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Airborne lidar surveys are an at-
 tractive alternative to the methods 
presently used in fi shery-independent 
surveys of epipelagic fi shes (Hunter 
and Churnside1). They would cost 
much less per survey mile than 
ship-based methods (acoustic-trawl, 
ichthyoplankton), and the survey 
would extend to greater depths than 
present aerial methods. A lidar, 
(li[ght] d[etecting] and r[anging]) 
system, in its most basic form, pro-
duces short pulses of laser light 
that pass through the water sur-
face and refl ect off fi sh and particles 
in the water; a receiver measures 
the returning refl ected pulse; the 
strength of the returning pulse sep-
arates fi sh targets from small par-
ticles, and the elapsed time from 
start to return of pulses indicates 
the range (depth below the sur-
face) of the target. The application 
of lidar technology to fi shery sur-
veys is still in its infancy. Fish 
schools have been detected with a 
variety of lidar systems (Churnside 
and Hunter, 1996), but schools have 
never been systematically studied 
with lidar, nor has existing lidar 
technology been adapted to fi sh-
survey needs; formal fi sh surveys 
have never been conducted. 

A lidar survey system for fi shery-
independent monitoring of epipelagic 
fi sh stocks is being developed jointly 

by two laboratories of the National 
Oceanic Atmospheric Administra -
tion (NOAA): Environmental Tech-
nical Laboratory, Boulder, CO; and 
Southwest Fisheries Science Center, 
La Jolla, CA. The approach is to 
combine evaluations of prototype 
instruments at sea with modeling of 
survey performance to develop an 
optimal lidar survey system. The 
goal is to develop a system that will 
deliver the greatest statistical preci-
sion for the lowest survey cost, while 
minimizing potential biases. In our 
study, we modeled a lidar survey 
with the objective of evaluating how 
instruments would affect survey 
precision or accuracy. Two classes of 
instrument design were considered, 
those affecting fi sh schools in the 
horizontal plane (swath width) and 
those affecting the detection of fi sh 
schools in the vertical plane (depth-
specifi c detection). We also analyzed 
a trade-off between swath width 
and penetration depth, which is 
analogous to changing from a visual-
based aerial survey (wide swath, 
shallow penetration) to a lidar-based 
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Abstract.–The objective of our study 
was to model the performance of an air-
borne lidar survey system for northern 
anchovy in terms of survey accuracy 
and precision. Our analyses indicated 
that swath width would have little or 
no effect on the probability that at least 
one fi sh school would be encountered. 
In typical coastal waters off California 
(attenuation coeffi cient=0.1/m), about 
half of the schools were detected by the 
lidar during the day and about 64% 
during the night. A greater proportion of 
schools were detected during the night 
because anchovy have a shallow ver-
tical distribution, whereas in the day, 
schools may extend down to 155 m; 
schools below about 40 m depth were 
not detectable to the laser. Although 
schools tended to be more diffuse during 
the night than during the day, even 
the very diffuse schools of anchovy 
(0.5 fi sh/m3) were detectable at night 
throughout the upper 20 m of the water 
column with a lidar. With a substan-
tial increase in instrument and survey 
costs, it would be possible to increase 
the equivalent laser-pulsed power by a 
factor of 10 over that of the “off-the-shelf 
system,” as used in our model. Such a 
change would increase the maximum 
detection depth of the lidar system by 
about 10 m but would have a negligi-
ble effect on the probability of detect-
ing schools during the day owing to the 
skewed vertical distribution of anchovy 
schools. More effective approaches for 
improving the accuracy and precision 
of potential lidar surveys for fi sheries 
would be to improve school detection 
algorithms and to develop a lidar survey 
model based on line transect theory 
to obtain an unbiased estimate of 
abundance. To produce an accurate 
reconstruction of the average vertical 
distribution of schools for a particular 
season and region, a synthesis of acous-
tic and lidar surveys of school distribu-
tion is required.

1 Hunter, J. R., and J. H. Churnside, eds.
1995. Airborne fi shery assessment tech-
nology—a NOAA workshop report. SWFSC 
Admin. Rep. LJ-95-02, 33 p. Southwest 
Fish. Sci. Ctr., NMFS, NOAA, P.O. Box 
271, La Jolla, CA 92038.
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aerial survey (narrow swath, deeper penetration). 
We discuss each. 

Precision of an airborne lidar survey will depend 
upon the number of transects fl own and the probabil-
ity of encountering schools along them. The width of 
the transect lines (swath width), may affect the prob-
ability of encountering schools and therefore could be 
one of the few factors affecting precision that involve 
instrument design. Swath width could be increased 
in a variety of ways (fl ying higher, scanning or opti-
cally expanding the laser beam), but such changes 
are accompanied by disadvantages (loss in penetra-
tion depth, reduced resolution, increased instrument 
cost and weight). In our study, we modeled how the 
width of the swath (width of transect line) cut by the 
survey instrument affects the probability of encoun-
tering fi sh schools, and therefore the precision of the 
survey estimate, assuming fi sh are uniformly dis-
tributed in the water column. 

The accuracy of a biomass survey depends on the 
extent to which the entire stock is vulnerable to the 
counting technique and on the variability in size of the 
uncounted fraction (Gunderson, 1993). The key issue 
for accuracy of a lidar survey is the vulnerability of 
a stock to being counted in the vertical plane. Depth-
specifi c detection by a lidar depends upon laser power, 
sensitivity of the detection system, the rate of exponen-
tial decay of the laser pulse with water depth, the way 
the fi sh-detection function of the instrument changes 
with signal attenuation, fi sh size and refl ectivity, school 
packing density, and, of course, the vertical distribu-
tion of the fi sh. Using a set of models and taking into 
account many of these variables, we evaluated the 
effect of instrument and survey design on the accuracy 
of an aerial lidar survey for measuring fi sh abundance. 
We considered how variations in laser power, school 
size, diel changes in vertical distribution of schools 
and school packing density (number of fi sh per m3) 
would affect the accuracy of the survey. We also used 
these models to estimate the maximum depth at which 
schools might be detected by a single lidar pulse. For 
our study, we chose to use anchovy because more data 
exist on anchovy schools than most other species. Lo et 
al.2 have, however, recently applied the same models 
to sardine and herring schools.

Materials and methods

We used various models to evaluate the potential 
effects of instruments on survey design. To evaluate 

how swath width may affect survey accuracy, simu-
lation runs were used for a school-group encounter 
model. To evaluate the relation between laser power 
and maximum detection depth for fi sh schools, we 
computed the probability of detecting schools as a 
function of the signal-to-noise-ratio and estimated 
laser power and the laser attenuation coeffi cient. 
School parameters, size, distribution and density, 
and survey area (46,204 km2=333 km (180 nmi) × 
138.75 km (75 nmi)) were taken from acoustic sur-
veys of northern anchovy in the Southern California 
Bight (Mais, 1974; Fiedler, 1978; Smith, 1981; Mac-
Call3). For daytime profi les, vertical distributions of 
schools were based on northern anchovy off Califor-
nia (Holliday and Larsen, 1979); for nighttime pro-
fi les we used the distribution of early stage anchovy 
eggs (Pommeranz and Moser, 1987) and acoustic 
data for anchoveta off Peru (Castillo Valderrama, 
1995). Signal-to-noise ratio was based on informa-
tion on packing density of schools provided by Aoki 
and Inagaki (1988) and Graves (1977). 

Many pelagic fi sh schools form distinct aggrega-
tions or school groups (Cram and Hampton, 1976; 
Fiedler, 1978). The area of an anchovy school (ex -
pressed by school diameter in our study) is highly 
variable, as are the size and number of schools with-
in a school group. Because of this complexity, simula-
tions were used to compute the probability of encoun-
tering anchovy schools in a survey area (Fiedler, 
1978).

In the simulation, school groups were randomly 
assigned in the survey area. The sizes of the anchovy 
schools within a group were generated from the fre-
quency distribution of the diameters of northern 
anchovy schools in the Southern California Bight 
(Fiedler, 1978; Smith, 1981; Table 1). The number of 
anchovy schools within an anchovy school group was 
generated from the area occupied by the group and 
the density of schools. Both the diameters of school 
groups and the density of schools within a school 
group were assumed to follow the lognormal distri-
butions measured for anchovy in the Southern Cal-
ifornia Bight (Fiedler, 1978; Smith, 1981) (Fig. 1). 
Simulations were used to compute the encounter 
probability (pY) for various swath widths (y).

The locations of school groups were randomly allo-
cated in north–south (n–s) and east–west (e–w) direc-
tions. When school groups overlapped (intersected) 
in the north–south directions, they were combined 
as a “single” school group for computing the encoun-

2 Lo, N. C. H., J. R. Hunter, and J. H. Churnside. 1999. Mod-
eling properties of airborne lidar surveys for epipelagic fi sh. 
Admin. Rep. LJ-99-01. Southwest Fish. Sci. Ctr. NMFS, NOAA. 
P.O. Box 271, La Jolla, CA 92037.

3 MacCall, A. 1975. Anchovy population survey simulation: a 
report  of  CalCOFI  Anchovy Workshop Group on methods of esti-
mating anchovy abundance, July 21–22, 1975, Contribution 4, 
9 p. Marine Life Research Group, Scripps Institution of Ocean-
ography, 9500 Gilman Drive, La Jolla, CA 92037-0227.
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Table 1
The frequency distribution of school sizes of anchovy in the 
Los Angeles Bight based on sonar mapping conducted by 
the California Department of Fish and Game (Mais, 1974; 
Smith,1981). 

 School
diameter  Sample
  (m) Frequency proportions

 10 9906 0.4338
 30 9002 0.3942
 50 1822 0.0798
 70 706 0.0309
 90 824 0.0361
110 178 0.0078
130 217 0.0095
150 50 0.0022
170 40 0.0018
190 51 0.0022
210 19 0.0008
230 7 0.0003
250 3 0.0001
270 1 <0.0001
290 2 0.0001
310 1 <0.0001
330 3 0.0001
350 0 0
370 0 0
390 2 0.0001

ter probability. Only the north–south direction was 
relevant because the transect was run from east 
to west. Similarly, schools were randomly allocated 
within a school group and when schools overlapped 
in the north–south direction, they were combined as 
a “single” school for computing purposes. This pro-
cess continued until all schools were separated in the 
north–south direction and termed “disjoint” schools. 
The distance (gaps) between disjoint schools in the 
north–south direction were summed for each school 
group and later summed for all fi sh groups. The sum 
of n–s gaps within school groups was termed “total 
gap within.” Similarly, a “total gap between” (dis-
joint school groups) was also computed. Both “total 
gap within” and “total gap between” were used to 
compute the encounter probability (py) (the probabil-
ity that at least one fi sh school is detected):

py = 1 – (total gap within + total gap between)/L

or
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where y = the swath width in meter; 
 gI = the gap length between jth and j+1th dis-

Figure 1
A spatial distribution of school groups from one simulation run. Circles indicate areas 
covered by school groups for a population of 80,000 schools. This graph was generated 
from lognormal distributions with mean = 3.91 and variance = 0.51 for school density 
(number of schools/nmi2) and from lognormal distribution with mean = 2.319 and vari-
ance = 0.676 for diameter (nmi) of school group (nmi was later converted to km). G1, 
G2, G3, and E are the gaps used to compute the encounter probability (Eq. 1).

joint school within a school 
group and the quantity of 
gij – y is set to zero if gij is 
less than y;

 GI = the gap length between ith 
and i+1th disjoint school 
groups and Gi – y is set to 
zero if Gi is less than y;

 E = the distance between the 
north and south end of the 
survey area and their near-
est anchovy schools; 

 N = number of school groups 
disjoint in the north–south 
direction; and 

 L = 333 km (180 nautical miles 
[nmi]) which is about the 
length of the coastline along 
the Southern California 
Bight.

Smith (1981) reported that the 
diameter (nmi) of a school group 
followed a lognormal distribution 
and had a logarithmic mean of 
2.319 and a logarithmic variance 
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Table 2
The average number of school groups for three population 
sizes and the average number of schools per school group 
for combinations of different multipliers for the school den-
sities and the school diameters (see text).

 Multipliers for 
Multipliers school density
for diameter
of school groups 0.5 1.0 1.5

Average number of school groups 
for three population sizes:
 Population: 16000 schools
  0.5 224.79 26.28 2.71
  1.0  13.32  1.56 0.16
  1.5  0.56  0.07 0.01

 Population: 32000 schools 
  0.5  449.58  52.56 5.41
  1.0  26.64  3.11  0.32
  1.5  1.13  0.13  0.01

 Population: 80000 schools 
  0.5 1123.94 131.41 13.53
  1.0  66.59  7.79  0.80
  1.5  2.81  0.33  0.03

Average number of schools per school group
  0.5 71.18 608.77 5914.65
  1.0 1201.33 10274.66 99826.39
  1.5 28429.65 243150.98 2362398.24

of 0.676, and that the density of fi sh schools/nmi2 in 
a school group had a logarithmic mean of 3.91 and a 
logarithmic variance of 0.51 based on data from Mac-
Call.3 The number of schools within a school group is 
the product of the area of the school group and the 
density of schools within. Thus, the mean number of 
schools was 10,2744 in a school group (Table 2). The 
diameter of anchovy schools was generated from the 
frequency distribution of the diameters of anchovy fi sh 
schools in the Southern California Bight (Table 1).

On average, there were 150,000 anchovy schools 
in the Southern California Bight in the 1970s (Mais, 
1974). In recent years, the population has decreased 
to one fi fth of that level (Jacobson et al., 1994). In 
the simulation, we constructed populations compris-
ing 80,000, 32,000, and 16,000 schools with an aver-
age biomass of 12 metric tons (t). At each population 
level of anchovy, we simulated school groups for nine 
combinations of three school diameters and three 
school densities, each with a multiplier of 0.5, 1, and 
1.5 applied to both mean and standard deviation 
of ln(school diameters) and of ln(density of schools) 
respectively (Table 2). For example, for a population 
of 32,000 schools, a multiplier of 0.5 applied to both 
mean and standard deviation of ln(diameter) (an 
area of 9.45 nmi2 or 32.34 km2) for a school group,5 
and a multiplier of 1.5 applied to the mean and stan-
dard deviation of ln(density) (625 schools /nmi2 or 
182 schools/km2),6 would yield an average number of 
5914 schools per school group and an average of six 
school groups (32,000/5914) (Table 2). This popula-
tion was denoted as 32,000 (0.5,1.5). The encounter 
probabilities for seven swath widths (1, 10, 50, 200, 
500, 900, and 1600 m for a total of 63 (3 × 3 × 7) 
sets of scenarios) were simulated (in computation, 
numeral 1 was used to represent diameters less than 
or equal to 1 m). For each of the three populations, 
500 iterations were run for each of 63 sets. The mean 
of the encounter probabilities from 500 runs was used 
to estimate the mean encounter probability.

For multiple swaths (n), the probability (py,n) that 
at least one of the swaths intercepts schools is com-
puted as

 py, n = 1 – (1 – py)n, (2)

where py is computed from Equation 1.

4 The mean diameter is 14.25 nmi = exp(2.319+0.676/2) and the 
mean density of fi sh schools is 64.39 schools/nmi2 = exp(3.91+ 
0.51/2), the mean number of fi sh schools in a school group = 
(14.25/2)2 64.39 =10,274.

5 [exp(2.319 × 0.5 + 0.676 × 0.5 × 0.5/2)/2]2 × 3.1416 = 9.45 nmi2.
6 exp(3.91 × 1.5 + 0.51 × 1.5 × 1.5/2) = 625.62 schools/nmi2.

Estimating the number of swaths needed in a survey 

Typically, the optimal sample size for a survey is 
computed by minimizing the variance of the esti-
mate subject to a fi xed cost. Because this informa-
tion was not available, we defi ned a desirable sample 
size in terms of the minimum number of transect 
lines or swaths needed to guarantee at least one pos-
itive sighting at an acceptable probability. There-
fore, from py in Equation 1, one can compute the 
number of swaths (n) needed for a desired value of 
py,n by using

 n
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Probability of detecting fi sh by depth with 
signal-to-noise ratios (SNR) 

The signal level of a lidar system decays exponen-
tially with depth. The decaying signal of a single 
pulse can be expressed by the equation 

 S z S
z z
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where z = depth in meters;
 S0 = the signal level at the surface; 
 βw = the clear-water backscatter coeffi cient; 
 βf = the backscatter coeffi cient of a school of 

fi sh; 
 β0 = the backscatter coeffi cient at the sur-

face; and 
 α = the lidar attenuation coeffi cient. 

The backscatter coeffi cients, β, have units of 1/m and 
represent the fraction of the energy that would be 
scattered upward by a 1-m layer of either clear water 
or fi sh. By clear water we mean natural sea water 
with its attendant load of yellow substance, plank-
ton, silt, etc., but without fi sh. The lidar attenuation 
coeffi cient is related to the absorption and scatter-
ing coeffi cients of the water, in a way that is not com-
pletely understood, but depends on the fi eld of view 
of the lidar. In an operational system, this parameter 
can be obtained directly from the lidar data. A very 
narrowly collimated system (defi ned as one where 
the fi eld of view is much smaller than the average 
scattering angle in the water and much smaller than 
the ratio of the beam attenuation coeffi cient to the 
lidar height) will have an attenuation that is very 
close to the sum of the absorption and scattering. 
A wide fi eld of view collects multiple scattered pho-
tons, and the attenuation is closer to the absorption 
coeffi cient.

The noise in a lidar system can come from sev-
eral different processes. One of these is likely to 
predominate in any particular set of circumstances. 
One source is thermal noise in the receiver. This is 
an additive noise that is independent of the signal 
level. It is Gaussian with a zero mean. Another 
source of noise is the shot noise from the sum of the 
signal current, background-light-generated current, 
and detector dark current. This is a Poisson process 
that depends on the total detector current. However, 
except for very low illumination levels, the Poisson 
distribution is nearly Gaussian, and we made this 
approximation. Also, we noted that if the signal from 
the fi sh school is very large, the detection probabil-
ity is nearly unity, and accurate modeling of the 
noise distribution is not critical. If the fi sh signal 
is small, the shot-noise variance will be very nearly 
the same whether fi sh are present or not. This is the 
situation that must be treated accurately, and so we 
assumed that shot noise could be approximated by 
an additive signal-independent Gaussian process for 
the purposes of our study. The fi nal noise source is 
caused by variations of the optical properties of the 
water with depth. Variations that are slow in com-
parison with the depth resolution of the lidar can be 
estimated and eliminated. However, more rapid fl uc-

tuations would be indistinguishable from noise. In 
the absence of a better model for these fl uctuations, 
we also assumed that they were Gaussian. Thus, 
an additive signal-independent Gaussian noise was 
considered, and the source of this noise was not 
considered further. The fi nal results would not be 
very different if the dominant noise was not Gauss-
ian. Non-Gaussian noise would change the numeri-
cal values of the detection and false-alarm integrals. 
Because of the strong exponential decrease in signal 
level with depth, small changes in these values would 
correspond to small changes in detection depth. A 
similar effect was caused by our choice of threshold 
level, which also changed the detection and false-
alarm integrals. We show that the results are not 
very sensitive to our choice of threshold level for 
the same reason. It is possible that the variations 
in optical properties produce a highly non-Gaussian 
noise that will have a signifi cant effect, but we have 
no evidence for this. 

The probability density function (pdf) of the instan-
taneous signal (s) for a single pulse at some depth 
can therefore be approximated by a normal pdf with 
mean = S and variance = σ2. For illustration, we 
assumed that σ was not depth dependent, although  
s clearly was.

Detection was accomplished by setting a threshold 
signal level above which we asserted that fi sh were 
present. The detection probability is the probability 
that the instantaneous signal is above this threshold 
when fi sh are present (i.e. when βf > 0). Thus, 

p P s T
T Sf( ) ( ) ,detection = > = −

−





1 Φ
σ

where T = the threshold level; 
 S = a normal random variable with mean= 

Sf and variance = σ2;
 Sf = the signal level with fi sh present; and 
 Φ(u) = P(U<u) is normal distribution function 

of U with mean = 0 and variance = 1. 

Specifying that fi sh are present whenever the re-
ceived signal exceeds some threshold value entails 
some probability of a “false alarm.” This probability 
can be calculated from 

P false alarm P s T
T Sw( ) ( ) ,= > = − −





1 Φ
σ

where Sw = the signal from clear water.

To reduce the number of free parameters, we nor-
malized everything by the noise level. Thus, we 
defi ned a signal-to-noise ratio, SNR = (Sf – Sw)/σ 
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and a threshold-to-noise ratio, TNR = 
(T –Sw)/σ. Then P(detection)= 1 – Φ(TNR – 
SNR) for signals following normal distri-
bution with mean SNR and variance 1 
when fi sh are present, and P(false alarm) = 
1 – Φ(TNR) for signals following normal 
distribution with mean = 0 and variance = 
1 when no fi sh are present.

The maximum detection depth, zmax, 
was defi ned as the depth at which the 
detection probability is 0.5, i.e. the SNRz 
is equal to the TNR because of the sharp 
drop in detection probability from 1 to 0 
with depth (Fig. 2).

 TNR SNR SNR ez
z= = −

0
2( ).α  (5)

We could rearrange the terms in Equation 
5 and calculate that

 z
TNR
SNRmax ≈ −







1
2 0α

ln .  (6)

We investigated the degree that maxi-
mum detection depth for schools is affected 
by the setting of the false-alarm rate by 
calculating zmax as a function of the false-
alarm probabilities and determining the 
value of TNR to be used in Equation 6. The 
detection probability (P(detection)) can be 

Figure 2
Detection probability as a function of depth for a lidar system with a 
false-alarm probability of 0.01 operating in water with an attenuation 
coeffi cient of 0.1/m. Curves are labeled by the value of the signal-to-
noise-ratio (SNR0) at the surface.

approximated by unity for depths above this zmax 
and by zero for depths below it (Fig. 2). That is 

P(detection) = 1 for SNRz>TNR or z < zmax
 = 0 otherwise.

Laser power and penetration depth

To get an idea of the ranges of depths that might be 
available to the lidar for a reasonable cost, we calcu-
lated the maximum penetration depth (zmax) with a 
lidar model that was developed to perform engineer-
ing trade-offs quickly and easily. Input parameters 
and lidar components can be changed easily by the 
user, and the computer program automatically cal-
culates all of the affected quantities. Plots can be 
quickly generated within the program to allow the 
results to be immediately viewed. The lidar system 
was assumed to be similar to that currently used by 
NOAA (Churnside et al., 1997). Actual parameters 
are presented in Table 3. 

Only laser power effects were considered. Clearly, 
other factors were also important. These included 
receiver telescope diameter, detector sensitivity, back-
ground light conditions, fi sh species, density, etc. 

However, a full investigation of the effects of all 
pertinent parameters was beyond the scope of our 
study. The effects of some of these parameters, how-
ever, could be estimated. Doubling the receiver tele-
scope area, detector sensitivity, or fi sh density, for 
example, is equivalent to doubling the laser power, 
and we could have considered an equivalent laser 
energy that included differences in these parameters. 
Because of the assumptions used in our calculations, 
our calculations should be taken as representative 
and are not necessarily precise.

Because of the interference with the surface, it 
was diffi cult to actually calculate SNR0. Instead, we 
noted that 

 SNR0 = SNRzexp (2αz), (7)

where z = any arbitrary depth; and 
 SNRz = the signal-to-noise ratio at that depth. 

The calculations were done with a fi sh school deep 
enough so that surface effects (e.g. specular refl ec-
tions of the tail of the laser pulse) did not contribute 
to the received signal from the school. Equation 7 
does not hold for fi sh within about 1 m of the surface, 

P
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Table 3
Baseline model parameters for computing laser power and 
penetration depth.

Parameter Value

Transmitter
 Wavelength 532 nmi
 Pulse length 15 nsec
 Pulse energy 1 mJ–1 kJ
 Pulse repetition rate 10 Hz
 Height above surface 100 m
 Beam divergence 25 mrad

Receiver
 Aperture diameter 20 cm
 Field of view 25 mrad
 Optical bandwidth  10 nm
 Electronic bandwidth 100 MHZ
 Sample rate 1 GHz 
 Receiver noise 140 microvolts
 Detector type R5800 photomultiplier 
  tube @ 1200 V
 Polarization Unpolarized

Environment
 Aircraft height 100 m
 Water type IB, III
 Background light 1/4 moon
 Background light fl uctuations 2 percent

Fish school
 Fish type anchovy
 Length 10 cm
 Refl ectivity
 Packing density 0.5/ m3

 School thickness 10 m

but the errors are negligible for the depth distribu-
tions of fi sh used in our study.

The signal and noise levels can be defi ned at any 
one of a number of points in the receiver, including 
optical power on the detector, current out of the detec-
tor, the voltage generated by that current through 
a standard 50-Ω resistance, the output of the log-
amplifi er, or the integer value that this produces 
when digitized. We consistently used the voltage 
across 50 Ω, which is the input voltage to the log-
amplifi er. For an infi nitesimally short laser pulse, 
this signal varies in time as the pulse propagates 
through the water. We could relate this time to the 
depth at which the light was scattered back to the 
receiver because we knew the speed at which light 
travels through water. Therefore, we could write the 
signal as a function of depth as for a nadir-pointing:

 ′ =
+

−S z
P z d R

z nh
z( )

( ) ( )
( )

exp( ),
π β π α

2

24
2  (8)

where S' = the received signal per unit depth at 
depth z;

 P = the laser power;
 R = the responsivity of the detector and load 

in V/W; 
 β(π) = the backscatter coeffi cient of the water 

plus any fi sh present at that depth;
 h = the height of the aircraft above the sur-

face; 
 n = the index of refraction of water (1.33); 

and 
 α = the lidar attenuation coeffi cient.

To get the actual signal voltage, we had to inte-
grate Equation 8 over the fi nite duration of the laser 
pulse. To get the short pulses desired, it was nec-
essary to use Q-switching. With this technique, the 
laser resonator is blocked electro-optically while the 
energy is stored in the lasing medium. The cavity 
is then quickly opened. Lasing begins rapidly, and 
the output power quickly builds to a high value. As 
the energy in the lasing medium is depleted, the 
output power decreases back to zero. This technique 
produces a characteristic pulse shape that can be 
approximated by 

 P t
Et t

( ) exp ,= −



τ τ2  (9)

where E = the total pulse energy; and 
 τ = 0.408 times the full width of the pulse at 

one half of its maximum value. 

We converted this time to distance through the speed 
of light, and integrated Equation 8 over depth.

Two water types were used. These were Jerlov 
(1968) types IB and III. These specify only the diffuse 
attenuation coeffi cient KD. To obtain an estimate of 
lidar attenuation we needed to have an estimate 
of the volume scattering function β(ϑ), where ϑ is 
the scattering angle. We used the general functional 
form of Petzhold (Petzhold, 1972; Mobley, 1995) with 
the exact values scaled by the value of the scattering 
coeffi cient inferred from the different values for KD. 
We fi rst noted that

 K a b
b

dD = + ∫2

2

π β θ θ θ
π

π
( )

sin( ) ,  (10)

where a = the absorption coeffi cient of sea water; 
 b = the scattering coeffi cient; and 
 β(ϑ)/b = the normalized scattering function of 

Petzhold. 
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From this expression, we ob-
tained the scattering coeffi cient 
and the backscatter coeffi cient for 
each of the Jerlov water types. 
The beam attenuation coeffi cient 
is given by

C = a + b. (11)

The lidar attenuation coeffi cient 
lies somewhere between the dif-
fuse attenuation coeffi cient and 
the beam attenuation coeffi cient in 
such a way that it depends on the 
beam divergence of the lidar and 
on the spot size of the laser at the 
surface. The details of this depen-
dence are not completely under-
stood, and therefore we made what 
we hoped were reasonable esti-
mates. Following Feigels and Kopi-
levich (1994), we estimated the 
divergence angle effect for a beam 
of negligible size by assuming that 

Figure 3
Vertical distribution and probability of detection (Eq. 16) by lidar of anchovy 
during day (open symbols) and night (solid symbols). The mean depth of anchovy 
schools was 38.98 m during the day and 11.64 m during the night (Eq. 13).

photons scattered at angles greater than the lidar 
divergence angle Φ/2 are lost. We then applied a cor-
rection to this value for the fi nite size of the spot at 
the surface based on a curve fi tted to the results of 
Gordon (1982). The fi nal result was an estimate for 
the lidar attenuation coeffi cient given by

 α π φ β θ θ θ
φ

π

= + − ∫K b c h
b

dD 2 0 8

2

2

exp( . )
( )

sin( ) ,  (12)

where h = the height of the lidar above the surface. 

The results were fairly sensitive to this parameter; a 
factor of 2 in α is equivalent to a factor of 2 in depth 
penetration. The values used in our study were con-
sistent with observations in the Southern Califor-
nia Bight, and are representative of what can be 
expected. However, more work is needed before accu-
rate predictions of detection probability can be made 
for a specifi c water mass based on measurements of 
the optical properties. Direct measurements of α can 
provide better detection predictions and can also be 
used to refi ne this relationship.

Vertical distribution and packing 
density of fi sh schools

The vertical distributions of schools below the sur-
face, their packing density, and fi sh size are critical 
biological properties affecting detection of schools 

with a lidar. Two vertical distributions of anchovy 
fi sh schools were used in our analyses. One repre-
sented an average distribution of anchovy schools 
during the day and the other, average distribution 
of anchovy schools during the night (Fig. 3). The 
daytime vertical distribution fi tted the average of 
the cumulative proportion of fi sh schools during the 
May 1997 and September 1997 surveys of Holliday 
and Larson (1979), who used the acoustic refl ection 
from the bottom as a better way to probe the upper 
10–20 m than that afforded by conventional acoustic 
methods. The nighttime vertical distribution curve 
fi tted the cumulative proportions of newly spawned 
anchovy eggs from two California sites (Pommeranz 
and Moser, 1987) and anchovy schools from three 
anchoveta acoustic surveys in Peru (Castillo Valder-
rama, 1995). The depth of early-stage anchovy eggs 
may indicate school depth because anchovy spawn 
during the night. Vertical distributions during the 
daytime and nighttime were fi tted to an exponential 
distribution function:

 F(z) =p(Z < z) = 1 – exp(–z/λ), (13)

where F(z) = the proportion of fi sh schools in the 
upper z meter depth; and 

 λ = the mean depth of the fi sh schools.

Direct measurements of school packing density 
(numbers of fi sh/m3) for anchovy were taken from 
the literature (Table 4). Graves (1977) deployed a 
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Table 4
Estimated mean, standard deviation (SD) of packing density(x; fi sh/m3) of anchovy and herring, and the log-transformed data 
(y=ln(x)) during day and night. Coeffi cient of variation (CV)= SD/mean. 

 Packing density(x) y=ln(x)
 Fish length
Species Night or day mean SD CV mean SD1 (cm) Reference

Anchovy night  53 0.257 0.48 -0.74 (0.52) 10 Aoki and Inagaki, 1988
   n=5   1.11

Anchovy day 114.8 99 0.86 4.505 (0.67) 10 Graves, 1977
   n=10   1.11

Herring day   2.57 3.99 1.55 0.0725 1.344  3 Misund, 1993
   n=20

1 1.11=sqrt(ln(1.552 + 1)), where 1.55 is the CV for 34-cm herring (Eq. 14). Values in parentheses were computed from original data sets.

“dropped” camera by day and Aoki and Inagaki 
(1988) used a tethered camera by night and obtained 
the packing density of anchovy with an average 
length of 10 cm.

The standard deviations (SD) of packing density of 
anchovy computed from data collected by Aoki and 
Inagaki (1988) and Graves (1977) measured only the 
variation among schools and would underestimate 
the overall variation of packing density. For this 
reason, we used the coeffi cient of variation of packing 
density of herring (1.55) (Misund, 1993; Lo et al.2), a 
more realistic measurement of the variation of pack-
ing density, together with the mean packing density 
of anchovy to estimate the mean (µy) and variance 
(σy

2) of log-transformed data: y = ln(x), where x is the 
packing density for 10-cm anchovy:

 ˆ ln ( ) ,σ y cv x2 2 1= +[ ]  (14)

 ˆ ln( ) ˆ

ln( ) ln ( ) ,

µ σy yx

x cv x

= −

= − +( )
2

2

2

1 2

 (15)

where cv(x) was that of herring (=1.55). Equations 14 
and 15 were derived from the following two relations:

µ µ σ

σ µ σ σ

x y y
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 and

Depth-specifi c probability of detection (pa(z)) 
based on packing density

As mentioned in an earlier section, P(detection) = 1 for 
SNRz > TNR, and zero otherwise, because the steep 
drop of P(detection) around zmax, the proportion of fi sh 

that can be detected and identifi ed at depth z, pa(z), 
was modeled by the P(SNRz > TNR). The probability 
of detection (pa(z)) was computed by means of the 
probability density function of fi sh packing density 
(x) at depth z, assuming that SNR0 is proportional to 
the packing density (x), i.e. SNR0 = Ax, where A is 
the proportionality and is a function of fi sh size and 
refl ectivity. If refl ectivity is the same for all fi shes, 
then A is a function of fi sh size only, A ~ 104 × L2, 
where L is the fi sh length in meters (Churnside et al., 
1997). The packing density, x, is a lognormal random 
variable. We could write SNRz=SNR0 exp(–2zα) = Ax 
exp(–2zα); thus SNRz > TNR is equivalent to x>(TNR/
A)exp(2zα), and we approximated the proportion of 
fi sh detected at depth z on the basis of the lognormal 
distribution of packing density (x) by
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where Φ(u) = P(U<u) for the normal random vari-
able, U, with mean = 0 and variance = 
1; and

 ln(x) has mean µ and variance σ2. 

Equation 16 was computed through SNRz, the mean 
of each individual normalized signal (or pulse). In the 
appendix of this paper, we computed Pa(z) through 
individual normalized signals. We also assumed with 
this computation that the effects of shadowing could 
be neglected. Although more work on this issue is 
needed, our results suggest that it is not a serious 
effect. We observed multiple layers of fi sh in our 
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data, suggesting that light was penetrating the fi rst 
layer. We also observed that the water returned from 
below and above schools of fi sh and found that the 
additional attenuation caused by the fi sh was small in 
comparison with the background water attenuation.

Proportion of fi sh schools detected (q)

The proportion of fi sh schools detected in the upper z 
meters (qz) depends on the depth-specifi c probability 
of detection (Pa(z); Eq. 16) and the vertical distribu-
tion of fi sh schools (Eq. 13). 

The quantity (qz) was computed by numerical 
integration:

q P u f u du

u TNR A
e du

z a

x

z
u
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= − + −
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where pa(u) is derived from Equation 16 and f(u) is 
the exponential pdf derived from Equation 13:

 f u e
u

( ) .= −( )1
λ

λ  (18)

The quantity, qz, increases with depth z and reaches 
an asymptote at zmax (q; q<=1) and q is defi ned as the 
proportion of fi sh schools detected.

Criterion for evaluating trade-offs between 
penetration depth and swath width

If laser power is held constant, an increase in swath 
width would decrease the maximum depth of penetra-
tion of the laser pulse. In this section, we established 
a criterion for comparing various instruments having 
different combinations of swath width and laser power 
(maximum penetration depth). The effectiveness of 
the width of a swath (y) can be measured by the prob-
ability that some fi sh schools will be encountered (py) 
in the swath (Eq. 1 from simulation). The effective-
ness of a lidar in detecting schools within the swath 
is measured by the proportion of fi sh schools detected 
(q) (Eq. 17). The product of py q (Eqs. 1 and 17) is 
then used to evaluate the overall effectiveness of any 
instruments with a given swath width (y).

Results

Effects of swath width on encounter probability

We assumed that schools were aggregated into school 
groups in the survey area (42,204 km2) and that 

school diameters and densities were equal to, or less 
than, those reported by Smith (1981). Our simula-
tion results indicated that swath width had little 
effect on the probability of encountering schools. 
This was true for all three population sizes: 16,000, 
32,000, and 80,000 schools (Fig. 4). Encounter proba-
ability was affected by the swath width only when 
the diameters of the school groups were small and 
the school density within the school group was so 
low (both multipliers were 0.5) that their distribu-
tion became nearly random rather than aggregated. 
In these cases, the encounter probability increased 
sharply when the swath width increased from 1 
m to 50 m. Even this very limited effect of swath 
width diminished as the number of schools in the 
survey area increased. The encounter probability for 
swath widths greater than 50 m was almost con-
stant regardless of conditions. 

For the multiple swaths, the probability that at 
least one of them would intercept anchovy schools 
(Eq. 2) was high in general. The lowest probability 
was 0.65, for the case where fi sh were aggregated in 
few large school groups of low population, i.e. 16,000 
(1.5,1.5) for n=5 (Eq. 2). For n=10, the probability 
(py,n) was close to one for all cases.

Depth-specifi c detection probability 

The depth at which a lidar is capable of detecting 
a school or target will depend in part on the thres-
hold setting of the instrument in relation to the noise 
(TNR). To illustrate these relationships we fi xed a 
false-alarm rate (P(false alarm) for the detection of 
schools, used an alarm rate to determine the thresh-
old level, and then calculated the detection proba-
bility for schools (P(detection)). The results of such 
a calculation are presented in Figure 5, where the 
detection probability for fi sh schools was plotted as a 
function of the probability of a false alarm for signal-
to-noise ratios of 1 and 3. Zero, the lower limit of the 
plot, corresponds to a very high threshold (TNR) set-
ting, where the probability of a false alarm and the 
probability of detecting a school are both zero. We 
concluded that fi sh are never present at a setting of 
zero. The upper limit of Figure 5 corresponds to a 
very low threshold setting, where P(false alarm) and 
P(detection) are both unity; at a setting of 1, we con-
cluded that fi sh are always present. 

If one selects a reasonable false-alarm rate and a 
signal-to-noise ratio at the surface, one can calculate 
the detection probability as a function of depth. This 
was done for a false-alarm probability of 1% and a 
lidar attenuation coeffi cient of 0.1/m, and the results 
are plotted in Figure 2 for several values of the sur-
face signal-to-noise ratio. There are several interest-
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Figure 4
Simulated encounter probability of anchovy schools in Los Angeles Bight (Table 2) 
for 16,000, 32,000, and 80,000 schools. The swath width ranged from 1 m to 1600 m. 
The multiplier for mean and standard deviation of the log of diameter of school 
group and the log of school density in a school group are given in parentheses. 
Values for populations with multiplier (1.5,1.5), similar to populations with mul-
tiplier (1.0,1.0), are not shown.

ing features of these results. The 
fi rst is that when a critical depth 
is reached, the detection proba-
bility drops abruptly from nearly 
unity to nearly zero over a narrow, 
5–10 m span of depth. Because of 
this sharp transition, we defi ned 
a maximum detection depth (zmax) 
as the depth at which the detec-
tion probability is 0.5. The depth 
zmax depends logarithmically on 
signal level because of the expo-
nential attenuation of the signal 
with depth. Thus, each order-of-
magnitude increase in signal level 
(illustrated in Fig. 2) provides an 
increase in zmax of just over 10 m in 
depth. Ten meters is just about 1 
lidar attenuation depth, defi ned as 
1/α (Eq. 6). We can rewrite Equa-
tion 6 as zmax = ln(SNR0/TNR) × 
0.5/α. Therefore, if the attenua-
tion coeffi cient (a) is different from 
0.1/m, the value used in our study, 
these zmax depth values scale lin-
early with lidar attenuation depth 
(1/α).

Figure 5
Detection probability as a function of the false-alarm probability for 
lidar systems with signal-to-noise-ratios (SNR) of 1 and 3.

To examine the sensitivity of zmax (Eq. 6) 
to TNR and thus the false alarm probabil-
ity (Eq. 6), we used the same values of the 
surface signal-to-noise ratio as those used 
in Figure 2. This calculation indicated that 
the maximum detection depth (zmax) was 
relatively insensitive to changes in false-
alarm probabilities. Decreasing the false 
alarm rate by a factor 10 from 0.01 to 
0.001 would only increase the maximum 
detection depth by a few meters (Fig. 6). 
Thus, a fairly low rate of false alarms 
for a system could be selected without 
seriously degrading the detection perfor-
mance. It also implied that we could select 
a nominal threshold level and obtain a 
simple expression for the maximum detec-
tion depth. A value of TNR = 3 results in a 
false-alarm probability of just above 0.1%. 
Therefore, according to Equation 6, zmax is 
determined by 

 z
SNRmax ln .≈ −


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
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We then considered the depth in the water 
colum at which schools can be detected by 
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a single lidar pulse and computed, using 
Equation 16, the proportion of fi sh schools 
that could be detected for anchovy (Fig. 
3). During the daytime, and at a depth 
of 30 m, 97% of 10-cm anchovy would be 
detected (pa(z), when α=0.1/m). Moreover, 
one can also compute a signal-to-noise 
ratio from the packing density(x): SNRz 
= Ax exp(–2αz) for a fi sh length of 10 cm 
and compare it to the threshold target-
to-noise ratio (TNR) of 3. At the surface, 
SNR0 was 11,480 for 10-cm anchovy and 
zmax = 41.24 m. At a depth of 30 m, SNR30 
(α=0.1) was 28.5, which was above TNR = 
3, indicating that most of the schools in the 
upper 30 m could be detected. The detec-
tion probability for anchovy was unity 
over the upper 30 m (Fig. 3), which was 
consistent with the results we obtained 
from Equation 16 (Fig. 3). 

For the schools at night, we used a very 
low packing density (0.53 anchovy/m3). 
The signal-to-noise ratio at the surface 
(SNR0) for such diffuse schools was 53, 
substantially above a TNR of 3, and zmax = 
14 m. At 20 m, the SNR20 for anchovy 
schools declined to 0.97 with a probability 
of detection of only 13%. At 30 m, the 
detectability of anchovy was less than 1%. 

Overall vulnerability of schools to lidar 

Figure 6
Maximum detection depth as a function of the false-alarm probability 
for a lidar system operating in water with an attenuation coeffi cient 
of 0.1/m. Curves are labeled by the value of the signal-to-noise ratio 
(SNR0) at the surface.

detection in the vertical plane

We estimated the cumulated proportion of schools of 
anchovy that might be detected by a lidar assuming 
constant day and night vertical distributions. As the 
fi rst step in the discussion that follows, we focused 
on the two components used to make the estimate: 
1) the average vertical distributions of schools of 
anchovy during the day and the night (Fig. 3; Eq. 
13); and 2) the depth-specifi c probability of detecting 
a school, which was discussed in the previous sec-
tion (Eq. 16). These two components were combined 
to obtain the fi nal estimates .

The probability of detecting a school during the 
day declined from about 1 at the surface to 0.50 at 
40 m and approached zero at 60 m (α=0.1, Eq. 16; 
Fig. 3). Because of the lower packing density of the 
school, the depth-specifi c probability of detecting a 
school was much lower at night (with the detection 
probability dropping from 1 at the surface to 0.10 
at 20 m and zero at 30 m). Thus, even the very dif-
fuse nighttime aggregations of anchovy (0.53 fi sh/m3) 
observed by Aoki and Inagaki (1988) could be distin-
guished from background noise. That shallow night-

time schools can readily be detected by an airborne 
lidar despite their low packing density means that 
during the night lidar surveys are feasible. 

By combining the detection probabilities with the 
vertical distributions (Eq. 17), we could calculate the 
proportion of anchovy schools that could be detected 
(q) by the lidar (Fig. 7). This calculation indicated that 
a lidar survey at night would be more accurate than 
one during the day because the cumulated proportion 
of schools detected during the night was 60% in the 
upper 20 m, whereas during the day, it was 40% in the 
upper 20 m. Thus, despite the higher packing density 
in the day (115 fi sh/m3) which permitted detection 
down to about 50 m, schools were detected more often 
at night. This feature was due to the difference in verti-
cal distributions between night and day.  

Up to this point we have discussed only cases in 
which the lidar attenuation coeffi cient, α, equals 
0.1/m, a typical value for the coastal waters of 
southern California. To illustrate the effect of water 
clarity, we varied α from 0.05 to 0.6, where the 
attenuation coeffi cient for the most turbid coastal 
water was 0.52. Generally, the proportion of anchovy 
schools detected (q) declines rapidly with increasing 
α, although detection also depends on the design 

Log10 [P (false alarm)]
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and settings of the lidar as well. 
Some generalizations can be made. 
During the night the lidar fi eld of 
view can be large because less back-
ground light exits to interfere with 
the signal. Under these conditions, 
the lidar attenuation coeffi cient (α) 
will be very nearly equal to the dif-
fuse attenuation coeffi cient. For the 
Jerlov open-ocean water types at 532 
nmi, α varies from about 0.05/m (type 
I) to about 0.11/m (type III). The 
values for the Jerlov coastal water 
types range from 0.15 (type 1) to 
about 0.53 (type 9). From our analy-
sis, we expected that most anchovy 
schools would be detected during 
the night in the open ocean for α ≤
0.1.

During the day, the situation is 
more complicated. A lidar system 
with a large fi eld of view will have 
a smaller signal-to-noise ratio be -
cause scattered sunlight reaches the 
receiver. We could have increased the signal to noise 
by decreasing the fi eld of view, but this would tend 
to increase α. Besides, an increase in the signal-to-
noise ratio during the day would have little effect on 
q, because the vertical distribution of schools during 
the day has a long tail extending down to 155 m 
(Castillo Valderrama, 1995). At night, an increase 
in the signal strength that extends the maximum 
depth of a return by 10 m or so could have an impor-
tant consequence because of shallow vertical distri-
bution (82% of the school are in the upper 20 m).

Comparisons with vision-based methods

We compared the ability of a human observer to count 
fi sh schools with the capability of a lidar. Hara (1990) 
reported that an observer fl ying at 500 m would be 
able to detect sardine schools along a 1600-m swath 
and to a depth of about 4 m. We assumed that all 
schools at 4 m could be detected visually and none 
was detected below that depth. For the lidar, we used 
a swath width of 7 m, and we considered the prod-
uct of encounter probability (py) (Eq. 1) depicted by 
swath width and the maximum proportion of schools 
detected (q) depicted by depth (Eq. 17) to be a mea-
sure of the overall performance.

A human observer detects somewhat more schools 
in the horizontal plane than does a lidar system 
because of the relatively large swath width provided 
by aerial viewing (Table 5). The encounter probabil-
ities in the horizontal plane (Eq. 1) obtained from 

Figure 7
Proportion of fi sh schools detected in the upper meter depth (Eq. 17) for 10-cm 
anchovy during the day (open circles) and night (solid circles). The attenuation 
coeffi cient is 0.1/m. 

simulation for a population of 32,000 schools was 
0.51 for visual detection and 0.42 for lidar detection. 
In the vertical plane, however, our analysis demon-
strated that lidar is superior in detecting schools 
both during the day and night. During the night, 
the proportion of anchovy schools detected (q) by the 
lidar was 0.65, whereas it was 0.28 for the human 
observer. The difference between visual detection 
and lidar detection was much greater during the 
day (q was 0.63 for the lidar), whereas that for the 
observer was only 0.095.

The pyq (an overall measure of detection perfor-
mance) for a lidar was at least 1.9 times that of 
an aerial observer. This means on the average that 
the proportion of anchovy schools detected during a 
survey would be about twice as great for a lidar as it 
would be for an aerial observer.

We have considered here, however, only one aspect 
of the two systems—detection rates. Many other 
differences also exist in relation to species identifi -
cations, biomass, and effects of environmental con-
ditions on the observing system.

Laser power and penetration depth

A set of parameters used to compute the laser power 
and penetration depth for schools of anchovy is 
listed in Table 3. The lidar signal was computed 
by using Equation 8, and the penetration depth 
was computed from the attenuation coeffi cient esti-
mated from Equation 12. The relation of penetration 
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Table 5
Comparison of the effectiveness of lidar and aerial observation with different swath width (y) and depth penetration for 10-cm 
anchovy during the night and day. py is the probability of encountering schools for a population of 32,000 schools and swath width 
y. q proportion of fi sh school detected for α = 0.1 and 0.05, where α is the instantaneous attenuation rate per meter. The product, 
pyq, is used to evaluate the effi ciency of instruments.

 Maximum  Proportion of fi sh schools Overall effi ciency
Lidar detection Swath detected (q) (pyq)
aerial depth width (y)
ratio (m) (m) py night day night day

α=0.1
 Lidar  7 0.42 0.65 0.63 0.27 0.26 
 Aerial 4 1600 0.51 0.28 0.095 0.14 0.048
 Ratio      1.92 5.410

α=0.05
 Lidar  7 0.42 0.84 0.85 0.35 0.35 
 Aerial 4 1600 0.51 0.28 0.095 0.14 0.048
 Ratio      2.44 7.50

depth and the logarithmic laser energy for 
both open ocean and coastal waters was 
obtained (Fig. 8). Calculations of SNR0 
were made at two laser power levels, and 
logarithmic dependence was used to gen-
erate the curves.

We calculated the maximum penetra-
tion depth for the NOAA lidar with a 
power of 67 mJ and scaled that depth 
with laser power (Churnside and Hunter, 
1996; Table 3). For this calculation, we 
assumed the presence of 10-cm anchovy 
with a packing density of 0.5/m3 (Table 3). 
Night fl ights at 100 m altitude were also 
assumed. Two water types were used, one 
typical of open ocean water (Jerlov type 
IB) and one more typical of coastal water 
(Jerlov type III) (Jerlov, 1968).

The NOAA lidar presently in use is 
capable of operating from a single-engine 
plane; it weighs about 100 kg, requires less 
than 1 kW of power, and the cost of its com-
ponents is about $50K. The penetration 
depth for this system under these some-
what optimum conditions is estimated to 
be about 45 m at 67 mJ (Fig. 8). Some cost 
can be saved by using a lower-power laser 
and smaller telescope, but not a great deal. 
A savings of only about $10K is likely even if one uses 
an equivalent energy of 1 mJ. This amount of energy 
still provides close to 32 m of depth penetration for 
the conditions assumed in our study.

On the other end, one can obtain approximately 
57 m of penetration by using a system with an equiv-
alent pulse energy of 100 J (Fig. 8), but such a sys-
tem would be a very large and expensive to set up 

Figure 8
Depth penetration (m) for different laser energy levels (J) on a logarith-
mic scale for open ocean water and coastal water.

and operate. Part of the equivalent energy could be 
obtained by using a larger telescope at a power only 
a little over an order of magnitude of that currently 
used—one that would emit a laser energy of 10J. This 
type of laser would require a custom design, with 
a cost that we estimated to be in the order of one 
million dollars. In addition, it would require about 
100 kW of power, which cannot be supplied by a small, 
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single-engine aircraft. An aircraft something like the 
DeHaviland Twin Otter may be necessary to accom-
modate the size and power requirements of the NOAA 
lidar system. The system size and cost would prob-
ably increase signifi cantly at an equivalent energy 
of about 1 J. Thus, a practical range for penetration 
depths would be between about 35 and 50 m.

Discussion

Interpretation of modeling results

Our goal was to model various aspects of a lidar 
survey system for anchovy with a focus on features 
that might affect survey accuracy and precision. We 
learned from our modeling of swath width that this 
width has little or no effect on the rate at which 
schools are encountered when they are aggregated 
into school groups, as is commonly the case with 
small pelagic fi sh, like sardines and anchovy, except 
under very low biomass levels. Under conditions 
of very low biomass, schools may become scattered 
rather than aggregated, in which case encounter rates 
would increase with swath width. Our analyses also 
showed that the chance that all the transects would 
not intercept any fi sh school was extremely small 
because the number of transect lines is likely to be 
much greater than 5, owing to the high speed of the 
survey airplane. Thus, from the standpoint of survey 
precision, swath width may be given a low priority.

Lack of full vulnerability to the counting technique 
is one of the most important potential sources of bias 
for biomass surveys. Fish may not be fully vulner-
able because the survey does not extend over the full 
geographic range of the stock and because there are 
limitations to the counting system. Nearly all fi shery-
independent surveys suffer to some extent from these 
problems. In the case of an airborne lidar survey, the 
depth limits of the sensing system could produce a 
large potential bias, particularly if the system is used 
during the day. Our model indicated that, on average, 
36% of schools of anchovy during the day would be 
expected to be below the maximum detection depth 
of the lidar (zmax=41 m) (Figs. 3 and 8). Because 
the vertical distribution of schools can vary consider-
ably between surveys, the undetected fraction would 
vary, thus affecting survey accuracy. This computa-
tion is driven by our vertical distribution curve for 
the daytime and the rapid attenuation of light in 
water; packing density and fi sh size have negligible 
effects. Thus, a reliable estimation of the biomass 
of such small schooling fi shes during the day in off-
shore waters does not seem practical unless a reliable 
unbiased estimate of vertical distribution of schools 

is available. On the other hand, in water up to 30 
m depth over the shelf, accurate estimates of bio-
mass for the daytime are practical because the verti-
cal movements of the fi sh would be restricted. 

If a lidar survey were restricted to night fl ights, 
when schools are closer to the surface, the bias 
caused by the uncounted fraction of deep schools 
would be considerably reduced. During the night, 
however, schools may become very diffuse and con-
sequently have a much lower target strength which 
reduces their detectability. The good news from our 
modeling work was that even the very diffuse schools 
of 10-cm Japanese anchovy (0.53/m3, Aoki and Ina-
gaki, 1988) at night were detectable over the upper 
20 m. Our model indicated that 65% of all anchovy 
schools would be detected during the night.

In our study, we focused only on 10-cm anchovy 
schools at two known and widely differing packing 
densities and vertical distributions. We ran our models 
with other packing densities and fi sh sizes, using data 
from herring, sardine, and mackerel but keeping the 
vertical distributions the same as that for anchovy.2 
These results indicated that packing density is an 
important factor in the detection of schools at night 
when the vertical distribution is shallow but is unim-
portant during the day when fi sh have a deeper verti-
cal distribution. The effect of packing density at night 
can be signifi cant. For example, at night at 30 m the 
SNR for schools of 10-cm anchovy (packing density 
0.53) was only 0.97, whereas that for 13-cm sardine 
(4.0 packing density) was 12.38 (their detectability 
was 13% and 77%, respectively). Schools of small 
fi shes may be inherently more detectable than those 
of larger fi sh because the decline in average packing 
densities of schools with increasing fi sh size is not 
completely compensated by the increase in refl ective 
area of the fi sh (packing density changes in propor-
tion to 1/L3 (Misund, 1993), whereas the refl ective 
area changes in proportion to L2). However, this theo-
retical relationship is eclipsed by the huge variation 
in packing density due to behavioral factors. The 
density of anchovy schools at night varies from com-
pact schools suitable for capture by the purse-seine 
fi shery (Squire, 1972) to schools so diffuse that many 
authors have concluded that schooling ceases (Whit-
ney, 1969; Baxter and Hunter, 1982). The packing 
density used in our example of an anchovy school 
at night from Aoki and Inagaki (1988) represents 
such an extremely dispersed state, but dense con-
centrations of anchovy do occur at night, only their 
packing density has not been measured. In fact, 4 
fi sh/m3 used in the sardine night example might 
be equally appropriate for anchovy. Unfortunately, 
because fi eld measurements of packing densities at 
night are so infrequent, it is impossible to tell at this 
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point where the mean may fall or what differences 
might exist between species. 

Detection of schools during the night would im-
prove if maximum schooling depth and α were cor-
related as Hunter and Nicholl (1985) speculated. 
They determined the visual threshold for schooling 
in northern anchovy (6×10–11W/cm2) and suggested 
that maximum nighttime depth was a function of 
the ability of fi sh to see one another. They estimated 
that the visual threshold for schooling would occur 
at 38 m during a full moon and at 30 m on a starlit 
night where chlorophyll was 0.2 mg Chla/m3 and at 
8 m (starlit) and 20 m (full moon) when chlorophyll 
was 2.0 mg Chla/m3. If Hunter and Nicholl (1985) 
are correct, then the maximum lidar detection depth 
should increase as the schooling depth increases at 
night, as long as survey fl ights are made under the 
same moon phase. This relationship between visual 
threshold and moon phase also indicates that it may 
also be important to exclude survey nights during a 
full moon—a rule long observed by pilots who locate 
schools for the fi shing industry.

It may be possible in practice to detect schools 
somewhat deeper than those that our model indi-
cates because the model estimates the detection of a 
single pulse at one range gate or depth. In practice, 
a lidar will generate a composite image of a school 
derived from a number of such pulses over a range of 
gates (depths) analogous to an echogram trace. Such 
a composite image produced from multiple returns 
and gates can be more readily separated from back-
ground noise than can a single pulse, but such a 
separation involves a more complex, and at the pres-
ent time, somewhat more qualitative discrimina-
tion process. Signal-processing algorithms can be 
developed for this application, but their performance 
would depend on the exact algorithm used. More 
accurate estimates of detection depth would depend 
upon the development of such signal-processing algo-
rithms. Development of such algorithms is one of the 
most promising directions for future research on fi sh-
eries lidar. Their development would greatly improve 
both the accuracy and precision of future lidar surveys 
for fi sheries, as well as reduce the work in processing 
images. Similarly, a more thorough understanding of 
the causes of the observed variation in the vertical 
distribution of fi sh could improve survey accuracy and 
precision. The phase of the moon, time of day, mixed 
layer depth, temperature, location of forage, fi sh size, 
season, and spawning habitats, may all infl uence 
where in the water column a school may be found. 

It seems unlikely that depth of detection will be 
greatly improved by increasing sensitivity or power 
of a lidar system over the basic radiometric system 
used in our model. Our analysis indicated that an 

order of magnitude increase in equivalent laser power 
(laser power plus sensor changes) would gain about 
10 m in detection depth. Such a change would require 
a custom, rather than an “off-the-shelf” laser, which 
would cost around a million dollars, in addition to 
associated costs, including a larger aircraft to satisfy 
the new power and weight requirements. In addition, 
increasing the depth of penetration by 10 or 20 m, 
on the average, would not increase the numbers of 
schools detected by more than about 10% during the 
day because school distributions tend to be skewed 
with a long tail extending to depths far beyond the 
practical limits of lidar detection in coastal waters. A 
10-m gain would be more signifi cant during the night 
but may not be worth the additional cost. 

We have treated the failure of a lidar to count deep 
schools as a potential bias, which is true unless an 
unbiased estimate of the mean vertical distribution 
of schools exists for the particular survey region and 
season and an appropriate statistical model is used for 
the survey. When these conditions are met, the fail-
ure of a lidar to count deep schools becomes a matter 
of precision rather than bias. An unbiased estimate 
of the mean vertical distribution of schools could be 
estimated from data generated by lidar and acoustic 
surveys for the same region because by combining the 
two surveys, one corrects for the vertical bias in each. 
The appropriate statistical model for a lidar survey 
would be one based on line transect theory (Buckland 
et al., 1993). Line transect theory usually deals with 
encounter rates on the horizontal plane, and animals 
are assumed to be uniformly distributed in space. In 
the case of lidar, we turned the model on its side 
and used an average vertical distribution of anchovy 
schools in the survey area. An empirically derived ver-
tical distribution does not seem to be subject to any 
more bias than a uniform, horizontal distribution, one 
that is commonly assummed in line transect surveys.

To provide indices of relative abundance based on 
airborne lidar is an important fi shery application 
that is less demanding than that of estimating bio-
mass. For an index of abundance, the extent to which 
schools are available for counting is not a major con-
cern. Lidar seems uniquely well-suited for taking an 
inventory of the juveniles of small pelagic fi shes (pre-
recruits) because they are extremely patchy and tend 
to inhabit shallow water near the coast in areas dif-
fi cult to sample with a research vessel. Lidar sur-
veys can provide useful indices of adult biomass as 
well. Aerial observations (Lo et al., 1992) and passive 
imaging (Nakashima, 1990; Nakashima and Borstad7) 

7 Nakashima, B. S., and G. A. Borstad. 1993. Detecting and 
measuring pelagic fi sh schools using remote sensing tech-
niques. ICES Report C.M. 1993/B:7, session T, Fish Capture 
Committee, 18 p.
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from aircraft are currently used in several fi sheries as 
indices of the abundance of small pelagic fi shes and 
a lidar-based system would have several advantages 
over these passive methods. Our computation with a 
deterministic model showed that a lidar survey may 
be about twice as effi cient in detecting schools as a 
vision-based system during the night and fi ve times 
more effi cient during the day. At night, a lidar will 
detect more schools than an observer, but the differ-
ence is not huge because the very wide swath width 
(1600 m) of our hypothetical aerial observer compen-
sated, to some degree, for the observer not seeing 
farther beneath the surface. During the day, the effi -
ciency of lidar detection, in contrast to visual detec-
tion, increases greatly because schools inhabit deeper 
water. In addition to increased detection effi ciency, 
lidar has several other advantages over aerial observ-
ers: lidar images can be better quantifi ed than those 
based on visual detection or cameras because the 
school volume rather than school area can be esti-
mated, thereby improving the precision of the index; 
in addition, detection is less dependent on sea state 
and is little affected by sun angle or moon phases. On 
the other hand, skilled fi shermen working in aerial 
surveys can identify species of schooling fi sh with 
remarkable accuracy; a remote species identifi cation 
algorithm for a lidar will be diffi cult, if not impossible, 
to develop. 

As with hydroacoustic methods, species identifi ca-
tion with lidar is a major concern. Even after 50 years 
of hydroacoustic research, the only method for iden-
tifying acoustic targets with certainty is by securing 
voucher specimens. Radiometric backscatter has no 
magical properties in relation to those of acoustic back 
scatter that might allow a rapid solution to the prob-
lem of species identifi caton. The lesson learned from 
hydroacoustics is that for species identifi cation to be 
a reality in lidar surveys, additional sensing systems 
will be needed. That skillful humans make accurate 
species identifi cations visually provides the hope that 
species recognition algorithms eventually will be prac-
tical. We believe it will be possible over the long term to 
develop species recognition algorithms for lidar in com-
bination with advanced lidar signal processing, digi-
tal video cameras, and local knowledge, but at present 
species identifi cations must depend upon combining 
lidar survey data with other information. From the 
lidar data, we could distinguish reliably between small 
(about 30 cm length) and large (about 1-m) fi sh. Iden-
tifi cation of intermediate lengths may become possible 
with more practical experience. One possible approach 
for obtaining additional information is to use visual 
identifi cations of fi sh schools by aerial observers pro-
rated to lidar targets. Other possible approaches are to 
combine airborne lidar survey with a research trawler 

that can provide voucher specimens or to combine air-
borne lidar with simultaneous sampling of fi sh eggs 
from a research vessel (Checkley et al., 1997). The 
latter approach has been used successfully in a test of 
the NOAA lidar (Churnside, 1999). 

Future application of airborne lidar 

An airborne lidar survey could provide a census of 
epipelagic fi shes an order of magnitude faster than 
that provided by ships, thus reducing costs in dol-
lars (based on 1999 dollar amounts) from about $100 
per ship-survey mile to $3 per aerial-survey mile 
(research ship cost=$12,000 per day, net ship speed 
including stopping at stations=5 kn; airplane=$600 
per hour at 200 kn).

Faster surveys not only cost less but improve accu-
racy because steady state assumptions are reduced, 
vessel avoidance is eliminated, and, most important, 
high speed makes it practical to survey a much larger 
area, thereby eliminating the errors associated with 
partial coverage. No major technical barrier exists in 
acquiring a suitable instrument; adequate fi sh detec-
tion lidars already exist. Fish-detecting lidars may 
be purchased from one or more vendors or a radio-
metric lidar may be assembled from “off the shelf” 
components as has been done with the NOAA lidar 
(Churnside and Hunter, 1996). However, to imple-
ment routine surveys, signal-processing algorithms 
for rapid quantifi cation of targets are needed, and if 
the fi sh targets are to be converted to biomass, direct 
calibrations of target strength will be needed. 

The depth limitation of lidar is not a major bar-
rier to implementation. Our analysis demonstrates, 
as does our practical experience, that school detec-
tion depths of 30–40 m can be expected for California 
coastal waters using off-the-shelf instrumentation. 
In fact, more powerful systems are unlikely to do 
much better owing to the rapid attenuation of signal 
with depth. The 30–40 m depth limitation is less 
important at night because most epipelagic fi sh 
schools are found within the volume of water that is 
to be detected by lidar. Our analysis demonstrated 
that schools can be detected at night despite a much 
lower packing density. To deal most effectively with 
the fraction of undetected schools, survey design 
should be based on line transect theory and should 
require an estimate of the average vertical distribu-
tion of schools under the specifi c survey conditions 
(region, species, season, time of day). 

In conclusion, the census of epipelagic fi sh schools 
with airborne lidar would be practical and useful 
today if three conditions could be met: assumptions 
regarding species identity are acceptable; a line 
transect survey design is used in conjunction with 
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the known vertical distribution of schools; and algo-
rithms are developed to process the data.
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Appendix

The detection probability by depth (pa(z)) was defi ned 
as the proportion by which the mean values of SNRz 
exceed the threshold, TNR (Eq. 16). Strictly speak-
ing, one should defi ne the detection probability as 
the expected probability that each signal exceeds the 
threshold. The expectation would be computed by 
integrating over the pdf of mean SNRz. For a lognor-
mal distribution of mean SNRz, we would have

where s = the signal-noise-ratio which 
follows normal (SNRz, 1); 
and 

 SNRz = a lognormal random vari-
able with mean µz = ln (A) + 
E(ln(x)) – 2αz; and 

standard deviation σ = SD(ln(x)) where x is the pack-
ing density. 

Our exercise indicated that both detection probabil-
ities from Equations 16 and 20 were very similar. 
Equation 16, although an approximation, was used in 
our computation because of its simplicity.
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