Fishery Publications, Calendar Year 1974: Lists and Indexes

LEE C. THORSON and MARY ELLEN ENGETT

SEATTLE, WA
June 1975
NOAA TECHNICAL REPORTS

National Marine Fisheries Service, Circulates

The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographical distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements, and policies. NMFS also assists the fishing industry through marketing services and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry.

The NOAA Technical Report NMFS-RCR series continues a series that has been in existence since 1941. The Circulates are technical publications of general interest intended to aid conservation and management. Publications that review in considerable detail and at a high technical level certain broad areas of research appear in the series. Technical papers originating in economics studies and from management investigations appear in the Circular series.

NOAA Technical Reports. NMFS CIRC's are available free in limited numbers to governmental agencies, both Federal and State. They are also available in other scientific and technical publications in the marine sciences. Individual copies may be obtained (unless otherwise noted) from DRS. Technical Information Division, Environmental Science Information Center, NOAA, Washington, D.C. 20235. Reprints are:
Fishery Publications,
Calendar Year 1974:
Lists and Indexes

LEE C. THORSON and MARY ELLEN ENGETT

SEATTLE, WA
June 1975
The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Lists</td>
<td>1</td>
</tr>
<tr>
<td>Circular</td>
<td>1</td>
</tr>
<tr>
<td>NOAA Technical Report NMFS CIRC</td>
<td>3</td>
</tr>
<tr>
<td>Data Report</td>
<td>5</td>
</tr>
<tr>
<td>Fishery Facts</td>
<td>5</td>
</tr>
<tr>
<td>NOAA Technical Report NMFS SSRF</td>
<td>14</td>
</tr>
<tr>
<td>NOAA Technical Memorandum NMFS</td>
<td>14</td>
</tr>
<tr>
<td>Author index</td>
<td>15</td>
</tr>
<tr>
<td>Subject index</td>
<td>15</td>
</tr>
<tr>
<td>Index by Marsden squares</td>
<td>26</td>
</tr>
</tbody>
</table>
Fishery Publications, Calendar Year 1974:
Lists and Indexes

LEE C. THORSON and MARY ELLEN ENGETT¹

ABSTRACT

The following series of fishery publications of the National Marine Fisheries Service, National Oceanic and Atmospheric Administration, in calendar year 1974 are listed numerically (with abstracts) and indexed by author, subject, and geographic area: NOAA Technical Report NMFS CIRC (formerly Circular); Data Report; Fishery Facts; NOAA Technical Report NMFS SSRF; and NOAA Technical Memorandum NMFS.

INTRODUCTION

This document provides for calendar year 1974 numerical lists (with abstracts) and indexes by author, subject, and geographical area, of the following series of publications of the National Marine Fisheries Service, National Oceanic and Atmospheric Administration:
- Circular
- Data Report
- Fishery Facts
- Special Scientific Report—Fisheries
- Technical Memorandum

The document is divided into four principal sections:
- Numerical listing of series (with abstracts)
- Author index
- Subject index
- Index by Marsden squares

The series abbreviations used in the indexes are:
- Circular: C
- NOAA Technical Report NMFS CIRC: C
- Data Report: D
- Fishery Facts: FF
- NOAA Technical Report NMFS SSRF: S
- NOAA Technical Memorandum NMFS: TM

All series except the Data Report and NOAA Technical Memorandum NMFS are available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Prices may be obtained from that office. The Data Report and NOAA Technical Memorandum NMFS are available from the National Technical Information Service.

LISTS

Circular

¹Scientific Publications Staff, National Marine Fisheries Service, NOAA, 1107 N.E. 45th St., Room 450, Seattle, WA 98105.

NOAA TECHNICAL REPORT NMFS CIRC

ABSTRACT

This manual includes an introduction on the general biology, an illustrated key, an annotated systematic list, selected bibliography, and an index to the stomatopod Crustacea of the inner continental shelf of the northeastern United States. Four species are treated.

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on
Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—
Fish Farming and the Constraints in Japan. By Masaru Fujiya. February 1974, p. 27-32, 4 figs., 1 table.

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—
Recent Developments in Shellfish Culture on the U.S. Pacific Coast. By John B. Glude. February 1974, p. 89-95, 4 figs., 1 table.

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—
Freshwater Fish Culture in Japan. By Harvey Willoughby. February 1974, p. 103-105.

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

(388.) Proceedings of the First U.S.-Japan Meeting on Aquaculture at Tokyo, Japan, October 18-19, 1971—

(No abstract)

ABSTRACT

The manual includes an introduction to general classification, an illustrated key, an annotated systematic list, a selected bibliography and a systematic index to the marine decapod crustaceans of the inshore and continental shelf waters of the northeastern United States.

ABSTRACT

The following series of fishery publications of the National Marine Fisheries Service, National Oceanic and Atmospheric Administration, in calendar year 1973 are listed numerically (with abstracts) and indexed by author, subject, and geographic area: NOAA Technical Report NMFS CIRC (formerly Circular): Data Report; Fishery Facts; NOAA Technical Report NMFS SSRF; and NOAA Technical Memorandum NMFS.

DATA REPORT

(Hard copies and microfiche copies of Data Reports are for sale by the U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22151.)

ABSTRACT

Oceanic conditions in the upper 1,000 meters in the water column off tropical western Africa are portrayed. The portrayal is comprised of vertical sections of temperature, salinity, sigma t, oxygen, and phosphate. A description of methods of sampling, analysis, data processing and quality control is presented.

ABSTRACT

Data from a 5 yr shrimp trawling survey of the northwestern Gulf of Mexico are reported by station, time, and depth. Numbers of 12 species of penaeid shrimp taken during 113 cruises are recorded.

ABSTRACT

Hydrographic data include water temperature, salinity, total phosphorus, total Kjeldahl nitrogen, pH, dissolved oxygen, turbidity, water transparency, chlorophyll a, b, and c, astacin and nonastacin carotenoids, and primary productivity based on chlorophyll a extraction. Hourly observations on air and water temperature, rainfall, wind velocity and direction, tidal height, barometric pressure, and daily recordings of solar radiation are also included. Methods of collecting and analyzing samples are described. Tables summarizing data collected from 30 permanent stations according to month and area, tables summarizing data for each individual station of the 30 permanent sites for 1966-71, and tables summarizing the mean, range, and number of observations of samples taken twice daily at the Laboratory dock are included.

ABSTRACT

During seven mark-recapture studies conducted in the northern Gulf of Mexico during the period May 1967 to November 1969, personnel at the Galveston Laboratory released 75,947 brown shrimp (Penaeus aztecus) and 38,628 white shrimp (P. setiferus) marked with biological stains, fluorescent pigments, and plastic tags. Recovery of 6,192 brown shrimp and 917 white shrimp, provided data on growth, mortality, migration, and distribution by area and depth. Data for individual recoveries and other pertinent information are summarized in this report.

ABSTRACT

Growth data from a 10 yr tag recovery study of southeastern Bering Sea king crab, Paralithodes camtschatica, were evaluated for sources of error and the usable growth information documented. For simplified analysis of growth data the adult male crab growth increments may be combined since the increase in carapace length per molt averages 17.5 mm irrespective of size. For female crabs the growth per molt decreases with increase in carapace length.

The crabs' migratory pattern, molting stage at time of tagging, area of recapture, and selectivity of the fishery can influence interpretation of the growth data. The interaction of these parameters are presented, and it is suggested that these factors be considered in data application.

ABSTRACT

Hydrographic data are given for water temperature, salinity, dissolved oxygen, and turbidity. Additional data include chlorophyll a, b, and c, astacin and nonastacin carotenoids, and primary productivity based on chlorophyll a extraction for 29 stations in Tampa Bay and the adjacent coastal waters from Clearwater south to Sarasota, Fla. Data on air temperature, water temperature, salinity and turbidity from daily observations at three sport fishing piers are provided. Tables summarize mean, range, and number of observations for each of the parameters by the months in which sampling occurred.

ABSTRACT

Trawl catch and oceanographic data collected from five National
Marine Fisheries Service cruises to assess the relative abundance of the Pandalid shrimp resource in the Gulf of Alaska during 1970-72 are presented. Station data are arranged in tabular form and provide information on location, depth, time and distance trawled, type of fishing gear used, and species catch by weight. Bottom temperatures and salinities for some studies are also included.

ABSTRACT

Catches of juvenile Gulf menhaden with two-boat surface trawls in coastal streams along the northern Gulf of Mexico are compiled for the period from 1964 through 1969. The catches are presented chronologically with accompanying hydrological data (including Secchi disc measurements, salinity determinations, and surface water temperatures) collected at each sampling station. Maps are provided defining the various areal designations, streams, and sampling stations.

ABSTRACT

Hydrographic data include water temperature; salinity; total phosphorus; total Kjeldahl nitrogen; pH, dissolved oxygen; turbidity; water transparency; chlorophyll a, b, and c, astacin and nonastacin carotenoids; and primary productivity based on chlorophyll a extraction. Methods of collecting and analyzing samples are described. Tables summarize data collected from 30 permanent stations by month and area. Additional tables summarize the mean, range, and number of observations of samples taken twice daily at the Laboratory dock.

ABSTRACT

Phytoplankton production, standing stocks, and some relevant environmental characteristics were for the first time systematically measured in the California Current system during the period from 1969 through 1972. This work describes the systems and methods of measurement, and presents the data obtained.

ABSTRACT

Sampling was conducted at seven stations in the Columbia River estuary throughout 1972 to provide baseline information on species diversity, relative abundance, and seasonal occurrence of zooplankton, as well as ambient water temperatures and salinities.

ABSTRACT

This report presents catches per unit effort and mean lengths for brown shrimp, *Peneaus aztecus* Ives, taken with a trawl and trawl cod end cover from the Galveston Bay system, Texas during 1963-67 by personnel of the Estuarine Program, National Marine Fisheries Service, NOAA, Galveston, Texas. The number of stations at which samples were taken ranged from 38 in 1963 to 16 in 1967. Sampling frequency varied from weekly to monthly; in 1967 samples were not taken throughout the year. Stations were located within three habitats—peripheral, open water, and channel—within each bay area of the system except West Bay. Catch per unit effort was defined as the number of brown shrimp caught per 5-m tow in a 0.6 x 3.0 m otter trawl and the number caught per tow in the cod end cover.

ABSTRACT

Samples from 34 stations in upland canals of Tampa Bay, Fla., contained 139 species and 66,326 specimens of benthic macroinvertebrates. Collections were made from August 1970 through November 1971. Tables give monthly counts by species, individuals, and total individuals per square meter. A summary of the total number of species and individuals, and their monthly range and mean is presented. Mean grain size, standard deviation, skewness, kurtosis, and weight percentage of granule, sand, silt, and clay sized sediment particles are also recorded.

ABSTRACT

Data of the Florida portion of the Biology Phase of the Cooperative Gulf of Mexico Estuarine Inventory are recorded. They consist of the catches made by seine, trawl, and plankton net at each of the sampling stations, at the Ten Thousand Islands, Bokemyer in Charlotte Harbor, Maximo Point in Tampa Bay, Atsena Otie Key near Cedar Key, and at the mouth of the St. Marks River. Monthly samples were taken from April 1968 through March 1969. Water temperature and salinity at the times of sampling are recorded.

ABSTRACT

Results of a trawl survey for groundfish and crab resources occurring between Cape Spencer and Unimak Island, Alaska, are presented. The survey was conducted by the International Pacific Halibut Commission during 1961-63; catch records from 1,272 stations were recently analyzed and prepared by the Northwest Fisheries Center. Information presented shows seasonal patterns of geographic and depth distribution, in addition to relative abundance of all major species occurring in the Gulf of Alaska. For each group (flatfish, roundfish, rockfish, elasmobranchs, and crab) and major species, a brief narrative of results is accompanied by figures showing percentage and catch rate information by area season-depth categories. In addition, 40 charts show detailed seasonal information on eight major groundfish as well as king and Tanner crabs.

ABSTRACT

Hydrographic data were collected from a natural marsh and a marsh altered by dredging, bulking, and filling in West Bay, Texas. Water samples were taken at 2-wk intervals during the day and night at 10 stations from 25 March to 21 October 1969. This report contains the location, depth, date, and time the samples were taken and corresponding measurements of water temperature.
salinity, dissolved oxygen, dissolved organic nitrogen, nitrite, total phosphorus, inorganic phosphate-phosphorus, pH, carbon dioxide, total alkalinity, carbonate alkalinity, and turbidity.

FISHERY FACTS

ABSTRACT

An improved method of commercial fishing for sablefish, commonly known as black cod (not related to the family of codfishes), is now used by commercial fishermen from California to Alaska. Fish are captured and impounded in lightly constructed, baited traps. The traps are collapsible (they fold down) but are rigid when set out to fish. They can be completely covered with webbing or steel wire mesh. Fish impounded in the traps, which are attached to groundlines, are alive and in excellent condition when brought aboard the fishing vessels. The traditional setline method for fishing sablefish requires considerably more bait, larger fishing crews, and many more hours of work per day to catch a comparable amount of sablefish.

Details of the trapping gear, setlines, and buoynes, plus the vessel equipment, fishing instructions, and locations of traditional fishing grounds are described.

ABSTRACT

The problem of sanitation in fish processing plants is receiving increasing attention from Federal and State regulatory agencies, as well as private industry. This article covers recommended guidelines that can assist the processors of fresh and frozen fish in evaluating their existing sanitation practices or in establishing new ones.

ABSTRACT

Artificial reefs provide or improve rough bottom habitat and offer fishery scientists and administrators an effective technique to conserve and develop coastal fishery resources. With careful planning and organized efforts, local reef committees can build reefs to improve fishing and contribute to the recreational and financial growth of coastal communities. Advice and procedures are presented for: 1) selecting construction materials, 2) determining a suitable reef site, 3) obtaining permits, 4) buoying the reef, and 5) preparing, transporting, and placing reef building materials. Included in appendixes are instructions for preparing permits, addresses of Federal and State agencies involved in approving or funding reef construction, and addresses of manufacturers of materials and equipment.

NOAA TECHNICAL REPORT NMFS SSRF

with angling tournaments which in turn relate to summer vacations of tourists and the tendency of most anglers to fish only during the day and when the weather is favorable. Angling for billfish during the “off-season” may well produce good results in areas which usually are heavily fished only at certain periods. New billfish regions probably can be developed, but this requires the assistance of local governments to provide or ensure adequate sportfishing vessels, docks, bait, and, especially, qualified captains and crews.

Because of the relative inefficiency of the gear used by anglers to catch billfish, it is unlikely that angling can deplete the billfish stocks, other factors such as natural environmental fluctuations, pollution, or commercial fishing being equal. There is evidence that commercial fishing in the eastern Pacific is affecting the sport catches of sailfish and striped marlin. Based on commercial catch data, the mean size of sailfish and striped marlin and their hooking rate have decreased. In the Caribbean the catch rate of blue marlin and white marlin by commercial fishermen has decreased; this phenomenon may be attributed to heavy commercial fishing pressure from longline fleets.

The economic value of the billfish sport fishery is extremely high to local communities which support angling activities. In spite of some aesthetic feelings which promote releasing of billfish which are not tagged, it would appear that catches by anglers could be retained for human consumption without seriously depleting the stocks, thus further contributing to local economy.

Sport fishing for billfishes poses special problems because of the complexity, expense, expertise required, and lack of basic information on the fisheries and the fishermen. Possible solutions to these are discussed.

ABSTRACT

The major osteological features are described for living billfishes. All billfish remains are reviewed critically and some questionable forms are placed in Xiphioidae Ineearae Sedis (uncertain status). The remaining xiphioids are placed into three families: Istiophoridae, Xiphiidae, and Xiphiochrinidae. A new undescribed xiphiid from Mississippi shows that the billfish lineages must have diverged prior to the Eocene. Areas of research are suggested that will help place the osteological studies on a more secure foundation.

ABSTRACT

Until recently the classification of billfishes (Xiphiidae and Istiophoridae) was confused. Recent workers have consolidated the nominal species and reduced the number of species considerably. A key, with figures, is presented which includes two families, four genera, and 11 species. **Makaira mazara** is considered distinct from **M. nigricans** because of consistent differences in the pattern of the lateral line. The system, **Tetrapturus albidus**, may be tentatively separated from **T. albicans** although existing differences are minor and could be referable to the subspecific level. The overall distribution of billfishes is given; distributions are based primarily on data from the Japanese longline catch for 1964-69.

ABSTRACT

A fourth Atlantic species of the istiophorid genus *Tetrapturus* was discovered in 1961 among commercial catches landed in Sicily, Portugal, and Spain. Subsequent efforts to obtain information have failed because the fishermen do not distinguish the species and it is apparently much less common than *T. belone* in Sicily and *T. albidus* in Spain and Portugal.

The species is described in detail. Important distinguishing features are: the form of the scales on the midside, the shape of the lobes of the spinous dorsal and anal fins, the position of the anus, and the pectoral fin length.

The nomenclatural validity of *Tetrapturus georgei* Lowe is discussed and reasons are given for applying this name to the newly discovered species.

ABSTRACT

Most of the papers published from 1931 to date which deal with the identification of young billfishes (Families Xiphiidae and Istiophoridae) are reviewed. The present knowledge of the identification of adults is compared with the identification of young and problem areas are defined. Suggestions are made to resolve the present problems encountered with the identification of the young stages (eggs, larvae, and juveniles). These suggestions include the need for detailed osteological descriptions of the young, the need for an increased effort to collect specimens, and the need to artificially rear specimens in the laboratory.

ABSTRACT

The larvae of five species of billfishes (Istiophoridae) occurring in the Indian and Pacific Oceans—sailfish, *Istiophorus platypterus*; shortbill spearfish, *Tetrapturus angustirostris*; striped marlin, *T. audax*; blue marlin, *Makaira mazara*; and black marlin, *M. indica*—have now been identified. The identification of these larvae has depended on such characters as the shape of the pectoral fin, pigmentation of the branchiostegal membrane, pigmentation of the lower jaw membrane, and head profile.

Some problems in identification remain, however, as for example in the differentiation between very small larva (under 7 mm) of striped marlin and blue marlin. Recent studies have resulted in additional diagnostic characters which differentiate between these two species, namely the differences in the pterotic and preopercular spines.

The larvae of sailfish generally have pigment on the posterior half of the lower jaw, and this pigmentation is recognized to be species specific. There exist, however, some larvae of this species which lack this characteristic pigmentation, and the occurrence of these larvae seems to vary geographically from the more typical sailfish larva.

ABSTRACT

Developmental stages from about 5 mm to the adult stage are described, illustrated, and compared for the following species: Atlantic sailfish, *Istiophorus platypterus*; white marlin, *Tetrapturus albidus*; Mediterranean spearfish, *Tetrapturus belone*; longbill spearfish, *Tetrapturus pfluegeri*; and Atlantic blue marlin, *Makaira nigricans*. Most descriptions are based on material from the western North Atlantic Ocean including the DANA collections from the Sargasso Sea. The status of two other billfish—*Tetrapturus georgei* from the eastern Atlantic and the so-called “hatchet marlin” of the western Atlantic—is discussed briefly in reference to the identity of an unidentifiable juvenile from the Mediterranean Sea.

ABSTRACT

Nomenclature and systematics of the Atlantic blue marlin are briefly reviewed. Its seasonal distribution in the Atlantic is analyzed from commercial and sport fish records. The spawning season in the North Atlantic, which occurs from late spring through late fall, is discussed. Larvae and juveniles are not common, but are easily identifiable. Spawning probably occurs far offshore, with the young developing in waters of the high seas. Feeding probably occurs in the deeper strata. Tunas, frigate mackerels, and cephalopods are the main food items. The growth rate has not been determined, but it is suspected that blue marlin exceed 15 yr. Females attain a much larger size than the males; this is attributed to differential mortality. The blue marlin probably undergoes reasonably extensive migrations, and may be considered to comprise populations at least in the North Atlantic and South Atlantic Oceans. The sport fishery, which is extensive and expensive, and valuable economically, is thoroughly discussed. The commercial fishery for the species in the Atlantic is incidental to the tuna fisheries, yet there are some indications that the blue marlin is in some danger of being depleted through commercial activities.

ABSTRACT

The sailfish, Istiophorus platypterus, is one of the most important species in southeast Florida's billfish fishery. Recently, the concern of Palm Beach anglers about apparent declines in numbers of sailfish caught annually prompted the Florida Department of Natural Resources Marine Research Laboratory to investigate the biological status of Florida's east coast sailfish populations.

Fresh specimens from local sport catches were examined monthly during May 1970 through September 1971. Monthly plankton and "night light" collections of larval and juvenile stages were also obtained. Attempts are being made to estimate sailfish age using concentric rings in dorsal fin spines. If successful, growth rates will be determined for each sex and age of initial maturity described. Females were found to be consistently larger than males and more numerous during winter. A significant difference in length-weight relationship was also noted between sexes.

Fecundity estimates varied from 0.8 to 1.6 million "ripe" ova, indicating that previous estimates (2.5 to 4.7 million ova) were probably high. Larval isopteroids collected from April through October coincided with the presence of "ripe" females in the sport catch. Microscopic examination of ovarian tissue and inspection of "ripe" ovaries suggest multiple spawning.

ABSTRACT

From 1967 through 1970 sport-caught billfishes were sampled at Mazatlán, Sinaloa; and Buena Vista, Baja California, and at San Diego, California. Lengths, weights, morphometrics, meristics, and gonad data were gathered on a total of 2,066 striped marlin, 821 sailfish, 61 blue marlin, and 1 black marlin. This paper presents information on reproduction, average length and condition factor, food habits for 1970, and notes on parasites.

Developing gonads were found only in the Mexican fish. Our data on reproduction indicated that both striped marlin and sailfish spawn once per year with peak spawning activity probably in June and July. There is also the possibility that sailfish spawn in other months. First maturity in striped marlin and sailfish occurred in the 150-160 cm fork length class. Fecundity estimates ranged from 2 to 5 million eggs for four sailfish and from 11 to 29 million eggs for three striped marlin. It appears that striped marlin move offshore from the Mexican coastline to spawn while sailfish remain closer to shore.

ABSTRACT

I. Scientists, anglers, skippers, and mates investigate and apply the scientific method. The importance of knowledge, organization, and skills required of the scientist, angler, skipper, and mate in order to bring about a better understanding of the billfish and better methods of catching billfish is discussed.

II. The need for more observations and recording of data. The following data should be given important consideration: temperature, depth, tide, winds, currents, strike ratio, bait, and the ship's log; these topics are reviewed.

III. Scientific research projects for consideration in the future. Potential research projects in Australia, New Zealand, and Africa are presented. Some projects worthy of consideration include: (1) breeding of black marlin at the Great Barrier Reef, Australia; (2) transplanting of small black marlin to a natural salt water lake for study and observation of growth and development (Australia); (3) reproduction studies by tracking (Australia, New Zealand, Africa); (4) general blood cell surveys (New Zealand); (5) general chromosome surveys (New Zealand); and (6) sensory and motor responses of billfish in relation to sight, smell, and pain (Africa).

ABSTRACT

The present knowledge of the biology of swordfish in the northwest Atlantic Ocean is summarized. Distribution of swordfish is bounded by 13°C surface isotherms with smaller (under 100 cm) fish in water above 18°C. Males are smaller (under 200 cm) than females and are more frequent in warmer, southern areas. Large fish make feeding excursions to the bottom, to depths of 500 m or more and temperatures 5°C. Females attain sizes of 550 kg and males 120 kg, but average size was 54 kg in 1970 commercial landings. Growth is thought to be rapid with weights of 4, 15, 40, and 70, and 110 kg attained at annual intervals. Spawning is confined to warmer (over 24°C) southern waters. Tagging data (13 recoveries) suggest fish spend the summer in one locality and return there in subsequent years. High recoveries (18.3%) have been made of fish tagged while swimming free.

ABSTRACT

Length weight and morphometric data collected over 4 yr (1967-70) from sport fisheries at various locations in the Eastern Pacific are presented for striped marlin (Tetrapturus audax), sailfish (Istiophorus platypterus), and blue marlin (Makaira nigricans). The data were gathered from San Diego, California (U.S.A.); Buena Vista, Baja California Sur (Mexico); and Mazatlán, Sinaloa (Mexico).

Regression of eye: fork length and covariance analysis were used to compare maximum body depth, depth at vent, pectoral fin length, dorsal fin height, maximum length, snout to mandible, and snout to posterior orbit lengths between sexes and areas for each species. Regression equations are given for converting fork length
mandible fork length to eye forkel length. Based on these conversions our Pacific Ocean data on sailfish are compared with data from the Atlantic Ocean.

Length-weight regressions using both eye forkel length and fork length are given for each species by sex.

ABSTRACT

Estimates of parameters of relations among weight, girth, total length, fork length, body length, trunk length, and caudal spread were made for blue marlin, white marlin, and sailfish captured in the western Atlantic. Some sexual differences were found.

ABSTRACT

Weight-length relationships for six species of billfishes in the central Pacific Ocean were developed by analyzing 20 yr of data. Log linear and nonlinear statistical models were fitted to the data by regression analysis, and residuals from the models were tested. Blue marlin, Makaira nigricans Lacepede, (50 135 cm FL) and sailfish, Istiophorus platypterus (Shaw and Nodder), apparently have coefficients of allometry less than 3.0. Black marlin, M. indica (Cuvier) and female blue marlin (≥ 135 cm FL) apparently have coefficients equal to 3.0. Shortbill spearfish, Tetrapturus angustirostris Tanaka, striped marlin, T. audax (Philippi), and swordfish, Xiphias gladius Linnaeus, apparently have coefficients greater than 3.0.

ABSTRACT

Food and feeding habits of swordfish were studied by examining stomachs of 141 individuals captured from July to October 1971 between the Grand Bank and the southeast part of Georges Bank in the Northwest Atlantic Ocean. A wide variety of fish species made up about 80% of the diet, the remainder was squid. Species and size composition of food fishes depended on the feeding area. Large redfish (Sebastes marinus) were the most important food item in the Western Bank and Grand Bank areas, whereas silver hake (Mullus caprae) made the greatest contribution in the Georges Bank area. Haddock, herring, and northern shad occurred most frequently and constituted about 20% of the fish diet for all areas. Sabertoothed fishes, family Evermannellidae, also occurred in samples from all areas.

ABSTRACT

Sixteen swordfish, Xiphias gladius, ovaries ranging in weight from 39 to 20,000g were examined. Fish size ranged from 17 to 246 kg. Based on the occurrence of ripe ovaries, spawning in Hawaiian waters was estimated to extend from April through July. The developmental stages of ova are described; the most advanced ova examined averaged 1.6 mm in diameter. The distribution of ova developed in an ovary was found to be heterogeneous. Fecundity was estimated for eight swordfish. Some variability in fecundity was noted; a positive curvilinear relationship of increase in fecundity with increase in fish size was evident. Best estimates suggest that an 80 kg swordfish has 3.0 million ova (early ripe or ripe stages) and a 200 kg swordfish has 6.2 million ova.

ABSTRACT

Gastric ulcers were found in 10 of 114 blue marlin, Makaira nigricans, and 2 of 3 black marlin, M. indica, examined from 1967 to 1969 at the Hawaiian International Billfish Tournament. Parasitic nematodes were found imbedded in the base of ulcers in one blue marlin and two black marlin. The gross and microscopic morphology of the ulcers is given and possible causes are discussed. The most likely cause is either mechanical injury or parasites, or the effect of both in the same stomach.

ABSTRACT

Total mercury determinations have been carried out on at least one tissue from each of 210 swordfish, 10 specimens of 15 other pelagic species, and 235 individuals of 12 species taken from swordfish stomachs. Total mercury levels of swordfish white muscle tissue ranged from 0.05 to 4.90 parts per million (ppm) (mean 1.15 ppm) total mercury. Mercury levels were broadly related to fish size with the larger fish having higher levels but the relationship varied with time and area of capture. Males tended to have higher levels than females. The mercury levels of different tissues (red muscle, liver, kidney, brain, gill, vertebral disc, all stomach) are given. The differences in the levels in certain tissues from fish taken in different areas suggest greater physiological activity of mercury in fish from the southern area. The significance of mercury in swordfish prey species is discussed.

ABSTRACT

The results of analyses of the mercury content of 37 blue marlin, Makaira nigricans, 56 striped marlin, Tetrapturus audax, and 3 swordfish, Xiphias gladius, are presented. The levels of total mercury found in white muscle of blue marlin caught in Hawaiian waters ranged from 0.13 ppm to 0.86 ppm; fish specimens ranged in total weight from 96 pounds (43.5 kg) to 906 pounds (410.9 kg). A trend of increasing mercury level with increasing size of fish was noted. The mercury content in the livers of 26 blue marlin specimens examined ranged from 0.13 ppm to 0.55 ppm; there was no apparent trend noted between mercury content in the liver and size of fish. Striped marlin from Hawaii and southern California showed a range of mercury levels in white muscle of 0.09-1.00 ppm for the 14 Hawaii samples examined and 0.03-2.1 ppm for the 42 California samples examined. The range in size of fish was 127.3 inches (109.2-231 pounds (49.4-104.8 kg) for the
Hawaii and California samples, respectively. From the wide spread of
mercury levels encountered in striped marlin, a trend of mercury
level with size of fish could not be easily detected. Livers of nine
specimens from the Hawaii catch were analyzed; mercury levels
ranged from 0.05 ppm to 1.53 ppm.
Three swordfish weighing 6 pounds (2.7 kg), 100 pounds (45.4
kg), and an estimated 500 pounds (226.8 kg) contained mercury
levels in white muscle of 0.04, 1.71, and 2.10 ppm, respectively.

(675.) Proceedings of the International Billfish Symposium,
Kailua-Kona, Hawaii, 9-12 August 1972, Part 2. Review
and Contributed Papers—Summer Concentration of
White Marlin, Tetrapturus albidus, West of the Strait of

ABSTRACT
Examination of fish catches landed in August 1961 at various
ports in southern Portugal and the adjacent coast of Spain
confirmed that the white marlin, Tetrapturus albidus, was
concentrated in these waters during this month. The coincident
absence of white marlin in landings at Sicily may indicate that
the species does not enter the Mediterranean in any numbers at least at
this season.

August concentrations of white marlin elsewhere in the Atlantic
are discussed along with the implications of the coincident timing
of them on population structure of the species.

(675.) Proceedings of the International Billfish Symposium,
Kailua-Kona, Hawaii, 9-12 August 1972, Part 2. Review
and Contributed Papers—A Hidden Barrier to Billfishes.

ABSTRACT
Since 1838 there have been isolated reports of billfishes from the
southwest corner of Africa, but only during the years 1961-64 did
numbers of Cape Town-based boats fish commercially for tuna
using longlines, be billfishes found to occur in considerable
numbers.

The waters to the west and south of the Cape of Good Hope were
found to be unique in their billfish fauna, no less than six species
being represented, comprising Xiphus, Makaira (2 species),
and Tetrapturus (3 species). Only two wide-ranging species have not
been found. Istiophorus is commonly listed from the area on
the basis of Hiatoparus grumulfer, but a reexamination of de
Castelnau’s type shows it to be a Makaira, while T. angustirostris
could occur as it is known from off Durban.

The billfishes are probably attracted to this limited geographic
area by rich feeding grounds which are the result of the upwelling of nutrient-rich water along the Cape’s west coast. It is
difficult, however, to suggest reasons why there is an apparent
barrier to movement between the Atlantic and Indo-Pacific Oceans
for certain species. Hydrographic conditions in the area are
discussed, but there are no obvious physical barriers preventing
black and striped marlins from entering the Atlantic nor white marlin
and longbill spearfish from moving into the Indo-Pacific.

(675.) Proceedings of the International Billfish Symposium,
Kailua-Kona, Hawaii, 9-12 August 1972, Part 2. Review
and Contributed Papers—Catch Distribution and Related
Sea Surface Temperature for Striped Marlin (Tetrapturus
audax) Caught Off San Diego, California. By James L.

ABSTRACT
Records for 4,155 marlin landed at San Diego, California, and
related sea surface temperature data were examined for the period
1963 through 1970 to determine time-space distribution and the
relationship of catch and sea surface temperatures. For the period
1963 through 1970 the catch of 4,155 marlin was compared to sea
surface temperature conditions relative to increased catches.

Catch distribution based on 1963 to 1967 data showed that 76.4%
were caught within a 1/8° by 40 nautical-mile area off San Diego,
with the maximum catch being made from mid-August to
mid-September. Catch temperatures off southern California
were calculated for this area from airborne infrared sea surface
temperature survey data ranged from 67°F (19.4°C) to 73°F
(22.8°C); the mean catch temperature was 67.8°F (19.9°C).

Sea surface temperature conditions based on 2 wk average
temperature charts issued by the National Marine Fisheries Service
indicate that an initial warming of water to an average temperature
of 68°F (20.0°C) or greater was necessary for increased catches. When
average temperatures were below 68°F (20.0°C), 931 fish were
caught; between 68°F (20.0°C) and 70°F (21.1°C) the catch was 1,886
fish; and a further increase to 70°F (21.1°C) or above resulted in a
catch of 1,918 fish.

Catch data and isotherm charts, 1963 through 1970, indicate that
the continuity of the 68°F (20.0°C) and 70°F (21.1°C) isotherms from
off central Baja California to off southern California is
associated with improved fishing. When these isotherms were
discontinuous the average catch per biweekly period was 2.0 fish;
when these isotherms were continuous the average catch was
146.1 fish. The highest average catch per biweekly period (205.3 fish)
was recorded when the 70°F (21.1°C) isotherm was continuous.

(675.) Proceedings of the International Billfish Symposium,
Kailua-Kona, Hawaii, 9-12 August 1972, Part 2. Review
and Contributed Papers—Migrations of White Marlin and
Blue Marlin in the Western North Atlantic Ocean—
Tagging Results Since May, 1970. By Frank J. Mather
III, John M. Mason, Jr., and H. Lawrence Clark. July 1974,
p. 211-225.

ABSTRACT
Migrations of sailfish, Istiophorus platypterus (Shaw
and Nodder), in the western North Atlantic Ocean are discussed on
the basis of results of three cooperative tagging programs:
The Rosenstiel School of Marine and Atmospheric Sciences (formerly
the Institute of Marine Science, and Marine Laboratory) of the
University of Miami released 1,259 sailfish between
1968 and 1969; and eight tags were returned. Members of the Port
Aransas (Texas) Rod and Reel Club marked and released 515 sailfish
between 1964 and 1967; and two tags were returned. The Cooperative
Game Fish Tagging Program of the Woods Hole Oceanographic
Institution has marked and released 1,255 sailfish between 1954
and 1957; 97 tags being returned.

The majority of the returns showed limited movements; most
were between localities along the southeast coast of Florida and the
Florida Keys. The longer migrations did not follow a distinct
pattern, but many of them showed a tendency toward movements
between tropical waters (northeast coast of South America, the
Lesser Antilles, and the Straits of Florida) in the cold season and
temperate waters (the Gulf of Mexico and the United States
coast between Jacksonville, Florida and Cape Hatteras, North Carolina)
in the warm season.

Times at liberty, which ranged from less than 1 day to over 4 yr,
with only nine exceeding 18 mo, are generally consistent with earlier
findings that the sailfish is a short-lived species. Tag returns
give no indication of heavy commercial fishing pressure on the
stocks under study.

(675.) Proceedings of the International Billfish Symposium,
Kailua-Kona, Hawaii, 9-12 August 1972, Part 2. Review
and Contributed Papers—Migrations of White Marlin and
Blue Marlin in the Western North Atlantic Ocean—
Tagging Results Since May, 1970. By Frank J. Mather
III, John M. Mason, Jr., and H. Lawrence Clark. July 1974,
p. 211-225.

ABSTRACT
Migrations of white marlin, Tetrapturus albidus Poey, and blue
marlin, Makaira nigricans Lacépède, in the western North Atlantic
Ocean are discussed in terms of tag returns obtained since the
completion of data collection for the paper by Mather, Jones, and
Beardsley (1972) in May 1970.

In the period May 1707 May 1972, 2,039 white marlin and 216
blue marlin have been released, and 70 tags from white marlin and 1
from a blue marlin have been returned.

The migratory pattern which had been established for the stock
of white marlin migrating off the mid-Atlantic coast of the
United States has been further supported by 54 of 60 new returns
from fish released in this area. The six others deviated from this
pattern geographically or chronologically, or in both respects.
The tendency for the early returns to be from the north has
increased. Fifty of these fitted with previously observed patterns or individual
migrations. The other five were local or scattered, but one of them
extended the range of recaptures southeastward to lat. 4°N, long.
40°W.
As previously, times at liberty have been long, and the record
has been increased to 58.7 mo. A new calculation, incorporating
much additional data, suggests that the annual mortality rate is
between 23% and 36%.
The single blue marlin return is the first to show a significant
migration—at least 750 nautical miles, from the Bahamas to the Gulf
of Mexico—and the dates of release and recapture support the
theory of separate populations of blue marlin in the North and South
Atlantic. After 30 mo at liberty, this fish weighed twice its
estimated weight at release.

(675.) Proceedings of the International Billfish Symposium,
and Contributed Papers—Migration Patterns of Istiophoridae in the
Pacific Ocean as Determined by Cooperative Tagging Programs. By James L. Squire, Jr. July

ABSTRACT
Since 1954, billfish have been tagged by cooperative marine
game fish tagging programs in many of the major sportfishing
areas of the Pacific. Major locations of tagging have been off southern
California, U.S.A., Baja California Sur and mainland Mexico,
Panama, and Australia. Two cooperative marine game fish tagging
programs have operated in the Pacific, 1) the Cooperative Marine
Game Fish Tagging Program, sponsored jointly by the Woods Hole
Oceanographic Institution and the National Oceanic and Atmo-
spheric Administration, National Marine Fisheries Service, and 2) a
cooperative program conducted by the California Department of
Fish and Game.

During 1954-1971, 15,540 billfish were tagged. Records show
9,849 striped marlin (Tetrapturus audax), 4,821 sailfish (Istiophorus
platypterus), 622 black marlin (Makaira indica), and 248 blue marlin
(Makaira nigricans) were tagged during this period. Ninety-seven
tag recoveries have been made; these include 85 striped marlin, 10
sailfish, and 2 black marlin. Eighty-one percent of these recoveries
were by longline fishing vessels, the remainder by marine sport
fishermen.

The tag recovery rates were 0.88% for striped marlin, 0.32%
for black marlin, and 0.24% for sailfish.

Four types of tags were used in the two programs. Two types of
metal tip dart tags were used by the Woods Hole Oceanographic
Institution; metal tipped single- and double-barbed plastic dart tags
were used by the National Marine Fisheries Service; and a
single barb plastic dart tag was used by the California Department
of Fish and Game. Tag types giving the best recovery rate for
striped marlin and sailfish were the plastic single- and double-
barbed plastic dart tags.

Recovery data for striped marlin tagged in the eastern Pacific
show a movement away from the tip of Baja California in a south
to southwest direction in late spring and early summer. Some
recoveries were made of fish tagged near the tip of Baja California
and recovered northwest of the tip of Baja California, Mexico. The
migration pattern to the south and southwest at this time of the
year may be related to spawning. Striped marlin tagged off southern
California show a migration to the south in late summer and
early fall. Recoveries of striped marlin in the eastern Pacific were
generally short term (average of 89 days) and covered short
distances, averaging 261 nautical miles. Only three of 85 tagged
striped marlin, and only two of 85 striped marlin, were recaptured
1,000 nautical miles or more from the site of tagging. The few
recoveries of tagged black marlin (2) and sailfish (10) did not provide
sufficient data to determine migration patterns for these species.

(675.) Proceedings of the International Billfish Symposium,
and Contributed papers—Occurrence of Young Billfishes
in the Central Pacific Ocean. By Walter M. Matsumoto

ABSTRACT
Plankton and other net-caught samples collected on past cruises
of the National Marine Fisheries Service, Honolulu Laboratory
vessels in Hawaiian and central Pacific equatorial waters were
examined for billfish larvae and juveniles. Of the 342 billfish young
found in 4,279 net tows, 297 were blue marlin, Makaira nigricans, 82
were shortbill spearfish, Tetrapturus angustirostris, 2 were
sailfish, Istiophorus platypterus, 20 were swordfish, Xiphias
gladius. Twenty-nine larvae were unidentified owing to excessive
damage. A preponderance of these larvae was obtained from hauls
made at the surface during daylight.

In the equatorial central and North Pacific larvae of only three
of the six billfish species nominally found in the Pacific were taken.
The captures of these larvae (blue marlin, shortbill spearfish, and
swordfish) fill the gaps in the known distribution of istiophorids and
swordfish, and extend their distribution eastward to the Hawaiian
Islands in the North Pacific. The two sailfish larvae were taken in
New Hebrides waters in the western South Pacific.

The abundance of striped marlin, Tetrapturus audax, larvae in
Hawaiian waters was significant, since this species comprises nearly
82% of all istiophorids taken on the longline in the Hawaiian
fishery. Their absence suggested that the striped marlin in Hawaiian
waters probably migrate elsewhere to spawn. If this true, then the
spawning habits of this species differ significantly from those of blue
marlin. A similar situation could hold for sailfish also.

(675.) Proceedings of the International Billfish Symposium,
and Contributed Papers—Distribution of Larval Sword-
fish in the Northwest Atlantic Ocean. By Gretchen E.

ABSTRACT
Surface plankton collections, mostly with neutron nets towed at
4.5 knots, during eight cruises (1965-1972) yielded 119 swordfish
larvae 6-110 mm total length. Captures were grouped in discrete
geographic areas: Virgin Islands, Guan. If this true, then the
spawning habits of this species differ significantly from those of blue
marlin. A similar situation could hold for sailfish also.

(675.) Proceedings of the International Billfish Symposium,
and Contributed Papers—The Distribution of the Larvae of
Swordfish, Xiphias gladius, in the Indian and Pacific
Oceans. By Yasuo Nishikawa and Shoji Ueyanagi. July

ABSTRACT
The distribution of larval swordfish, Xiphias gladius, was
determined on the basis of 255 specimens collected from Japanese
research vessels operating in the Indian and Pacific Oceans. These
larvae, ranging from 3 to 160 mm in total length, were caught by
larva-net tows and by dip netting.

The larvae are distributed over virtually the entire tropical and
subtropical areas of the Pacific Ocean except for the eastern Pacific
east of 100°W. The northernmost occurrence was at lat. 31°N,
long. 132°E, near Kyushu in the western Pacific, and the
southernmost was at lat. 22°38'S, long. 105°24'W in the eastern
Pacific. These larvae were insufficient to delineate the distribution in
the Indian Ocean.

The surface water temperature in the areas of larval swordfish
occurrence ranged from 24.1°C to 30.7°C.

(675.) Proceedings of the International Billfish Symposium,
and Contributed Papers—Notes on the Tracking of the
Pacific Blue Marlin, Makaira nigricans. By Heeney S. H.
Yuen, Andrew E. Dixon, and James H. Uchiyama. July

ABSTRACT
In July of 1971 and 1972 five Pacific blue marlin, Makaira
nigricans, were tagged with temperature sensing, ultrasonic
transmitters off the west coast of Hawaii. These were tracked for
durations up to 224 h. The paths of three showed movement in
a northerly direction. The other two showed no movement. Average
swimming speed ranged from 2.2 km/h to 3.4 km/h for the three
fish tracked. Swimming depths differed considerably among the
three.

ABSTRACT

Data were obtained on the sportfishery for billfishes off South Pass, Louisiana, and off northwest Florida in 1971. These data included dates and times of raises, hookups, and catches by species, locations of raises; areas fished; baits used; water color; surface conditions; boat characteristics. A total of 99 blue marlin (Makaira nigricans), 284 white marlin (Tetrapturus albidus), and 318 sailfish (Istiophorus platypterus) were caught and recorded during 11,107 hours of fishing in the northeastern Gulf of Mexico. White marlin was most abundant in July and August, while sailfish was most abundant in the latter half of September off northwest Florida. Most fish were caught near Florida and Louisiana, although a few were also caught in the area of Pass, Louisiana, or off South Pass. Blue marlin did not have an especially abundant period in their area. White marlin and sailfish were more abundant off northwest Florida than off South Pass, whereas the reverse was true for blue marlin. The hours of greatest relative abundance for all species of billfishes combined were between 1000 and 1200 and again between 1300 and 1500 off South Pass. A similar pattern was found off northwest Florida (1000-1100 and 1400-1500). Results indicate that the blues the water, the greater the relative abundance of each of the three species. Off South Pass more billfishes were raised along lines and rips than in any other surface condition, whereas off northwest Florida, more billfishes were raised in open water than in any other surface condition. Moon phase appeared not to have any significant effect on billfishing. Neither did the length of the fishing boats. However, of the boats in the 40 to 49 ft length category, those with twin screws raised more billfishes than those with single screw. Off northwest Florida, blue marlin preferred mullet (Mugil cephalus) over ballyhoo (Her_missing in the middle information) and bonito (Et...nus alletteratus) strip as bait; white marlin showed no preference; while sailfish preferred bonito strip. Off South Pass, data on bait preference were insufficient to allow conclusions.

ABSTRACT

In 1969, 1970, and 1971 marine game fish anglers participating in the Pacific phase of the National Marine Fisheries Service cooperative marine game fish tagging program were asked to complete a postcard form which requested information of the number of days of billfishing the anglers engaged in and the catches made. From the 12,876 angler days reported, the catch consisted of 10,234 billfishes. The average for the 3 yr period was 0.57 billfish per angler day or 1.75 days of fishing per billfish. Analysis of data for the geographical areas in the eastern Pacific and Australia (Queensland) where billfishing is conducted resulted in a wide range of catch per effort for all billfish species combined. Off southern California, U.S.A., the catch was 0.10 fish per angler day, equating 10.3 days of fishing per fish. Off Baja California, Mexico, records show 0.82 fish per angler-day equating 1.22 days fishing per fish, and fishing off Mazatlán yielded 1.21 fish per angler day and 0.82 days fishing per fish. Off Acapulco, Mexico, the records show 0.85 fish per angler day and 1.05 days per fish. Fishing off Australia the records show 0.55 fish per angler day equating 1.83 days per fish.

ABSTRACT

During the early 1960's the traditional harpoon fishery for swordfish off the east coast of Canada was replaced by a longline fishery. Fishing areas and seasons expanded, landings increased, and size composition of the catch decreased. Catch and effort data for the period 1958 to 1970 covering both fishing methods were analyzed and the results are presented.

ABSTRACT

The landings of the Hawaiian longline fishery are dominated by the tunas. During 1964 to 1967, the tunas, by weight, made up an average of 60% of the catch, whereas the marlins and swordfish. Xiphias gladius, comprised about 34%. The catch of billfishes is composed of the striped marlin, Tetrapturus audax, blue marlin, Makaira nigricans, black marlin, M. indica, sailfish, Istiophorus platypterus, and swordfish. Subsequent to 1963, the billfish catches have been dominated by the striped marlin.

The monthly landings and the monthly catch rates of blue marlin and striped marlin showed similar trends. The monthly landings of striped marlin, however, showed greater fluctuations than the monthly catch per unit of effort. This was attributed in part to a change in the size composition of striped marlin in the third quarter.

ABSTRACT

In this paper, the author analyzed fishing conditions for striped marlin in waters off Baja California in relation to the thermocline. The results were as follows:

1. In subarea SW, bounded by lat. 15°-25°N and long. 115°-110°E, catch rates begin increasing from about May and reach a peak between July and October. In subarea SE, bounded by lat. 15°-25°N and long. 10°-105°E, there appears to be a tendency for catch rates to be highest from July through October. In subarea S, bounded by lat. 10°N to the coast of Mexico and long. 105°-100°W, catch rates are highest between May and July.

2. From December through March there is good fishing in relatively narrow areas around the tip of Baja California. In April, a good fishing ground appears off Manzanillo and in May this ground begins to spread seaward. From June and July, the fishing off the coast from Acapulco to Mazatlán begins to spread seaward and the greatest expansion of grounds occurs off Baja California in September. In October, the ground becomes narrow and is located further east.

3. The pattern of expansion and contraction of the shallow thermocline area coincides fairly closely with the pattern of expansion and contraction of good fishing grounds. One of the factors related to this phenomenon is that the formation of good fishing grounds off Baja California is considered to be related to the shallow thermocline areas where there is a more abundant food supply.

ABSTRACT

Catch and effort statistics from the Japanese longline fishery are used to examine the quarterly distribution of each of the six species of billfishes taken in the eastern Pacific Ocean east of long. 130°W. Striped marlin appear to be the most widely distributed billfish in the Pacific. Shortfin mako are confined more to the equatorial high seas regions than the other species. Swordfish are extremely abundant within 600 miles of the shoreline along Mexico and Central America. Shortbill spearfish are relatively sparsely distributed and less abundant in inshore waters than are sailfish. Black marlin are
the least widely distributed and least abundant of the billfishes in the eastern Pacific. Swordfish are abundant in waters around Baja California, Mexico, and near northern Peru and southern Ecuador. They are also frequently encountered in or near the cool upwelled water along the equator.

Trends in abundance, as reflected by catch/1,000 hooks and total catch, are discussed. On the southern grounds of the striped marlin fishery, apparent abundance of this species has dropped about a third of its highest level, but fishing success has remained constant on the northern grounds. Catches of striped marlin reached their peak in 1968 (337,000 fish); by 1970 the catch had dropped to 180,000 fish. Apparent abundance and catches of blue marlin also decreased from levels in the early 1960's. In 1963, 73,000 blue marlin were taken but the catch decreased to about 22,000 fish by 1966 and has fluctuated about that level since. Because so few black marlin are taken in the eastern Pacific, trends in the abundance of this species are not discussed. The longline fishery for sailfish in the eastern Pacific began in a substantial way in 1965 with a catch rate of about 80 fish/1,000 hooks on the major sailfish grounds but by 1970 this had dropped to about 11 fish/1,000 hooks. Also catches on these grounds dropped from a peak of about 370,000 fish in 1965 to about 210,000 fish in 1970. Catches of swordfish continued to increase from the beginning of the fishery in the 1950's until 1969, the peak year, when about 112,000 fish were landed. Catches decreased in 1970, although effort decreased. The apparent abundance of swordfish has shown no general decreasing trends. A general discussion of the needs of scientific research on billfishes is given in the final section of the report.

ABSTRACT

Billfish landings made by Taiwan fishing vessels from 1962 to 1971 were analyzed and described briefly. Billfishes are commercially harvested in Taiwan by deep sea and inshore longline fisheries and the harpoon fishery. The important species caught include swordfish, striped marlin, blue marlin, black marlin, and sailfish. The deep sea longline fishery has developed rapidly since 1954, and the landings of billfishes have increased accordingly. Fishing operations have covered the major fishing grounds of the Pacific, Indian, and Atlantic Oceans. The inshore longline fishery still confines its activities to waters around Taiwan; billfish landings made by this fishery fluctuate annually.

ABSTRACT

The rapid increase of fish prices has recently caused public concern. To find the cause of the difference between the price the fisherman receives for his product and the ultimate price paid by the consumer, the report analyzes the distribution of the consumer's dollar paid to the retailer as well as to the wholesaler, processor, and fisherman. Selected for this study are seven finfish, two canned fish, and four shellfish products. The difference or margin between selling and purchasing prices of each level and the share of the consumer's dollar by each level and each cost component are calculated for each fish product. The report also analyzes the costs and profits incurred by each marketing function and describes the major influence on margin differences.

The objective of the study is to give individual firms in the fishery a systematic guide to examine their margins, costs, and profits for each fish product; compare them with the data presented in this study, as national averages for the same product; and determine whether there is room for improvement for their performance and services.

ABSTRACT

The abundance of benthic macroinvertebrates during March-October 1969 in West Bay, Texas, was compared between 1) a natural marsh area, 2) an area altered by man through channelization, bulkeheading, and filling, and 3) an open bay area. Animals representing four phyla were caught. Abundance indices (areas combined) of the four groups in terms of numbers were 66.1% polychaetes, 29.0% crustaceans, 2.9% polychaetes, and 0.9% nemerteans; and in terms of volumes were 44.0% polychaetes, 40.8% peleypedos, 10.7% nemerteans, and 4.4% crustaceans.

When all organisms were combined, they were slightly more abundant numerically and over twice as abundant volumetrically in the marsh than in the canals and were least abundant in the bay. Polychaetes were most abundant in the canals and least abundant in the bay; abundance was highest at stations with low to intermediate amounts of silt and clay or where vegetative matter was composed mostly of live sea grasses or detritus. Crustaceans were more abundant in the natural marsh than in the other two areas and showed a definite preference for sandy substrate in marsh areas. Polychaetes were numerically most abundant in the bay, but volumetrically the marsh had the highest standing crop. Nemerteans were most abundant in the marsh and least abundant in the bay.

In general, the seasonal abundance of polychaetes and nemerteans varied little during the study, whereas crustaceans and peleypedos were abundant only during the spring and early summer. An exception to this seasonal abundance pattern was the reduction in numbers of polychaetes at the uppermost canal station where the habitat was apparently unsuitable due to low oxygen levels during the summer and early fall.

ABSTRACT

The Naknek River system contains eight interconnected and generally biologically discrete basins, each with a different ratio of spawning grounds to feeding areas. The salmon, Oncorhynchus nerka, and different densities of juvenile sockeye salmon and associated species of fish. Juvenile sockeye salmon and other pelagic species were sampled with tow nets at night. Sockeye salmon were the most common and abundant species in all basins, followed by three-spine sticklebacks, nine-spine sticklebacks, and pond smelt. Eighteen other species of potential competitor or predator fish were present.

In the summers of 1961 to 1963, juvenile sockeye salmon in the pelagic areas had a characteristic pattern of abundance for the entire system; abundance (catch per tow) of age 0 increased from early summer to midsummer and then declined to late August. The abundance in late August varied about threefold and, in general, was independent of variations in the number of parents from 1960 to 1963.

In July the abundance of age 0 fish in each basin was proportional to the amount of known contiguous spawning ground, but by late August this relation no longer existed. This change was at least partly due to migration of the age 0 fish—generally from basins of greater abundance of fish to those of lesser abundance. The larger and faster growing fish were the first to migrate. Not all basins were involved in these migrations.

The production of sockeye salmon smolts in the Naknek system is relatively stable. At least three major factors probably contribute to this stability: (1) the presence of several major spawning units or areas in widely separated spawning grounds of different types, (2) the presence of several connected lakes, and (3) the migratory behavior of juvenile sockeye salmon during their first summer.

A mechanism which prevents the population of juvenile sockeye salmon from exceeding some upper limit is not apparent in the Naknek system. A reduction in growth in areas of high density was not apparent in the Naknek system in 1961-64 and apparently did not occur in 1957-65. Many kinds of predators on juvenile salmon are present but probably are not limiting production of smolts.

The data on abundance and growth of juvenile sockeye salmon and the distribution of the escapement and spawning grounds indicate that it should be possible to increase the production of sockeye salmon in the Naknek system. Two of the major basins, North Arm and Brooks Lake, account for about 25% of the sockeye salmon production in the area, and other major basins are now producing juveniles at very low levels. North Arm appears to suffer from too little spawning area, whereas Brooks Lake appears to have adequate spawning area but too few spawners.
Three factors in the biology of juvenile sockeye salmon of the Naknek system are of special significance to the managers of the resource and should be investigated in any effort to enhance the production of sockeye salmon in the Naknek system: (1) the abundance of smolts each spring is fairly constant for the system as a whole and not closely related to the abundance of the parents or, from 1961-64, even to the original abundance of age 0 fish; (2) the apparent growth of juvenile sockeye salmon and potential competitor species is not related to the abundance of these fish in any lake of the Naknek system; and (3) two major lakes, constituting about 35% of the rearing waters, do not receive age 0 sockeye salmon from other basins and are supporting relatively few sockeye salmon.

The question of what escapement of adult sockeye salmon is needed to ensure full production of juveniles is considered. The present study indicates that escapements in the range of 600,000 to 1,000,000 fish, as recommended by other studies, would probably fully use the present combination of spawning and rearing areas without danger of overburdening the food supply.

ABSTRACT

Zooplankton samples were taken at 39 oceanographic stations in the eastern Chukchi Sea in September and October 1970. Sampling was done by vertical tows from near bottom to the surface with a 0.5 m diameter No. 0 (0.57 mm) mesh NorPac standard plankton net. Data are presented on the distribution and relative abundance of 63 categories of zooplankton at the onset of winter. Zooplankton abundance generally was lowest in waters with temperatures below 0°C; it did not appear to be associated with the distribution of salinity; and it tended to be inversely related to dissolved oxygen concentration. Comparison of zooplankton abundance in 1970 with published observations on the Chukchi Sea in 1947 shows probable seasonal variation of meroplankton abundance and yearly variation of holoplankton abundance.

ABSTRACT

Fourteen species of pelagic amphipods were present in zooplankton samples collected from the southeastern Bering Sea in June 1971. *Parathemisto pacifica* strongly dominated relative abundance (68.96%) and was present in numbers up to an estimated 27.55/1,000 m³ of water. *Primno macropa*, was the only other species present in all hauls and ranged from 4 to 27% in relative abundance, *Cephocaris challengeri* was present in numbers up to 48,100 m -² during night hauls, but only one animal was taken in all daylight hauls. *Hyperoche medusorum* was present in 14 (82%) of the hauls but accounted for less than 1% of the total numbers. A presumed diurnal vertical migration was evidenced for *Primno macropa*, *Cephocaris challengeri*, and possibly for *Scina rattrayi*, *Hyperoche medusorum*, and *Hyperoche medusorum*. The occurrence of *Scina stebbingi*, *S. rattrayi*, *Vibilia coeca* (?), *Parahromia crassiceps*, *Phronima sedentaria*, and *Primno macropa* extended their known ranges in the Bering Sea eastward, and the occurrence of *Cephocaris anonyx* represents a new record for the Bering Sea.

SUMMARY ABSTRACT

The cunner, Tautogolabrus adspersus, was exposed to six concentrations of cadmium, as cadmium chloride (CdCl₂·2H₂O), for 96 h. At the end of this exposure period, tests of blood serum osmolality and gill tissue oxygen consumption were performed. High levels (48 ppm) of this metal resulted in abnormally high serum osmolality, and an exposure as low as 0 ppm reduced the normal rate of oxygen consumption. Both of these parameters may be related to observed tissue damage.

The histopathological effects of acute exposure of the cunner to cadmium were manifested in the kidney, intestine, hemopoietic tissue, epidermis, and gill. Few significant changes were noted in fish exposed to concentrations less than 45 ppm. The results implicate renal failure as the probable cause of death subsequent to acute exposure to cadmium.

Clearance of intracutaneously injected bacteria from the blood of cunners exposed to 12 ppm cadmium was examined. The rate of bacterial uptake in the cells of the liver and spleen was increased, but the bacterial death rate within these cells was decreased. Exposure of fish at 3 to 24 ppm failed to influence antibody production against sheep red blood cells.

The activity of two liver enzymes changed significantly with exposure to cadmium. Aspartate aminotransferase was lower in the exposed fish, and a magnesium linked oxidoreductase in exposed fish required 10 times as much added magnesium to reach the same level of activity as in the control fish.

Chemical analyses were made for uptake and clearance of cadmium from exposed cunners. In the uptake study, cadmium residues averaged 6.5 times higher in liver than in gills. In the clearance study, substantial reductions in cadmium residues were found in the gills and blood of fish held in clean seawater for 6 wk after exposure to cadmium, as compared to fish sacrificed immediately after exposure. Muscle and carcass samples from the "cleared" fish showed little reductions in cadmium levels.

(No abstract)

ABSTRACT

Cadmium uptake and clearance data were obtained on cunners, Tautogolabrus adspersus, exposed to various concentrations of this metal in artificial seawater.

In the uptake study, cunners were exposed to 0, 3, 6, 12, 24, and 48 ppm cadmium in seawater for 4 days. Cadmium residues averaged 8.2 times higher in livers than in gills. At the 48 ppm cadmium exposure level, the livers averaged 196 ppm, as compared to 33.5 ppm for gills (wet weight values).

In the clearance study, cunners were exposed to 24 ppm cadmium in seawater for 4 days, after which time half of the fish were placed in clean flowing seawater for 1 mo and half were sacrificed immediately to determine initial cadmium residue concentrations. Gill, liver, blood, muscle, and carcass samples were analyzed. Substantial reductions in cadmium residues were found in the gills and blood of fish held in clean seawater, as compared to samples from fish sacrificed immediately after exposure to cadmium. Liver samples produced variable results: livers of fish held in clean seawater for 1 mo contained 62 155 ppm cadmium for four fish and 51 111 ppm for three fish, as compared to 30 117 ppm for livers from eight fish sacrificed immediately after exposure to cadmium. Muscle and carcass samples from the "cleared" fish showed very little reduction in cadmium levels.

ABSTRACT

The cunner, Tautogolabrus adspersus, was exposed to various concentrations of cadmium, as cadmium chloride (CdCl₂·2H₂O), for 96 h. At the end of this exposure period tests of blood serum osmolality and gill tissue oxygen consumption were performed. High levels (48 ppm) of this metal resulted in an abnormally high serum osmolality and an exposure as low as 3 ppm reduced the normal rate of oxygen consumption. Both of these parameters may be related to observed tissue damage.

ABSTRACT

Two elements of the immune system in cunners, Tautogolabrus adspersus, were examined after 96 h exposure to cadmium: 1) clearance of intracellularly injected bacteria from the bloodstream and 2) ability to produce antibody against intraperitoneally injected sheep red blood cells (SRBC). Exposure to 12 ppm cadmium increased the rates of bacterial uptake in phagocytes of the liver and spleen but significantly decreased the rates of bacterial killing within these cells. Exposure of fish at 3 to 24 ppm cadmium failed to influence antibody production against SRBC. These results indicate that cadmium affects one aspect of cellular immunity but not humoral immunity in cunners. This effect may increase susceptibility to infection.

ABSTRACT

In the liver of cunner, Tautogolabrus adspersus, exposed to 3 ppm and to 24 ppm Cd for 96 h, aspartate aminotransferase activity was 71% and 59%, respectively, of the activity in livers of control fish.

In the livers of cunners exposed to 24 ppm Cd, nictinamide-adenine dinucleotide reductase activity required 20 mM Mg for activation of the same order that 2 mM Mg produced in control livers.

Although individual variation precludes generalization here, what may be a metal complexing group of proteins in the serum of cadmium exposed cunner warrants further electrophoretic study.

ABSTRACT

Summaries of large scale heat exchange between ocean and atmosphere in the eastern North Pacific Ocean are presented for the period 1961 through 1971. The summaries are based on computations made from synoptic marine radio weather reports and include 1) monthly values of total heat exchange and departures from a long term mean; 2) long term monthly mean values of the total heat exchange, incoming solar radiation, effective back radiation, and evaporative and sensible heat transfer; and 3) annual cycles of total heat exchange for selected areas.

Outstanding spatial and temporal features of the heat exchange values are discussed. However, little detail is given since this is a summary report, and the readers can draw their own conclusions depending upon the intended use of the charts.

Comparisons are also made between the total heat exchange values and those given in two other reports. Discrepancies between values given in this report and those published in the other reports are attributed to differences in empirical equations used to make the heat exchange computations, differences in data processing techniques, differences in the observed data used in the computations due to different methods of acquisition, and the possibility of ocean climate changes.

NOAA TECHNICAL MEMORANDUM NMFS

ABSTRACT

Survival and physical characteristics of pink salmon fry, Oncorhynchus gorbuscha, incubated in two types of boxes, each box containing about 1 m³ of gravel, and a Health incubator were compared with fry from natural spawning to evaluate the use of boxes to produce fry. The gravel incubators were seeded at densities of 74,200 to 198,000 eyed eggs/m³. Survival from eyed eggs to emergent fry ranged from 79 to 97% in artificial incubation, but the number of incubators tested was too small to define any relationships between survival and incubator type or egg density. With artificial incubation in gravel, survival from potential eggs in females to emergent fry was 69%, whereas with natural spawning and incubation in the creek, survival was about 12%.

Fry emerged from gravel incubators about 3 days earlier than from the streambed. The gravel incubator fry were larger than tray fry but smaller than creek fry. The smaller size of the gravel incubator fry could not be explained entirely on the basis of early emergence.

Further studies were recommended to determine whether the muskeg sediment that accumulated in the incubators, the low oxygen level (57 to 69% saturation), or the substrate particle size and composition inhibited growth of the embryos.

AUTHOR INDEX

Adams, Albert E.—see Greig et al.
Adams, Genevieve—see Trent et al.
Anthony, Ernest A.—see McNulty et al.
Bailey, Jack E., and Sidney G. Taylor, TM ABFL-3
Baxter, Kenneth N.—see Lyon and Baxter
Beckett, James S., S 675, p. 103
Bowman, Edgar W., S 674
Buchanan, C. C.—see Parker et al.
Calabrese, Anthony, Ries S. Collier, and James E. Miller, S 681, p. 1
Clark, H. Lawrence—see Mather et al.
Clark, N. E., L. Eber, R. M. Laurs, J. A. Renner, and J. F. T. Saur, S 682
Clark, Stephen H., Dennis A. Emilianii, and Richard A. Neal, D 85
Collier, Ries S.—see Calabrese et al.
Collins, L. Alan—see Saloman and Collins
Craig, William L.—see Shomura and Craig
Cram, D. L.—see Penrith and Cram

Dawson, Margaret A.—see Thruberg and Dawson
de Sylva, Donald P., S 675, p. 12, 80
Dias, Carlos Alonso—see Cook et al.
Dizon, Andrew E.—see Yuen et al.
Eber, L.—see Clark et al.
Eldridge, Maxwell B., and Paul G. Wares, S 675, p. 89
Ellis, Robert J., S 678
Emilianii, Dennis A.—see Clark et al.
Engett, Mary Ellen, and Lee C. Thorson, C 390
Fierstine, Harry L., S 675, p. 34
Finucane, John H.—see Collins and Finucane
Freeman, H. C.—see Beckett and Freeman
Fujy$, Masaru, C 388, p. 27
Gilmore, Gil, and Lee Trent, S 677
Glue, John B., C 388, p. 89, 115
Gordy, Herbert R. — see Turner et al.
Gould, Edith, and John J. Karolus, S 681, p. 21
Guthier, Elmer J., Anthony F. Serra, and Edward F. Klima, FF 9
Hall, John R., and William N. Lindall, Jr., D 94
Hanamoto, Eiji, S 675, p. 302
Hasegawa, Yoshio, and Yukiwasa Kuwotani, C 388, p. 3
Hayashi, Tomoo — see Kan no and Hayashi
Hebard, James F. — see Cook et al.
Hiatt, Robert W., C 388, p. 1
Hipkins, Fred W., FF 7
Huang, H. C., S 675, p. 332
Hughes, Steven E., D 96
Ingham, Merton C. — see Cook et al.
Iversen, Robert T. B., and Richard R. Kelley, S 675, p. 149
Johnson, George N. — see Turner et al.
Jolley, John W., Jr., S 675, p. 81
Joseph, James, Witold L. Klawe, and Craig J. Orange, S 675, p. 309
Kan no, Hisashi, and Tomoo Hayashi, C 388, p. 23
Karolus, John J. — see Gould and Karolus
Kawatsu, Hiroshi, C 388, p. 17
Kazama, Thomas K. — see Matsumoto and Kazama
Kelley, Richard R. — see Iversen and Kelley
Klawe, Witold L. — see Joseph et al.
Klima, Edward F. — see Guthier et al.
Kuwotani, Yukiwasa — see Hasegawa and Kuwotani
Lance, J. Perry, FF 8
Laurs, R. M. — see Clark et al.
Lenzar, William H., and Eugene L. Nakamura, S 675, p. 121
Lindall, William N., Jr. — see McNulty et al.
Longwell, A. Croysh, C 388, p. 75, 123
Love, Cuthbert M. (editor), C 330, v. 8
Lyon, James M., and Kenneth N. Baxter, D 83
MacLean, Sharon A. — see Newman and MacLean
McNulty, J. Kneeland, William N. Lindall, Jr., and Ernest A. Anthony, D 95
Manning, Raymond B., C 387
Markle, Gretchen E., S 675, p. 252
Mason, John M., Jr. — see Mather et al.
Mather, Charles O., S 675, p. 192
Mather, Frank J. III, John M. Mason, Jr., and H. Lawrence Clark, S 675, p. 211
Mather, Charles O., S 675, p. 192
Matsumoto, Walter M., and Thomas K. Kazama, S 675, p. 238
Miller, James E. — see Calabrese et al.
Misitano, David A., D 92
Mock, Cornelius R., C 388, p. 33, 111
Nakamura, Eugene L. — see Lenzar and Nakamura
Nakamura, Iizumi, S 675, p. 45
Neal, Richard A. — see Clark et al.
Nelson, Betty A. — see Greig et al.
Newman, Martin W., and Sharon A. MacLean, S 681, p. 27
Nishikawa, Yasuo, and Shoji Ueyanagi, S 675, p. 261
Nikowski, Maureen F. — see Robohm and Nikowski
Orange, Craig J. — see Joseph et al.
Owen, R. W., and C. K. Sanchez, D 91
Parker, R. O., Jr., R. B. Stone, C. C. Buchanan, and F. W. Steimle, Jr., FF 10
Penn, Erwin S., S 676
Penrit, M. J., and D. L. Cram, S 675, p. 175
Petersen, Duane H., D 88
Pullen, Edward J. — see Trent et al.
— — — , and Lee Trent, D 97
Renner, J. A. — see Clark et al.
Richards, William J., S 675, p. 62
Rivas, Luis R. — see Nakamura and Rivas
Robins, C. Richard, S 675, p. 54, 164
Robohm, Richard A., and Maureen F. Nitkowski, S 681, p. 15
Sakakawa, Gary T. — see Wares and Sakakawa
Saloman, Carl H., D 84
Sanchez, C. K. — see Owen and Sanchez
Sang, Gerald A., S 680
Saur, J. F. T. — see Clark et al.
Scott, W. R., and S. N. Tibbo, S 675, p. 138
Serra, Anthony F. — see Guthier et al.
Shaw, William N. (editor), C 388, p. 57, 107
Shomura, Richard S. — see Uchiyama and Shomura
— — — , and William L. Craig, S 675, p. 160
— — — , and Francis Williams (editors), S 675
Skillman, Robert A., and Mariam Y. Y. Yong, S 675, p. 126
Smith, Ellsworth C. — see Cook et al.
Squire, James L., Jr., S 675, p. 188, 226, 290
Sreedharan, A. — see Tibbo and Sreedharan
Steimle, F. W., Jr. — see Parker et al.
Stone, R. B. — see Parker et al.
Suto, Shunzo, C 388, p. 7
Tabb, Durbin C. — see Mather et al.
Taylor, Sidney G. — see Bailey and Taylor
Thurber, Frederick P., and Margaret A. Dawson, S 681, p. 11
Tibbo, S. N. — see Scott and Tibbo
Thomson, Jack E. — see Claxton and Thompson
Trent, Lee — see Gilmore and Trent
Trent, Lee — see Pullen and Trent
— — — , Edward J. Pullen, Genevieve Adams, and Gilbert Zamora, Jr., D 93
Turner, William R., George N. Johnson, and Herbert R. Gordy, D 89
Uchiyama, James H. — see Yuen et al.
— — — , and Richard S. Shomura, S 675, p. 142
Ueyanagi, Shoji, S 675, p. 1, 73
— — — see de Sylva and Ueyanagi
— — — see Nishikawa and Ueyanagi
Wares, Paul G. — see Eldridge and Wares
— — — and Gary T. Sakagawa, S 675, p. 107
Weber, Douglas D., D 86
Wildman, Robert D., C 388, p. 41, 97
Williams, Austin B., C 389
Williams, Francis — see Shomura and Williams
Willoughby, Harvey, C 388, p. 67, 103
Wing, Bruce L., S 679
Yong, Marian Y. Y. — see Skillman and Yong
Yoshida, Howard O., S 675, p. 297
Yuen, Heeny S. H., Andrew E. Dixon, and James H. Uchiyama, S 675, p. 265
Zamora, Gilbert, Jr. — see Trent et al.

SUBJECT INDEX
Abalone
status of culture in Japan, C 388, p. 24
status of production in Hokkaido, C 388, p. 5

Aequipecten irradians—see Scallop, bay

Africa
billfish
scientific investigation: present and future, S 675, p. 102

Alaska
Auke Creek, TM ABFL-3

Alewife
Lake Erie bottom trawl explorations, 1962-66, S 674

Algae, brown
status of production in Hokkaido, C 388, p. 6

Algae, red
status of production in Hokkaido, C 388, p. 6

Alosa pseudoharengus—see Alewife

Ambloplites rupestris—see Bass, rock

Anoplopoma fimbria—see Sablefish

Aplodinotus grunniens—see Drum, freshwater

Aquaculture

crustacean culture
 crab, C 388, p. 112
 freshwater shrimp, C 388, p. 112
 shrimp, C 388, p. 111
 spiny lobster, C 388, p. 112

fish farming in Japan
 constraints and problems, C 388, p. 30
 essence and significance, C 388, p. 27
 seedling production, C 388, p. 29
 types, C 388, p. 28

freshwater fish culture in Japan
 commercial trout farms, C 388, p. 104
 eel, C 388, p. 105
 salmon, C 388, p. 103
 saltwater trout, C 388, p. 103

freshwater fish culture in United States
 disease control, C 388, p. 72
 fish transportation, C 388, p. 72
 production level, C 388, p. 87
 training schools, C 388, p. 73
 types of culture, C 388, p. 68

genetics of American oyster
 chromosome basis of breeding system, C 388, p. 75
 effects of inbreeding, C 388, p. 78
 effects of ionizing irradiation on, C 388, p. 84
 hybridization, C 388, p. 82
 selective breeding, C 388, p. 80
 species mating system, C 388, p. 78

impressions of genetics and fisheries of Japan
 applied and basic genetic research, C 388, p. 125
 expansion of intensive aquaculture, C 388, p. 124
 genetics in Japanese fisheries, C 388, p. 123
 Japan’s National Genetics Institute, C 388, p. 126
 Japanese geneticists, C 388, p. 126
 laboratory visits, C 388, p. 128
 oysters, specific use of hybrids and hybrid vigor, C 388, p. 127
 pollution and intensive aquaculture, C 388, p. 125
 storage of stocks and collections for breeding purposes, C 388, p. 126

larval culture of penaeid shrimp in Texas
 progress between 1966-1969, C 388, p. 33
 recent experimentation, C 388, p. 34
 typical results, C 388, p. 34

mariculture of seaweeds in Japan
 Gelidium, C 388, p. 14
 Laminaria, C 388, p. 11
 nori (Porphyra), C 388, p. 7
 problems, C 388, p. 15
 wakame (Undaria), C 388, p. 12

marine fish culture in Japan
 black porgy, C 388, p. 117
 puffer, C 388, p. 116
 red porgy, C 388, p. 117
 salmon, C 388, p. 119
 trout, C 388, p. 118
 yellowtail, C 388, p. 115

molluscs, U.S. Atlantic and Gulf coasts
 bay scallop, C 388, p. 63
 Eastern oyster, C 388, p. 57
 future culture, C 388, p. 63
 hard clam, C 388, p. 62

National Sea Grant Program
 crustaceans, C 388, p. 41
 finfish, C 388, p. 47
 marine pathology, C 388, p. 50
 molluscs, C 388, p. 44
 new aquaculture sites, C 388, p. 51
 seaweeds, C 388, p. 49

problems in freshwater fish culture in Japan
 ayu, C 388, p. 21
 carp, C 388, p. 20
 eel, C 388, p. 20
 present status of production, C 388, p. 17
 production of trout fingerlings for stocking in natural waters, C 388, p. 21
 rainbow trout, C 388, p. 21
 transplantation of foreign species, C 388, p. 21

seaweed culture in Japan
 analysis of, C 388, p. 101
 Gelidium, C 388, p. 100
 Laminaria (kombu), C 388, p. 99
 Porphyra (nori), C 388, p. 97
 Undaria (wakame), C 388, p. 99

shellfish culture in Japan
 abalone, C 388, p. 108
 oyster, C 388, p. 107
 scallop, C 388, p. 109

shellfish culture on U.S. Pacific coast
 analysis of trends in oyster production, C 388, p. 90
 clams, C 388, p. 90
 coastal zoning, C 388, p. 95
 new developments in clam production, C 388, p. 94
 new developments in oyster production, C 388, p. 92
 oysters, C 388, p. 89

status of marine cultivation and propagation in Hokkaido
 abalone, C 388, p. 5
 brown algae, C 388, p. 6
 general features of the waters around Hokkaido, C 388, p. 3
 Japanese surf clam, C 388, p. 5
 kelp, C 388, p. 5
 problems of research activities, C 388, p. 6
 red algae, C 388, p. 6
 scallop, C 388, p. 5
 sea urchin, C 388, p. 5

status of shellfish culture in Japan
 abalone, C 388, p. 24
 oysters, C 388, p. 23
 pearl industry, C 388, p. 25
 scallops, C 388, p. 24

Arthur H.—see Vessels

Artificial reefs—see Reefs

Atlantic coast, U.S.
 aquaculture of molluscs, C 388, p. 57
Atlantic Ocean
comparative development with Mediterranean billfish, S 675, p. 79
life history of blue marlin, S 675, p. 80
results of sailfish tagging, S 675, p. 194

Atlantic Ocean, eastern
some morphometrics of billfishes, S 675, p. 107

Atlantic Ocean, northwest
biology of swordfish, S 675, p. 103
distribution of larval swordfish, S 675, p. 252
food and feeding habits of swordfish, S 675, p. 138
white and blue marlin migrations,
tagging results since May 1970, S 675, p. 211

Atlantic Ocean, western
analysis of length and weight data on three species of billfish, S 675,
p. 121
mercury in swordfish and other pelagic species, S 675, p. 156

Atlas
EASTROPAC, third and fourth monitor cruises
biological and nutrient chemistry data, C 330, v. 8

Auke Creek, Alaska, TM ABFL-3

Australia
billfish
scientific investigation: present and future, S 675, p. 102

Ayu
technical problems of culture in Japan, C 388, p. 21

Baja California
fishery oceanography studies of striped marlin
fishing conditions in relation to thermocline, S 675, p. 302

Baron—see Vessels

Bass, rock
lake Erie bottom trawl explorations, 1962-66, S 674

Bass, smallmouth
Lake Erie bottom trawl explorations, 1962-66, S 674

Bass, white
Lake Erie bottom trawl explorations, 1962-66, S 674

Bering Sea, southeastern
observations of growth of king crab from a tag recovery study,
1955-65, D 86
pelagic amphipod crustaceans from, 1971, S 680

Billfish
analysis of length and weight data on three species of, from western
Atlantic Ocean, S 675, p. 121
analysis of sportfishery for, in northeastern Gulf of Mexico
bait preference, S 675, p. 286
catch, raise, and effort statistics, S 675, p. 273
effect of boat size and type of screw, S 675, p. 286
effect of moon phase, S 675, p. 286
effect of surface condition, S 675, p. 281
effect of water color, S 675, p. 281
relative abundance by ten minute squares, S 675, p. 277
relative abundance by time, S 675, p. 274
dsise and sex ratio, S 675, p. 274
source and treatment of data, S 675, p. 270
angler catch rates in the Pacific Ocean, S 673, p. 290
aspects of systematics and distribution
classification problems with some species, S 675, p. 48
distribution, S 675, p. 49
Istiophorus albicans, S 675, p. 50

Istiophorus platypterus, S 675, p. 50
Makaira indica, S 675, p. 52
Makaira macra, S 675, p. 52
Makaira nigricans, S 675, p. 52
Tetrapturus albidus, S 675, p. 51
Tetrapturus angustirostris, S 675, p. 50
Tetrapturus audax, S 675, p. 52
Tetrapturus belone, S 675, p. 50
Tetrapturus fliuger, S 675, p. 50
Xiphas gladius, S 675, p. 49
biological observations of, taken in eastern Pacific Ocean
food habits, S 675, p. 98
parasites, S 675, p. 97
reproduction, S 675, p. 90
seasonality, S 675, p. 90

Cape of Good Hope as a hidden barrier to
billfishes from Cape of Good Hope, S 675, p. 177
billfishes not recorded from the area, S 675, p. 178
hydrography of the area, S 675, p. 181
ocean conditions during survey period, S 675, p. 182
records of, based on Japanese catches, S 675, p. 178
summary of potential movement, S 675, p. 186
diagnostic character for identification of larvae
description of pterotic and preopercular spines by species, S 675,
p. 74
general description of pterotic and preopercular spines, S 675,
p. 73
larvae of Atlantic billfishes, S 675, p. 76
pigmentation variations of lower jaw of sailfish, S 675, p. 76
use of spines as diagnostic characters, S 675, p. 75
evaluation of identification methods for young
evaluation, S 675, p. 66
historical summary of description, S 675, p. 63
identification methods, S 675, p. 64
identification status of adults, S 675, p. 62
landings in the Hawaiian longline fishery
blue marlin, S 675, p. 298
catch per unit of effort, S 675, p. 299
size of fish, S 675, p. 299
striped marlin, S 675, p. 298
length weight relationships for, in central Pacific Ocean
analysis, S 675, p. 127
coefficients of allometry, S 675, p. 134
collection of data, S 675, p. 126
growth stanzas, S 675, p. 129
log linear model, S 675, p. 131
nonlinear model, S 675, p. 133
mercury in several species taken off Hawaii and southern California,
S 675, p. 160
migration patterns in Pacific Ocean determined by tagging programs
migration rates and times, S 675, p. 234
migratory patterns, S 675, p. 230
tag performance, S 675, p. 229
tag recoveries, S 675, p. 228
morphometrics of, from eastern Pacific ocean
blue marlin, S 675, p. 111
definitions of counts and measurements, S 675, p. 109
meristic characters, S 675, p. 110
morphometric characters, S 675, p. 110
sailfish, S 675, p. 113
source of data, S 675, p. 107
striped marlin, S 675, p. 117
occurrence of young in central Pacific Ocean
collection of samples and catches, S 675, p. 239
distribution of istiophorid larvae, S 675, p. 241
distribution of xiphid larvae, S 675, p. 243
determination of larvae, S 675, p. 235
palaeontological of
areas of research, S 675, p. 41
osteological information, S 675, p. 34
review of fossil record, S 675, p. 35
review of the longline fishery in the eastern Pacific Ocean
black marlin, S 675, p. 318
blue marlin, S 675, p. 315
data sources and processing, S 675, p. 311
geographical distribution, S 675, p. 315
overall trends in catch and effort, S 675, p. 312
sailfish and shortbill spearfish, S 675, p. 318
spatio-temporal distribution of species complexes, S 675, p. 322
striped marlin, S 675, p. 315
swordfish, S 675, p. 321
trends in relative apparent abundance, S 675, p. 325
review of world commercial fisheries for
development of longline fishery, S 675, p. 3
distribution of fishing effort and catch by Japanese longline
fishery, S 675, p. 5
future problems in billfish research, S 675, p. 10
harpoon fishery, S 675, p. 5
recent status of billfish production, S 675, p. 7
value and utilization in Japan, S 675, p. 1
review of world sport fishery for
important geographic regions for sport fishing, S 675, p. 16
mechanics of the sport fishery, S 675, p. 22
size of catch, S 675, p. 24
special problems of sport fishery, S 675, p. 25
species and their distribution, S 675, p. 15
species caught by anglers, S 675, p. 14
time of angling, S 675, p. 25
Taiwan
landings, 1962 to 1971, S 675, p. 332

Biological data
EASTROPAC atlas
from principal participating ships and Oceanographer, third and
fourth monitor cruises, Oct. 1966-Jan. 1968, C 330, v. 8

Brevoortia patronus—see Menhaden, Gulf

Buffalo
Lake Erie bottom trawl explorations, 1962-66, S 674

Bullhead, black
Lake Erie bottom trawl explorations, 1962-66, S 674

Bullhead, yellow
Lake Erie bottom trawl explorations, 1962-66, S 674

Burbot
Lake Erie bottom trawl explorations, 1962-66, S 674

California
catch distribution and related sea surface temperature for striped
marlin caught off San Diego, S 675, p. 188
California Current region
phytoplankton pigment and production measurements, 1969-72, D 91

Canada, east coast
swordfish
harpoon fishery replaced by longline fishery, S 675, p. 296

Cape of Good Hope
a hidden barrier to billfishes, S 675, p. 177

Cassius auratus—see Goldfish

Carp
Lake Erie bottom trawl explorations, 1962-66, S 674
technical problems of culture in Japan, C 388, p. 20

Carpiodes cyprinus—see Quillback

Catfish, channel
Lake Erie bottom trawl explorations, 1962-66, S 674

Catostomus commersoni—see Sucker, white

Chistel—see Vessels

Chukchi Sea, eastern
trends and abundance of zooplankton, 1970, S 679

Clam, hard
aquaculture along U.S. Atlantic and Gulf coasts, C 388, p. 62

Clam, Japanese surf
status of production in Hokkaido, C 388, p. 5

John N. Cobb—see Hokkaido

Cod, Pacific
resource in Gulf of Alaska, 1961-63, D 96

Columbia River estuary
December 1971 through December 1972
salinities, D 92
water temperature, D 92
zooplankton, D 92

Comando—see Vessels

Compostoma anomalum—see Stoneroller

Cooperative Gulf of Mexico Estuarine Inventory
Florida portion
data of biology phase, D 95

Coregonus artedii—see Herring, lake

Coregonus clupeaformis—see Whitefish, lake

Crab
culture in Japan, C 388, p. 112
resource in Gulf of Alaska, 1961-63
king crab, D 96
Tanner crab, D 96

Crab, king
observations on growth in southeastern Bering Sea from a tag-
recovery study, 1955-65, D 86
resource in Gulf of Alaska, 1961-63, D 96

Crab, Tanner
resource in Gulf of Alaska, 1961-63, D 96

Crappie, white
Lake Erie bottom trawl explorations, 1962-66, S 674

Crassostrea virginica—see Oyster, American; Oyster, Eastern

Crustacea: Decapoda
Northeastern United States
annotated systematic list, C 389
index to scientific names, C 389
key to marine decapod crustaceans, C 389

Crustacea: Stomatopoda
Northeastern United States
annotated list, C 387
index to scientific names, C 387
key, C 387

Crustaceans
abundance in natural and altered estuarine areas, S 677
pelagic amphipods from southeastern Bering Sea
Cyphocaris anonyx, S 689
Cunner
physiological response to cadmium
antibody response to SRBC injections, S 681, p. 16
assay procedures for biochemical observation, S 681, p. 22
blood histopathology, S 681, p. 28
changes in osmoregulation and oxygen consumption, S 681, p. 11
chemical analyses of tissues, S 681, p. 6
clearance by organs and tissues, S 681, p. 7
collection and conditioning, S 681, p. 2
effects of cadmium on bacterial clearance, S 681, p. 17
effects on the immune system, S 681, p. 15
electrophoretic procedures for biochemical observation, S 681, p. 23
epidermis histopathology, S 681, p. 28
exposure, S 681, p. 2
fish holding, S 681, p. 5
fish holding and cadmium exposure, S 681, p. 15
gill histopathology, S 681, p. 28
growth and injection of bacteria, S 681, p. 16
hemagglutination assay, S 681, p. 16
histopathology, S 681, p. 27
immunization and collection of antisera, S 681, p. 15
intestine histopathology, S 681, p. 27
kidney histopathology, S 681, p. 27
measurement of bacterial clearance, S 681, p. 16
observations on biochemistry, S 681, p. 21
sampling procedures for organs and tissues, S 681, p. 6
treatment of tissue for biochemical observation, S 681, p. 22
uptake by organs and tissues, S 681, p. 6

Cyphocaris anonyx
southeastern Bering Sea, 1971, S 680

Cyphocaris challenger
southeastern Bering Sea, 1971, S 680

Cyprinus carpio—see Carp

Charles H. Davis—see Vessels

Dawson—see Vessels

Defiance—see Vessels

Dogfish, spiny
resource in Gulf of Alaska, 1961-63, D 96

Dorosoma cepedianum—see Shad, gizzard

Drum, freshwater
Lake Erie bottom trawl explorations, 1962-66, S 674

EASTROPAC
biological and nutrient chemistry data, C 330, v. 8

Eel
technical problems of culture in Japan, C 388, p. 29

Elasmobranchs
resource in Gulf of Alaska, 1961-63
skates, D 96
spiny dogfish, D 96

Esmeralda—see Vessels

Finfish and shellfish products
price spreads and cost analyses at different marketing levels
adjustment of price data, S 676
allocation of costs, S 676
behavior of retail food market, S 676
classification of costs, S 676
comparison of price changes at retail level with those at other levels, S 676
comparison with farmer's share, S 676
division of consumer's dollar spent on fish products, S 676
ex vessel prices, S 676
meaning of price spread, S 676
processor's margin and markup, S 676
retail margin and markup, S 676
source of data, S 676
variation among finfish product groups, S 676
variation among shellfish products, S 676
variation over time, S 676
wholesale margin and markup, S 676

Fish culture
freshwater, in Japan, C 388, p. 17, 103
freshwater, in United States, C 388, p. 67

Fish farming
Japan, C 388, p. 27

Fish larvae
billfish
diagnostic character for identification, S 675, p. 76

Fish plants
sanitation recommendations
bacteriological testing procedures, FF 8
employee facilities, FF 8
location, FF 8
plant and personnel sanitation, FF 8
processing facilities, FF 8
processing raw material, FF 8
receiving raw materials, FF 8
surroundings, FF 8

Fishery publications
calendar year 1973, C 390

Florida
benthic macroinvertebrates and sediments from upland canals in Tampa Bay, D 94
east coast
biology of Atlantic sailfish, S 675, p. 84
Tampa Bay, D 87, D 90, D 94

Flounder, arrowtooth
resource in Gulf of Alaska, 1961-63, D 96

Flounder, starry
resource in Gulf of Alaska, 1961-63, D 96

Flounders
resource in Gulf of Alaska, 1961-63
Alaska plaice, D 96
arrowtooth flounder, D 96
butter sole, D 96
dover sole, D 96
English sole, D 96
Formosa—see Taiwan

Galveston, Texas
larval culture of penaeid shrimp, p. 33

Galveston Bay, Texas
brown shrimp
catch per unit effort and mean total length of, taken by trawl in,
D 93

Gar, longnose
Lake Erie bottom trawl explorations, 1962-66, S 674

Genetics
impressions regarding, in Japan, C 388, p. 123
of American oyster, C 388, p. 75

Charles H. Gilbert—see Vessels

Glacier—see Vessels

Goa—see Vessels

Goldfish
Lake Erie bottom trawl explorations, 1962-66, S 674

Grenadiers
resource in Gulf of Alaska, 1961-63, D 96

Gulf of Alaska
erab resources, in, 1961 63
king, D 96
Tanner, D 96
groundfish resources in, 1961-63
Alaska plaice, D 96
arrowtooth flounder, D 96
butter sole, D 96
Dover sole, D 96
English sole, D 96
flathead sole, D 96
grenadiers, D 96
Pacific cod, D 96
Pacific halibut, D 96
Pacific ocean perch, D 96
rex sole, D 96
rock sole, D 96
sablefish, D 96
sand sole, D 96
sculpins, D 96
skates, D 96
spiny dogfish, D 96
starry flounder, D 96
thornyheads, D 96
walkery pollock, D 96
yellowfin sole, D 96
pandalid shrimp resource
trawl catches and oceanographic data from oceanographic
surveys, 1970-72, D 88

shrimp, penaeid
sample catches taken by trawling, 1961-65, D 83

Gulf of Mexico, northeast
billfish
analysis of sportfishey, 1971, S 675, p. 269

Gulf of Mexico, northern
compendium of juvenile menhaden surveys in coastal streams of, D 89

Halibut, Pacific
resource in Gulf of Alaska, 1961-63, D 96

Halictis discus—see Abalone

Hawaii
billfish
landings in the longline fishery, S 675, p. 297
mercury in several species, S 675, p. 163
maturation and fecundity of swordfish, S 675, p. 142
ocurrence, morphology, and parasitism of gastric ulcers
black marlin, S 675, p. 149
blue marlin, S 675, p. 149

Heat exchange
between ocean and atmosphere in the eastern North Pacific, 1961-71,
S 682

Herring, lake
Lake Erie bottom trawl explorations, 1962-66, S 674

Hokkaido, Japan
status of marine cultivation and propagation, C 388, p. 3

Huayaipe—see Vessels

Hydrographic data
from a marsh and marsh altered by dredging, bulkheading, and filling
in West Bay, Texas, D 97

Hydrographic observations
Tampa Bay, Florida
air temperature, D 87
astacin carotenoids, D 87
chlorophyll a, D 87
chlorophyll b, D 87
dissolved oxygen, D 87
nonastacin carotenoids, D 87
primary productivity, D 87
salinity, D 87
turbidity, D 87
water temperature, D 87

Tampa Bay and adjacent waters—1971
astacin carotenoids, D 84
chlorophyll a, D 84
chlorophyll b, D 84
dissolved oxygen, D 84
nonastacin carotenoids, D 84
primary productivity, D 84
salinity, D 84
water temperature, D 84
water transparency, D 84

Tampa Bay and adjacent waters—1972
astacin carotenoids, D 90
chlorophyll a, D 90
chlorophyll b, D 90
chlorophyll c, D 90
dissolved oxygen, D 90
nonaestin carotenoids, D 90
pH, D 90
primary productivity, D 90
salinity, D 90
total Kjeldahl nitrogen, D 90
total phosphorus, D 90
transparency, D 90
turbidity, D 90
water temperature, D 90

Hyperiurus medusarum
southeastern Bering Sea, 1971, S 680

Hyperoche medusarum
southeastern Bering Sea, 1971, S 680

Ictalurus melas—see Bullhead, black

Ictalurus natalis—see Bullhead, yellow

Ictalurus punctatus—see Catfish, channel

Ictiobus sp.—see Buffalo

Istiophorus albicans
distribution, S 675, p. 50

Istiophorus platypterus—see Sailfish

Jamaica
life history of Atlantic blue marlin, S 675, p. 80

Japan
billyfish
distribution of fishing effort and catch by longline fishery, S 675, p. 5
fish farming and the constraints in, C 388, p. 27
Hokkaido, C 388, p. 3
mariculture of seaweeds and its problems, C 388, p. 7
some technical problems in freshwater fish culture, C 388, p. 17
status of shellfish culture, C 388, p. 23

Joint Investigation of Southeastern Tropical Atlantic
oceanic conditions during
data processing, D 82
dissolved oxygen content, D 82
inorganic phosphate content, D 82
intercalibration, D 82
navigation, D 82
nekton, D 82
primary productivity, D 82
salinity, D 82
station patterns and cruise schedules, D 82
tunas, D 82
water temperature, D 82
zooplankton, D 82

Koko—see Vessels

George B. Kelez—see Vessels

Kelp
status of production in Hokkaido, C 388, p. 5

Lake Erie
bottom trawl explorations, 1962-66
alewife, S 674
black bullhead, S 674
buffalo, S 674
burbot, S 674
carp, S 674
channel catfish, S 674
discussion by basin, S 674
emerald shiner, S 674
fishing effort, S 674
freshwater drum, S 674
gizzard shad, S 674
goldfish, S 674
lake herring, S 674
lake whitefish, S 674
logperch, S 674
longnose gar, S 674
pumpkinseed, S 674
quillback, S 674
rainbow smelt, S 674
rock bass, S 674
sauger, S 674
sea lamprey, S 674
smallmouth bass, S 674
species composition, S 674
spottail shiner, S 674
stencat, S 674
stoneroller, S 674
trail-perch, S 674
vessel, gear, and methods, S 674
walleye, S 674
white bass, S 674
white crappie, S 674
white sucker, S 674
yellow bullhead, S 674
yellow perch, S 674

Laminaria spp.—see Kelp

Lamprey, sea
Lake Erie bottom trawl explorations, 1962-66, S 674

Lanceola sayana
southeastern Bering Sea, 1971, S 680

Larvae, fish—see Fish larvae

Leptoseteus osseus—see Gar, longnose

Leptomis gibbosus—see Pumpkinseed

Lobster, spiny
culture in Japan, C 388, p. 112

Logperch
Lake Erie bottom trawl explorations, 1962-66, S 674

Lota lota—see Burbot

Macrobrachium sp.—see Shrimp, freshwater

Macroinvertebrates
abundance of benthic in estuarine areas
comparisons between canal, marsh, and bay, S 677
environmental data, S 677
relative abundance, S 677
station description, S 677
study area, S 677
benthic
from upland canals in Tampa Bay, Florida, D 94

Mactra sachaiiensis—see Clam, Japanese surf

Makaira indica—see Marlin, black

Makaira mazara
distribution, S 675, p. 52
Marlin, black
central Pacific Ocean
length-weight relationship, S 675, p. 126
distribution, S 675, p. 52
occurrence, morphology, and parasitism of gastric ulcers in, from Hawaii, S 675, p. 149
review of the longline fishery in the eastern Pacific Ocean, S 675, p. 318

Marlin, blue
Atlantic
life history with special reference to Jamaican waters, S 675, p. 80
central Pacific Ocean
distribution of larvae, S 675, p. 241
length-weight relationship, S 675, p. 126
distribution, S 675, p. 52
landings in the Hawaiian longline fishery, S 675, p. 298
mercury in, taken off Hawaii, S 675, p. 162
migrations of, in western north Atlantic Ocean, S 675, p. 211
morphometrics of, from eastern Pacific Ocean, S 675, p. 111
notes on tracking
capture and tagging, S 675, p. 265
path, S 675, p. 267
procedures, S 675, p. 266
swimming depths, S 675, p. 268
swimming speeds, S 675, p. 268
transmitter and receiving equipment, S 675, p. 265
occurrence, morphology, and parasitism of gastric ulcers in, from Hawaii, S 675, p. 149
review of the longline fishery in the eastern Pacific Ocean, S 675, p. 315
western Atlantic Ocean
analysis of length and weight data, S 675, p. 121

Marlin, striped
analysis and results of the longline fishery in the eastern Pacific Ocean, S 675, p. 315
catch distribution and related sea surface temperature off San Diego, California
catch and temperature relationship, S 675, p. 190
catch distribution, S 675, p. 189
observations of temperature isotherms off San Diego and Baja California, S 675, p. 191
central Pacific Ocean
length-weight relationship, S 675, p. 126
distribution, S 675, p. 52
fishing conditions in relation to thermocline in waters off Baja California
seasonal shifts in fishing grounds, S 675, p. 304
seasonal variations in catch rates, S 675, p. 303
landings in the Hawaiian longline fishery, S 675, p. 298
mercury in, taken off Hawaii and southern California, S 675, p. 161
morphometrics of, from eastern Pacific Ocean, S 675, p. 117
review of the longline fishery in the eastern Pacific Ocean, S 675, p. 315

Marlin, white
distribution, S 675, p. 51
migrations of, in western north Atlantic Ocean, S 675, p. 211
summer concentration west of Strait of Gibraltar
food, S 675, p. 166
population structure, S 675, p. 166
sex, S 675, p. 165
status of, in eastern Atlantic, S 675, p. 165
weight, S 675, p. 166
western Atlantic Ocean
analysis of length and weight data, S 675, p. 121

Mediterranean Sea
hillfish
comparative development with Atlantic billfish, S 675, p. 79

Menhaden, Gulf
northern Gulf of Mexico
compendium of juvenile surveys in coastal streams of, D 89

Mercenaria mercenaria—see Clam, hard

Meteorological observations
Tampa Bay and adjacent waters—1971
air temperature, D 84
barometric pressure, D 84
rainfall, D 84
solar radiation, D 84
tidal height, D 84
water temperature, D 84
wind direction, D 84
wind velocity, D 84

Micropterus dolomieu—see Bass, smallmouth

Molusks
aquaculture along U.S. Atlantic and Gulf coasts, C 388, p. 57

Morning Star—see Vessels

National Sea Grant Program
aquaculture studies, C 388, p. 41

Nemertean abundance in natural and altered estuarine areas, S 677

Nereus—see Vessels

New Zealand
billfish
scientific investigation: present and future, S 675, p. 102

Notropis atherinoides—see Shinner, emerald

Notropis hudsonius—see Shiner, spottail

Noturus flavus—see Stonecat

Nutrient chemistry data
EASTROPAC atlas
from principal participating ships and Oceanographer, third and fourth monitor cruises, Oct. 1967-Jan. 1968, C 330, v. 8

Oceanographer—see Vessels

Oncorhynchus gorbuscha—see Salmon, pink

Oncorhynchus nerka—see Salmon, sockeye

Oregon—see Vessels

Osmerus mordax—see Smelt, rainbow

Oyster
status of culture in Japan, C 388, p. 23

Oyster, American
genetics of, C 388, p. 75

Oyster, Eastern
aquaculture along U.S. Atlantic and Gulf coasts, C 388, p. 57

Pacific Ocean
billfish
angler catch rates, S 675, p. 290
migration patterns of Istiophoridae as determined by cooperative tagging programs, S 675, p. 226
notes on the tracking of blue marlin, S 675, p. 265
Pacific Ocean, central
length-weight relationships for six species of billfish, S 675, p. 126
occurrence of young billfish, S 675, p. 238

Pacific Ocean, eastern
some biological observations of billfish taken, 1967-70, S 675, p. 89

Pacific Ocean, eastern north
heat exchange between ocean and atmosphere, 1969-71, S 682

Parathemisto

Patinopecten

Parathemisto

Paraphrccma

Paralithodes

Panulirus

Pelecypods

Pacific

Pernaens

Percopsis

Perdina

Perca

Penaeus

Penaeus

Phrmima

Petromyzon

Perch.

PumoTis

Polychaetes

Phytoplankton

California Current region
pigment and production measurements, 1969-72, D 91

Pnaice, Alaska
resource in Gulf of Alaska, 1961-63, D 96

Pollock, walleye
resource in Gulf of Alaska, 1961-63, D 96

Polychaetes
abundance in natural and altered estuarine areas, S 677

Pomoxis annularis—see Crappie, white

Porgy, black
culture in Japan, C 388, p. 117

Porgy, red
culture in Japan, C 388, p. 117

Porphyra yeoensis—see Algae, red

Portunus triberculatus—see Crab

Primno marcora
southeastern Bering Sea, 1971, S 680

Puffer
culture in Japan, C 388, p. 116

Pumpkinseed
Lake Erie bottom trawl explorations, 1962-66, S 674

Quillback
Lake Erie bottom trawl explorations, 1962-66, S 674

Reefs
how to build marine artificial
artificial seaweed, FF 10
assembly area, FF 10
brick, FF 10
cars, FF 10
concrete, FF 10
financing, FF 10
labor, FF 10
marking the site, FF 10
materials, FF 10
organization of effort, FF 10
permits, FF 10
prefabricated shelters, FF 10
reef location, FF 10
rock, FF 10
shape and size, FF 10
tile, FF 10
tires, FF 10
vessels, FF 10

Roccus chrysops—see Bass, white

Rockaway—see Vessels

Rockfish
resource in Gulf of Alaska, 1961-63
Pacific ocean perch, D 96
thornyheads, D 96

Roundfish
resource in Gulf of Alaska, 1961-63
grenadiers, D 96
Pacific cod, D 96
sablefish, D 96
scupins, D 96
walleye pollock, D 96

Sablefish
resource in Gulf of Alaska, 1961-63, D 96
trapping system for harvesting
fishing gear, FF 7
fishing method, FF 7
incidental catches, FF 7
traditional fishing grounds, FF 7

Sailfish
biology of Florida east coast Atlantic
age and growth, S 675, p. 84
reproduction, S 675, p. 86
central Pacific Ocean
 length weight relationship, S 675, p. 126
distribution, S 675, p. 50
eastern Pacific Ocean
 morphometrics of, S 675, p. 113
 results of tagging in western north Atlantic Ocean
 comparison of tag types, S 675, p. 201
growth and survival, S 675, p. 201
 migrations, S 675, p. 198
tag returns, S 675, p. 195
review of the longline fishery in the eastern Pacific Ocean, S 675, p. 318
western Atlantic Ocean
 analysis of length and weight data, S 675, p. 121

St. Michael—see Vessels

Salmon
culture in Japan, C 388, p. 119

Salmon, pink
 fry production in gravel incubator hatchery
 building and water system, TM ABFL-3
 collecting and processing fry samples, TM ABFL-3
 collection and pretreatment of eggs, TM ABFL-3
 enumeration of fry, TM ABFL-3
 incubator design and operation, TM ABFL-3
 natural spawning, TM ABFL-3
 size and stage of development, TM ABFL-3
 survival, TM ABFL-3
 time of emergence, TM ABFL-3
 water quality, TM ABFL-3

Salmon, sockeye
distribution, abundance, and growth of juvenile and associated species in Alaska
 abundance in each lake of the system, S 678
 abundance trends for entire system, S 678
 causes of size differences, S 678
 comparative abundance among lakes, S 678
 diel timing of interlake migrations, S 678
 early rearing areas of fry, S 678
 fish measurements, S 678
 gear types, S 678
 growth, S 678
 interlake migration of presmolts, S 678
 length frequency, S 678
 predation on juveniles, S 678
 sampling units, S 678
 size, S 678
 species associated with juveniles, S 678
 study area, S 678

San Diego, California
 striped marlin
 catch distribution and related sea surface temperature for, S 675, p. 190

Sauger
 Lake Erie bottom trawl explorations, 1962-66, S 674

Scallop
 status of culture in Japan, C 388, p. 24
 status of production in Hokkaido, C 388, p. 5

Scallop, bay
 aquaculture along U.S. Atlantic and Gulf coasts, C 388, p. 63

Sciaena borealis
 southeastern Bering Sea
 samples, 1971, S 690

Sebastiscus marmoratus
 southeastern Bering Sea
 samples, 1971, S 690

Scup
 resource in Gulf of Alaska, 1961-63, D 96

Sea Grant—see National Sea Grant Program

Sea urchin
 status of production in Hokkaido, C 388, p. 5

Seattle—see Vessels

Seaweed
 mariculture of, in Japan, C 388, p. 7

Seaweed culture
 Japan, C 388, p. 97

Shad, gizzard
 Lake Erie bottom trawl explorations, 1962-66, S 674

Shellfish culture
 Japan, C 388, p. 107

Shiner, emerald
 Lake Erie bottom trawl explorations, 1962-66, S 674

Shiner, spottail
 Lake Erie bottom trawl explorations, 1962-66, S 674

Shrimp
culture in Japan, C 388, p. 111
 Gulf of Mexico, penaeid sample catches taken by trawling, 1961-65, D 83
 pandalid trawl catches and oceanographic data from NMFS surveys of the Gulf of Alaska, 1970-72, D 88

Shrimp, brown
catch per unit effort and mean total length of, taken by trawl in Galveston Bay system, 1963-67, D 93
 larval culture in Texas, C 388, p. 33
 release and recovery data from studies in northern Gulf of Mexico factors affecting recapture, D 85
 recapture area and miles traveled, D 85
 release data, D 85
 release length, D 85
 types of marks, D 85

Shrimp, freshwater
culture in Japan, C 388, p. 112

Shrimp, pink
 larval culture in Texas, C 388, p. 33

Shrimp, white
 larval culture in Texas, C 388, p. 33
 release and recovery data from studies in northern Gulf of Mexico factors affecting recapture, D 85
 recapture area and miles traveled, D 85
 release data, D 85
 release length, D 85
 types of marks, D 85

24
Skates
resource in Gulf of Alaska, 1961-63, D 96

Smelt, pond
Naknek River system, 1961-64
abundance, S 678
length frequencies, S 678

Smelt, rainbow
Lake Erie bottom trawl explorations, 1962-66, S 674

Sole, butter
resource in Gulf of Alaska, 1961-63, D 96

Sole, Dover
resource in Gulf of Alaska, 1961-63, D 96

Sole, English
resource in Gulf of Alaska, 1961-63, D 96

Sole, flathead
resource in Gulf of Alaska, 1961-63, D 96

Sole, rock
resource in Gulf of Alaska, 1961-63, D 96

Sole, sand
resource in Gulf of Alaska, 1961-63, D 96

Sole, yellowfin
resource in Gulf of Alaska, 1961-63, D 96

Spearfish, longhill
distribution, S 675, p. 50

Spearfish, roundscale
validity and status of, S 675, p. 54

Spearfish, shortbill
central Pacific Ocean
distribution of larvae, S 675, p. 242
length-weight relationship, S 675, p. 126
distribution, S 675, p. 50
review of the longline fishery in the eastern Pacific Ocean, S 675, p. 318

Stickleback, ninespine
Naknek River system, 1961-64
abundance, S 678
length frequencies, S 678

Stickleback, threespine
Naknek River system, 1961-64
abundance, S 678
length frequencies, S 678

Stizostedion canadense—see Sauger

Stizostedion vitreum vitreum—see Walleye

Stonewall
Lake Erie bottom trawl explorations, 1962-66, S 674

Stoneroller
Lake Erie bottom trawl explorations, 1962-66, S 674

 Strait of Gibraltar, west
summer concentrations of white marlin, S 675, p. 165

Stonylocentrotus intermedius—see Sea urchin

Stonylocentrotus nudus—see Sea urchin

Sucker, white
Lake Erie bottom trawl explorations, 1962-66, S 674

Swordfish
biology of, in northwest Atlantic Ocean
distribution, S 675, p. 193
size, S 675, p. 104
size/weight and growth, S 675, p. 104
spawning, S 675, p. 104
tagging, S 675, p. 105
central Pacific Ocean
length-weight relationship, S 675, p. 126
distribution S 675, p. 49
distribution of larvae in Indian and Pacific Oceans
geographical distribution, S 675, p. 262
size of larvae, S 675, p. 261
vertical distribution, S 675, p. 261
east coast of Canada
harpoon fishery replaced by longline fishery, S 675, p. 296
eastern Pacific Ocean
review of longline fishery in, S 675, p. 321
food and feedings habits of, in northwest Atlantic Ocean
fishes, S 675, p. 139
squid, S 675, p. 140
stomach analyses, S 675, p. 139

maturation and fecundity of, from Hawaiian waters
developmental stages of ova, S 675, p. 144
fecundity, S 675, p. 146
heterogeneity of ova diameters, S 675, p. 144
occurrence in Hawaiian waters, S 675, p. 142
spawning, S 675, p. 145

mercury in, from western Atlantic Ocean
levels in food items, S 675, p. 157
variation between sexes, S 675, p. 156
variation between tissues, S 675, p. 157
variation with size, S 675, p. 155
variation with time and area, S 675, p. 156
mercury in, taken off Hawaii, S 675, p. 163

northwest Atlantic Ocean
distribution of larval in, S 675, p. 252

Taiwan
billfish landings, 1962 to 1971, S 675, p. 332

Tampa Bay, Florida
benthic macroinvertebrates and sediments from upland canals, D 94
hydrographic observations—1971, D 84
hydrographic observations, 1971-73, D 87
hydrographic observations, 1972, D 90
meteorological observations—1971, D 84

Tautogolabrus adspersus—see Cunner

Te Vega—see Vessels

Temperature
Baja California
fishing conditions in relation to thermocline, S 675, p. 302
eastern North Pacific, 1961-71
heat exchange between ocean and atmosphere, S 682

Tetrapturus albatus—see Marlin, white

Tetrapturus angustirostris—see Spearfish, shorthill

Tetrapturus audax—see Marlin, striped
Tetrapurus belone
distribution, S 675, p. 50

Tetrapurus georgei—see Spearfish, roundscale

Tetrapurus pfluegeri—see Spearfish, longbill

Texas
Galveston
larval culture of penaeid shrimp, C 388, p. 33
Galveston Bay
catch per unit effort of brown shrimp taken by trawl, 1963-67, D 93
West Bay
hydrographic observations from a natural marsh and a marsh altered by dredging, bulkheading, and filling, D 97

Thornyheads
resource in Gulf of Alaska, 1961-63, D 96

Trawl, shrimp
design of, FF 9
how to make, FF 9
materials used in construction, FF 9

Trout
culture in Japan, C 388, p. 118

Trout, lake
Naknek River system, 1961-64
prey on sockeye salmon, S 678

Trout-perch
Lake Erie bottom trawl explorations, 1962-66, S 674

Trout, rainbow
technical problems of culture in Japan, C 388, p. 21

Tuxpan—see Vessels

Unanue—see Vessels

Undaria pinnatifida—see Algae, brown

Undaunted—see Vessels

Vessels
Arthur H., D 96
Baron, FF 7
Christel, S 675, p. 265
John N. Cobb, FF 7
Commando, FF 7
Charles H. Davis, C 330, v. 8
Dawson, S 675, p. 159
Defiance, C 330, v. 8
Esmeralda, C 330, v. 8
Charles H. Gilbert, S 675, p. 265
Glacier, S 679
Gou, D 82
Hunayape, C 330, v. 8
Kaho, S 674
George B. Kelez, S 680
Morning Star, D 96
Nereus, S 679
Oceanographer, C 330, v. 8
Oregon, S 675, p. 269
Rockaway, D 82
St. Michael, D 96
Seattle, FF 7
Seaview, FF 7
Te Vega, C 330, v. 8

Tuxpan, C 330, v. 8
Unanue, C 330, v. 8
Undaunted, D 82
Western Flyer, D 96
Yelcho, C 330, v. 8
Yolanda, C 330, v. 8

Vibida sp.
southeastern Bering Sea, 1971, S 680

Walleye
Lake Erie bottom trawl explorations, 1962-66, S 674

West Bay, Texas
hydrographic observations from a natural marsh and a marsh altered by dredging, bulkheading, and filling, D 97

Western Flyer—see Vessels

Whitefish, humpback
Naknek River system, 1961-64
prey on sockeye salmon, S 678

Whitefish, lake
Lake Erie bottom trawl explorations, 1962-66, S 674

Xiphias gladius—see Swordfish

Yelcho—see Vessels

Yellowtail
culture in Japan, C 388, p. 115

Yolanda—see Vessels

Zooplankton
kinds and abundance in eastern Chukchi Sea
abundance and distribution, S 679
comparison of abundance and distribution, 1970 and 1947, S 679
dissolved oxygen, S 679
salinity, S 679
temperature, S 679

INDEX BY MARS DEN SQUARES

(see Figure 1)

009
C 330, v. 8
010
C 330, v. 8
011
C 330, v. 8
012
C 330, v. 8
036
D 82
046
C 330, v. 8
047
C 330, v. 8
048
C 330, v. 8
081
C 388
D 83
D 84
D 85

Marine Biological Laboratory S
Library - Periodicals
Woods Hole, Ma 02543