-9%</td>
<td>North Pacific</td>
<td>15,000</td>
<td><1,200</td>
<td>8%</td>
</tr>
<tr>
<td>North Atlantic</td>
<td>4,900</td>
<td>1,400-1,900</td>
<td>29-39%</td>
<td>Southern Hemisphere</td>
<td>100,000</td>
<td>2,500-3,000</td>
<td>2-3%</td>
</tr>
<tr>
<td>North Indian Ocean</td>
<td>n.e.</td>
<td>n.e.</td>
<td></td>
<td></td>
<td>n.e.</td>
<td>n.e.</td>
<td></td>
</tr>
<tr>
<td>Antarctic</td>
<td>150,000-210,000</td>
<td>1,000-6,900</td>
<td><1-5%</td>
<td>Bowhead whale</td>
<td>25,000</td>
<td>n.e.</td>
<td><1-5%</td>
</tr>
<tr>
<td>Subantarctic Indian Ocean</td>
<td>10,000</td>
<td>5,000</td>
<td>50%</td>
<td>E. Greenland</td>
<td>11,000</td>
<td>n.e.</td>
<td><5%</td>
</tr>
<tr>
<td>Fin whale</td>
<td>Several thousand</td>
<td>n.e.</td>
<td></td>
<td>Davis Strait</td>
<td>680</td>
<td>n.e.</td>
<td></td>
</tr>
<tr>
<td>Iceland/Faeroe Islands</td>
<td>>2,700</td>
<td>n.e.</td>
<td>10%</td>
<td>Hudson Bay</td>
<td>18,000</td>
<td>3,614-7,125</td>
<td>20-23%</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>>5,000</td>
<td>n.e.</td>
<td></td>
<td>Sea of Okhotsk</td>
<td>n.e.</td>
<td>n.e.</td>
<td>5-10%</td>
</tr>
<tr>
<td>Denmark Strait</td>
<td>n.e.</td>
<td>1,791-11,564</td>
<td></td>
<td></td>
<td>n.e.</td>
<td>n.e.</td>
<td></td>
</tr>
<tr>
<td>W. Atlantic</td>
<td>n.e.</td>
<td>1,390-6,300</td>
<td></td>
<td></td>
<td>n.e.</td>
<td>n.e.</td>
<td></td>
</tr>
<tr>
<td>North Pacific</td>
<td>42,000-45,000</td>
<td>14,000-16,630</td>
<td>32-44%</td>
<td>North Pacific</td>
<td>n.e.</td>
<td>n.e.</td>
<td></td>
</tr>
<tr>
<td>Antarctic</td>
<td>400,000</td>
<td>85,200</td>
<td>21%</td>
<td>Southern Hemisphere</td>
<td>n.e.</td>
<td>3,000?</td>
<td>n.e.</td>
</tr>
<tr>
<td>Sperm whale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Atlantic</td>
<td>166,000</td>
<td>96,500</td>
<td>60%</td>
<td>E. Atlantic</td>
<td>311,000</td>
<td>274,000</td>
<td>88%</td>
</tr>
<tr>
<td>North Pacific</td>
<td>45,000</td>
<td>22,000-37,000</td>
<td>49-82%</td>
<td>Eastern North Pacific</td>
<td>365,000</td>
<td>196,190</td>
<td>64%</td>
</tr>
<tr>
<td>Southern Hemisphere</td>
<td>>63,100-64,400</td>
<td>>9,800-11,760</td>
<td>15-19%</td>
<td>Western North Pacific</td>
<td>590,000</td>
<td>415,700</td>
<td>70%</td>
</tr>
</tbody>
</table>

1 Thought to be nearing extinction or extremely low.
2 Six stock units or areas of all oceans in the Southern Hemisphere. For population estimates and status see Masaki and Yamamura (1979), Guillaud (1981), and Butterworth (in press).
3 Prymly blue whales.
4 Perhaps in the low hundreds.
5 Perhaps 6,500-10,000.
6 Stocks are reported here by general area only. See Brabant and Rice (1984) for stock boundaries.
7 Exploitable population size, and includes males and females (from Tables 4-6 in Gosha et al., 1984). all estimates of initial and current abundance are considered provisional. No estimates are available for the number of immature animals.

(precommercial whaling) population size to current population size are presented in Table 2 for each species.

Listing a species in the ESA is based on the best available scientific data. In the absence of specific data, such as population growth rate, abundance, or known affect on these parameters, other potentially limiting factors to recovery (e.g., habitat destruction, disease, and predation), provided broad coverage for protection under the Act.

A discussion of the criteria used for listing certain species as endangered is not the intent of this paper. Considerable thought has gone into this for noncetacean species (e.g., Sparrowe and Wight, 1975; Landry et al., 1979; Anonymous, 1983). However, understanding the general nature and criteria of endangerment is important when evaluating the listing factors for reclassification (as required by Section 4(c)). This necessitates knowing whether the species or population is declining or nearing extinction, and whether the quantity and quality of its habitat is declining as well (Anonymous, 1983). These and other population attributes are central to determining current status, vulnerability, and recovery potential (Sparrowe and Wight, 1975). For certain management goals, it may also be important to consider regional uniqueness and sociological and ecological factors as well (Landry et al., 1979).

Endangered Great Whales

Seven of the endangered cetaceans are baleen whales, which filter their food between fringed baleen plates arranged in a row along each side of the palate. The eighth is the sperm whale, largest of the odontocetes, or toothed whales.

By any standards, the great whales are enormous (Fig. 1). The blue whale is the largest animal known to have lived on earth, some reaching lengths of 100 feet (about 30 m) or more. Reports of blue whales well in excess of 100 feet have not been adequately documented in the literature and may be exaggerated.

It is because of their great size and the large volume of commercial grade oil in the blubber, the valued baleen or whale bone (in some species), and their predictable seasonal occurrence, that these great whales fell victim to commercial whalers. As a result, the populations of these species were severely reduced in most of the world's oceans within the past 200 years. Most stocks were reduced so fast as to be commercially unprofitable within a few decades of fishing.

Although few reliable data exist on the sizes of most stocks at the low point of their fisheries, a comparison of current population size estimates to available estimates just prior to commercial whaling is instructive, especially when considering whether a species or stock fits the criteria for listing under the ESA. But in reviewing the abundance estimates and general status of stocks, I caution the reader to remember that many stock estimates are fraught with sampling and statistical biases which may cause over- or underestimation of the true value. I therefore recommend reading the following papers and the literature
for a more in-depth appreciation of the estimates currently in use.

Status of Stocks:
Population Abundance

Frequent reference is made in the following papers to certain terms, perhaps new to the reader, such as “stock” or “population.” Generally speaking, populations are geographically isolated breeding units, i.e., two populations of the same species, one in the North Atlantic Ocean and the other in the North Pacific Ocean. A stock is a geographic subdivision of a larger population, and is usually thought of as having some special attribute which sets it apart from others of its kind or is also geographically separated, but not necessarily isolated. For example, a local group, or “stock,” may be harvested at one time of the year, such as on its summer feeding ground, but on the winter breeding grounds animals in this group may intermingle with others of the same species. Humpback whales in the North Atlantic, for example, summer in a number of separate “stock” areas, but most winter together in the West Indies. Another definition of stock also includes the attributes of isolation, in which regional groups are apparently isolated from one another year-round, but may reside nearby. An example of this is the geographic separation of the Sea of Okhotsk and western Arctic bowhead whales. Among the eight endangered great whales, there are many stocks (Table 2 does not list all the stocks separately). No species is so isolated as to be represented by only one stock or population and there are the usual disagreements among scientists about certain stock designations or boundaries.

The Endangered Species Act specifically concerns itself with the continued existence of species. However, it has become convenient, and certainly practical, to evaluate the status of populations or stocks of whales, rather than just the species. This is because more information is often available for isolated groups than for either entire populations or the species itself. This imbalance of knowledge has, by necessity, led us into a stratified decision-making process wherein possibly no conclusion could be reached on a species (e.g., if deciding whether to reclassify) but a subdivision of the species, i.e., a population or stock, might be reclassified. The net effect could then be to have an “endangered” species with one or more stocks recovered.

On the basis of population abundance, as one criterion, a species (or stock) might be considered depleted if its population size is below the lower bound of the optimum sustainable population size (operationally considered by some to be the maximum sustainable yield level), currently defined (e.g., Tillman and Chapman, 1981) as that level yielding maximum net productivity which occurs at or above 60 percent of initial population size. Although reliable quantitative data are not available for all species, a large number of stocks or species can be considered “endangered” if one chooses to use this criterion (Table 2).

Based on population size alone, most stocks of large whales clearly fall within the definition of “endangered,” as defined in the ESA on the basis of the listing factors in Table 1. The great whales were listed as endangered as a result of commercial exploitation, as discussed in this volume on a species-by-species basis, or using other criteria in the original documentation published in 1973 (Sec. 15 U.S.C. 1531). These listings were made despite a relatively sparse data base. The purpose of this paper, however, is not to evaluate and recommend whether each species remain classified as endangered, nor whether certain stocks should be reclassified, although some implications of this are presented in the following discussion.

Discussion

From data presented in the following eight papers, and summarized in Table 2, an estimate of the approximate percent of current to initial population size for some great whale stocks is made. In Table 3 an evaluation is made of the possible level of recovery for each stock or species' group.

Only the eastern North Pacific gray whale and perhaps the western North Atlantic humpback whale may have recovered to a population level similar to what it was prior to commercial whaling. On the basis of population size alone, these two stocks plus most sperm whale stocks seem likely candidates for reclassification.

However, population size is not the only criteria to be considered in deciding whether a stock warrants continued protection under the ESA. And, some doubts exist about the accuracy or completeness of data used.
to estimate initial stock sizes, especially for humpback and sperm whales (Table 2). In the case of the gray whale, serious consideration must be given to coastal habitat protection as human activities increase. In addition, about 170-190 gray whales from this stock are killed each year by the Soviet Union, and usually less than 5 are killed annually by Alaska Eskimos.

Western North Atlantic humpback whales, as well, are subject to a small annual subsistence harvest in west Greenland and Bequia (Lesser Antilles), and several are entangled each year in fishing gear along the east coast of the United States and Canada. Sperm whales appear to be abundant relative to their presumed initial population sizes (when compared with most stocks of baleen whales reported in Tables 2 and 3).

Three stocks of great whales may be nearing extinction: Western North Pacific gray whale, east Greenland-Spitsbergen bowhead whale, and North Pacific right whale. Several recent unpublished sightings of gray whales in the western North Pacific and Sea of Okhotsk, of 11 bowheads off Frans Josef Land in the eastern North Atlantic (Braham, 1984), and 2 right whales in the southeastern Bering Sea (Braham and Rice, 1984) suggest that at least a few individuals remain. Unfortunately, there is little direct evidence to indicate that these stocks are either further declining or recovering. The simplest explanation for the increased sightings is increased research.

Further consideration of the status of stocks of all large whales awaits renewed dedication to research on sightings and, perhaps, stranding information.

Acknowledgments

Many individuals gave of their time to provide valuable comments, advice, and assistance during preparation of the papers in this special section of the Marine Fisheries Review on endangered whales. The authors and I wish to extend our sincere appreciation to the following scientists located around the world who served as reviewers: An Overview, Charles Karnella (United States); gray whale, Robert Brownell, Jr., Stephen Reilly, and Steven Swartz (all United States); blue whale, Alfred Berzin (Soviet Union) and Sidney Brown (England); fin whale, Christina Lockyer (England), Edward Mitchell (Canada), and Carl Rørvik (Norway); sei whale, Ray Gambell (England); humpback whale, Kenneth Balcomb III and Deborah Gluckner-Ferrari (both United States) and Hal Whitehead (Canada); right whale, David Gaskin (Canada); bowhead whale, Mark Fraker (United States) and Randall Reeves and Giles Ross (Canada); and sperm whale, Geoffrey Kirkwood (Australia) and Edward Mitchell (Canada).

We are also grateful to several present and past employees of the National Marine Mammal Laboratory and the Northwest and Alaska Fisheries Center who either reviewed the papers or helped with preparing the material for them: Sandi Bohenstiel, Marilyn Dahlheim, Charles Fowler, Sharon Giese, Carol Hastings, Leola Hietala, Linda Jones, Bruce Krogman, Betty Lander, Willman Marquette, R. V. Miller, Mary Nerini, Jessie Page, James Peacock, Roger Pearson, David Rugh, Laura Rutledge, Mike Seaman, Ronald Sonntag, Michael Tillman, Joanne Wejak, Pamela Wilder, David Withrow, Allan Wolman, and Muriel Wood. Dale Rice was especially helpful with reviewing the papers he did not coauthor. A special vote of confidence and appreciation is extended to Charles Karnella and Patricia Montanio of the NMFS headquarters office in Washington, D.C., who had the unenviable job of putting together the entire ESA review for the NMFS.

This special section on endangered whales is respectfully dedicated to the memory of James H. Johnson who passed away on 9 December 1983.

Literature Cited

