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Introduction to ocean color and hyperspectral data 

Nearly every lifeform on this planet depends on just a tiny portion of the sun’s electromagnetic 
spectrum (“visible light” from 400–700 nm) by which terrestrial and aquatic plants photosynthesize, 
create food, sequester carbon, and give us the oxygen that we breathe. When this visible light hits the 
surface of our planet and encounters our oceans, different materials within the water (e.g., 
phytoplankton, dissolved organic material, dying or dead organisms, floating seaweed, pollutants, 
suspended sediments from land, among other things) absorb and scatter different amounts and types 
(wavelengths) of light. The resulting optical fingerprint that these materials impart on the water can 
be unique, enabling sensitive ocean color sensors on satellites to surmise and map the composition 
of the ocean from space. How well we unravel the ocean’s composition from this signal largely 
depends on how well we can see these colors.  

Our heritage ocean color satellites detect anywhere from 5–10 wavelengths, which has limited our 
ability to distinguish some of the aforementioned ocean properties from one another. The launch of 
the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE)1 mission on February 8, 2024 introduced 
the satellite community to global “Hyper”-spectral measurements, meaning a spectrally continuous 
sampling of light. This has afforded the opportunity to sense the ocean through an entirely new lens 
by being able to resolve previously undetectable, subtle features unique to, for example, a particular 
phytoplankton class, or other ocean constituents.  

NOAA plans to codify these hyperspectral ocean color capabilities well into the 2050s with the launch 
of the Geostationary EXtended Orbit (GeoXO)2 mission, preceded by NASA’s Geostationary Littoral 
Imaging and Monitoring Radiometer (GLIMR)3, which will offer perspectives from a geostationary 
orbit, where we can revisit the same area several times per day at higher resolutions than PACE. This 
document is intended to familiarize readers with the capabilities and nuances of available and 
emergent ocean color data products to help guide implementation plans for use in aquaculture and 
fisheries management at NOAA Fisheries. 

 

Figure 1. The 5 panels (right) display the spectrum of light corresponding to the ocean color shown. 
The shape of the color intensity changes across the spectrum, providing a unique fingerprint 
imparted by the materials in the water.  

https://pace.gsfc.nasa.gov/
https://www.nesdis.noaa.gov/our-satellites/future-programs/geoxo/geoxo-ocean-color-instrument-ocx
https://eos.unh.edu/glimr
https://eos.unh.edu/glimr
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How is ocean color data currently used for fisheries management? 
Ocean color data have an extensive history of usage in fisheries management, and the utility of this 
data stream for NOAA Fisheries continues to grow, especially as more applications for aquaculture4 
are explored. The following are only a few examples of how ocean color is utilized at NOAA Fisheries. 

• Ocean color and other satellite-derived variables are included in ecosystem status reports5, 
ecosystem socioeconomic profiles6, and end-to-end ecosystem models7, and these products are 
presented to U.S. Regional Fisheries Management Councils. This information gets reviewed 
annually during harvest recommendations for various species and is qualitatively considered in 
the risk tables or buffer setting processes that evaluate whether a reduction from max catch limits 
is warranted. 
 

• Ocean color data are considered in the stock assessment process for several species. For instance, 
at the Southeast Fisheries Science Center, red8 and gag9 grouper assessments have used ocean 
color data to inform modeled mortality due to red tides, reducing overfishing risk10. At present, 
several research track stock assessments and fishery forecasts are using ocean color data (e.g., 
golden tilefish11, Pacific swordfish12, bigeye tuna13, and more). 
 

• NOAA's predictive spatial monitoring of highly migratory species14 combines observer data and 
environmental data, including ocean color, to predict where and when fishery interactions may 
occur. This can help determine where vessels should fish or collect data, assess spatial 
management areas and closures, determine essential fish habitat, assist in ecosystem-based 
fisheries management, and understand the impacts of climate change on fisheries. 

 
• NOAA’s Climate, Ecosystems, and Fisheries Initiative (CEFI)15 is reliant on the skill and 

performance of regionally tuned Modular Ocean Models (MOM-6)16. Ocean color satellite data 
provide a critical source of validation for the model’s coupled Carbon, Ocean Biogeochemistry 
and Lower Trophics (COBALT)17 component, and a high quality ocean color data record is 
necessary to tune the historical runs18. 

 
• Ocean color data are used to inform Harmful Algal Blooms (HAB) models being run around the 

country by the National HAB Forecast Branch of NCOOS19 and its partners. Other tools include 
the Pacific Northwest HAB Bulletin20 as well as the California-Harmful Algae Risk Mapping (C-
HARM)21 tool, which assesses toxin risk of Pacific coastal shellfish. These data are distributed to 
shellfish managers who use this information to make decisions to support safe seafood22. 

 
• Ocean color data are used or assimilated into a diverse portfolio of species distribution models 

developed and used in NOAA Fisheries. These models help managers identify areas of spatial and 
temporal overlap between managed species and commercial fisheries, which can be used to 
reduce bycatch23, mitigate ship-strikes24, or inform impact assessments, for example, offshore 
wind energy development25.  

In the context of ecosystem-based fisheries management, it is imperative to integrate the low end of 
the trophic continuum, as phytoplankton acutely respond to environmental variability, and their 
abundance, phenology, and overall composition determine the transfer efficiency and ultimate fate 
of energy in marine ecosystems. Currently, phytoplankton biomass can be directly inferred from 
satellites; inferences about phytoplankton community composition and physiology are additionally 
being made possible with recent advances toward hyperspectral radiometry. More broadly than 
trophic significance, the ocean’s color and ambient underwater light field can also be considered, 
which directly impacts vision-driven behaviors26 and potential mortality27. 

https://coastalscience.noaa.gov/science-areas/aquaculture/coastal-aquaculture-planning-portal-capp/
https://www.integratedecosystemassessment.noaa.gov/ecosystem-status-reports
https://doi.org/10.1080/08920753.2023.2291858
https://doi.org/10.1016/j.ecolmodel.2022.110038
https://sedarweb.org/documents/sedar-42-rw-02-assessing-the-impact-of-the-2014-red-tide-event-on-red-grouper-epinephelus-morio-in-the-northeastern-gulf-of-mexico/
https://sedarweb.org/documents/s33dw08-satellite-derived-indices-of-red-tide-severity-for-input-for-gulf-of-mexico-gag-grouper-stock-assessment/
https://doi.org/10.1016/j.fishres.2022.106271
https://apps-nefsc.fisheries.noaa.gov/saw/sasi_files.php?year=2024&species_id=30&stock_id=6&review_type_id=5&info_type_id=5&map_type_id=&filename=WP%2001%20Salois_et%20al%202024%20-%20GTF%20ESP.pdf
https://repository.library.noaa.gov/view/noaa/17876
https://doi.org/10.1111/fog.12487
https://doi.org/10.1007/s00227-021-03951-7
https://psl.noaa.gov/cefi_portal/
https://mom-ocean.github.io/
https://doi.org/10.5194/gmd-16-6943-2023
https://doi.org/10.5194/gmd-16-6943-2023
https://psl.noaa.gov/cefi_portal/#historical
https://coastalscience.noaa.gov/science-areas/habs/hab-forecasts/
https://www.nanoos.org/products/habs/forecasts/bulletins.php
https://coastwatch.noaa.gov/cwn/news/2023-03-14/c-harm-predicting-harmful-algal-blooms-satellite-data.html
https://coastwatch.noaa.gov/cwn/news/2023-03-14/c-harm-predicting-harmful-algal-blooms-satellite-data.html
https://repository.oceanbestpractices.org/handle/11329/1850
https://doi.org/10.1126/sciadv.aar3001
https://www.fisheries.noaa.gov/west-coast/marine-mammal-protection/whalewatch
https://doi.org/10.3389/fmars.2021.629230
https://doi.org/10.3389/fmars.2021.629230
https://doi.org/10.1139/cjfas-2020-0376
https://doi.org/10.1007/s00442-016-3779-y
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What is special about hyperspectral data? 
Until recently, satellite remote sensing of ocean color has involved the analysis of discrete “bands” of 
color information. Each individual band possesses a unique spectral response function, which 
represents the range of wavelengths that a particular band is capable of seeing. A satellite radiometer 
measures the total intensity of electromagnetic radiation within that specific wavelength range and 
provides a single value for the overall radiant energy. Typical multi-spectral ocean color bands 
measure at a bandwidth of 20 nm or more (Figure 2, left). A wide bandwidth can be handy because 
it allows a satellite to collect photons more efficiently and thus reduce noise in the data output (i.e., 
too little light equates to grainy imagery). The tradeoff is that any spectral details within that 
wavelength range are lost.  

By contrast, a hyperspectral spectrometer, such as that aboard the PACE satellite, breaks down light 
into its individual wavelengths (Figure 2, right). Providing information about specific wavelengths 
and their intensities allows for a more detailed analysis of the spectral fingerprint that the water 
imparts. With a continuous (i.e., gapless) spectrum of light sampled, various mathematical techniques 
such as derivative analyses can be employed to help amplify underlying patterns and/or subtle 
features28 that may be otherwise hidden.  

 



















 
Figure 2. (Left) The relative spectral response of the Visible Infrared Imaging Radiometer Suite 
(VIIRS) sensor compared to that of PACE (right). Narrower bandwidth and more bands are what 
constitute the “hyperspectral” nature of spectrometers.  
 

One advantage of having hyperspectral information is that it can provide insights into phytoplankton 
community composition, among other applications. There are over 10,000 species and taxa of 
phytoplankton, spanning five orders of magnitude in size and containing unique assemblages of light-
absorbing pigments. While all phytoplankton contain chlorophyll-a, additional pigments may be 
present, including other chlorophylls (b, c), various carotenoids, and phycobiliproteins. The presence 
or absence of certain pigments can be indicative of a particular phytoplankton class or species; thus, 
subtle spectral features can contain information that helps distinguish some phytoplankton from one 
another (e.g., differentiate dinoflagellates from diatoms), as well as help differentiate living from non-
living materials. Sections 2 and 3 of this document go into more specific detail on the relative benefit 
that hyperspectral information imparts on individual ocean color products.   

 

https://doi.org/10.1364/OE.25.00A785
https://doi.org/10.1364/OE.25.00A785
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To what degree can I trust satellite ocean color data? 
To answer this question, it is helpful to consider what we are physically observing when we look at 
the Earth’s oceans from space. As mentioned in the Introduction, the color of the ocean is a direct 
function of how the materials in the water are absorbing and scattering light. However, before a 
satellite can detect this ocean-modified color signal, the sunlight must first journey into, and then out 
of, the Earth’s atmosphere. Between this space, several other things are absorbing and scattering 
light, effectively changing the nature of the color that a satellite sees. Some of these things include 
aerosols, molecular (Rayleigh) scattering, gases in the atmosphere, dust, sun glint, and whitecaps on 
the ocean’s surface, to name a few. Collectively, these elements account for the overwhelming 
majority (>90 percent) of the total light signal that a satellite sees. This atmospheric signal has to be 
accounted for and “removed” before we can infer anything about what lies beneath, and herein lies 
one source of uncertainty.  

Our hyperspectral ocean color instruments, such as PACE, are engineered to estimate the ocean’s 
individual color channels with less than a 5–10 percent margin of uncertainty, depending on what 
part of the color spectrum we are looking at. This level of uncertainty is achieved through a 
continuous process of sensor calibration updates, vicarious calibration from a traceable in situ 
reference sensor, and field validation campaigns to assess performance and correct for the inevitable 
degradation of the sensor in a harsh space environment.  

The other source of uncertainty arises when using this color information to then empirically infer 
something about the contents of the ocean. The challenge is that we have to decipher what specific 
components of the ocean water are causing the color to change. For example, any combination of 
microscopic phytoplankton, dissolved organic matter, sediments, dead cells, suspended particles, 
floating seaweed, runoff, (some) pollution, or oil slicks will have their own unique “optical 
fingerprint” based on their presence, size, shape, abundance, and overall composition of these 
components. Sometimes, these signals overlap, for 
instance, while the photosynthetic pigment chlorophyll-
a (contained within all phytoplankton) preferentially 
absorbs blue light, so also does dissolved organic matter 
(Figure 3). This is not a problem if the organic matter is 
created from phytoplankton, but when it comes from an 
outside source (e.g., river input), these competing 
signals do not co-vary, and they become more difficult 
to disentangle. Uncertainties for a product like 
chlorophyll-a are nominally ±35 percent, with better 
performance in offshore blue waters relative to 
nearshore, coastal waters. Modern advances in 
computing (e.g., machine learning) as well as sensor 
technology (hyperspectral + UV) offer pathways for 
enhanced distinction of these separate components and 
substantial uncertainty reduction for chlorophyll-a29 in 
coastal waters. 

Figure 3. Spectral absorption of light 
from varying seawater constituents. 

Even with the inherent uncertainties, the value of satellite ocean color observations should not be 
understated. It would take roughly 11 years for an average-speed ship (~10 mph) to measure what 
a satellite can detect in under 2 minutes, lending us a unique, synoptic view of biogeochemical 
processes over time and space scales that we just cannot resolve in the field. Even so, we will always 
need field measurements to help us connect what we see from satellites to what is really going on in 
the ocean, and it is worth noting that pairing field data with satellites ultimately maximizes the value 
of both data streams. 

https://doi.org/10.1016/j.rse.2023.113706
https://doi.org/10.1016/j.rse.2023.113706
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Which satellite(s) do I want to use? 
The ocean is a relatively dark target as viewed from space, making up only 4–10 percent of the light 
signal seen from a satellite’s perspective above the atmospheric layers. As such, ocean color satellite 
sensors need to be very sensitive in order to collect a usable signal, but not so sensitive that the 
radiance (light) signal saturates the optics. There are various trade-offs to consider when designing 
a satellite, and these impact the potential usability of data products. Different satellite missions may 
exhibit variations in the spatial resolution (size of the “pixel”), temporal resolution (how often a 
satellite passes the same area), and spectral resolution (how many discrete colors are sampled), 
making some satellites better suited for certain applications over others. A satellite with relatively 
high spatial resolution (e.g., Landsat - 30 meter pixels) would be useful to resolve very near-shore, 
estuarine, and freshwater environments, but as these satellites have to zoom in closer, it takes longer 
periods of time to revisit the same location (up to 16 days). Therefore, the applications may be best 
suited for characterization of temporally consistent environments. A satellite with a larger spatial 
footprint (e.g., MODIS, PACE - 1 km pixels) can cover the entire globe daily, so the applications are 
best suited for temporally dynamic features such as open ocean phytoplankton productivity. As an 
intermediate, a pair or constellation of sensors can be combined to help increase revisit time + 
increase spatial resolution (e.g., Sentinel-3A/3B OLCI – 300 meter pixels, 2–3 day revisit time).  

In the future, NOAA (GeoXO – launching 2032) and NASA (GLIMR – launching ~2028) plan to launch 
geostationary satellites, which can “stare” at locations longer, and revisit a location multiple times 
per day, creating a sequence of images to mitigate cloud cover, as well as examine biological rates, 
fluxes, particle trajectories, and more. The tradeoff with a geostationary orbit is that it can only view 
a particular portion of the globe over a mission lifetime. Table 1 provides a quick user guide to several 
relevant ocean color platforms (past, present, and future), and their specifications. The Ocean Colour 
Climate Change Initiative30 (OC-CCI) dataset merges multiple satellite data records and bias corrects 
sensor differences, making it ideal for analyzing long-term trends (1997 – present) in blue oceanic 
waters. The performance of this dataset in nearshore waters has not been adequately assessed, so 
use this product with caution and healthy skepticism in coastal and freshwater environments. This 
dataset is updated quarterly, and does not yet provide a near real-time product. 
 

Table 1. Listing of satellite sensors with managing agency, and their nominal spatial resolution (pixel 
size), temporal resolution (revisit time), spectral resolution (number of bands in the visible range of 
wavelengths, 400 – 700 nm), and the time frame that the data are/will be available. 

 

Sensor Agency Pixel Size  Revisit Time # bands Time Frame 
CZCS NASA 825 m Not uniform 4 1978–1986 
SeaWiFS NASA 1 km 2 days 6 1998–2010 
MODIS  NASA 1 km 1 day 10 2000–2024 
VIIRS  NOAA 750 m 1 day 5 2012–present 
Sentinel-3 OLCI  ESA 300 m 2–3 days*  11 2016–present 
Landsat OLI  USGS 30 m 16 days 4 2013–present 
Sentinel-2 MSI  ESA 10 – 60 m 5 days* 4 2015–present 
GOCI  KIOST 250 – 500 m 1 hour (Korea) 6 2010–present 
PACE OCI NASA 1 km 1–2 days Hyperspectral 2024–present 
SBG  NASA 30 – 45 m 16 days Hyperspectral 2028 (tbd) –  
GLIMR NASA 535 m 1.5–3 hours (US) Hyperspectral 2028 (tbd) –  
GeoXO OCX  NOAA 300 m 2 hours (US) Hyperspectral 2030s (tbd) –  
Landsat Next  USGS 10 – 20 m 6 days* 9 2030s (tbd) –  

*Multiple sensors in constellation to meet this revisit time. 

https://www.oceancolour.org/
https://www.oceancolour.org/
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Accessing and interacting with data 
There are some terms that may be useful to know when looking for satellite data. The processing 
level of data describes how much the original data has been manipulated. These levels generally 
range from L0–L4, with L3/L4 being the most processed: 

Level 0: Raw digital counts. Note, you generally should not need to interact with L0–L1b files. 

Level1a: Level 0 files with various ancillary information attached (e.g., geolocation).  

Level1b: Level1a data with instrument calibrations applied. 

Level2: Derived geophysical values (e.g., chlorophyll-a), at the native (highest) resolution of the 
sensor. These files will look warped because they are from the view of a satellite looking down at a 
round Earth. Since they retain the spatial resolution, these files would be used for data ‘matchups’. 

Level3: These data have been spatially and temporally aggregated and projected to a consistent, 
mapped grid. Here, the shape of, for example, the East Coast, will look as it looks on maps. These are 
the easiest to interact with; however, the resolution is generally coarser (4 km) because it takes in 
data from all satellite viewing angles. These are best for analyzing long-term trends, and are 
available at various time steps (1 day, 8 day average, monthly, annually, climatologically). 

Level4: Model output or products from that combine multiple measurements. Alternatively, gap-
filled data products with interpolation methods used to fill time or spatial gaps. 

All the listed ocean color data in Table 1 are publicly available. Where do you find this data? NOAA 
provides a value-added service known as CoastWatch31 that serves up satellite data32, user tools33, a 
Graphical User Interface data viewing portal34, data analysis software35, in addition to training 
modules36, and a human-supported help desk. CoastWatch provides data at best effort, with support 
8 hours a day, 5 days a week and has regional “Nodes” around the U.S.  Some Nodes are housed in 
NOAA Fisheries science centers to help connect fisheries’ needs with satellite data. You can also opt 
to use NOAA’s ERDDAP37 data server, which gives you a simple, consistent way to download subsets 
of scientific datasets (Level 3 and above) in common file formats and make graphs and maps on the 
spot. ERDDAP is useful for integrating with programming languages for automated downloads and 
more advanced analyses. The aforementioned OC-CCI dataset can also be found through NOAA’s 
ERDDAP, but some individual missions (such as MODIS or SeaWiFS) are not included. For high 
assurance, near real-time operations, NOAA produces some ocean color data through NESDIS/Office 
of Satellite and Product Operations (OSPO)38 and NOAA’s formal archive of ocean color data is housed 
in NESDIS/NCEI/CLASS39. 

NASA’s OBDAAC40 archives most of the datasets listed in Table 1 and may be accessed through a 
browser tool41. Landsat 8/9 and Sentinel-2 data are the exception; for aquatic applications, some of 
these high resolution ocean color products42 are available, but surface reflectance should be used 
with caution43. NASA also provides a Graphical User Interface data analysis tool called SeaDAS44, 
which enables data processing from L0–L3, and data visualization/analysis. More heavy data 
processing can be performed and automated at the command line using the OCSSW45 system. The 
active Earthdata forum46 can help you with any issues you have, from installation to data processing. 
Sometimes, you may just want to browse through ocean color data products quickly, in which case, 
the most user friendly mechanism is through NOAA STAR’s OCView47. Scroll through daily or 
averaged global files with a click of a button, and toggle a range of options (e.g., true color, ocean 
color, temporally averaged files, anomalies, Level-2 granule locations and name, and more). NASA’s 
Giovanni48 and WorldView49, as well as Copernicus’ MyOcean viewer50, also offer different flavors of 
similar capabilities, each with strengths and weaknesses. Many other portals, tools, and operational 
and experimental products are available through agencies and universities around the world.  

https://coastwatch.noaa.gov/cwn/index.html
https://coastwatch.noaa.gov/cwn/products.html
https://coastwatch.noaa.gov/cwn/data-access-tools.html
https://coastwatch.noaa.gov/cw_html/cwViewer.html
https://eastcoast.coastwatch.noaa.gov/cw_software.php
https://umd.instructure.com/courses/1336575
https://umd.instructure.com/courses/1336575
https://coastwatch.noaa.gov/erddap/index.html
https://www.ospo.noaa.gov/
https://www.ospo.noaa.gov/
https://www.ncei.noaa.gov/access/search/
https://www.earthdata.nasa.gov/eosdis/daacs/obdaac
https://oceancolor.gsfc.nasa.gov/data/find-data/
https://ladsweb.modaps.eosdis.nasa.gov/stream/
https://doi.org/10.1002/lol2.10344
https://doi.org/10.1002/lol2.10344
https://seadas.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/docs/ocssw/
https://forum.earthdata.nasa.gov/viewforum.php?f=7
https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html
https://www.earthdata.nasa.gov/technology/giovanni
https://worldview.earthdata.nasa.gov/
https://marine.copernicus.eu/access-data/myocean-viewer
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PACE filename conventions 
PACE data have some nuances in the file naming convention. Because of the hyperspectral nature of 
PACE (i.e., large files), the Level-2 (individual satellite scene) netcdf files are provided in different 
product “bundles,” which one can differentiate by the file naming convention. By contrast, Level-3 
(globally mapped, gridded products) netcdf files are larger in geographic expanse, and thus are 
separated into individual product types. The next section describes these products in more detail. 
For the latest updates in PACE data product offerings and algorithm status, visit 
https://pace.oceansciences.org/data_table.htm. 

The format of the Level 2 filename convention and corresponding product suite are shown below:  

PACE_OCI.[YYYYMMDD]T[HHMMSS].L2.OC_AOP.V#_0.NRT.nc 

Rrs - remote sensing reflectance at 184 wavelengths (339–719 nm) 

avw - apparent visible wavelength 

nflh – normalized fluorescence line height  
 

PACE_OCI.[YYYYMMDD]T[HHMMSS].L2.OC_BGC.V#_0.NRT.nc 

chlor_a  - chlorophyll-a  

carbon_phyto - phytoplankton carbon  

poc - particulate organic carbon 
 

PACE_OCI.[YYYYMMDD]T[HHMMSS].L2.OC_IOP.V#_0.NRT.nc 

Kd - diffuse attenuation coefficients at 19 wavelengths (351–711 nm) 

a - total absorption coefficients at 19 wavelengths (351–711 nm) 

aph - phytoplankton absorption coefficients at 19 wavelengths (351–711 nm) 

adg - detrital and gelbstoff absorption coefficient at 442 nm 

adg_s - detrital and gelbstoff absorption spectral slope parameter 

bb - total backscatter coefficients at 19 wavelengths (351–711 nm) 

bbp - particle backscatter coefficient at 442 nm 

bbp_s - particle backscatter spectral slope parameter  
 

PACE_OCI.[YYYYMMDD]T[HHMMSS].L2.PAR.V#_0.NRT.nc 

ipar_planar_below - instantaneous photosynthetically available radiation (below water surface) 

ipar_planar_above - instantaneous photosynthetically available radiation (above water surface) 

par_day_scalar_below - daily scalar photosynthetically available radiation (below water surface) 

par_day_planar_above - daily planar photosynthetically available radiation (above water surface) 

par_day_planar_below - daily planar photosynthetically available radiation (below water surface)  
 

PACE_OCI.[YYYYMMDD]T[HHMMSS].L2.SFREFL.V#_0.NRT.nc 

rhos – surface reflectance at 52 wavelengths (339–2258 nm), corrected for Rayleigh scattering 
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Product 1: Chlorophyll-a (chlor_a) 
 

What is it?  

• Chlorophyll-a (Figure 4) is a pigment contained within all phytoplankton and cyanobacteria 
cells. It is an estimate of algal biomass that is used for mapping the distribution of 
phytoplankton over time and space.   

How does it impact aquaculture/fisheries? 

• Chlorophyll-a is a useful proxy of the biomass of phytoplankton in the water, the food source 
to filter feeding organisms and zooplankton. This parameter has been utilized for aquaculture 
siting51, farm aquaculture resource management52 models, HAB forecasts21, species 
distribution models (fish53, mammals54, top predators55, other highly migratory species56), 
ecosystem models7, ecosystem status monitoring57, as a predictor of unregulated fishing 
activity58, and more. 

What are the limitations/caveats? 

• Currently, chlorophyll-a can be confused with other dissolved materials in the water, and it 
can be over-estimated in coastal regions, particularly in areas with river inputs or sediment 
resuspension. It is useful to note that the amount of chlorophyll-a in a phytoplankton cell can 
vary substantially based on physiological and environmental conditions, and thus, it is 
possible that increases in chlorophyll-a do not explicitly represent increases in biomass. 

Does HYPERSPECTRAL directly improve/enable this product? 

• Having more information about the other components of the water will help separate the 
living from non-living components, and should improve the performance of the chlorophyll-
a product substantially. Many efforts at improving chlorophyll-a have been attempted using 
regional tuning59 methods, generalized additive models60, and dynamic optical water types61, 
or applying machine learning62 techniques and neural networks42, but lack unified 
community consensus or adoption.  
 

Figure 4.  Projection of PACE-
derived chlor_a in the Mid-
Atlantic Ocean; May 13, 2024. 

 

https://doi.org/10.3389/fmars.2017.00190
https://doi.org/10.3389/fmars.2017.00190
https://doi.org/10.1016/j.aquaculture.2015.11.036
https://coastwatch.pfeg.noaa.gov/erddap/griddap/charmForecast0day.graph
https://doi.org/10.1098/rspb.2022.2326
https://www.fisheries.noaa.gov/west-coast/marine-mammal-protection/whalewatch
https://doi.org/10.1038/s41467-023-40849-y
https://doi.org/10.1007/s00227-021-03951-7
https://doi.org/10.1016/j.ecolmodel.2022.110038
https://ecowatch.noaa.gov/about
https://doi.org/10.1126/sciadv.abq2109
https://doi.org/10.1126/sciadv.abq2109
https://doi.org/10.3389/fmars.2017.00151
https://doi.org/10.1016/j.isprsjprs.2024.03.014
https://doi.org/10.1016/j.rse.2019.04.027
https://doi.org/10.1016/j.rse.2022.113295
https://ladsweb.modaps.eosdis.nasa.gov/stream/
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Product 2: Phytoplankton carbon (carbon_phyto) 
 

What is it?  

• The phytoplankton carbon product (Figure 5) expresses the concentration of phytoplankton 
in terms of carbon concentration, instead of chlorophyll-a. Contrasting from the chlorophyll-
a product, phytoplankton carbon is derived from an empirical relationship to the particle 
backscattering properties (see Product 7) of the water.  

How does it impact aquaculture/fisheries? 

• Some fisheries applications may prefer to work in units of carbon biomass instead of 
pigment-based (i.e., chlorophyll-a) biomass. A constant chlorophyll-a value can represent a 
wide array of cell concentrations, due to environmental conditions and individual cell 
physiology/stress63. For example, individual phytoplankton can produce more chlorophyll-
a/cell in low-light conditions without changing the actual number of cells. The carbon 
product is not subject to these variations, and is a more direct indicator of phytoplankton 
biomass64. Modelers may also be interested in computing a carbon to chlorophyll ratio to 
tease out environmental or species variations, and this is obtained as carbon_phyto ÷ chlor_a. 
Use this ratio with caution, as it has not been independently validated.     

What are the limitations/caveats? 

• This product was empirically tuned with field data, but it is not currently representative of 
optically complex waters. The performance in coastal regions remains untested. This product 
relies on the “inherent optical property” (IOP)65 suite of ocean color products, and thus can 
sometimes fail to arrive at a solution (i.e., no data) in waters with extreme scattering or 
chromophoric dissolved organic matter (CDOM) concentrations. 

Does HYPERSPECTRAL directly improve/enable this product? 

• Operational improvements to IOP backscatter products using hyperspectral data are 
anticipated, but still in development (at the time of this publication).  
 

Figure 5.  Projection of PACE-
derived carbon_phyto in the 
Mid-Atlantic Ocean; May 13, 
2024. 

 

https://www.jstor.org/stable/2434683
https://www.jstor.org/stable/2434683
https://doi.org/10.1016/j.dsr.2015.04.006
https://doi.org/10.1016/j.dsr.2015.04.006
https://oceancolor.gsfc.nasa.gov/resources/atbd/giop/
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Product 3: Particulate Organic Carbon (POC) 
 

What is it?  

• Carbon-containing particles suspended in seawater can be categorized as organic (plankton, 
detritus, bacteria) or inorganic (sediments, calcified phytoplankton plates). Using carbon as 
a basis, ocean color can derive particulate organic carbon66 (POC; Figure 6) and particulate 
inorganic carbon67 (PIC, also PIC color index68). Currently, PACE only offers POC products; 
PIC products are available from multi-spectral sensors such as MODIS and VIIRS. 

How does it impact aquaculture/fisheries? 

• Studies directly using POC/PIC satellite products for fisheries applications are sparse; 
however, these products are very relevant in the context of carbon export processes. 
Suspended particulate matter (SPM), which represents all combined sources of suspended 
particles, is a parameter more likely recognized in the aquaculture community. It is a useful 
product for detecting high sediment loads, which compromise water quality and growth 
conditions69 for many shellfish species and adversely impact shellfish burial rates70. Offshore 
fisheries can produce significant amounts of suspended particulate waste71. Suspended 
particles also can transport toxic heavy metals and organic compounds that accumulate in 
fish tissues72.   

What are the limitations/caveats? 

• Depending on the absorption/scattering properties of the water mass, some regional tuning 
should be anticipated. The POC and PIC products are derived by independent methods and 
should not be considered additive properties.  

Does HYPERSPECTRAL directly improve/enable this product? 

• Proximally, PACE is anticipated to operationally offer a suspended particulate matter73 
product derived from hyperspectral measurements and machine learning techniques. A 
multi-spectral approach to deriving SPM, as well as POC in the presence of SPM74 is being 
implemented by NOAA’s CoastWatch (at the time of publication). 

Figure 6.  Projection of PACE-
derived poc in the Mid-Atlantic 
Ocean; May 13, 2024. 

 

https://oceancolor.gsfc.nasa.gov/resources/atbd/poc/
https://oceancolor.gsfc.nasa.gov/resources/atbd/pic/
https://oceancolor.gsfc.nasa.gov/resources/atbd/pic/
https://oceancolor.gsfc.nasa.gov/resources/atbd/developmental/picci/
https://doi.org/10.1002/2014JC010055
https://doi.org/10.1002/2014JC010055
https://doi.org/10.3354/meps10088
https://doi.org/10.3354/aei00120
https://doi.org/10.1016/j.cbpc.2023.109646
https://doi.org/10.1016/j.cbpc.2023.109646
https://doi.org/10.1016/j.rse.2023.113706
https://doi.org/10.1016/j.rse.2022.113360
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Product 4: Diffuse attenuation coefficients (Kd) 
 

What is it?  

• As light enters the water column, it is attenuated exponentially with depth until it has been 
absorbed completely. The light attenuation coefficient (Kd; Figure 7) is a measure of the 
exponential slope of this light extinction, providing an indicator of how deep light can 
penetrate into the water. This enables the calculation of light intensity and quality at depth. 

How does it impact aquaculture/fisheries? 

• Light attenuation directly impacts water visibility, and vision is among the principal sensory 
modalities used by marine fauna, playing a critical role in fundamental day-to-day activities75. 
Fish rely on visual cues for the basic navigation of space76, habitat selection77, schooling78 or 
shoaling79, foraging80 and prey capture81, and for predator detection82 and evasion83. Light 
availability in aquacultured teleosts has also been shown to influence all lifecycle stages 
including egg and larvae survival, smolt timing, and maturation during the on-growing phase 
and broodstock spawning84.  

What are the limitations/caveats? 

• Kd algorithms are generally robust and reliable, though differences can be confusing. Semi-
analytical approaches85 reduce uncertainty in turbid, optically complex waters relative to 
more ubiquitous empirical approaches86 that are highly correlated with chlorophyll-a.  

Does HYPERSPECTRAL directly improve/enable this product? 

• Hyperspectral capabilities offer a full suite of Kd coefficients across the visible spectrum. 
Historically, only the blue-green wavelength (490 nm) has been utilized for most 
applications. With the full spectrum, the characterization of the light field can be determined 
at any depth, and used to pinpoint the exact wavelength of light that penetrates the deepest 
into the water column, improving estimates of water visibility. Note, while computable, water 
visibility is not a standard product offering. In a pinch, a rough approximation of visibility 
distance (in meters) for a given wavelength can be made as 1 ÷ Kd(λ). 

Figure 7.  Projection of PACE-
derived kd_490 in the Mid-
Atlantic Ocean; May 13, 2024. 

 

https://doi.org/10.1007/978-1-4684-8261-4
https://doi.org/10.1016/j.bbr.2021.113711
https://doi.org/10.3354/meps14596
https://doi.org/10.1134/S0032945223070081
https://doi.org/10.1038/s41598-018-27807-1
https://doi.org/10.1016/j.beproc.2018.10.005
https://doi.org/10.1242/jeb.087742
https://doi.org/10.1073/pnas.1809140115
https://doi.org/10.1242/jeb.166009
https://doi.org/10.1016/j.aquaculture.2010.10.036
https://doi.org/10.1016/j.aquaculture.2010.10.036
https://oceancolor.gsfc.nasa.gov/data/products/special/#QAA
https://oceancolor.gsfc.nasa.gov/data/products/special/#QAA
https://oceancolor.gsfc.nasa.gov/resources/atbd/kd/
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Product 5: Spectral phytoplankton absorption coefficients (aph) 
 

What is it?  

• These absorption coefficients specifically define how light is absorbed by phytoplankton. This 
product partitions and isolates the phytoplankton component from the other absorbing 
materials in the water, like CDOM and other non-living components. Absorption near 440 nm 
(Figure 8) is often used as a reference, representing the peak of chlorophyll-a absorption.   

How does it impact aquaculture/fisheries? 

• The absorption of light by phytoplankton can vary by a factor of 4 or more at a constant 
chlorophyll-a value, so this parameter more accurately describes how much light has been 
utilized by living phytoplankton cells. This has implications for how much of this light energy 
will eventually be turned into biomass, and it is a central component of more advanced 
absorption-based primary productivity algorithms87. As a standalone product, it partially 
helps mitigate the obscuring impact of other absorbing materials in the water. 

What are the limitations/caveats? 

• While the magnitude of absorption is dynamic, the absolute shape of spectral absorption is 
currently based on a global average88, and thus offers no real insights differentiating 
phytoplankton pigment absorption and should not be used for this purpose. Keep in mind 
that not all absorbed light is allocated to photosynthetic processes (i.e., some absorbed 
energy is lost to heat and fluorescence). The performance of this product can vary, and it may 
not perform well in highly scattering, or very high CDOM water-types.   

Does HYPERSPECTRAL directly improve/enable this product? 

• Operational improvements to IOP products using hyperspectral data are anticipated, but 
still in development (at the time of this publication). PACE Science and Applications Team 
members are actively working to improve this product using new approaches, including 
new hyperspectral inversion frameworks29 for improved absorption products. 

Figure 8.  Projection of PACE-
derived aph_442 in the Mid-
Atlantic Ocean; May 13, 2024. 

 

https://doi.org/10.1002/2016GB005521
http://dx.doi.org/10.1029/98jc02712
https://doi.org/10.1016/j.rse.2023.113706
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Product 6: Spectral non-algal particle plus dissolved organic matter 
absorption coefficient (adg) at 442 nm 
 

What is it?  

• This absorption coefficient specifically defines how light is absorbed by the combined effect 
of non-living particles (detrital) and CDOM (Figure 9). 

How does it impact aquaculture/fisheries? 

• The increased absorption of light by detritus + CDOM can indicate the presence of a declining 
phytoplankton bloom, or land-based detritus + CDOM from river input. In cases of known 
high river discharge events (e.g., after a storm event or heavy rainfall or ice melt), this product 
is a useful water mass tracer89. CDOM has been found to be useful in source tracking of 
aquaculture90 as well as wastewater91 pollution.   

What are the limitations/caveats? 

• While the algorithm is tunable, its standard configuration defines a constant “shape” of 
detrital/CDOM absorption, so there is no information that can be derived about the origin of 
the materials other than through a subjective spatial-temporal context. Note, this is a 
combined detrital matter + CDOM product, and not a standalone CDOM product. The slope 
parameter for adg (adg_s) is an exponential coefficient that enables the user to reconstruct 
the hyperspectral spectrum from a single wavelength. 

Does HYPERSPECTRAL directly improve/enable this product? 

• Operational improvements to IOP products using hyperspectral data are anticipated, 
including the separation of ad (detritus) from ag (CDOM, or “gelbstoff”), but still in 
development (at the time of this publication). PACE Science and Applications Team members 
are actively working to improve this product using new approaches, including new 
hyperspectral inversion frameworks29 for improved absorption products. 
 

Figure 9.  Projection of PACE-
derived adg_442 in the Mid-
Atlantic Ocean; May 13, 2024. 

 

https://doi.org/10.1525/elementa.2022.00076
https://doi.org/10.3354/aei00458
https://doi.org/10.1016/j.rsma.2020.101163
https://doi.org/10.1016/j.rse.2023.113706
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Product 7: Spectral particle backscattering coefficient (bbp) at 442 nm 
 

What is it?  

• This backscatter coefficient (Figure 10) defines how light is scattered in the backwards 
direction by particles in the water. This product provides an indicator of the concentration of 
particles in the ocean and is a proxy indicator of particulate carbon concentrations. 

How does it impact aquaculture/fisheries? 

• Many phytoplankton exhibit unique backscattering characteristics92, primarily as a function 
of cell size93, and sometimes composition (e.g., Coccolithophore blooms94). Particle 
backscatter is a particularly useful tool to determine high sediment loads in nearshore 
environments, which tends to heavily scatter light. High sediment loads can cause gill 
saturation69 in certain oyster species, and some fish species exhibit hypersensitivity to 
suspended sediment95. While not a direct measurement of SPM, it can be used to develop 
those products.  

What are the limitations/caveats? 

• The backscatter product is one of the most robust products offered in the “inherent optical 
property” (IOP) suite of ocean color products. The only caveat is that the IOP algorithms can 
sometimes fail to arrive at a solution (i.e., no data) in waters with extreme scattering or CDOM 
concentrations. The bbp product does not disentangle phytoplankton backscatter from other 
optical constituents (e.g., re-suspended sediment in coastal waters). The slope parameter for 
bbp (bbp_s) is a power law coefficient that enables the user to reconstruct the hyperspectral 
spectrum from a single wavelength. 

Does HYPERSPECTRAL directly improve/enable this product? 

• Operational improvements to IOP products using hyperspectral data are anticipated, but 
still in development (at the time of this publication). PACE Science and Applications Team 
members are actively working to improve this product using new approaches. 

Figure 10.  Projection of PACE-
derived bbp_442 in the Mid-
Atlantic Ocean; May 13, 2024. 

 

https://doi.org/10.1364/OE.18.015073
https://doi.org/10.1364/OE.20.017632
https://doi.org/10.1364/OE.20.017632
https://doi.org/10.3389/fmars.2018.00146
https://doi.org/10.1002/2014JC010055
https://doi.org/10.1002/2014JC010055
https://doi.org/10.1577/1548-8675(1996)016%3c0693:CSSAFA%3e2.3.CO;2
https://doi.org/10.1577/1548-8675(1996)016%3c0693:CSSAFA%3e2.3.CO;2
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Product 8: Normalized fluorescence line height (nFLH) 

 

What is it?  

• Normalized fluorescence line height is light leaving the ocean surface due to sun-induced 
chlorophyll fluorescence (Figure 11). This provides an indicator of phytoplankton 
physiology/nutrient stress, and is utilized input to some chlorophyll-a and HAB algorithms. 

How does it impact aquaculture/fisheries? 

• The nFLH product can help with preparing for HAB closures96, assessing health status of a 
phytoplankton bloom97, and identifying oceanic regions under nutrient stress98. This is also 
used as an input parameter for the dynamic pelagic Seascapes99 product, a classification 
scheme which can help describe basin and gyre scale features and seasonal boundary shifts. 

What are the limitations/caveats? 

• Conditional uncertainties exist for this product, and caution should be exercised when 
interpreting results. Fluorescence line height has multiple dependencies on cellular pigment 
packaging and light saturation (non-photochemical fluorescence quenching), impacting 
phytoplankton fluorescence quantum yields (relative amount of light reradiated versus being 
absorbed). These uncertainties are exasperated in waters where phytoplankton are not the 
dominant source of optical variance, such as in the presence of suspended sediments or 
interference from bottom reflectance.  

Does HYPERSPECTRAL directly improve/enable this product? 

• The multispectral version of this product (nFLH100) uses a static set of wavelengths that are 
not explicitly optimized for the detection of fluorescence. Note, these particular wavelengths 
are not available on the VIIRS series (MODIS or OLCI are used instead). Hyperspectral data 
will improve the fluorescence line height approach by optimizing the choice of wavelengths, 
which is not possible with multispectral (e.g., MODIS, VIIRS) approaches. This will enhance 
the reliability and accuracy of the product.  

Figure 11.  Projection of PACE-
derived nflh in the Mid-Atlantic 
Ocean; May 13, 2024. 

 

http://dx.doi.org/10.25607/OBP-1709
https://doi.org/10.1029/2007JC004355
https://doi.org/10.1029/2007JC004355
https://doi.org/10.5194/bg-6-779-2009
https://doi.org/10.1016/j.pocean.2013.10.013
https://oceancolor.gsfc.nasa.gov/resources/atbd/nflh/
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Product 9: Photosynthetically available radiation (PAR) 
 

What is it?  

• PAR is defined as the quantum energy flux from the Sun in the 400 - 700 nm range. There are 
several data products available in PACE data files. Scalar irradiance is derived by taking the 
sum of light from all angles onto a point on the ocean, that is, how much light is hitting the 
ocean. Planar irradiance scales the amount of light based on the cosine of the direction it 
comes from, and likely will not be used for fisheries/aquaculture applications. There are 
above water products (how much hits the surface) and below water products, which take into 
account the index of refraction as you cross the surface of the ocean’s water (i.e., how much 
of that is actually getting to the contents of the water). In most cases, users would likely want 
to use the par_day_scalar_below product (Figure 12). 

How does it impact aquaculture/fisheries? 

• PAR directly impacts the quantum yield of photosynthesis, which is essentially a measure of 
how many photons of light are absorbed versus how much of that is actually fixed into carbon, 
that is, photosynthetic efficiency. Too much PAR can cause photo-inhibition of many cultured 
seaweeds101. While not the most significant factor, one study showed that PAR contributed to 
variability in Catch per Unit Effort102 more than SST and fishing hour.  

What are the limitations/caveats? 

• PAR is a fairly robust product. Implementation of this algorithm is contingent on the 
availability of observed top-of-atmosphere radiances in the visible spectral regime that do 
not saturate over clouds, which is not a problem for most ocean color instruments. 

Does HYPERSPECTRAL directly improve/enable this product? 

• The scalar/planar above/below water products are newly provided products offered by the 
PACE mission. More spectral information yields better spectral characterization of the 
ambient light field.  

Figure 12.  Projection of PACE-
derived par in the Mid-Atlantic 
Ocean; May 13, 2024. 

 

https://doi.org/10.1023/A:1008198404529
https://doi.org/10.1023/A:1008198404529
https://www.researchgate.net/publication/346442534_Use_of_different_modeling_approach_for_sensitivity_analysis_in_predicting_the_Catch_per_Unit_Effort_CPUE_of_fish
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Product(s) 10: Remote sensing reflectance (Rrs) 
 

What is it?  

• The remote sensing reflectance is the base unit by which most ocean color algorithms are 
built on. It is a direct measure of the water-leaving reflectance, after the atmosphere and 
surface reflectance effects have been removed. Each wavelength of color has its own 
reflectance value 9Figure 13). 

How does it impact aquaculture/fisheries? 

• These products may be preferred for users who want to customize or build their own 
algorithms. This raw color information removes any the elements of uncertainty introduced 
by mechanistic assumptions made during “product” development. In one case of modeling 
the marine occurrence of Atlantic Sturgeon103, the remote sensing reflectance products 
yielded the best predictive skill, as opposed to higher-order biogeochemical products, such 
as chlorophyll-a. Some published algorithms for HABs can be reconstructed using the 
reflectance channels (see Section 3). 

What are the limitations/caveats? 

• Remote sensing reflectance is subject to uncertainties introduced in the removal of the 
atmospheric signal. These products may underperform, or be expressed as negative values, 
especially in areas with complex aerosol loadings (near urban areas), or near the coast.  

Does HYPERSPECTRAL directly improve/enable this product? 

• For context, relative to MODIS (10 color bands) or VIIRS (5 color bands), PACE offers 120 
visible color bands (plus additional UV bands) from which to develop algorithms. PACE 
Science and Applications Team members are actively working to improve the removal of the 
atmospheric signal, and thus improve the reflectance. The PACE mission was the first to use 
additional spectral information towards a multi-band atmospheric correction (MBAC)104.   
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Projection of PACE-derived Rrs(λ)  products in the Mid-Atlantic Ocean; May 13, 2024.  

ttps://doi.org/10.1111/2041-210X.12532
ttps://doi.org/10.1111/2041-210X.12532
https://doi.org/10.3389/feart.2019.00116
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Product 11: Apparent visible wavelength (AVW) 
 

What is it?  

• In broad terms, visible light in underwater environments can be described by the total 
available amount light (i.e., intensity) in addition to the chromaticity (i.e., hue/color). The 
Apparent Visible Wavelength (AVW; Figure 14) is an optical water mass classification index 
that is sensitive to changes in water chromaticity. Since the entire visible-range spectrum is 
utilized in the calculation of AVW, this product ensures that any diagnostic signals present in 
the reflectance signal are considered, and thus affords the opportunity to describe and 
analyze subtle shifts in ocean color.  

How does it impact aquaculture/fisheries? 

• Unlike other ocean color products, the AVW is not a derived geophysical variable, but instead 
an objective descriptor of the ocean’s color. This makes it impervious to algorithm-induced 
biases and thus is useful and consistent across optically complex environments105. This is a 
useful monitoring tool to assess, not only changes to the color of the water but also 
information on what direction the color is shifting (i.e., more red or more blue). While the 
attribution/cause of shifts in water color are not elucidated with the product, it serves as an 
early indicator of changes in optical water properties or subsurface light quality. 

What are the limitations/caveats? 

• This product relies on the accuracy of remote sensing reflectance products, which are subject 
to uncertainties introduced in the removal of the atmospheric signal.  

Does HYPERSPECTRAL directly improve/enable this product? 

• This product was developed specifically for hyperspectral applications and is offered as part 
of the remote sensing product suite for PACE. AVW is also calibrated106 for multi-spectral 
sensors to provide backwards compatibility.  

 

Figure 14.  (Left) Projection of 
PACE-derived avw in the Mid-
Atlantic Ocean; May 13, 2024. (Top) 
Corresponding reflectance spectra.  

 

https://doi.org/10.1016/j.rse.2020.111900
https://www.earthdata.nasa.gov/apt/documents/apparent-visible-wavelength/v1.0
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Product(s) 12: Multiple Ordination ANAlysis (MOANA) 
 

What is it?  

• This product returns near-surface concentrations (cells mL-1) of three different 
picophytoplankton (i.e., phytoplankton <2 μm in size): Prochlorococcus, Synechococcus, and 
autotrophic picoeukaryotes (Figure 15). The algorithm uses empirical relationships between 
measured cell concentrations, in situ hyperspectral remote sensing reflectances, and sea 
surface temperatures. Details of this algorithm can be found in Lange et al. (2020)107. 

How does it impact aquaculture/fisheries? 

• Picophytoplankton are composed of the cyanobacteria Prochlorococcus (∼0.8 µm) and 
Synechococcus (∼1 µm), as well as picoeukaryotes, which combined are responsible for 50 to 
90% of all primary production in open ocean ecosystems108 and contribute up to 30% of 
carbon export109 in these regions. Geographically, Prochlorococcus tends to inhabit warmer 
and mostly oligotrophic waters surrounded by Synechococcus patches along frontal 
boundaries. These fronts often reside at boundaries where phytoplankton communities start 
to transition to higher concentrations of larger eukaryotic cells, such as picoeukaryotes and 
nanoeukaryotic flagellates. Thus, identification of Prochlorococcus and Synechococcus 
distributions may be useful in identifying trophic boundaries in oceanic ecosystems110, in 
addition to providing insight into productivity, food web regimes, and carbon export. 

What are the limitations/caveats? 

• This algorithm will be classified as “provisional” until satellite data validation and science 
teams are able to validate this product. The practical utility of this product is intended for 
oceanic environments and should not be used to interpret phytoplankton community 
composition in complex coastal or estuarine ecosystems.  

Does HYPERSPECTRAL directly improve/enable this product? 

• This product is strictly contingent on input of hyperspectral remote sensing reflectance (see 
Product 10) from a wavelength range of 400 – 660 nm. 

 

 

 
 

 

 

 

 

 
 
 

Figure 15.  Projection of PACE-derived MOANA products in the Mid-Atlantic Ocean; May 13, 2024. 

https://doi.org/10.1364/OE.398127
https://doi.org/10.1016/S0967-0637(98)00015-6
https://doi.org/10.1016/S0967-0637(98)00015-6
https://doi.org/10.5194/bg-8-203-2011
https://doi.org/10.5194/bg-8-203-2011
https://doi.org/10.3354/meps11558
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Product(s) 13: Surface reflectance (rhos) 
 

What is it?  

• “True color” images (Figure 16) are often generated with satellite imagery to visualize what 
an image would look like in real life, without algorithms applied. For oceans, these typically 
utilize red, green, and blue (RGB) bands from the satellite radiance data at the top of the 
atmosphere that have been corrected for the angular effects of Rayleigh scattering (also 
known as surface reflectance, or rhos). PACE now offers a full spectral suite of rhos products 
across the ultraviolet, visible, and near infrared spectra. Functionally, any three inputs can be 
supplied to make an “RGB” image (i.e., it does not have to be red, green, and blue), which can 
help create useful “false color” indices. You can try pressing the “f” key while browsing true 
color images on NOAA’s OCView47 to interactively toggle a false color enhancement.  

How does it impact aquaculture/fisheries? 

• The surface reflectance products can be very useful because they have minimal atmospheric 
correction applied, that is, no aerosol subtraction, which is a source of common data quality 
errors. Some algorithm developers prefer to use rhos in place of Rrs, especially for inland 
water bodies where atmospheric correction can be very challenging, as is the case for 
cyanobacteria monitoring111. Alternatively, using Rrs as input to RGB imaging can highlight 
subtle water features, and has recently been demonstrated to help determine copepod 
(Calanus finmarchicus) concentrations from satellite images112. 

What are the limitations/caveats? 

• Typically, unless there is a very strong surface reflectance signal (e.g., algal slick), visual 
details of the ocean are not easily distinguished from RGB rhos products without some image 
enhancements (e.g., adjust contrast, gamma corrections; see right image below). 

Does HYPERSPECTRAL directly improve/enable this product? 

• The full range and resolution of spectral bands offered by the rhos suite are new to the ocean 
color community. This is an exciting prospect, enabling up to 22,100 possible unique false 
RGB combinations that can be derived from PACE for teasing out subtle signals of interest. 
Using hyperspectral data, Craig et al.113 chose six custom rhos bands as input to a Bayesian 
model to derive robust biogeochemical parameters.  
 

 
 Figure 16.  Projection of PACE-derived RGB products in the Mid-Atlantic Ocean; May 13, 2024. 

https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html
https://doi.org/10.1038/s41598-019-54453-y
https://doi.org/10.3389/fmars.2025.1507638
https://eartharxiv.org/repository/view/557/
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Product(s) 1: Phytoplankton community composition (PCC) 
 

What is it?  

• Phytoplankton absorb and scatter different colors, depending on their internal pigmentation 
and cellular composition/size. While all contain chlorophyll-a, several additional “accessory” 
pigments may be present, which is one means of helping distinguish different phytoplankton 
classes (e.g., diatoms, cyanobacteria, dinoflagellates, etc.). There are also unique 
backscattering properties of phytoplankton based on cell size, chemical composition, and 
taxonomy114. There are several PACE products that will address phytoplankton community 
composition, as well as some other approaches that are not dependent on hyperspectral data. 
The known algorithms in the queue for operational production at either NOAA or NASA are 
listed below. Only MOANA is provisionally available now (at the time of publication): 
 

o MOANA (Lange115): Resolves the concentration of smaller oceanic phytoplankton: 
Synechococcus, Prochlorococcus, and picoeukaryotes. 

o Pigments (Chase116): Phytoplankton pigments chlorophyll-a, -b, and -c along with 
photoprotective and photosynthetic carotenoids.  

o Diatom carbon (Chase117): Satellite-based diatom carbon estimates. 
o Taxonomic groups (Kramer118): Diatoms, dinoflagellates, nanoplankton, 

haptophytes, picoplankton, based on phytoplankton pigment estimates. 
o Particle size class (Kostadinov119): Size partitioning of oceanic particles, particle size 

distribution.  
o Phytoplankton size class (Turner120): Chlorophyll-a based partitioning of 

phytoplankton size classes (pico-, nano-, micro-plankton). 
o Note, there are many more approaches to derive phytoplankton community 

composition121 described in the literature, but are not slated for operational 
production. 

How does it impact aquaculture/fisheries? 

• Not all phytoplankton are equally utilized in the food web. As one example for aquaculture 
applications, smaller phytoplankton are often not efficiently retained as food, and therefore, 
phytoplankton size can affect bivalve growth and condition122. For fisheries, NPZ123 and 
ecosystem models7 consider phytoplankton community composition as a variable to allocate 
trophic inputs and efficiency terms. These approaches may also aid in the detection and 
distinction of HABs, which are considered to enhance some stock assessments124.  

What are the limitations/caveats? 

• These algorithms will be classified as “provisional” pending satellite data product validation. 
Each approach comes with its own set of unique uncertainties, and should be verified on a 
regional basis before operational use.  

Does HYPERSPECTRAL directly improve/enable this product? 

• Many PCC algorithms do exist with multi-spectral data, but hyperspectral is making a new 
class of algorithms possible by exploiting color bands not previously available. PACE is 
anticipated to be the first mission to operationally offer phytoplankton community 
composition products.  
 

https://doi.org/10.1093/plankt/fbh012
https://doi.org/10.1093/plankt/fbh012
https://www.earthdata.nasa.gov/apt/documents/moana/v1.0#doc-header
https://doi.org/10.1002/2017JC012859
https://doi.org/10.1029/2022GL098076
https://doi.org/10.1016/j.rse.2021.112879
https://doi.org/10.5194/os-19-703-2023
https://doi.org/10.1016/j.rse.2021.112729
https://doi.org/10.1016/j.rse.2023.113964
https://doi.org/10.1016/j.rse.2023.113964
https://doi.org/10.1080/00288330.2003.9517164
https://doi.org/10.1016/j.pocean.2014.11.013
https://doi.org/10.1016/j.ecolmodel.2022.110038
https://doi.org/10.1139/cjfas-2020-0257
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Product(s) 2: Harmful Algal Blooms (HABs) 
 

What is it?  

• HABs occur when colonies of phytoplankton produce toxic or harmful effects on people, fish, 
shellfish, marine mammals, and/or birds. Various spectral techniques have been used to 
remotely identify different HABs from ocean color125 based on chlorophyll anomalies, 
spectral characteristics, or elevated fluorescence. By combining satellite “bloom detection” 
algorithms, paired with knowledge of local ecology, and additional in situ sampling to identify 
bloom type, satellites can be a useful tool for monitoring of HABs. Some example case studies 
of HAB detection are listed below: 
 

o Microcystis aeruginosa (CyAN126): Freshwater algae that can produce a toxin known 
as microcystin, which causes fish kills and contamination of drinking water.  

o Karenia brevis (Craig127, Soto128): Ubiquitous red tide species occurring on the 
Florida coast, causing fish kills and respiratory issues in humans.   

o Pseudo-nitchzia (Anderson129, Smith130): Diatom that produces domoic acid, which 
accumulates in shellfish, invertebrates, and sometimes fish, leading to mammal 
illness and death. 

o Alexandrium cantenella (Bucci131): Dinoflagellate that produces a saxitoxin and 
causes Paralytic Shellfish Poisoning (PSP). 

o Margalefidinium polykrikoides (Ahn132, Kim133): Dinoflagellate causing “rust tides” 
that are toxic to finfish and shellfish. 

o Noctiluca scintillans (Qi134): Large dinoflagellate that can cause disruptions to 
trophic energy dynamics, potentially impacting fish yield135. 

o Floating algae index (Hu136, Sargassum Watch137): Used to detect surface slicks, 
including nuisance algae such as Sargassum. 

o Red-band difference (RBD) (Amin138): A generalized indicator frequently used to 
detect a variety of HABs based on high fluorescence. 

o Maximum chlorophyll index (MCI) (Gower139): A generalized indicator frequently 
used to detect high biomass blooms. 

o Regional Forecast systems: NCOOS and external partners supply operational 
forecast systems for various regions of the U.S., including Gulf Coast140, Gulf of 
Maine141, Lake Erie142, Pacific Northwest143, and California144. 
 

How does it impact aquaculture/fisheries? 

• The impact of HABs can be economically and ecologically disruptive, owing to direct 
mortality of fish and marine mammals, seafood contamination and crop loss, fisheries and 
aquaculture closures, and trophic-food web disruptions.  

What are the limitations/caveats? 

• Some toxic species do not always produce toxins, and some species may become toxic at 
concentrations below detection limits. Tracking of HABs from satellites is most effective 
when paired with in situ ground verification and monitoring, and caution should be exercised 
when inferring HABs using satellite measurements as a sole source of information.  

Does HYPERSPECTRAL directly improve/enable this product? 

• Hyperspectral data enables the detection of subtle pigment signatures associated with 
specific phytoplankton, and can thus help determine the likelihood of toxicity.   

http://dx.doi.org/10.25607/OBP-1042
https://www.epa.gov/water-research/cyanobacteria-assessment-network-cyan
https://doi.org/10.1364/AO.45.005414
https://doi.org/10.1117/1.JRS.11.012002
https://doi.org/10.1016/j.hal.2016.08.006
https://doi.org/10.3389/fmars.2020.00061
https://digitalcommons.library.umaine.edu/etd/3631/
https://doi.org/10.1016/j.rse.2006.04.007
https://doi.org/10.1364/OE.24.0A1471
https://doi.org/10.1029/2019GL082667
https://doi.org/10.1038/ncomms5862
https://doi.org/10.1016/j.rse.2015.05.022
https://optics.marine.usf.edu/projects/saws.html
https://doi.org/10.1364/OE.17.009126
https://doi.org/10.1080/01431160500075857
https://coastalscience.noaa.gov/science-areas/habs/hab-forecasts/gulf-coast/
https://coastalscience.noaa.gov/science-areas/habs/hab-forecasts/gulf-of-maine-alexandrium-catenella-predictive-models/
https://coastalscience.noaa.gov/science-areas/habs/hab-forecasts/gulf-of-maine-alexandrium-catenella-predictive-models/
https://coastalscience.noaa.gov/science-areas/habs/hab-forecasts/lake-erie/
https://www.nanoos.org/products/habs/forecasts/home.php
https://sccoos.org/california-hab-bulletin/
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Product 3: Absorption-based net primary production (NPP) 
 

What is it?  

• Net primary production (NPP) is the rate of conversion of dissolved carbon dioxide to organic 
carbon through photosynthesis minus the carbon used for respiration. NPP is an important 
part of the carbon cycle, and these products are used in local models (estimating food 
availability to fish populations) all the way up to global climate and Earth System models (to 
predict information about the oceans of today and tomorrow). Using newer absorption-based 
approaches to NPP holds several advantages over the traditional chlorophyll-a based 
approaches (e.g., the Vertically Generalized Production Model VGPM145): 
 

o Absorption is directly related to satellite measurements of radiance relative to 
chlorophyll-a, reducing input parameter uncertainty. 

o Absorption-based models encapsulate accessory pigment composition. 
o A spectral correction factor can account for changes in spectral quality with depth. 
o The framework can support the quantification of NPP below the mixed layer depth. 
o It can correct for iron stress using fluorescence quantum yield estimates. 
o Because of the “package effect,” chlorophyll-specific phytoplankton absorption can 

vary over a factor of 4 or more for the same chlorophyll value. Light driven decreases 
in chlorophyll can be associated with constant or even increased photosynthesis. 
 

How does it impact aquaculture/fisheries? 

• For aquaculture, NPP can be used in siting as well as harvesting decision making146, assessing 
the impact of marine cages147 on the environment, and constructing dynamic energy budgets 
for shellfish growth models148. More broadly for fisheries, NPP is an important component to 
assess total trophic energy potential149, recruitment150 in relation to phytoplankton 
phenology, zooplankton productivity151, ecosystem overfishing152, species distribution153 
models, ecosystem status reports154, and fisheries economic performance155, among other 
applications. 

What are the limitations/caveats? 

• NPP is extremely challenging to validate156, even under the best of circumstances. On long 
time scales, NPP is a very useful metric, but instantaneous/daily values derived from 
satellites may require some additional caution in interpretation. Most NOAA Fisheries 
applications currently use the chlorophyll-a based VGPM approach, with known reports of 
errors in NPP values and phenology in coastal and shelf waters. An absorption-based 
approach has shown promising results in mitigating these uncertainties.  

Does HYPERSPECTRAL directly improve/enable this product? 

• Hyperspectral data will offer an improved absorption-based approach to modeling net 
primary productivity87. This approach addresses several inefficiencies and uncertainties 
present in the more ubiquitous chlorophyll-a157 and carbon based158 approaches. While a 
multi-spectral version of this approach exists, several upgrades are being made using the 
hyperspectral nature of PACE, in addition to ongoing efforts at NOAA to parse out 
phytoplankton size class-based primary productivity (in active development at the time of 
publication).  

 

https://sites.science.oregonstate.edu/ocean.productivity/vgpm.model.php
https://doi.org/10.1038/s43247-023-00833-2
https://doi.org/10.3354/aei00122
http://ioccg.org/wp-content/uploads/2015/10/ioccg-report-08.pdf
http://dx.doi.org/10.1016/j.envdev.2016.02.001
https://doi.org/10.1038/423398b
https://doi.org/10.1016/j.dsr.2009.10.006
https://doi.org/10.1371/journal.pone.0003881
https://doi.org/10.1111/fog.12640
https://www.fisheries.noaa.gov/new-england-mid-atlantic/ecosystems/state-ecosystem-reports-northeast-us-shelf
https://doi.org/10.1038/s41598-021-91599-0
http://dx.doi.org/10.25607/OBP-1835
https://doi.org/10.1002/2016GB005521
https://doi.org/10.1002/2016GB005521
http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.vgpm.m.chl.m.sst.php
http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.cbpm2.m.php
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Other satellite remote sensing products 
 

What are they?  

• Anomalies159: Anomaly products track the average conditions of a product (e.g., chlorophyll-
a) for 60 days, and ratio that against the latest image. (+) Anomalies are depicted as red, while 
(–) anomalies are depicted as blue. This is particularly useful to demonstrate and detect early 
changes to environmental conditions. These can be generated for any satellite product and 
are highly recommended for monitoring applications. 
 

• Optical water mass classification: Based on Wei et al.160, NOAA produces a reflectance 
shape-based algorithm used to resolve the global water classes into one of 23 distinct water 
types. 
 

• QA scores: The Quality Assurance (QA) score is a metric used to estimate and map the 
relative quality of ocean color data on a scale of 0 (not good) to 1 (excellent).  Details are 
provided in Wei et al.161. The QWIP score uses a different approach, and is intended for use 
with hyperspectral data; see Dierssen et al.162. 
 

• Turbidity163: Spectral techniques have been demonstrated to estimate and map turbidity up 
to 1000FNU, with robust performance despite differences in sediment characteristics. Using 
either an iPhone or Android, the HydroColor164 app allows users to estimate turbidity (and 
other parameters such as SPM, backscatter, and reflectance) directly from their phone, 
enabling on the ground monitoring that can complement satellite efforts.  
 

• Gap-filled products165: Using a gap-filling procedure by combining multiple sensors with a 
Data Interpolating Empirical Orthogonal Functions (DINEOF), NOAA can provide daily gap-
filled data products at 2-km resolution for models that cannot tolerate data gaps. 
 

• Seascape pelagic habitat classification166: Seascapes identify spatially explicit water 
masses with particular biogeochemical features using a model and satellite-derived 
measurements. Dynamic seascapes are derived by combining satellite time series of sea 
surface temperature, salinity, sea surface height, sea ice, chlorophyll-a concentration, CDOM, 
and nFLH using a supervised thematic classification. The seascape products are generated as 
monthly and 8-day composites at 5 km spatial resolution.  
 

• Ocean phytoplankton phenology indices167: Phytoplankton bloom phenology is an 
important indicator for the monitoring and management of marine resources and the 
assessment of climate change impacts on ocean ecosystems. This product provides the 
phenology output from three widely used bloom detection algorithms at three different 
spatial resolutions (4-km168, 9-km169, and 25-km170). 
 

• Other satellite data streams: Including sea surface temperature171, salinity172, sea surface 
height (i.e., sea level)173, ocean winds174, synthetic aperture radar175, sea ice176, and true color 
imagery177. Many of these parameters are often used in conjunction with ocean color data for 
habitat classification and species distribution modeling.  

 

https://coastwatch.noaa.gov/cwn/products/viirs-single-sensor-s-npp-and-noaa-20-anomaly-products.html
https://doi.org/10.1016/j.rse.2022.113233
http://doi.org/10.1002/2016JC012126
https://doi.org/10.3389/frsen.2022.869611
https://doi.org/10.1016/j.rse.2014.09.020
https://misclab.umeoce.maine.edu/research/HydroColor.php
https://coastwatch.noaa.gov/cwn/products/noaa-msl12-ocean-color-science-quality-viirs-multi-sensor-snpp-noaa-20-chlorophyll-dineof.html
https://coastwatch.noaa.gov/cwn/products/seascape-pelagic-habitat-classification.html
https://doi.org/10.5194/essd-2024-21
https://doi.org/10.5281/zenodo.8402932
https://doi.org/10.5281/zenodo.8402847
https://doi.org/10.5281/zenodo.8402823
https://coastwatch.noaa.gov/cwn/products/acspo-global-002o-gridded-super-collated-sst-and-thermal-fronts-low-earth-orbiting.html
https://coastwatch.noaa.gov/cwn/products/sea-surface-salinity-near-real-time-smap.html
https://coastwatch.noaa.gov/cwn/products/along-track-significant-wave-height-wind-speed-and-sea-level-anomaly-multiple-altimeters.html
https://coastwatch.noaa.gov/cwn/products/along-track-significant-wave-height-wind-speed-and-sea-level-anomaly-multiple-altimeters.html
https://coastwatch.noaa.gov/cwn/products/noaa-ncei-blended-seawinds-nbs-v2.html
https://coastwatch.noaa.gov/cwn/products/synthetic-aperture-radar-imagery-nrcs.html
https://coastwatch.noaa.gov/cwn/products/amsr2-sea-ice-concentration.html
https://coastwatch.noaa.gov/cwn/products/msi-sentinel-2-imagery.html
https://coastwatch.noaa.gov/cwn/products/msi-sentinel-2-imagery.html
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