
Supplementary Methods
General Overview
Our overall analytic goal was to estimate potential changes in Red Snapper reproductive parameters (fecun-
dity, spawning interval, and spawning period) over a 26 year period. Our data came from multiple studies
conducted by different researchers at varying times throughout the northern Gulf of Mexico (Gulf). It would
be naive to assume that the error associated with these factors is negligible. Therefore, each of our models
contain two components: a time series, which estimates the expected value of the reproductive parameter for
each year, and a meta-analysis, which estimates variation among data sources around this expected value.

Notation

A vector of data or parameters will be noted with an arrow (e.g., θ⃗ is a group of parameters and its third
element is θ3). Raw data is denoted y⃗; summarized data is ⃗̄y, with standard error σ⃗ȳ. When discussing
individual data points, raw data will be indexed with i and summarized data with j (e.g., yi and ȳj).
The expected values of the models will be denoted η⃗ (for the meta-analysis) or θ⃗ (for the time series).
Variances will be indicated with σ2 (for residual or likelihood variances) or τ2 (for the variance of a group
of parameters). Probabilistic relations are indicated with “∼” and deterministic relations with “=”.

Meta-analysis details

Estimating effects of interest (such as the change in a parameter over time) can be complicated when the
data have a group structure (such as belonging to multiple studies, being collected during multiple months,
etc.). Even in a well controlled experiment, there would be some variation among the groups; observational
data that were not collected with meta-analysis in mind would reasonably be expected to have effects
that vary non-negligibly. A hierarchical modeling (also called random effects) approach accommodates this
issue by treating each group as a sample from a distribution of possible parameter values that share a
common variance term (τ2). This partially pools the information from different groups while allowing for
some flexibility (McElreath, 2016). If τ2 is small, there are few differences among the groups, while larger
values can allow for nearly independent parameters. In general, we have given τ2 a lightly regularizing
prior distribution, which puts a higher probability on low values but can allow for greater variation if the
data require it. Conceptually, this is like placing a rubber band around the group of parameters: τ2 keeps
their values close together unless they are “pulled” by the data. A commonly used prior distribution is
τ ∼ t+ν (0, s), where t+ν is the positive half of a Student’s t distribution with ν degrees of freedom and scale
s. We used ν = 3 for residual (σ2) and parameter (τ2) variances unless otherwise noted, as this provides
moderate regularization without excluding large values that are warranted by the data. Note that we placed
the prior on the standard deviation instead of the variance, as the distribution is more interpretable on this
scale.

A slightly different method is necessary when variance parameters may differ among groups. Here, we
define a hierarchical variance prior, HV(σ̄2, c). If σ2

g ∼ HV(σ̄2, c) is a variance parameter associated with
group g, then σ2

g = σ̄2Gϕg, where σ̄2 is the average variance of all groups, G is the number of groups, and θg

is the proportion of the total variance (σ̄2G) that belongs to group g. ϕ⃗ is a G-length vector of probabilities
that sums to 1; it is given a symmetric Dirichlet prior distribution with concentration c. The greater the
value of c, the greater the probability that each element of ϕ⃗ is near 1/G, meaning that σ2

g converges towards
σ̄2. We generally use c = 3, which limits the variation among groups while allowing it if needed by the data.

Time series details

The time series components of our processes are derived from Gaussian process (GP) regressions, which
model how the similarity of parameters decreases as their temporal distance increases. This is a flexible
method that allows the estimation of a temporal trend where there is similarity among nearby years, but
not a linear increase or decrease. The expected values for each year are modeled as θ⃗ ∼ MultiNormal(µ,Σ),
where µ is the overall average parameter value. The covariance (Σ) is given by function of the amount of
time between each pair of years, D, where more distant years have less covariance. We used an exponential
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covariance function, Σ = τ2Σ,T exp(−DT

ℓT
), where τ2Σ,T is the scale of among-year variance, DT is the number

of decades between time points and ℓT is the length-scale, the amount of time where the correlation between
years equals e−1 ≈ 0.368. Larger values of ℓT result in more consistent patterns of similarity over time. The
parameters of a GP are only weakly identified without the use of moderately informative priors on either
τ2Σ,T or ℓT .

Suppl. Figure: Prior distributions for Gaussian pro-
cess length-scale parameters (ℓ), for yearly (A) and
monthly (B) time series. Each figure includes the
prior’s probability density, credible intervals, and me-
dian. Dashed horizontal lines indicate the range over
which the prior was calibrated to be informative. Note
that the monthly prior is only used for the spawning
seasonality model.

For our models, we placed a Weibull prior on the
transformation of length-scale parameter: 2.2

√
ℓT ∼

Weibull(4, 1.1). We selected this prior so that most
of the probability of ℓT was concentrated in a re-
gion between the smallest distance (1 year) and the
largest distance (26 years) while still allowing for
a small amount of probability outside this region
(Suppl. Figure, panel A). For the spawning season-
ality model, we also used a GP for variation among
months. We used a different length-scale prior for
this time series, which concentrates probability be-
tween one and five months: ℓM ∼ Weibull(4, 3.5).
The distance matrix DM is the pairwise distance in
months, which ranges from 1 to 6. This is illustrated
in the Suppl. Figure, panel B. Gaussian processes
are indicated by θ⃗ ∼ GP(µ, ℓ, τ2Σ,D).

Implementation details

All models were written in Stan v. 2.17 (Carpenter
et al. 2017), an analysis engine that uses highly effi-
cient Markov chain Monte Carlo (MCMC) methods
to estimate a posterior distributions. Data pre- and
post-processing was handled in R v 3.4.1 (R Core
Team 2017). Unless otherwise mentioned, models
were run on 4 independent chains for 1000 warmup
and 1000 sampling iterations each. Results were
checked for non-convergence as recommended in the
Stan user manual (Stan Development Team 2017),
and model fit was checked with posterior predictive
checks.

Spawning Seasonality
Our raw data (yi) is individual gonadosomatic index
(GSI). For summarized data, ȳj is the average GSI
of a certain month and year, with σȳ,j either taken
directly from the paper or calculated from standard
deviation and sample size. The month, year, and
study were recorded for each raw or summarized
data point. Data were assigned into groups based
on the combination of their month, year, and study.
Because we were estimating GSI for each month and
year, we used a compound Gaussian Process com-
posed of three components: α⃗ (the annual trend), β⃗
(the monthly trend), and γ (the month-by-year in-
teraction). The interaction component is a matrix
in which the rows have monthly autocorrelation and the columns have annual autocorrelation; this requires
a more complex covariance matrix than a typical GP. We considered spawning activity to be occurring in
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month m and year t (Sm,t) if the expected mean GSI θm,t > 1. For the meta-analysis, variation among
groups was modeled hierarchically with εg.

Integrating raw and summarized GSI data into a single model required a bias correction. Under central
limit theorem, ȳ are normally distributed around the expected value (η⃗) regardless of the distribution of y.
However, the heavily skewed raw GSI data were best described by a log-normal distribution, which centers
around the geometric mean (noted here as λ). Fortunately, the expected value of a log-normal distribution
is η⃗ = exp(λ + σ2

2 ), where σ2 is an estimated parameter of the log-normal distribution. We were thus able
link both data types together with this bias correction and model the expected value of GSI. Since both
normal and log-normal likelihoods contribute information to the posterior distribution in an amount that is
proportional to standard error (Gelman et al, 2013), this approach ensured that raw and summarized data
were appropriately weighted and combined. For data in month m, year t, and group g:

yi ∼ logNormal
(

ln ηi −
σ2
m

2
, σ2

m

)
(1)

ȳj ∼ Normal(ηj , σ2
ȳ,j) (2)

σ2
m ∼ HV1(σ̄

2, 3) (3)
σ̄ ∼ t3(0, 3) (4)

ln η{i,j} = ln θm,t + εg (5)
εg ∼ Normal(0, τ2ε ) (6)
τε ∼ t3(0, 2) (7)

ln θm,t = µ+ αt + βm + γm,t (8)
µ ∼ Normal(0, 2) (9)
α⃗ ∼ GP(0, ℓT,1, τ

2
α,DT ) (10)

β⃗ ∼ GP(0, ℓM,1, τ
2
β ,DM ) (11)

vec(γ) ∼ MultiNormal (0,Σγ) (12)

Σγ = τ2γ

(
exp

(
−DT

ℓT,2

)
⊗ exp

(
−DM

ℓM,2

))
(13)

ℓ⃗M ∼ Weibull(4, 3.5) (14)
2.2

√
ℓ⃗T ∼ Weibull(4, 1.1) (15)
τ⃗ ∼ t3(0, 2) (16)

Sm,t =

{
1 θm,t ≥ 1

0 θm,t < 1
(17)

p̂m,t =
1

K

K∑
k=1

Sm,t,k (18)

n̂t =
1

K

K∑
k=1

12∑
m=1

Sm,t,k (19)

From the posterior distribution of the model, we estimated the probability of spawning in a given month
and year (p̂m,t) and the width of the spawning period (n̂t). K is the number of MCMC iterations that the
model was run and Sm,t,k indicates spawning in month m, year t, iteration k. Due to the complexity of
this model, additional sampling was necessary. We ran 6 independent chains with 2000 warmup and 1500
sampling iterations, for a total of 9000 posterior draws.
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Spawning Interval
Spawning interval (SI) is the reciprocal of the proportion of fish spawning (p). Assuming that whether a
given fish is spawning is independent of the spawning status of the fish around it, then spawning status can be
considered a Bernoulli trial and the number of spawning fish can be described with a binomial distribution.
Under these conditions, standard errors can be estimated from published values of p as long as n is known,
so the data can be analyzed with a modified logistic regression. For each method of assessing spawning
interval (OM or POF), the raw data (yi) was the number of fish with a spawning marker (OM or POF); the
total number captured was ni. Our summarized data was the logit-transformed proportion of fish spawning;
means and standard errors were calculated as:

yj = logit(pj) = ln
(

pj
1− pj

)
(20)

σȳ,j =

√
1

njpj
+

1

nj(1− pj)
(21)

While it should have been theoretically possible to recover the raw data from the summarized data, this often
resulted in fractional numbers of spawning fish, so the logit-transformed approach was taken to avoid making
unnecessary assumptions. Integrating the raw and summarized data for the spawning interval analysis
was fairly straightforward, since the transformation used on the summarized data is a widely-used normal
approximation that gives it the same scale and weight as the equivalent raw data (see Gelman et al, 2013,
section 5.6 for a good example). Data were divided into groups that represented the data collected during
one year in one region of the Gulf that was published in a single study. Each summarized data point was in
its own group, but raw data could share the same group.

As with spawning seasonality, variation among groups was modeled with εg. Some groups contained
multiple samples (e.g., spawning interval was assessed monthly). Variation within these groups was modeled
with the partially pooled ϵg,w, where w is the sub-group identifier. This parameter was set to 0 for groups
with only a single data point. Variance within each group was partially pooled with τ2ϵ,w parameters, which
were themselves partially pooled with a hierarchical variance prior. Raw data were modeled with logistic
regression, while summarized data were modeled with a normal regression.

We fit two versions of this model: one in which all data shared the same temporal trend, and one in
which the time series were allowed to differ between the northeastern and northwestern Gulf. For data in
region r, year t, group g, and sub-group w:
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yi ∼ Binomial(ni,logit−1ηi) (22)
ȳj ∼ Normal(ηj , σ2

ȳ,i) (23)
η{i,j} = θr,t + εg + ϵg,w (24)

εg ∼ Normal(0, τ2ε ) (25)
ϵg,w ∼ Normal(0, τ2ϵ,g) (26)
τε ∼ t3(0, 2) (27)

τ2ϵ,g ∼ HV3(τ̄
2
ϵ , 3) (28)

τ̄2ϵ ∼ t3(0, 2) (29)
θ⃗r ∼ GP(µr, ℓrτ

2
r ,DT ) (30)

µr ∼ Normal(0, 3) (31)
2.2

√
ℓ⃗r ∼ Weibull(4, 1.1) (32)
τr ∼ t3(0, 2) (33)

r =

{
1 northeast region or in no-region model
2 northwest region when region effects are being estimated

(34)

ŜIr,t =
1 + exp θr,t

exp θr,t
(35)

ŜIg =
1 + exp(θr,t + εg)

exp(θr,t + εg)
(36)

For the model in which the two regions shared a common trend, the r subscripts were treated as identical
for all data. We calculated estimated annual spawning interval in each region and year ˆ(SIr,t) from the
reciprocal of the inverse-logit of the posterior distribution of θ⃗. We estimated the group-level spawning
interval (ŜIg) in a similar manner. These correspond with the horizontal and vertical lines in Figure 4,
respectively.

Batch Fecundity
Changes in relative batch fecundity (RBF) were analyzed entirely with raw data. The RBF was square-root
transformed, then scaled to approximate normality with a mean of 0 and variance of 1. Data were grouped
as indicated in the year column of Table 1. As with spawning interval, variation between the northeastern
and northwestern regions was assessed by running two versions of the model: one with separate time series,
one with shared time series. The meta-analysis included a partially pooled effect for among-group variability
(εg). Due to a small number of abnormally large RBF values (even after the transformation), the likelihood
was modeled with a Student’s t distribution, which allows for a more robust estimate that minimizes the
influence of the outliers on the parameter estimates. For data in region r, year t, and group g:
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yi ∼ t6(ηi, σ
2
g) (37)

σ2
g ∼ HV1(σ̄

2, 3) (38)
σ̄ ∼ t3(0, 3) (39)
ηi = θt,r + εg (40)
εg ∼ Normal(0, τ2ε ) (41)
τε ∼ t3(0, 2) (42)
θ⃗r ∼ GP(µr, ℓrτ

2
r ,DT ) (43)

µr ∼ Normal(0, 3) (44)
2.2

√
ℓ⃗r ∼ Weibull(4, 1.1) (45)
τr ∼ t3(0, 2) (46)

r =

{
1 northeast region or in no-region model
2 northwest region when region effects are being estimated

(47)

(48)

The estimated mean fecundity ( ˆRBF r,t) required a bias correction to estimate. Let xi be the untrans-
formed RBF, yi be the transformed RBF value used in the model, and ȳ and sy represent the sample mean
and standard deviation of

√
x⃗. Since yi is modeled with a tν-distribution, then yi = µ + εiσ, where µ is

the expected value of yi, σ is the scale of the residuals, and εi ∼ tν(0, 1). With a little algebra, this can be
solved for xi:

√
xi = y′i (49)

yi =
y′i − ȳ

sy
(50)

yi = µ+ εiσ (51)
y′i = sy(µ+ εiσ) + ȳ (52)

xi = (y′i)
2 = s2y(µ+ εiσ)

2 + 2ȳsy(µ+ εiσ) + ȳ2 (53)
xi = s2y(µ

2 + 2µεiσ + σ2ε2i ) + 2ȳsyµ+ 2ȳsyεiσ + ȳ2 (54)

We can now take the expectation of both sides. Because constants can be factored out of expectations,
the only variables that need to be considered are the ones which contain εi. Since εi is a random variable
with a standard Student’s t-distribution and ν ≥ 3, E(εi) = 0 and E(ε2i ) =

ν
ν−2 . Finally, we can substitute

these values for our model parameters to determine mean RBF. For a data point in year t and region r and
an unspecified group, E(xi) is ˆRBF r,t, µ is θr,t, σ is σ̄, sy and ȳ are properties of the data, and ν is 6.

E(xi) = E
(
s2y(µ

2 + 2µεiσ + σ2ε2i )
)
+ E(2ȳsyµ) + E(2ȳsyεiσ) + E(ȳ2) (55)

E(xi) = s2y(µ
2 + 2µσE(εi) + σ2E(ε2i )) + ȳ2 + 2ȳsyµ+ 2ȳsyσE(εi) (56)

E(xi) = s2y

(
µ2 + σ2 ν

ν − 2

)
+ ȳ2 + 2ȳsyµ (57)

ˆRBF r,t = s2y

(
θ2r,t +

3

2
σ̄2

)
+ ȳ2 + 2ȳsyθr,t (58)

Model Validation
To verify that the models converged to a stationary posterior distribution, we calculated the split Gelman-
Rubin diagnostic R̂ and effective sample size neff for each parameter. We also examined the trace plot of
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the log posterior probability.
We assessed the fit of each model with posterior predictive checks. This involves using the expected value

of each data point E(yi) and the posterior distribution to simulate new data, ỹi. Each posterior sample
produces a different value for ỹi. If the model fits well, the real data will lie well within the distribution
of ỹ. This correspondence is best evaluated with graphical checks comparing y to ỹ (Gelman et al, 2013).
Additionally, we compared summary statistics calculated from each posterior sample’s ỹ with the real sample
statistics. Because we had a mixture of individual and summarized data for spawning seasonality and
spawning interval, individual data was averaged by group for the posterior predictive checks. For fecundity,
we presented both individual and group-level checks. Individual spawning interval data was also inverted
and logit-transformed to be on the same scale as the summarized data.

To assess the robustness of the models to prior assumptions, we re-ran each model multiple times with
different hyperparameters. For each of the three model classes (seasonality, spawning interval, and fecundity),
we varied all of the τ , σ, ν, µ, and c (hierarchical variance concentration) parameters between 2−3 and 27

of their original scale. As it would be computationally prohibitive to fully explore all combinations of
these parameters, we used latin hypercube sampling to select 240 sensitivity trails with hyperparameter
combinations that approximated the entire grid of possibilities. The models were then re-run with these
hyperparameters for 4 chains with 1000 post-warmup iterations each. Prior sensitivity was assessed by
comparing the posterior predictive summary statistics.

Validation Results
Convergence checks

Models are considered to be convergent if R̂ < 1.1, neff is reasonably large, and the log posterior is well-
mixed. The models for spawning seasonality (Suppl. Figure 1), spawning interval (Suppl. Figures 2 - 3) and
fecundity (Suppl. Figure 4) all converged.

Posterior Predictive Checks

The spawning seasonality model did a good job estimating average GSI (Suppl. Figures 5 - 6), although it
had a tendency to overestimate large values (GSI > 2.5). This is not particularly concerning, since these
values are already well over the spawning threshold (GSI = 1) and the model performs well in that region.
The OM spawning interval model slightly underestimated the average transformed SI for values above one
(Suppl. Figures 7 - 8); this corresponds to a slight underestimation of spawning intervals less than 2.
However, summary statistics matched well with the real data (Suppl. Figures 9 - 10). This concern was
negligible with the POF methods (Suppl. Figures 11 - 14).

Both fecundity models produced similar summary statistics to the data (Suppl. Figures 15 - 16). While
the minimum value is slightly underestimated, the actual difference (around 0.5) is biologically insignificant.
These models did not do a particularly good job of of predicting individual fecundities (Suppl. Figures 17 -
18), since there was a large amount of variation among individuals (ranging over two orders of magnitude)
and we did not have consistent data on individual predictor variables. However, both models predicted
group-level fecundity (Suppl. Figures 19 - 20) quite well.

Study-level effects showed no indication of bias over time or region (Suppl. Figures 21 - 24).

Sensitivity Analyses

Our sensitivity analyses showed qualitative agreement across the different sensitivity trials for seasonality
(Suppl. Figure 25), spawning interval (Suppl. Figures 26 - 29), and fecundity (Suppl. Figures 30 - 31).
This indicates that the models are relatively robust to prior assumptions. With these figures, each panel
indicates a statistic calculated from the posterior predictive distribution of the repeated run. Each gray line
is the density estimate of that statistic for one of the sensitivity trials. Some hyperparameters resulted in
non-convergent models and were not included in the figures. Spawning interval minimum and maximum
values were somewhat sensitive to prior assumptions. This has little practical importance, as the values
presented in Suppl. Figures 28 - 29 are on a logit-transformed scale, where changes in magnitudes that are
greater than 2 result in minimal changes in the real scale.
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