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Size at 50% maturity (l50%) is com-
monly evaluated for wild popula-
tions as a point of biological refer-
ence (see Table 1). To estimate l50%,
a sample of organisms known to
have just reached sexual maturity
could be available and their arith-
metic mean size can be used as an
estimator. However, the sample
needed to obtain such a design-
based estimator (Smith, 1990) for
wild populations might be too ex-
pensive and would involve time-con-
suming histological procedures.
Fisheries biologists prefer to con-
ceive size at first maturity as the
average size at which 50% of the
individuals are mature. With this
conception, the estimator is not
based on a sampling design but on
a model of the relation between
body size and the number of indi-
viduals that are mature from a to-
tal number at each of many size in-
tervals. The variance of a design-
based estimator is determined by
sampling design (Thompson, 1992).
The variance of a model-based esti-
mator is not as easily obtained. A
sample of published works in the
fisheries literature provides a mea-
sure of the frequency with which

Estimation of size at sexual maturity:
an evaluation of analytical and
resampling procedures

Rubén Roa
Departamento de Oceanografía
Universidad de Concepción
Casilla 160-C, Concepción, Chile
E-mail address: rroa@udec.cl

Billy Ernst
School of Fisheries, WH-10
University of Washington, Seattle, Washington 98195

Fabián Tapia
Departamento de Oceanografía
Universidad de Concepción
Casilla 160-C, Concepción, Chile

Manuscript accepted 28 August 1998.
Fish. Bull. 97:570–580 (1999).

Abstract.–Size at 50% maturity is
commonly evaluated for wild popula-
tions, but the uncertainty involved in
such computation has been frequently
overlooked in the application to marine
fisheries. Here we evaluate three pro-
cedures to obtain a confidence interval
for size at 50% maturity, and in gen-
eral for P% maturity: Fieller’s analyti-
cal method, nonparametric bootstrap,
and a Monte Carlo algorithm. The three
methods are compared in estimating
size at 50% maturity (l50%) by using
simulated data from an age-structured
population, with von Bertalanffy
growth and constant natural mortality,
for sample sizes of 500 to 10,000 indi-
viduals. Performance was assessed by
using four criteria: 1) the proportion of
times that the confidence interval did
contain the true and known size at 50%
maturity, 2) bias in estimating l50%, 3)
length and 4) shape of the confidence
interval around l50%. Judging from cri-
teria 2–4, the three methods performed
equally well, but in criterion 1, the
Monte Carlo method outperformed the
bootstrap and Fieller methods with a
frequency remaining very close to the
nominal 95% at all sample sizes. The
Monte Carlo method was also robust to
variations in natural mortality rate
(M), although with lengthier and more
asymmetric confidence intervals as M
increased. This method was applied to
two sets of real data. First, we used
data from the squat lobster Pleuron-
codes monodon with several levels of
proportion mature, so that a confidence
interval for the whole maturity curve
could be outlined. Second, we compared
two samples of the anchovy Engraulis
ringens from different localities in cen-
tral Chile to test the hypothesis that
they differed in size at 50% maturity
and concluded that they were not sta-
tistically different.

statistical uncertainty of the model-
based l50% is ignored (Table 1). In
this work, we show three alterna-
tive procedures: an analytical
method derived from generalized
linear models (McCullagh and
Nelder, 1989), nonparametric boot-
strap (Efron and Tibshirani, 1993),
and a Monte Carlo algorithm devel-
oped in our study. We show by simu-
lation the behavior of the three
methods for sample sizes of 500 to
10,000 individuals, concluding that
they are similar in terms of bias,
length, and shape of confidence inter-
vals but that the Monte Carlo method
outperforms the other two methods
in percentage of times that the confi-
dence interval contains the true pa-
rameter, which remained close to the
nominal 95% at all sample sizes.

The problem

In regression analysis, we are usu-
ally interested in assigning confi-
dence bounds to the response vari-
able at specified levels of the pre-
dictor variable. However, in matu-
rity modeling the attention is
turned to the converse problem of



571Roa et al.: Estimation of size at sexual maturity

Table 1
An example of published analyses on size at maturity in crustacean and fish populations. CW = carapace width; CL = carapace
length; TL = total length; m = males; f = females; g = gonadal maturity; m = morphometric maturity.

Paper

Somerton
(1980)

Campbell
and
Robinson
(1983)

Somerton
and
MacIntosh
(1983)

Campbell
and Eagles
(1983)

Somerton
and Otto
(1986)

Gaertner
and Laloé
(1986)

Comeau
and Conan
(1992)

Armstrong
et al. (1982)

Lovrich
and
Vinuesa
(1993)

Roa (1993a)

González-
Gurriarán
and Freire
(1994)

Species

Paralithodes
camtschatica
Chionoecetes bairdi

Homarus americanus

Paralithodes platypus

Cancer irroratus

Lithodes aequispina

Geryon maritae

Chionoecetes opilio

Lophius americanus
(Pisces: Lophiiformes)

Paralomis granulosa

Pleuroncodes
monodon

Necora puber

Fitting method

Weighted nonlinear
least-squares

Nonlinear
least-squares

Weighted nonlinear
least-squares

Nonlinear
least-squares

Weighted nonlinear
least-squares

Nonlinear
least-squares

Nonlinear
least-squares

Linear regression of
Prop. Mature (arcsine-
square root trans-
formed) on Total Length

Probit

Maximum likelihood

Maximum likelihood

l50% (mm)

102.8 (CL, m)
101.9 (CL, f)
114.7 (CW, m)

108.1 (CL, f)
92.5 (CL, f)
78.5 (CL, f)

80.6 (CL, f)
96.3 (CL, f)
93.7 (CL, f)
87.4 (CL, f)

62.0 (CW, m)
49.0 (CL, f)

97.7 (CL, f)
99.0 (CL, f)

110.7 (CL, f)
92.0 (CL, m)

107.0 (CL, m)
130.0 (CL, f)

82.8 (CL, f)

34.2 (CW, m)

368.9 (TL, m)
458.3 (TL, f)

50.2 (CL, m)g

60.6 (CL, f)g

57.0 (CL, m)m

66.5 (CL, f)

27.2 (CL, f)

54.8 CW, m)g

49.8 (CW, f)g

53.3 (CW, m)m

52.3 (CW, f)m

CI 95%

Not reported
Not reported
Not reported

—
—
—

79.4–82.6
95.7–96.9
92.9–94.5
86.4–88.4

—
—

Values not reported

—

—

—
—

—
58.3–62.9
53.9–60.1
63.4–69.5

24.2–30.2

—
—
—
—

CI estimation method

Random partition of data
into subsets and computa-
tion of var (l50%) among the
N independent estimates
of l50%

—
—
—

Random partition of data
into subsets and computa-
tion of var (l50%) among the
N independent estimates
of l50%

—
—

Bootstrap samples were
drawn from the original
data set for obtaining in-
dependent estimates of
l50%, and then computing
var(l50%) among them.

Confidence regions for the
parameters of a logistic
function were computed.

—

—
—

—
Not reported
Not reported
Not reported

Ratio of parameter esti-
mates confidence limits

—
—
—
—

setting a confidence interval for the size at which a
fixed proportion of individuals in a population are
sexually mature. That is, we need a procedure for

estimating uncertainty in the predictor variable be-
cause management decisions are framed in terms of
body size, and hence the uncertainty in estimation
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must be transferred to this variable. The first part
of the problem is the selection of the maturity model.
The available data consist of size (normally length)
and maturity status, which will be assumed to take
only two values: mature or immature. The predictor
variable is continuous and the response variable is
dichotomous. With such variables, model errors dis-
tribute binomially. Welch and Foucher (1988) recog-
nized this aspect of modeling maturity and showed
an efficient procedure based on the principle of maxi-
mum likelihood that takes advantage of the binomial
nature of the errors.

For dichotomous data modeled as a function of a
continuous variable, the following simple logistic
function is a consequence of the assumption of a lin-
ear relationship between the logit link function and
a single predictor variable (Shanubhogue and Gore,
1987; Hosmer and Lemeshow, 1989; McCullagh and
Nelder, 1989):

P l
e l( ) ,=

+ +
α
β β1 0 1 (1)

where P(l) = proportion mature at size l; and
α, β0, and β1 = asymptote, intercept, and slope pa-

rameters, respectively (see also Eq. 3).

The estimates of these parameters, given a data set,
are chosen from the point at which the product of
binomial mass functions of all data points (the likeli-
hood of the data under the model) is a maximum, or
equivalently when the negative of the log likelihood

− = − ( ) + − −( )[ ]∑l( , ) ( ) ln ( ) ( ) ln ( ),α β β0 1 1h P l n h P ll l l
l

(2)

is a minimum,

where h = the number of mature individuals; and
n = sample size at l;
P(l) = Eq. 1; and

where a constant term that does not affect the esti-
mation is omitted.

Given the nonlinear nature of normal equations,
the minimum is found by an iteration algorithm. The
parameters estimated by minimizing Equation 2 are
maximum likelihood estimates (MLE). In practical
situations, the logistic model may be modified from
its original form to allow more biological reality
(Welch and Foucher, 1988).

The result from fitting the model (Eq. 1) to the data
by using the objective in Equation 2, is a vector of
parameter estimates and a covariance matrix, which
represents the uncertainty associated to them. With

these results, we may undertake the converse prob-
lem of estimating size at fixed P% maturity, which
takes the form

l
PP% ln .= −




−1 1

1
1

0

1β
β
β

(3)

In Equation 3 it is assumed that the asymptote pa-
rameter (α) from Equation 1 is fixed at 1. This as-
sumption is justified on the basis of several published
works on size at maturity, showing that all individu-
als were mature above a given size during the repro-
ductive season (Table 1). Furthermore, if β̂ 0 and β̂ 1
are MLE of β0 and β1 and they are used to compute
lP% from Equation 3, then l̂% is also MLE. We show
below three procedures to perform this task and then
test them by generating data from Monte Carlo simu-
lation of the age-size structure and maturity progres-
sion of individuals of a hypothetical population.

Analytical estimation

The logistic model in Equation 1 belongs to a class of
generalized linear models studied by McCullagh and
Nelder (1989). These authors consider the problem
of building approximate confidence intervals for the
level of the predictor variable that gives rise to a fixed
proportion in the response variable. They suggest the
use of Fieller’s (1944) theorem, according to which
the linear combination

β β0 1 0 0+ − =l g PP% ( ) , (4)

where lP% = the value of the predictor variable for a
fixed proportion; and g(P0)=ln(P0/(1–P0)) (the logit
link function) is approximately normal with mean
zero and analytical variance given by

v l l lP P P
2

0 0 1
2

12( ) var( ˆ ) cov( ˆ , ˆ ) var( ˆ ).% % %= + +β β β β (5)

The 100(1–α)% confidence interval is the set of val-
ues defined by

1

1
0 0 2ˆ

ˆ ( ) ( ) ,
/ %

β
β− + ±( )g P z v la P

(6)

where zα/2 = a quantile of the normal distribution.

Other link functions like probit, common in the field
of toxicology (Finney, 1977), are not investigated in
this paper.

Bootstrap estimation

Bootstrap is not a uniquely defined concept (Efron
and Tibshirani, 1993). This means that bootstrap
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samples may be obtained by conceptually different
resampling procedures. In the context of logistic re-
gression, it is possible to resample the observational
pair (li,hi), or the semiobservational pair (li, P(l)+εi),
with εi as a realization from the residual distribu-
tion of the logistic model. To be valid, this second
resampling unit needs the assumption of indepen-
dence between εi and li. As stated by Efron and
Tibshirani (1993), this is a strong assumption that
can fail even when the model P(l) is correct. These
authors remark that bootstrapping the observational
pair is less sensitive to assumptions than bootstrap-
ping residuals. Therefore, in our work an observa-
tion to be resampled with replacement is defined as
the pair (length, maturity status). For each and all
bootstrap samples, a resampled frequency distribu-
tion for lP% is obtained by fitting the maturity model
in Equation 1 with the objective function in Equa-
tion 2 and by computing lP% with Equation 3. The
confidence interval is obtained by application of the
bias-corrected and accelerated (BCa) method, recom-
mended by Efron and Tibshirani (1993).

Monte Carlo estimation

In Monte Carlo resampling, a model is assumed for
the distribution of the estimator and then data are
generated computationally to assess the amount of
variation (Manly, 1997). In our case, we consider a
Monte Carlo resampling of maturity parameters from
the modeled joint probability distribution of the es-
timates β̂ 0 and β̂ 1 for computing l̂ p% from Equa-
tion 3. In contrast to the bootstrap approach, the
implementation of this approach needs only one fit-
ting of the logistic maturity model and then uses the
asymptotic distribution of estimated parameters of
the model to generate the probability distribution of
the derived statistic lP%. These parameter estimates,
β̂ 0 and β̂ 1, distribute asymptotically bivariate nor-
mal, with mean vector equal to the population pa-
rameters and variance given by their covariance
matrix (for nonlinear least-squares: Johansen, 1984;
for maximum-likelihood estimates: Chambers, 1977).
The bivariate normal distribution of β̂ 0 and β̂ 1 has
a strong covariance component, which is the same
as to say that these estimates are highly correlated.
This also means that much of the variance in one
estimate is given by the variance in the other one.
Ignoring such correlation would lead to an overesti-
mation of the variance of lP%. In a Monte Carlo set-
ting, the correlation between parameter estimates
may be considered in the computation by making the
resampling of one estimate conditional on the
resampling of the other one. In this work we develop
such a technique using the theory of least-squares

estimates of two linearly related normal variates
(Draper and Smith, 1981). This approach is justified
by the asymptotic nature of standard errors. If β̂ 0
and β̂ 1 and are two normal random variables that
are linearly related, then we may write the linear
equation

ˆ ˆ ˆ ˆ .β β1 0 1 0= +b b (7)

This equation may be reversed by writing β̂ 0 as a
linear function of β̂ 1 because both are random vari-
ables. It can be shown that (Draper and Smith, 1981)
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where r is the estimated linear correlation coefficient
between β̂ 0 and β̂1, and S β̂0 and S β̂1 are the respec-
tive standard errors. Furthermore, from Equation 7

ˆ ˆ ˆ ˆ .b b0 1 1 0= −β β (9)

Therefore, the high correlation coefficient between
both maturity parameters can be accounted for by
free sampling from the marginal distribution of one
parameter estimate (for example, β̂ 0) in each Monte
Carlo trial and by computing the other by using
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which is obtained by replacing Equations 8 and 9 in
Equation 7. For each trial (indexed by j), a β0 value
is selected from the normal probability distribution
defined by its estimate and standard error, and
then the mean β1 value is computed by using Equa-
tion 10.

The variance of the estimate is the β̂ 0 variance
due to the linear relationship with β̂ 0 plus a residual
variance not explained by the relationship. The vari-
ance due to the relationship is directly transferred
from β̂ 0 to β̂ 1 through the Monte Carlo resampling
of β̂ 0 and its mapping onto β̂ 1 by using Equation 10.
The residual variance must be added in each trial
with

ˆ ˆ ˆ ,, ˆ ˆ , ˆS S rresidualβ β β β1 1 0 1

2 2 21= −





(11)
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Table 2
Parameter estimates used in the model to generate simu-
lated data. Growth and maturity functions given by Roa
(1993a) for female squat lobsters (Pleuroncodes monodon).
Natural mortality rate (M) given by Roa (1993b) for the
same species.

Parameter Value

Size-at-age
σ2 4

Growth
L 44.55
k (/yr) 0.179
t0 (/yr) –0.51

Maturity
α 1
β0 13.648
β1 –0.502
l50% (mm) 27.2

Natural mortality
M (/yr) 0.6

where ˆˆ , ˆr
β β0 1

2 = the proportion of variance due to the
linear relationship.

Note in Equation 10 that when r=0, the mean of
the β̂ 1,j for all j would just be the β̂ 1 estimate, which
means that β0 and β1 values are independently se-
lected in each trial; note also in Equation 11 that the
resampling variance of the estimate would be its to-
tal variance. On the other hand, when r=|1|, Equa-
tion 11 shows that the resampling variance of β1
would be totally due to the mapping of β0,j onto β1,j,
which is expected when the linear relationship be-
tween two variables is deterministic. In this case,
the algorithm presented here would only perform one
Monte Carlo simulation, that on β0. Therefore, the
algorithm is flexible enough to cover the whole range
of correlation between both parameter estimates.

A confidence interval for lP% may be obtained by
the percentile method (Casella and Berger, 1990;
Efron and Tibshirani, 1993), for which two computa-
tional alternatives are available. If the resampling
through the bivariate normal distribution is un-
bounded, then the 100(1–α)% confidence interval is
obtained by ordering the lP%,j from smallest to larg-
est, and taking as bounds the values at positions
NMC(α/2) and NMC(1–(α/2), where NMC is number
of Monte Carlo trials. If the resampling through the
bivariate normal distribution is bounded, with
bounds α/2 and 1–α/2, then the 100(1–α)% confi-
dence interval limits are obtained as the first and
last quantiles when ordering the lP%,j from smallest
to largest.

Monte Carlo simulation

To test the performance of the three procedures in
estimating lP% for different sample sizes, we carried
out a simulation analysis of a model population with
known size-at-age structure, maturity-at-size, and
mortality parameters (Table 2). We explored only the
behavior of the methods for median (50%) size at
maturity (l50%). Performance was evaluated by us-
ing four criteria. First, as the proportion of times that
confidence intervals did contain the true (and known)
parameter (l50% ), which we call success:

success failure

number true lower upper true
number of iterations

= −

= −
− − <{ }

1

1
0( )( )

(12)

Our second criterion was bias, evaluated as the av-
erage, over trials, of the sufficient statistic:

bias
resampled median

true
= , (13)

which is 1 for an unbiased estimator. The third crite-
rion was the length of confidence intervals:

length upper lower= − , (14)

and the fourth and final criterion was the shape of
the interval (Efron and Tibshirani, 1993):

shape
upper median
median lower

= −
−

, (15)

which measures asymmetry around the median. In
all four measures of performance, “upper” and “lower”
refer to the bounds of the confidence interval, “me-
dian” is the median lP%, and “true” refers to the true
value. The deterministic and stochastic features of
our simulation were chosen for a population with
features like those previously reported for the squat
lobster (Pleuroncodes monodon) from the continen-
tal shelf off central Chile (Roa, 1993a, 1993b).

To accomplish this task, we implemented the fol-
lowing three-step algorithm, which we called
MATSIMVL: step 1, generation of Niter=5000 random
samples of maturity-at-size data of sample size
Nsample= 500, 1000, 3000, 5000, and 10,000 individu-
als (Eqs. 16–19); step 2, estimation of the parameter
vector and covariance matrix for each one of these
samples (Eqs. 1 and 2); and step 3, running each of
the three methods to obtain the 2.5%, 50%, and 97.5%
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percentiles of l50% (Eqs. 3–11) In bootstrap, for each
sample size and each of the 5000 trials, we obtained
Nboot=5000 bootstrap samples. With the Monte Carlo
method, we resampled parameter estimate values
from unbounded normal distributions with NMC=
5000. For completeness, NFieller=1.

In step 1, the deterministic size structure of the
population was conceived as a mixture of normal
probability distributions, each normal distribution
corresponding to an age class. The proportion of in-
dividuals at each size interval was characterized by
the following expression

p
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p l
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l
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(16)

where the sum is over 10 age classes (0 to 9) and 41
size classes (0 to 40), and where µt is determined by
a growth equation

µ µt
k t te= −( )∞

− −1 0( ) (17)

with known parameters (Table 2). Variance of size-
at-age (σ2) is known and constant through age (Table
2), and the proportion of individuals at age (Pnt) is
given by a simple exponential mortality model

P
e

e
n

Mt

Mt

t

t
=

−

−

=
∑

0

9
,

(18)

where the mortality rate (M) is known and constant
through age (Table 2).

Random variability came from two sources. First,
samples of the specified sizes were drawn, for each
trial, from a uniform probability distribution and
compared with the cumulative distribution of Equa-
tion 16, accumulating the scores in the respective
size intervals. This computation yielded a sample of
relative size frequencies pnl. Next, we introduced the
second source of uncertainty by assessing the matu-
rity status (mature or immature) of individuals be-
longing to each size class. This random assignment
of maturity status came from resampling the bino-
mial probability distribution

P n n
n
n

P l P lrand
l rand

rand

n n nrand t rand rand( ) ( ) ( ) ,, ( ),= =






−( )−1 (19)

where P(l) was computed from the logistic model (Eq.
1) with known maturity parameters (Table 2) and

nrand is the random number of mature individuals
out of nl,rand=Nsample × pnl individuals in the size in-
terval l. In this way, step 1 was completed by ran-
domly assigning two properties to each data indi-
vidual: a size (continuous variable) and a maturity
status (dichotomous variable). With these data, step
2 was completed by using a nonlinear parameteriza-
tion of the logistic model (Eqs. 1 and 2) for obtaining
estimates of β0 and β1, and their covariance matrix,
by means of the SIMPLEX algorithm (Press et al.,
1992). Having this information in hand, step 3 was
completed by obtaining 2.5%, 50%, and 97.5% per-
centiles by each of the three methods. We pro-
grammed the MATSIMVL algorithm using Microsoft
FORTRAN for PowerStation 4.0 (Microsoft Corp.,
1995).

In the case of the Monte Carlo algorithm, we also
investigated the effect of the natural mortality pa-
rameter, by varying its level in simulation at M=0.2,
M=0.4, M=0.6, and M=0.8, for sample sizes of
Nsample=1000 and 5000 individuals. Niter and NMC
were both kept at 5000.

Finally, we introduce real data to show two appli-
cations of the Monte Carlo method developed here.
First, we estimate lP% (NMC=5000) for a single popu-
lation of the galatheid decapod Pleuroncodes
monodon. In this application, we estimate size con-
fidence intervals for percentages of maturity from
10% to 90% at steps of 10%. In this way a confidence
interval for the whole maturity curve is outlined.
Second, we compare samples of female anchovy
Engraulis ringens from two localities 3° of latitude
apart (NMC=5000) to test the null hypothesis of equal
l50% between them.

Results

The simulation analysis with MATSIMVL yielded
size-at-age and maturity-at-size data with the ap-
propriate behavior as Nsample increased: size-fre-
quency distributions became smoother and maturity
data more closely followed a logistic curve, as shown
by one example output of MATSIMVL data-simulat-
ing routines (Fig. 1).

A summary of the simulation results is presented
in Fig. 2. It shows that, under the simulation condi-
tions, the Monte Carlo method outperformed the
bootstrap and the Fieller methods in proportion of
success at all sample sizes and that it remained very
close to the nominal 95%; the bootstrap method suc-
ceeded 94% or less at all sample sizes, whereas the
Fieller method was unstable between sample sizes
of 500 to 5000, with a minimum of 93% success at
3000 (Fig. 2A). All three methods showed negligible
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Figure 1
Example output of simulated data on size frequency and maturity-at-size generated by one trial of the
MATSIMVL algorithm, for sample sizes of 500 (A and B ), 1000 (C and D), 3000 (E and F), 5000 (G and H),
and 10,000 (I and J) individuals.

bias at low sample sizes and converged neatly to null
bias at large sample sizes (Fig. 2C). Likewise, the
three methods behaved exactly the same in length
of confidence interval, decaying exponentially as
sample size increased (Fig. 2C). Finally, both
resampling methods yielded asymmetrical (right-
tailed) confidence intervals, converging to the same
shape value (ca. 1.1) as sample size increased (by
definition, Fieller’s method yields a symmetrical con-
fidence interval with shape=1).

Percentage success and bias of the Monte Carlo
method under our model for data generation were

fairly insensitive to changes in natural mortality M
(Fig. 3) for sample sizes of 1000 and 5000 individu-
als. Percentage success remained close to the nomi-
nal 95% and bias was negligible. The length of the
confidence interval and asymmetry, however, in-
creased with increasing mortality, showing that es-
timation variance was directly proportional to natu-
ral mortality rate.

Results of the Monte Carlo algorithm with real
data on female squat lobster are shown in Figure 4.
The Monte Carlo confidence interval for l50% was
fairly narrow (25.86 to 28.51 mm carapace length),
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Figure 2
Summary of results from the application of the three methods to simulated data. Open squares = Fieller’s ana-
lytical method; open circles: bootstrap; closed circles = Monte Carlo.

reflecting the effect of large sample size (Nsample=
4458). The Monte Carlo median l50% (27.19 mm cara-
pace length) coincided with the MLE of l50%=–MLE
(β0)(MLE(β1). The amplitude of the confidence inter-
val for lP% showed an increasing trend towards ex-
treme values of P (Fig. 4), a reflection of the alge-
braic structure of Equation 3. Results of the second
application with two samples of female anchovies are
shown on Figure 5. Although different in their
lengths, probably due to different sample sizes, con-
fidence intervals from the two samples overlapped and
have the same upper limit. This result provides sup-
port to the hypothesis of equal maturity schedules be-
tween female anchovies from the two localities.

Discussion

The logistic model is universally used as a math-
ematical description of the relation between body size
and sexual maturity. To model residuals, however,
two different approaches emerge: to consider them

normally or binomially distributed, and closely re-
lated to this, to use the data as proportions or as
counts. In the first (as far as we know) formal treat-
ment of the problem, Leslie et al. (1945) used the
data as proportions, transformed to probit scores, and
assumed the normal distribution. Current research-
ers have not employed probit transformations (but
see Lovrich and Vinuesa, 1993) but have continued
using data as proportions and the normal distribu-
tion for residuals (Table 1). In this work however,
and following the arguments by Welch and Foucher
(1988), we emphasize the need to estimate the ma-
turity model using the data as counts and therefore
to consider residuals as binomially distributed. Un-
der this approach, the standard procedure for fitting
the maturity model is logistic regression (Hosmer and
Lemeshow, 1989).

When the model has been fitted, the problem of
setting a confidence interval for the level of the pre-
dictor variable (size) that gives rise to a fixed pro-
portion of maturity is not trivial. We have explored
here three approaches: one analytical method based
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Figure 3
Effect on natural mortality rate on the performance of the Monte Carlo method. Open circles =1000 indi-
viduals; closed circles = 5000 individuals. Nsample= 5000, NMC= 5000.

on Fieller’s (1944) theorem and the logit link func-
tion, and two computationally-intensive methods
based on nonparametric bootstrap of the observa-
tional pair (li,hi) and Monte Carlo resampling of pa-
rameter estimates from the logistic model. Although
this is not an exhaustive set of methods (for example,
we did not explore likelihood profiles), they repre-
sent a set of conceptually different alternatives to be
tested against the model we used to generate simu-
lated data. In particular, both resampling methods
are especially useful to obtain the distribution of a
function of estimated parameters, such as in Equa-
tion 3, mainly because of their mathematical sim-
plicity, which comes at the expense of extensive com-
putation. Our results indicate that the three meth-
ods to estimate size at P% maturity perform almost
equally well in terms of bias, length, and shape of
the confidence interval, but that Monte Carlo per-
formed better in containing the true parameter
within its confidence bounds with the nominal 95%
rate. This greater accuracy is accompanied by Nboot–1
times less computation than bootstrap.

Bootstrap single assumption was that all observa-
tions from any given sample have the same prob-
ability to appear in a new sample. In contrast, the
Monte Carlo method assumed a bivariate normal
distribution of parameter estimates of the maturity
model. Having simpler assumptions, it is unclear why
the bootstrap method failed more than the nominal
5% of the times at low sample sizes. One reasonable
explanation is that for every sample, there would be
Nboot bootstrap samples, and therefore Nboot numeri-
cal solutions to the normal equations under the bi-
nomial likelihood model. We used here 5000 boot-
strap samples and the SIMPLEX algorithm (Press
et al., 1992). Small errors in the numerical algorithm
coupled with a minimum bias, may add to the nomi-
nal 5%, accounting for the 1% to 2% increase in fail-
ure rate. In contrast, the Monte Carlo algorithm re-
quires a single numerical solution so that it does not
accumulate numerical errors. On the other hand,
Fieller’s analytical method requires a more compli-
cated set of assumptions than the Monte Carlo ap-
proach. Fieller’s method requires normality of a lin-
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Figure 5
Monte Carlo confidence intervals for length at 50% maturity of female
anchovies (Engraulis ringens) sampled from two localities off central Chile.
Open circles and dotted line = Talcahuano (36°45'S) (Nsample=783,
NMC=5000); Closed circles and solid line = San Antonio (33°35'S)
(Nsample=585, NMC=5000); Closed squares = 95% confidence bounds for l50%.

Figure 4
Monte Carlo confidence intervals for P% maturity for female squat lob-
sters, Pleuroncodes monodon (Nsample=4458, NMC=5000). Open circles = raw
data; continuous line = fitted model; closed squares = Monte Carlo confi-
dence bounds for length at P% maturity (P=0.0–1.0 in steps of 0.1).

ear combination of parameter estimates
and therefore assumes a symmetric in-
terval estimate. Both bootstrap and
Monte Carlo results indicate that the
interval estimate can be quite asymmet-
ric. This may account for the better per-
formance of Monte Carlo, as compared
with Fieller’s, in proportion of success.
These remarks, along with the facts
that Monte Carlo’s percentage success
and bias are not affected by a natural
mortality rate varying between 0.2 and
0.8, and that it is very fast on every com-
puter platform, allows us to recommend
the use of the Monte Carlo method to
estimate size at P% maturity.
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