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The variability in parameter esti-
mates from a population analysis is
of great interest to stock assessment
scientists. Monte Carlo simulation
is an intuitively appealing and eas-
ily applied strategy for quantifying
this uncertainty. Over the past six
years, various Monte Carlo assess-
ment methods for the Bering-
Chukchi-Beaufort stock of bowhead
whales, Balaena mysticetus, have
been discussed by the Scientific
Committee of the International
Whaling Commission (IWC). A
Bayesian approach (Raftery et al.,
1995) was adopted and used as the
basis for the IWC assessment of the
stock in 1994. The method was de-
veloped after a 1991 Scientific Com-
mittee (SC) recommendation that
methods for taking full account of
uncertainty about inputs and out-
puts to population dynamics mod-
els be developed. An alternative
maximum likelihood approach was
also used for bowheads (Butter-
worth and Punt, 1995; Punt and
Butterworth, 1996). In contrast to
the adopted method, the latter ap-
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Abstract.–Monte Carlo simulation
from probability distributions is often
favored as a means of quantifying the
uncertainty in the results of a popula-
tion analysis. Observed data are com-
bined with simulations from a popula-
tion model by using subjective distri-
butions for model parameters for which
no data are available. The results from
such methods can unfortunately be in-
accurate unless care is taken in the
combination of these simulations and
the observed data. A Monte Carlo
method was proposed at the 1996 meet-
ing of the Scientific Committee of the
International Whaling Commission for
the assessment of the Bering-Chukchi-
Beaufort Seas stock of bowhead whales.
We show that this method is potentially
inaccurate, and as such, it appears to
be unsuited to the bowhead application
and thus possibly to other similarly
structured management problems.

proach does not allow for uncer-
tainty in the values of various bio-
logical parameters. Rather, it as-
sumes that they are known exactly.

At the 1996 SC meeting, a modi-
fied maximum likelihood assess-
ment to account for uncertainty in
biological parameters was consid-
ered (Punt and Butterworth, 1997).
The assessment method was an ap-
plication of a Monte Carlo approach
developed by Restrepo et al. (1991,
1992). Punt and Butterworth (1997)
cited an example of the use of the
Monte Carlo approach by the Inter-
national Commission for the Con-
servation of Atlantic Tunas, and
Restrepo et al. (1992) applied their
approach to swordfish and cod fish-
ery assessments.

In our paper, we review the pro-
posed Monte Carlo approach, both
in general and in the specific bow-
head application, and evaluate its
performance and its compliance
with established statistical prin-
ciples. We show that in some cir-
cumstances the method can provide
suboptimal results for bowhead as-
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sessment, and it may thus be unsuitable for more
general fisheries management problems. In order to
illustrate the potential pitfalls of the method, some
simulations were performed. The paper is presented
solely as a scientific appraisal of the suggested ap-
proach, and the examples given are purely illustra-
tive. We show how modifications of the technique can
lead to improved performance, but we do not formally
propose any alternative assessment methods here.

The Monte Carlo approach

Description

Restrepo et al. (1992) described an approach to quan-
tifying the uncertainty in the results of sequential
population analyses for various fish stocks. They
motivated their approach by noting that

Fisheries managers recognize the dangers of accept-
ing parameter estimates without consideration of the
variability inherent in the estimates of fish stock status
and related parameters… If all sources of error are
not appropriately accounted for, then estimates of the
uncertainty in the assessment results may be too small.

This Monte Carlo approach (hereafter MCA) proceeds
as follows. Probability distributions are used to de-
scribe uncertainty in the inputs to an assessment
model. These distributions are constructed in two ways:

1 If observed data are available for a specific in-
put, a parametric statistical model for the data is
assumed, and the parameters are estimated by
maximum likelihood. A parametric bootstrap is
then used to obtain a sample of input values.
These values are used as values of the input in
the assessment model.

2 If no data relevant to the input are available, a
subjective “prior” distribution, representing edu-
cated guesses about the true value, is placed upon
it.1  A sample from this prior is used in the as-
sessment model.

The second case occurs in many stock assessment
procedures. For instance, a prior was needed for natu-
ral mortality, M, in the swordfish assessment of
Restrepo et al. (1992). Similarly, we required a sub-
jective distribution for the growth rate parameter,
MSYR in the bowhead whale example in the section
“Application of MCA to bowhead whale assessment.”

1 Such a distribution is effectively a Bayesian prior distribution.
However, since the framework of MCA is not Bayesian, Restrepo
et al. (1992) do not refer to such a distribution as a prior.

The next step in MCA is to compare simulated
model outputs, such as a time trajectory of stock sizes
to observed data, in order to formulate a likelihood
(assuming lognormal deviations). Many input param-
eter sets are drawn randomly from the specified in-
put distributions (i.e. either from data-based boot-
strap or subjective prior), and for each set, a condi-
tional maximum likelihood estimate (MLE) is calcu-
lated for quantities of interest, given the fixed input
parameters and the observed data. The simulation
distribution of such conditional MLEs is used to quan-
tify uncertainty. The simulation is viewed as translat-
ing input uncertainties into output uncertainties.2

MCA is suggested for situations where (possibly
many) nuisance parameters exist. These are typically
the model input parameters for which no informa-
tive data are available. The basic strategy is to esti-
mate the quantities of interest (e.g. current stock size
and production rate) conditional on values of the
nuisance parameters and then to integrate over the
prior for the nuisance parameters. The distribution
of the conditional estimates of the parameters of in-
terest is then examined for the purposes of inference.
For example, if θ̂γ is an estimator of θ, conditional
on nuisance parameters γ, then

ˆ ˆ ( )( )θ θ γ γγ1 = ∫ p d (1)

is an MCA estimate of θ, where p(γ) is the prior for γ.3
In practice, the integral in Equation 1 is not calcu-

lated exactly; it is approximated by using the Monte
Carlo simulation described above. In the form of an
algorithm, MCA proceeds as follows:

1 Obtain the MLE θ̂ γ0
 from the observed data X and

a likely value γ0.
2 Sample γ* from the prior p(γ).
3 Sample pseudo-data X* from a distribution with

density f (x;ψ̂ (X)), where f(x;ψ) is a model for the
data but not necessarily the assessment model
and where ψ̂ (X) is an estimate of the parameters
of this model. ψ̂ (X) may depend on the results of
step 1, namely θ̂γ0 

and γ0, or even on standard
MLEs θ̂ and γ̂. An example of f would be to as-
sume X* ~ N(X,ψ̂), where ψ̂  is an estimated dis-
persion matrix.

2 Restrepo et al. (1992) also consider uncertainty in the assess-
ment model itself, but this issue is not of primary interest here.
In the bowhead whale application, the assessment model is fixed
by the IWC.

3 In general these parameters may be multivariate vectors. For
simplicity, we restrict our focus to scalar parameters in the sub-
sequent examples.
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4 Find the conditional MLE θ̂ γ∗ given γ* by using
the simulated data X*. Store this value.

5 Repeat steps 2–4 many times to obtain a collec-
tion of θ̂ γ∗ ’s.

MCA inference about θ is then based on the distribu-
tion of this collection of θ̂ γ∗ ’s. Typically, the original
θ̂γ0

, or the mean or median of the Monte Carlo sample,
is used as a point estimate, and the 0.025 and 0.975
quantiles form the bounds of a 95% confidence inter-
val.

The Monte Carlo approach is not a straightforward
extension of a sensitivity analysis. Usually, in a sen-
sitivity analysis, a small number of alternative pa-
rameter values are tried, and the individual point
estimates and confidence intervals obtained by us-
ing each parameter set are tabled. Inference usually
follows from a single analysis where a particular
baseline parameter has been set; the remainder of
the table is used to assess how conclusions would
change under different modeling assumptions. With
MCA, a potentially vast number of parameter val-
ues are tried, and an overall confidence interval is
obtained by pooling the results of each individual
analysis, effectively integrating over the distribution
of the nuisance parameters. We show in the rest of
this paper that this integration is a source of poten-
tial bias.

The MCA technique is potentially highly sensitive
to violations of its assumptions. If one is going to
express uncertainty in the value of a parameter by
means of a probability distribution, then this distri-
bution should be treated as a prior in a fully Baye-
sian setup. The method given in Equation 1 provides
estimators that will not necessarily possess the de-
sirable properties of either Bayesian or ML estima-
tors. A general overview of Bayesian methods is given
by Lee (1997).

In a Bayesian framework, the best estimator of θ
(with respect to squared error loss) is the posterior
mean E(θ|data), therefore it would be better to de-
fine the estimator as

ˆ ,

ˆ ,

( )θ θ θ γ

θ π γ γγ

2 = ( ) = ( )[ ] =

( )∫
E E E

d

data data

data
(2)

where θ̂γ = the posterior mean of θ conditional on
γ; and

π(γ|data) = the posterior distribution of γ.

One might regard Equation 2 as a general strategy
and use it in cases where θ̂γ is not necessarily the
Bayesian estimator. In this case, however, the prop-
erties of θ̂ (2) are not clear.

A simple point estimation example

Schweder and Hjort4  first identified potential weak-
nesses with MCA, and they described two situations
where differences between the methods of Equations
1 and 2 arose. The first of these is repeated here:
consider a random sample of size n from a normal
distribution with mean µ and variance σ2, denoted
Xi ~ N(µ, σ2) for i = 1, . . . ,n. Assume that there is a
N(µ0, τ 0

2) prior for µ, where µ0 and τ 0
2 are the prior

mean and variance respectively. Let σ2 be the pa-
rameter for which inference is desired. µ is a nuisance
parameter and σ2 is regarded as fixed. The maxi-
mum likelihood estimate of σ2 conditional on µ is

ˆ ( ) .σ µµ
2 2

1

1= −
=
∑n

xi
i

n

The estimators given by Equations 1 and 2 are then

ˆ ( ˆ ) ( )( )σ σ µ τµ1
2 2

0
2

0
2

1

1= = − +
=
∑E

n
xprior i

i

n

and

ˆ ( ˆ ) ( )( )σ σ µ τµ2
2 2 2 2

1

1= = − +
=
∑E

n
xposterior i post post

i

n

respectively, where µpost and τ 2
post are the posterior

mean and variance of the nuisance parameter µ. For
this simple case, we have closed form expressions
for Equations 1 and 2, and no Monte Carlo sample
from the prior for µ is required. Note that in Equa-
tion 2, σ̂ µ

2  (the conditional maximum likelihood esti-
mator of σ2) is used as θ̂γ. In addition we note that
ˆ ( )σ 2

2  depends on σ2 because both µpost and τ 2
post are

functions of σ2. In other words, the estimator ˆ ( )σ 2
2

depends on the quantity it is trying to estimate. This
occurs when θ̂γ is not the Bayesian posterior mean
of θ conditional on γ. In our examples, we simply
plugged in the ordinary MLE where needed to re-
move this dependency. Thus, to evaluate ˆ ( )σ 2

2  here,
σ̂ std

2  was used as a plug-in estimate of σ2 in the ex-
pressions for µpost and τ 2

post. σ̂ std
2  is the usual MLE

of σ2 and is what would normally be used if condi-
tioning on µ were not of interest.

We know from standard theory that σ̂ std
2  → σ2 as n

→ ∞. Because τ 2
post → 0 and µpost → µ, we have that

ˆ ( )σ 2
2 → σ 2 as n → ∞. ˆ ( )σ 1

2 , on the other hand, will con-
verge to σ 2 only if µ0 = µ and τ 0

2 = 0. It follows that
ˆ ( )σ 1

2  will, in general, yield accurate estimates only if

4 Schweder, T., and N. L. Hjort. 1997. Indirect and direct like-
lihoods and their synthesis—with an appendix on minke whale
dynamics. Paper SC/49/AS9 presented to the IWC Scientific
Committee, October 1997.
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Table 1
Simulation results for the example of Schweder and Hjort (See Footnote 4 in the
main text).

Estimators of  σ 2 (true value is 100)

µ0 τ 0
2 MCA: ˆ ( )σ 1

2 Ad hoc “Bayes”: ˆ ( )σ 2
2 Full Bayes: ˆ ( )σ 3

2 Std. MLE: σ̂ std
2

50 1 95.4 94.5 94.7 94.4
9 102.0 93.0 93.2 92.9

25 121.0 95.9 96.1 95.8

60 1 198.4 100.4 99.8 99.5
9 197.2 92.1 92.3 92.0

25 220.8 99.9 100.1 99.8

70 1 499.8 106.6 103.4 103.1
9 490.0 106.4 106.5 106.2

25 530.4 109.7 110.0 109.6

µ0 is close to µ and τ 0
2 is small.

We show later the practical im-
plications of choosing an esti-
mator for which the data either
do ( ˆ ( )σ 2

2 ) or do not ( ˆ ( )σ 1
2 ) eventu-

ally dominate the prior.
An alternative approach that

does not involve conditioning on
µ is a fully Bayesian analysis
where both µ and σ2 are random
variables. This approach re-
quires the specification of a joint
prior on µ and σ 2. One such
prior is the indifference or “ref-
erence” prior (Jeffreys, 1961)

p( , ) .µ σ
σ

2
2

1∝

The resulting marginal poste-
rior mean of σ 2 is the best Bayesian estimator of this
parameter and is given by

ˆ ( ) .( )σ 3
2 2

1

1
3

=
−

−
=
∑n

x xi
i

n

To investigate the difference between the MCA esti-
mate in Equation 1 and the ad hoc “Bayes” approach
in Equation 2, we performed some simple simula-
tions. For each of nine combinations of µ0 and τ 0

2, a
random sample of size n = 1000 was drawn from a
N(µ=50, σ2=100) distribution. In each case, ˆ ( )σ 1

2 , ˆ ( )σ 2
2 ,

ˆ ( )σ 3
2 , and σ̂ std

2  were determined. The results are
shown in Table 1.

The results show very poor performance for ˆ ( )σ 1
2 ,

and good, similar performances for ˆ ( )σ 2
2 , ˆ ( )σ 3

2 , and
σ̂ std

2 . In this simple case, the analyst would presum-
ably never choose MCA or the ad hoc “Bayes” method
over optimal estimators, such as ˆ ( )σ 3

2  and σ̂ std
2 . The

key point of this example is that if conditioning on
nuisance parameters is to be used, the strategy pre-
sented in Equation 2 appears to be preferable to the
MCA estimate in Equation 1. As mentioned earlier,
the use of Equation 2 has a severe limitation of its
own; we therefore do not regard it as a viable alter-
native approach.

There is considerable literature on the role of con-
ditioning in inference. Reid (1995) has presented a
review of recent developments.

Confidence interval estimation

The example in the section “A simple point estima-
tion example” illustrates poor performance for MCA
with regards to point estimation. Similar problems
occur when constructing confidence intervals.

Consider the following example: let Xi ~ U(γ –θγ, γ
+ θγ) for i = 1,…,100, denote a random sample from a
uniform distribution with bounds specified by the given
functions of θ and γ. Let γ be the nuisance parameter.
The unconditional MLEs are γ̂  = (max Xi + min Xi)/2
and θ̂  = (max Xi – min Xi)/(max Xi + min Xi). The con-
ditional MLE of θ given γ is θ̂γ = (max Xi –min Xi)/(2γ).

Suppose the nuisance parameter, γ, has a U(a,b)
prior, 0 ≤ a < b. MCA would proceed as follows:

1 Sample γ* ~ U(a,b).
2 Use the parametric bootstrap (e.g. Efron and

Gong, 1983) to sample Xi
* ~ U( γ̂ – θ̂ γ̂ , γ̂ + θ̂ γ̂ ), i =

1, . . . ,100.
3 Find the conditional MLE, θ̂γ ∗ , using the boot-

strap data, and conditioning on the current γ*.
4 Store θ̂γ∗  and go to step 1. Use the collection of

θ̂γ∗ ’s to obtain a confidence interval with the
quantile method.

The ad hoc “Bayes” method, which relies on sampling
from the posterior, proceeds with the same steps ex-
cept that step 1 is replaced by

1. Sample γ* from its posterior distribution.

Here, if we think of the likelihood as a function of γ
only, then the posterior for γ is proportional to

1
2θγ

γ θγ γ θγ γI X I a bi
i

( ) ( ),− ≤ ≤ +








 ≤ ≤∏

where I is an indicator function given by

I x
x
x

( ) =




1 if  is True
0 if  is False.
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Because this posterior depends on θ, we plugged in θ̂
in the same way as we did for the ad hoc “Bayes” method
in the section “A simple point estimation example.”

In a simulation example, we let θ = 4, γ = 4, a = 0,
and b = 8, so that the true value for γ was at the
midpoint of its prior. The MLEs were θ̂  = 4.06 and γ̂
= 3.88. The 95% MCA interval for θ was (1.99, 87.55).
The interval obtained with the ad hoc “Bayes” method
was (3.78, 4.03). The MCA interval was 342 times
wider than the second interval, and 2.7 times wider
than the range of the observed data.

Note that the MLE θ̂  is not contained in the sec-
ond interval above. This is an undesirable result of
the ad hoc “Bayes” method here. One possible rem-
edy is as follows: instead of simply plugging θ̂  into
the posterior for γ each time we sample from it, we
could attempt to “integrate over theta” by plugging
in a different estimate of θ on each occasion. Each of
these plug-in values for θ can be obtained by calcu-
lating the MLE of θ from a nonparametric bootstrap
sample of the real data X. The confidence interval
resulting from this strategy was (3.59, 4.08), so the
MLE is now contained in the interval. We stress that
this is again an ad hoc solution and we strongly fa-
vor standard maximum likelihood or Bayesian meth-
ods over either MCA or the ad hoc “Bayes” method.

Finally, the example can also be twisted so that the
MCA interval is too narrow. Suppose Xi ~ U(γ – θ γ2, γ +
θ γ2). This leads to θ̂ γ = (max Xi – min Xi)/(2γ2), a cusp-
shaped function of γ over any interval that includes 0.
Thus, considering γ  priors of the form U(–a,a) for a > 0,
we observed that MCA leads to the surprising result
that the width of a quantile-based confidence interval
for θ approaches 0 as a increases, while holding the ob-
served data fixed. In other words, the width of the confi-
dence interval is entirely dependent on the prior, and
wider priors lead to narrower MCA confidence intervals.

Application of MCA to bowhead whale
assessment

Punt and Butterworth (1997) examined the applica-
bility of MCA in the assessment of the Bering-
Chukchi-Beaufort stock of bowhead whales. As with
the swordfish assessment of Restrepo et al. (1992),
the approach involved generation of pseudodata with
a parametric bootstrap. In the bowhead case, the real
data consisted of abundance estimates and corre-
sponding CV estimates for several years, and ob-
served age-class proportions. Thus, each MCA simu-
lation consisted of the following:

1 Bootstrapping of data. A series of pseudo-abun-
dance estimates is bootstrapped from the observed

data (Table 1 in Punt and Butterworth, 1997).
Each estimate is assumed to be independent and
from a lognormal distribution with mean and CV
equal to the observed estimates from that year.
Pseudodata for fractions of calves and matures
are generated from Table 4 of IWC (1995).

2 Sampling of biological nuisance parameters from
priors. Parameters such as age at maturity and
natural mortality rates are generated from prior
distributions from IWC (1995).

3 Conditional estimation. Conditional on the val-
ues of the nuisance parameters, maximum likeli-
hood estimation is used with an age-structured
density dependent population dynamics model to
obtain estimates of the parameters of interest:
carrying capacity (K) and a productivity param-
eter (MSYR). The likelihood contains contribu-
tions from both the abundance and proportion
data.

4 Uncertainty estimation. The variation in condi-
tional MLEs is used to represent uncertainty.

Note that K and MSYR are the parameters of inter-
est (denoted by θ in our previous notation), whereas
the other biological parameters take the role of γ. The
distributions from which they were simulated are the
prior distributions. The results of 1000 replications of
this procedure are used to form confidence intervals.

A simple population dynamics model

For the purposes of illustration, we applied MCA to a
simple population dynamics model (PDM). This is a
non-age-structured density dependent PDM given by

P P C MSYR P P Kt t t t t+ = − + −( )1
21 5 1. ( ) ( / ) , (3)

where Pt = the population in year t, with t = 0 cor-
responding to the baseline year before
commercial hunting started (here 1848);

K (or P0) = the initial population size or carrying
capacity;

MSYR = the maximum sustainable yield rate of
production as a proportion of the popu-
lation aged 1+; and

Ct = the number of whales killed by hunting
in year t (known exactly).

This model is much simpler than the BALEEN II
PDM (de la Mare and Cooke5 ) used by the IWC for

5 de la Mare, W. K., and J. G. Cooke. 1993. “BALEEN II: The
population model used in the Hitter-Fitter Programs”. Unpub-
lished manuscript available from the IWC Secretariat, The Red
House, 135 Station Road, Histon, Cambridge, UK CB4 4NP.
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bowhead assessment, but it nevertheless captures
many of the essential features of the bowhead popu-
lation. The model is viewed as having two inputs (K
and MSYR) and one output (P1993); with fixed values
of MSYR and the initial K, Equation 3 is applied re-
cursively until P1993 is obtained. We use the term
“model input” for input parameters whose true value
is uncertain. Since the time series of catches Ct is
exactly known, we regard it as a set of constants in
Equation 3, rather than as a set of model inputs.

In our simplified version of the bowhead analysis,
we treated MSYR as a nuisance parameter (γ in our
previous notation) and K was the parameter of in-
terest (the θ from before). The only parameter about
which we observed data for a parametric bootstrap
was P1993. MSYR was assigned a subjective prior dis-
tribution. In terms of implementation, we ran the
model “backwards” with P1993 and MSYR as inputs
and K as output. A Newton-Raphson algorithm was
used to solve for K. As a result, we effectively had
P1993 and MSYR as model inputs, and K (obtained
conditionally on MSYR and the data) as the model
output.

Implementation of MCA and a Bayesian approach

To evaluate MCA, we examined its performance when
the true whale stock status was known. “True” val-
ues of K and MSYR were selected, and the PDM was
run to obtain the “true” value of P1993. Because K
(the parameter of interest here) has a “true” value,
we were able to assess the accuracy of the estimates
produced by the simulations.

MCA was applied to the simple PDM of Equation
3 in a number of steps. The prior for the nuisance
parameter MSYR was gamma(8.2, 372.7), and the
likelihood for the observed total population in 1993
was N(P1993,6262). These choices were based on IWC
consensus (IWC, 1995) and were the same as used
in previous work (Raftery et al.6 ).

We assumed that we had a single observation from
the likelihood for P1993. In practice such an observa-
tion is usually obtained by means of a census. The
observation is typically a maximum likelihood esti-
mate of P1993, therefore we denoted it by P̂1993.

An original conditional MLE was obtained by con-
ditioning on a “likely” point estimate of MSYR, say
MSYR0. We chose MSYR0 = 0.02, the mean of the
prior for MSYR. The model was then run backwards
(i.e. with P̂1993 and MSYR0 as inputs) and the likeli-

6 Raftery, A. E., D. Poole, and G. H. Givens. 1996. The Baye-
sian synthesis assessment method: resolving the Borel Para-
dox and comparing the backwards and forwards variants.
Paper SC/48/AS16 presented to the IWC Scientific Committee,
June 1996.

hood maximized. The resulting output was the con-
ditional maximum likelihood estimate K̂ MSYR0 of K
because (given MSYR0) it lead to the value of P1993
that maximizes the likelihood.

The MCA estimation then proceeds as follows:

1 Draw P̂*
1993 from N( P̂1993,6262). This is the para-

metric bootstrap from a distribution with mean
given by the observed total population in 1993.

2 Draw MSYR* from the prior for MSYR.
3 Obtain K̂ MSYR* by running the model backwards

with P̂*
1993 and MSYR* as inputs.

4 Repeat steps 1–3 many times to form a collection
of K̂ MSYR* estimates. Like Punt and Butterworth
(1997), we used 1000 replications.

5 Use K̂ MSYR0
 and the distribution of the K̂ MSYR*

estimates to obtain inference about K. Specifically,
the distribution of the K̂ MSYR* estimates shows
how the conditional MLE of K changes as MSYR
is varied according to its prior.

For comparison with MCA, consider a fully Bayesian
analysis which involves specifying priors for every
model parameter, i.e. K, MSYR, and P1993. This in-
troduces an extra complication in that the input dis-
tributions and the model together induce a distribu-
tion on the output. There are thus two distributions
(the specified prior and the induced distribution) on
the output that need to be combined or reconciled in
some manner. For our “backwards” implementation
of the model here, the priors for MSYR and P1993 in-
duce a prior on the output K. This issue has received
considerable attention at the IWC and work in the
area is ongoing. A possible solution involving loga-
rithmic pooling of the two distributions is discussed
in Raftery et al.6 and Raftery and Poole.7

For this example, it was useful to compare a Baye-
sian approach with MCA, but avoiding the added
complexity of the prior incoherence. This could be
achieved if we simplified the Bayesian analysis
slightly by ignoring the prior on the output K. We
had a prior for MSYR and a likelihood for P1993 as
we did in the MCA implementation above. In addi-
tion, we now also had a N(7800,13002) prior for P1993.
This was the prior used in Raftery et al.6 and was
again based on IWC consensus. The prior and likeli-
hood were combined to yield a posterior distribution
for P1993. Because we had no data on MSYR, its prior
was not updated to a posterior. The only operational
difference between MCA and the Bayesian method
was in the generation of values for P1993: with MCA,

7 Raftery, A. E., and D. Poole. 1997. Bayesian synthesis meth-
odology for bowhead whales. Paper SC/49/AS5 presented to
the IWC Scientific Committee, October 1997.
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Table 2
Simulation results for the simple bowhead whale population dynamics model (PDM).

Parameter set MCA quantiles, K̂ MSYR* Coverages

MSYR K P1993 P̂1993 K̂ MSYR0
0.025 0.5 0.975 MCA (%) Bayesian (%)

0.02 14,700 8,733 7,506 14,640 11,230 14,360 18,870 100 100
8,733 14,700 11,260 14,400 19,160 100 100
9,960 14,780 11,330 14,450 19,540 100 100

0.04 11,300 9,896 8,669 14,700 11,250 14,400 19,120 68 66
9,896 14,780 11,290 14,470 19,450 55 63

11,123 14,880 11,580 14,560 19,840 0 23

0.01 18,500 6,971 5,744 14,570 11,270 14,300 18,430 38 54
6,971 14,620 11,260 14,340 18,710 80 88
8,198 14,670 11,270 14,380 19,000 99 99

values were bootstrapped from a distribution whose
parameters were determined by maximum likelihood;
with Bayes, they were sampled from the posterior.

Simulation results

Simulations were performed by using three sets of
“true” parameters as shown in the first three col-
umns of Table 2. The values of MSYR in these three
sets of simulations correspond to the 0.5, 0.975, and
0.025 quantiles (respectively) of the gamma (8.2,
372.7) prior for this parameter. In this way, we in-
vestigated the performance of the method when the
true MSYR is at the center and the boundaries of its
prior 95% probability interval. In each case, a value
of K was chosen such that extinction did not occur
and P1993 was positive.

The first set of simulations represents a scenario
where the mean of the prior for MSYR happens to
coincide with the true value. If we use the prior mean
as a point estimate (or “best guess”) of MSYR, then
our point estimate and the true value are the same.
For this set, then, we would expect all assessment
methods to provide accurate inference about K. The
remaining two sets of simulations represent sce-
narios where our prior is inaccurate, i.e. the true
MSYR is either larger or smaller than the prior mean
(which remains unchanged). In these cases, this in-
accuracy is naturally going to cause the resulting
distribution of the output K to be biased. All assess-
ment approaches will be affected by this bias, par-
ticularly with respect to their point estimates of K.
Indeed, these parameter sets represent situations
that all assessment scientists would like to avoid.
The key point of interest is the extent to which a
method can be insensitive to poor prior information
and still provide somewhat reliable inference.

The results of the simulations are shown in Table
2. For each of the three sets of true parameters, the
MCA analysis was run three times by using the 0.025,
0.5, and 0.975 quantiles of the normal likelihood as
the observed 1993 population, P̂1993. Then, this en-
tire simulation design was replicated 500 times. The
quantiles shown are MCA medians for K̂ MSYR* across
the 500 replicates, and the coverage rates (last two
columns) show the percentage of the 500 replicates
for which the estimated 95% MCA or Bayes confi-
dence interval covered the truth.

In the first set of simulations, where the true
MSYR and the prior mean MSYR0 were exactly
equal, the conditional MLE K̂ MSYR0

 was very accu-
rate. This is to be expected in this optimistic (if some-
what unlikely) scenario. The MCA confidence inter-
vals provided by K̂ MSYR* covered the true K in all
cases, as did the confidence intervals obtained with
the Bayesian method. Also, the estimation was fairly
insensitive to the accuracy of the estimate P̂1993. A
difference of 1227 whales in the estimate of P1993 (i.e.
two standard deviations) resulted in K̂ MSYR0 chang-
ing by less than 100 whales.

In the second set, the true value of MSYR was greater
than the prior mean. This resulted in K having been
overestimated. Here, both MCA and Bayesian results
were biased by the use of the same bad prior, but the
MCA coverage was worse. If follows that the subopti-
mal behavior of MCA cannot be attributed solely to the
choice of prior. The 95% MCA intervals provided poor
coverage of the truth, worse when P̂1993 was accurate
than when it was too low. For the Bayesian method,
this difference was not as great. The coverage of the
Bayesian intervals was somewhat better in two cases,
particularly when P̂1993 was too large.

In the final set, the true value of MSYR was at the
low end of the prior interval, and we observed that K
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was underestimated by about 4000 whales for all
three values of P̂1993. The estimates of K were inac-
curate regardless of the accuracy of P̂1993. Although
not shown, this inaccuracy holds for the Bayesian
method as well as for MCA. Both methods provided
the best coverage when P̂1993 was too large, but the
Bayesian method provided better coverage than MCA
in the other two cases. Again, these results separated
coverage problems attributable to inaccurate priors
from additional performance degradation apparently
introduced by opting for MCA analysis.

As a final point, these simulations and others that
we ran suggest that the MCA estimates of K are
heavily dependent on the prior distribution for
MSYR, to the point of being undesirably insensitive
to the true values of K, P1993, and the data P̂1993.
This behavior is more extreme than would be the
case if the prior was updated to a posterior in a fully
Bayesian framework. These results concur with the
results in the section “A simple point estimation ex-
ample,” where the MCA estimates were greatly in-
fluenced by the prior mean and variance. When the
prior is accurate and precise, MCA may perform well,
as will Bayesian techniques. Bayesian techniques
seem to weight the data more heavily in relation to
the prior, than does MCA.

Relation between MCA and bootstrap

The MCA approach described in the section “Imple-
mentation of MCA and a Bayesian approach” in-
cluded bootstrapping the abundance data uncondi-
tionally. A standard (conditional) bootstrap would
proceed by resampling the residuals (e.g. Efron and
Gong, 1983, p. 43) from the model fit. The uncondi-
tional approach used in the bowhead application in-
troduced excess variability because bootstrapped
pseudodata varied about the observed data, which
in turn varied about the model fit.

The general MCA approach might be viewed as an
approximation to a bootstrap that is unconditional
on the model fit. In such applications (e.g. Smith and
Gavaris, 1993), the interpretation of the stochasticity
thereby introduced must be carefully considered if it
differs from the data stochasticity that causes esti-
mation uncertainty. When, as is permitted with MCA,
the unconditional approach simulates from a sub-
jective prior rather than from data, the method is
not a bootstrap because the simulation reflects
stochasticity other than that introduced by data used
for estimating the parameter.

Even in the case when sufficient data are avail-
able to permit parametric bootstrap simulation of all
inputs (case 1 in the section “The Monte Carlo ap-

proach”), MCA does not reduce to a parametric boot-
strap of the desired estimator. A parametric bootstrap
expresses sampling uncertainty about a statistic
R(X, F(θ)), where X ~ F, by observing the distribu-
tion of R(X*, F̂  (θ)), where F̂  is an estimate of F that
depends on the data X, and X* ~ F̂. Variability in R
is due to X. A parametric bootstrap arises when a
model F̂ (θ) = F(θ) is fitted, or less desirably F̂ (θ) =
G( γ̂ ) in some applications of MCA. In this case, θ̂  or
γ̂  should be estimated from the data, X, whose
stochasticity induces sampling variability in
R(X, F(θ)). However, with MCA, θ̂ or γ̂ is estimated
from different data, not the data on model output
parameters, although it is the uncertainty associated
with estimators of output parameters that is desired.
Even in this case, the sampling distributions used
are effectively data-based priors, and MCA relies on
the unusual approach of integrating a conditional
maximization of the likelihood over the prior.

Conclusion

Theoretical investigation and simulation show that
the combination of Bayesian and conditional maxi-
mum likelihood techniques used by MCA has the
potential to yield quite variable or biased results, or
both, though it can perform well in ideal circum-
stances. In some situations, a fully Bayesian or clas-
sical ML solution can be obtained by small modifica-
tions to MCA, and the optimal properties of these
more standard methods are well known. For more
complex problems, Bayesian and ML solutions are
sometimes more difficult to obtain than is an MCA
solution. However, as our examples illustrate, MCA
can result in unreliable inference even in simple situ-
ations. MCA integrates a conditional maximization of
the likelihood over the prior, whereas a fully Bayesian
approach integrates a conditional mean. If one uses
what is effectively a Bayesian prior, then it is subopti-
mal to use it in a non-Bayesian inference framework.

We have seen how MCA produces estimates with
excessive bias. However, there may exist classes of
assessment problems where, owing to some feature
that is identifiable in advance, the extra bias is ac-
ceptably small. MCA could be applied to such prob-
lems because the excess bias would not cause MCA
results to differ much from results produced by ei-
ther fully Bayesian or ML methods. Our bowhead
whale and simple examples clearly do not belong to
such a class. Furthermore, in the general case, the
extent to which MCA might err is not controllable or
estimable by the analyst. Although MCA can produce
good estimates in some applications, a method that
can also go badly wrong is risky when one does not
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know the extent of problems in any particular applica-
tion. When priors are used, the usefulness of Bayesian
approaches (when obtainable) would seem to be greater
than MCA, because the effect of the priors is washed
out with increasing data (contrary to what happens
with MCA). When priors are not required, either Baye-
sian or MLE techniques might be usefully applied.
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