PHYSICAL OCEANOGRAPHIC, BIOLOGICAL, AND CHEMICAL DATA—SOUTH ATLANTIC COAST OF THE UNITED STATES

Gill Cruise 2

SPECIAL SCIENTIFIC REPORT—FISHERIES No. 198

UNITED STATES DEPARTMENT OF THE INTERIOR
FISH AND WILDLIFE SERVICE
PHYSICAL OCEANOGRAPHIC, BIOLOGICAL, AND CHEMICAL DATA
SOUTH ATLANTIC COAST OF THE UNITED STATES
THEODORE N. GILL CRUISE 2

By

William W. Anderson, Fishery Research Biologist
Jack W. Gehringer, Fishery Research Biologist
Edward Cohen, Analytical Chemist

Special Scientific Report--Fisheries No. 198

Washington, D. C.
December 1956
CONTENTS

Introduction ... 1
Narrative account of Cruise .. 1
Explanation of data sheets and tables 6
 Oceanographic and Chemical 6
 Biological .. 7
Acknowledgments ... 8
References .. 9

LIST OF FIGURES

Frontispiece.--Theodore N. Gill at berth in Brunswick, Georgia

Figure 1. Basic station plan ... 2
Figure 2. Track chart ... 3
Figure 3. Hydrographic cast .. 4
Figure 4. Dip-netting .. 5
Figures 5-20. Distribution of temperatures, salinities, and densities across the several sections of stations .. 62 - 7c

LIST OF TABLES

Table 1. Compass direction conversion table for wind, sea, and swell directions .. 12
Table 2. Numerical weather codes - present weather 13
Table 3. Cloud type ... 14
Table 4. Cloud amount ... 14
Table 5. Sea amount .. 14
Table 6. Swell amount .. 15
Table 7. Visibility .. 15
Table 8. Plankton volumes (half-meter silk net) 16
Table 9. Numbers of plankton organisms per cubic meter of water (half-meter net) ... 18
Table 10. Numbers of plankton organisms per cubic meter of water (continuous plankton sampler) 29
Table 11. Numbers and species of fish taken by trolling 52
Table 12. Numbers and species of fish taken by dip net 56

Oceanographic and chemical data by station
 Regular stations .. 74
 Standard station ... 230
 Special stations ... 245
PHYSICAL OCEANOGRAPHIC, BIOLOGICAL, AND CHEMICAL DATA
SOUTH ATLANTIC COAST OF THE UNITED STATES
M/V THEODORE N. GILL CRUISE 2

This is the second in a series of reports presenting basic data from cruises of the Theodore N. Gill in waters off the South Atlantic Coast of the United States.

Background of the investigations; objectives; procedures on station; and chemical, biological and oceanographic methods and procedures were presented in the report for cruise 1 (Anderson, Gehringer, and Cohen, 1956). The basic station plan is shown in figure 1.

NARRATIVE ACCOUNT OF CRUISE 2

The Theodore N. Gill departed from Brunswick, Georgia, on April 16, 1953, and proceeded to special station 5. Hourly bathythermograph observations were made while enroute, except when passing through the Gulf Stream and the Antilles Current when BT lowerings were made every half hour. Special station 5 was reached on April 17 and after occupying special stations 6 to 8, the vessel arrived at the standard station on April 19. Thirty-two hours were spent on standard station, during which time 10 Nansen-bottle casts were accomplished at intervals of about 2 hours --9 casts to 700 meters and 1 to 4,000 meters. Bathythermograph observations, Secchi-disc readings during daylight casts, routine meteorological observations, and special plankton tows for deep scattering layer studies were made in addition.

Observations on standard station were terminated on April 20, and after calling in Nassau, B.W.I., for medical care to a member of the personnel, the vessel proceeded to regular station 1, arriving on April 22. From this date to April 28 the Gill occupied all regular stations of the southern leg (1 through 34) and special station 9. The vessel returned to Brunswick on April 28 for supplies.

The Gill departed on May 4 from Brunswick on the northern leg of the cruise, and occupied all but 3 of regular stations 35 to 80, and special stations 1 through 4 during the period May 4-14. The vessel returned to Brunswick on May 15. Cruise track is given in figure 2.

Nansen casts were made on all regular and special stations (fig. 3). Bottom-sediment samples were obtained on a large number of the stations with the modified orange-peel dredge. A Phleger corer proved ineffective on the types of bottom encountered. Water samples were collected on each station for analysis of salinity, nitrate, carbohydrates, inorganic phosphate, total phosphorus, and proteins. Oxygen determinations were made aboard vessel. Bathythermograph and associated meteorological observations were taken on station and at hourly or half-hourly intervals between stations as conditions permitted. Oblique plankton tows were taken on each station with a half-meter silk net, and the continuous plankton sampler was operated over most of the cruise route. Feather jigs were trolled between stations, and bottom fishing was conducted on some shallow stations. Dip-netting was conducted both at night under searchlights and during the day (fig. 4).

Scientific personnel participating in the cruise included:

I. Southern Leg
U. S. Fish and Wildlife Service and Cooperators:

W. W. Anderson Chief Scientist
F. T. Knapp Biologist (Georgia Game & Fish Comm.)
G. F. Arata, Jr. Biologist (Florida State Board of Conservation)
V. L. Strock Administrative Assistant
Figure 1.—Basic station plan.
Figure 2.--Track chart.
Figure 3. -- Attaching Nansen bottle to cable on hydrographic cast.
Figure 4. -- Dip-netting for larval and juvenile fish.
Navy Hydrographic Office:

E.K. Stanton Senior Oceanographer
G. Hammond Oceanographer
C.W. Backus Technician

Office of Naval Research:

S. R. Galler Head Biologist

II. Northern Leg

U.S. Fish and Wildlife Service and Cooperators:

W.W. Anderson Chief Scientist
F.T. Knapp Biologist (Georgia Game & Fish Comm.)
G.F. Arata, Jr. Biologist (Florida State Board of Conservation)
C.C. Bryant Chemical Aid

Navy Hydrographic Office:

E.K. Stanton Senior Oceanographer
G. Hammond Oceanographer
E.G. Smithwick Oceanographer
C.W. Backus Technician

EXPLANATION OF DATA SHEETS AND TABLES
Oceanographic and Chemical

Each of the items appearing on the station data pages is explained below. All doubtful data are indicated and were not used in the construction of the curves from which the interpolated values (standard depth values) were derived. Observed values which were obviously false were omitted entirely. A dash in a table means that no value was available. Interpolations for standard depth values for temperature, salinity, sigma-t, and oxygen were IBM calculations; those for the chemical constituents were derived from straight lines between observed values.

The profiles of salinity, temperature, and density were prepared from these data, and appear as figures 5-20.

1. **Cruise Number.** The first cruise over the established station pattern (fig. 1) was numbered Gill 1, and subsequent cruises, Gill 2 through Gill 9 (only Gill 2 is covered by the present report).

2. **Station Number.** Stations are numbered consecutively, starting with one, at the beginning of each cruise. The station pattern and numbers as shown in figure 1 were maintained on each cruise. If a station or series of stations was not occupied, these station numbers are omitted. Regular stations have numbers only; standard and special stations are specifically indicated.

3. **Date.** Month, day, and year are given.

4. **Latitude and Longitude.** The position of the station is given in degrees and minutes.

5. **Time.** Given in Greenwich mean time and is that hour nearest to the start of the first cast.

6. **Depth.** Is the observed uncorrected sonic sounding for the station, recorded in meters.

7. **Wind.** Wind speed is given in meters per second. Direction from which the wind blows is coded in degrees true to the nearest ten degrees. The last zero is omitted. North is 360 on this scale and calm is 00. See table 1, "Compass Direction Conversion Table for Wind, Sea, and Swell Directions."

8. **Barometer.** The barometric pressure is coded in millibars, neglecting the 900 or 1,000. Thus 996 millibars is coded as 96 and 1008 millibars is coded as 08.

9. **Air Temperature.** Dry-bulb and wet-bulb temperatures are entered to the nearest tenth of a degree (centigrade).

10. **Humidity.** The percent of humidity is coded directly.
11. Weather. Weather is coded as indicated in table 2, "Numerical Weather Codes - Present Weather."

12. Clouds. Cloud type and amount are coded as indicated in table 3, "Cloud Type"; and table 4, "Cloud Amount."

13. Sea. Sea direction and amount are coded as indicated in table 5, "Sea Amount"; and table 1.

14. Swell. Swell directions and amount are coded as indicated in table 6, "Swell Amount"; and table 1.

15. Visibility. Visibility is coded as indicated in table 7, "Visibility."

16. Water Transparency. Given as meters to which a Secchi disc is visible.

Subsurface Observations

1. Sample Depth. Observed (actual) depth of each sample is given in meters. Interpolated values at standard depths are also given. The standard depths in meters are: 0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 1000, 1200, 1500, 2000, 2500, 3000, and hence every 1000 meters.

2. Temperature. The centigrade temperature is given in degrees and hundredths.

3. Salinity. Salinity is given in parts per thousand to two decimal places.

4. Sigma-t. To convert to density divide by 1000 and add 1. Thus, a sigma-t value of 22.35 converts to a density of 1.02235.

5. Dissolved Oxygen. These values are given in milliliters per liter to two decimal places.

6. Total Phosphorus. Values are given in microgram atoms per liter to the nearest 0.1 unit.

7. Inorganic Phosphate. Values are given in microgram atoms per liter to the nearest 0.1 unit.

8. Nitrate-nitrite. These values are given in microgram atoms per liter to the nearest 0.5 unit.

9. Carbohydrates (Arabinose). These values are given in terms of milligrams per liter to the nearest 0.1 unit. Collier et al. (1953) presented a technique for estimating certain elements of the organic materials in sea water which react to the test for carbohydrates. The carbohydrate values are given as arabinose equivalents, and are not necessarily the actual concentrations of carbohydrate substances.

10. Proteins (Tyrosine). These values are given to the nearest 0.1 unit as milligrams per liter of protein material in sea water, which reacts to the test for tyrosine.

Biological

1. Plankton volumes (half-meter silk net), table 8. The position given is that at beginning of the tow. The depth of the haul is given from 0 to the greatest depth reached. The volumes as given are "wet volumes" (procedures for determination were given under methods in report for cruise I). Very few samples contained large organisms such as jellyfish (which were removed), so that the volumes represent smaller organisms.

2. Numbers of plankton organisms per cubic meter of water (half-meter net), table 9. The procedures for plankton tows, methods for sorting and counting, and calculations of numbers of organisms were described under methods in report for cruise 1. Counts are given for major groups as indicated.

3. Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), table 10. Description of this
Numbers and species of fish taken by trolling, table 11. The stage of gonad development is based on International Council classifications of gonad maturity for the herring (International Council Rapports et Proces-Verbaux des Reunions, Vol. LXXIV, pp. 117, March 1931). The scale is only a guide to general classifications and must be treated as such.

This scale follows:

Stage I. Virgin individuals. Very small sexual organs close under vertebral column. Wine-coloured torpedo-shaped ovaries about 2-3 cm. long and 2-3 mm. thick. Eggs invisible to naked eye. Whitish or grayish brown knife-shaped testes 2-3 cm. long and 2-3 mm. broad.

Stage II. Maturing virgins or recovering spents. Ovaries somewhat longer than half the length of ventral cavity, about 1 cm. diameter. Eggs small but visible to naked eye. Milt whitish, somewhat bloodshot, same size as ovaries, but still thin and knife-shaped.

Stage III. Sexual organs more swollen, occupying about half of ventral cavity.

Stage IV. Ovaries and testes nearly filling 2/3 of ventral cavity. Eggs not transparent, milt whitish, swollen.

Stage V. Sexual organs filling ventral cavity. Ovaries with some large transparent eggs. Milt white, not yet running.

Stage VI. Roe and milt running (spawning).

Stage VII. Spents. Ovaries slack with residual eggs. Testes baggy, bloodshot. Doubtful cases are indicated by quoting two stages e.g. "St. I-II, St. VII-II," etc.

Numbers and species of fish taken by dip-net, table 12. There is shown, by family, the genera and species taken. Numbers of specimens from each station are given in parentheses, followed by the approximate size or size range of standard length, in millimeters.

ACKNOWLEDGMENTS

Acknowledgment is made to the following agencies and individuals for contributions in securing and processing the material presented. To the Navy Hydrographic Office for their cooperation in planning and executing the field program and for processing the physical oceanographic data. To the Office of Naval Research and Dr. Sidney R. Galler in particular, for help in planning and executing the field program. To the Georgia Game and Fish Commission for their cooperation in the biological and chemical studies; through Frank T. Knapp, biologist and Joseph L. Moore, chemist. To the Florida State Board of Conservation (through the Marine Laboratory of the University of Miami) for their cooperation in the biological studies, through George F. Arata, Jr., biologist. To Dean F. Bumpus of the Woods Hole Oceanographic Institution for preparation of the salinity, temperature, and density profiles which appear as figures 5-20.

From our own staff special recognition is due Frederick H. Berry for identification of dip-net and stomach content material, and to Hugh M. Fields for plankton organism counts. We appreciate the assistance of other members of the staff who aided in one way or another: Charles P. Goodwin, Clyde C. Bryant, Herbert R. Gordy, Charlie B. Casper, and Elizabeth H. Swindell. Acknowledgment is also made of the excellent cooperation of crew members of the M/V Theodore N. Gill, and Captain Mauritz C. Fredricksen in particular.
REFERENCES

The following list is a supplement to that presented in the report for Cruise 1.

Anderson, William W.
Early development, spawning, growth and occurrence of the silver mullet (Mugil curema) along the South Atlantic coast of the United States, U. S. Dept. Int., Fish & Wildl. Serv., Fish Bull., in press.

1956

Arata, George F., Jr.
1954.

Arnov, Boris.
1952.

Bailey, Reeve M.
1951.

Boden, Brian P.
1951.

Breder, C. M., Jr., and Eugenie Clark.
1947.

Clark, Eugenie.
1949.

1953.
Notes on the behavior and morphology of some West Indian plectogmath fishes. Zoologica, 35(Pt. 3): 159-168, figs. 1-7, pls. I-II.
Clark, Eugenie and H.A.F. Gohar.

Fraser-Brunner, A.

Ginsburg, Isaac.

Gurney, Robert.

Table 1.—Compass direction conversion table for wind, sea, and swell directions

<table>
<thead>
<tr>
<th>Code</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Calm</td>
</tr>
<tr>
<td>01</td>
<td>5° to 14°</td>
</tr>
<tr>
<td>02</td>
<td>15° to 24° NNE</td>
</tr>
<tr>
<td>03</td>
<td>25° to 34°</td>
</tr>
<tr>
<td>04</td>
<td>35° to 44°</td>
</tr>
<tr>
<td>05</td>
<td>45° to 54° NE</td>
</tr>
<tr>
<td>06</td>
<td>55° to 64°</td>
</tr>
<tr>
<td>07</td>
<td>65° to 74° ENE</td>
</tr>
<tr>
<td>08</td>
<td>75° to 84°</td>
</tr>
<tr>
<td>09</td>
<td>85° to 94° E</td>
</tr>
<tr>
<td>10</td>
<td>95° to 104°</td>
</tr>
<tr>
<td>11</td>
<td>105° to 114° ESE</td>
</tr>
<tr>
<td>12</td>
<td>115° to 124°</td>
</tr>
<tr>
<td>13</td>
<td>125° to 134°</td>
</tr>
<tr>
<td>14</td>
<td>135° to 144° SE</td>
</tr>
<tr>
<td>15</td>
<td>145° to 154°</td>
</tr>
<tr>
<td>16</td>
<td>155° to 164° SSE</td>
</tr>
<tr>
<td>17</td>
<td>165° to 174°</td>
</tr>
<tr>
<td>18</td>
<td>175° to 184° S</td>
</tr>
<tr>
<td>19</td>
<td>185° to 194°</td>
</tr>
<tr>
<td>20</td>
<td>195° to 204° SSW</td>
</tr>
<tr>
<td>21</td>
<td>205° to 214°</td>
</tr>
<tr>
<td>22</td>
<td>215° to 224°</td>
</tr>
<tr>
<td>23</td>
<td>225° to 234° SW</td>
</tr>
<tr>
<td>24</td>
<td>235° to 244°</td>
</tr>
<tr>
<td>25</td>
<td>245° to 254° WSW</td>
</tr>
<tr>
<td>26</td>
<td>255° to 264°</td>
</tr>
<tr>
<td>27</td>
<td>265° to 274° W</td>
</tr>
<tr>
<td>28</td>
<td>275° to 284°</td>
</tr>
<tr>
<td>29</td>
<td>285° to 294° WNW</td>
</tr>
<tr>
<td>30</td>
<td>295° to 304°</td>
</tr>
<tr>
<td>31</td>
<td>305° to 314°</td>
</tr>
<tr>
<td>32</td>
<td>315° to 324° NW</td>
</tr>
<tr>
<td>33</td>
<td>325° to 334°</td>
</tr>
<tr>
<td>34</td>
<td>335° to 344° NNW</td>
</tr>
<tr>
<td>35</td>
<td>345° to 354°</td>
</tr>
<tr>
<td>36</td>
<td>355° to 4° N</td>
</tr>
<tr>
<td>Code</td>
<td>Condition Description</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>00</td>
<td>Cloud development NOT observed or NOT observable during past hour.</td>
</tr>
<tr>
<td>01</td>
<td>Clouds generally dissolving or becoming less developed during past hour.</td>
</tr>
<tr>
<td>02</td>
<td>Sunlight visible, no thunder heard.</td>
</tr>
<tr>
<td>03</td>
<td>Snow, sleet, rain, snow, or rain mixed.</td>
</tr>
<tr>
<td>04</td>
<td>Visibility reduced by smoke.</td>
</tr>
<tr>
<td>05</td>
<td>Precipitation within sight, reaching the ground in a heavy rain or snow storm.</td>
</tr>
<tr>
<td>06</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>07</td>
<td>Thunder heard but no precipitation at station.</td>
</tr>
<tr>
<td>08</td>
<td>Thunderstorm without hail, but with rain and snow.</td>
</tr>
<tr>
<td>09</td>
<td>Clouds generally dissolving or becoming less developed during past hour.</td>
</tr>
<tr>
<td>10</td>
<td>Fog, sleet, or rain.</td>
</tr>
<tr>
<td>11</td>
<td>Rainfall or sleetfall.</td>
</tr>
<tr>
<td>12</td>
<td>Rainfall or sleetfall.</td>
</tr>
<tr>
<td>13</td>
<td>Snow, sleet, rain, or rain mixed.</td>
</tr>
<tr>
<td>14</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>15</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>16</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>17</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>18</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>19</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>20</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>21</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>22</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>23</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>24</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>25</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>26</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>27</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>28</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>29</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>30</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>31</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>32</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>33</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>34</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>35</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>36</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>37</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>38</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>39</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>40</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>41</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>42</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>43</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>44</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>45</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>46</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>47</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>48</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>49</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>50</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>51</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>52</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>53</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>54</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>55</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>56</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>57</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>58</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>59</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>60</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>61</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>62</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>63</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>64</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>65</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>66</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>67</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>68</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>69</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>70</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>71</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>72</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>73</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>74</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>75</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>76</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>77</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>78</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>79</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>80</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>81</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>82</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>83</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>84</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>85</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>86</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>87</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>88</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>89</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>90</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>91</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>92</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>93</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>94</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>95</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>96</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>97</td>
<td>Snow, sleet, or rain.</td>
</tr>
<tr>
<td>98</td>
<td>Snow, sleet, or rain.</td>
</tr>
</tbody>
</table>
| 99 | Snow, sleet, or rain.
Table 3.—Cloud type

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stratus or Fractostratus</td>
</tr>
<tr>
<td>1</td>
<td>Cirrus</td>
</tr>
<tr>
<td>2</td>
<td>Cirrostratus</td>
</tr>
<tr>
<td>3</td>
<td>Cirrocumulus</td>
</tr>
<tr>
<td>4</td>
<td>Altocumulus</td>
</tr>
<tr>
<td>5</td>
<td>Altostratus</td>
</tr>
<tr>
<td>6</td>
<td>Stratuscumulus</td>
</tr>
<tr>
<td>7</td>
<td>Nimbostratus</td>
</tr>
<tr>
<td>8</td>
<td>Cumulus or Fractocumulus</td>
</tr>
<tr>
<td>9</td>
<td>Cumulonimbus</td>
</tr>
</tbody>
</table>

Table 4.—Cloud amount

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No clouds</td>
</tr>
<tr>
<td>1</td>
<td>Less than 1/10 or 1/10</td>
</tr>
<tr>
<td>2</td>
<td>2/10 and 3/10</td>
</tr>
<tr>
<td>3</td>
<td>4/10</td>
</tr>
<tr>
<td>4</td>
<td>5/10</td>
</tr>
<tr>
<td>5</td>
<td>6/10</td>
</tr>
<tr>
<td>6</td>
<td>7/10 and 8/10</td>
</tr>
<tr>
<td>7</td>
<td>9/10 and 9/10 plus</td>
</tr>
<tr>
<td>8</td>
<td>10/10</td>
</tr>
<tr>
<td>9</td>
<td>Sky obscured</td>
</tr>
</tbody>
</table>

Table 5.—Sea amount

<table>
<thead>
<tr>
<th>Code</th>
<th>Approximate Height (feet)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>----</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Less than 1</td>
<td>Smooth</td>
</tr>
<tr>
<td>2</td>
<td>1 to 3</td>
<td>Slight</td>
</tr>
<tr>
<td>3</td>
<td>3 to 5</td>
<td>Moderate</td>
</tr>
<tr>
<td>4</td>
<td>5 to 8</td>
<td>Rough</td>
</tr>
<tr>
<td>5</td>
<td>8 to 12</td>
<td>Very rough</td>
</tr>
<tr>
<td>6</td>
<td>12 to 20</td>
<td>High</td>
</tr>
<tr>
<td>7</td>
<td>20 to 40</td>
<td>Very high</td>
</tr>
<tr>
<td>8</td>
<td>40 and over</td>
<td>Mountainous</td>
</tr>
<tr>
<td>9</td>
<td>----</td>
<td>Very rough confused sea</td>
</tr>
</tbody>
</table>
Table 6.--Swell amount

<table>
<thead>
<tr>
<th>Code</th>
<th>Approximate Height (feet)</th>
<th>Description</th>
<th>Approximate Length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>No swell</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1 to 6</td>
<td>Low swell Average</td>
<td>0 to 600</td>
</tr>
<tr>
<td>2</td>
<td>Long</td>
<td>Short or Average</td>
<td>Above 600</td>
</tr>
<tr>
<td>3</td>
<td>Short</td>
<td>0 to 300</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6 to 12</td>
<td>Moderate Average</td>
<td>300 to 600</td>
</tr>
<tr>
<td>5</td>
<td>Long</td>
<td>Short</td>
<td>0 to 300</td>
</tr>
<tr>
<td>6</td>
<td>Greater than 12</td>
<td>High Average</td>
<td>300 to 600</td>
</tr>
<tr>
<td>7</td>
<td>Short</td>
<td>Long</td>
<td>Above 600</td>
</tr>
<tr>
<td>8</td>
<td>Confused</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Visibility

<table>
<thead>
<tr>
<th>Code</th>
<th>Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dense fog</td>
</tr>
<tr>
<td>1</td>
<td>Thick fog</td>
</tr>
<tr>
<td>2</td>
<td>Fog</td>
</tr>
<tr>
<td>3</td>
<td>Moderate fog</td>
</tr>
<tr>
<td>4</td>
<td>Thin fog or mist</td>
</tr>
<tr>
<td>5</td>
<td>Visibility poor</td>
</tr>
<tr>
<td>6</td>
<td>Visibility moderate</td>
</tr>
<tr>
<td>7</td>
<td>Visibility good</td>
</tr>
<tr>
<td>8</td>
<td>Visibility very good</td>
</tr>
<tr>
<td>9</td>
<td>Visibility excellent</td>
</tr>
<tr>
<td>Position</td>
<td>Time (EST)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Sta.</td>
<td>N. Lat.</td>
</tr>
<tr>
<td>1</td>
<td>27° 00'</td>
</tr>
<tr>
<td>2</td>
<td>26° 56'</td>
</tr>
<tr>
<td>3</td>
<td>27° 01'</td>
</tr>
<tr>
<td>4</td>
<td>27° 20'</td>
</tr>
<tr>
<td>5</td>
<td>27° 40'</td>
</tr>
<tr>
<td>6</td>
<td>27° 40'</td>
</tr>
<tr>
<td>7</td>
<td>27° 40'</td>
</tr>
<tr>
<td>8</td>
<td>28° 19'</td>
</tr>
<tr>
<td>9</td>
<td>28° 20'</td>
</tr>
<tr>
<td>10</td>
<td>28° 18'</td>
</tr>
<tr>
<td>11</td>
<td>28° 20'</td>
</tr>
<tr>
<td>12</td>
<td>28° 41'</td>
</tr>
<tr>
<td>13</td>
<td>29° 00'</td>
</tr>
<tr>
<td>14</td>
<td>29° 01'</td>
</tr>
<tr>
<td>15</td>
<td>29° 58'</td>
</tr>
<tr>
<td>16</td>
<td>29° 00'</td>
</tr>
<tr>
<td>17</td>
<td>29° 40'</td>
</tr>
<tr>
<td>18</td>
<td>29° 40'</td>
</tr>
<tr>
<td>19</td>
<td>29° 39'</td>
</tr>
<tr>
<td>20</td>
<td>29° 40'</td>
</tr>
<tr>
<td>21</td>
<td>29° 39'</td>
</tr>
<tr>
<td>22</td>
<td>30° 00'</td>
</tr>
<tr>
<td>23</td>
<td>30° 20'</td>
</tr>
<tr>
<td>24</td>
<td>30° 20'</td>
</tr>
<tr>
<td>25</td>
<td>30° 20'</td>
</tr>
<tr>
<td>26</td>
<td>30° 20'</td>
</tr>
<tr>
<td>27</td>
<td>30° 19'</td>
</tr>
<tr>
<td>28</td>
<td>30° 20'</td>
</tr>
<tr>
<td>29</td>
<td>30° 56'</td>
</tr>
<tr>
<td>30</td>
<td>31° 00'</td>
</tr>
<tr>
<td>31</td>
<td>31° 00'</td>
</tr>
<tr>
<td>32</td>
<td>31° 00'</td>
</tr>
<tr>
<td>33</td>
<td>31° 00'</td>
</tr>
<tr>
<td>34</td>
<td>31° 00'</td>
</tr>
<tr>
<td>35</td>
<td>31° 21'</td>
</tr>
<tr>
<td>36</td>
<td>31° 42'</td>
</tr>
<tr>
<td>37</td>
<td>31° 38'</td>
</tr>
<tr>
<td>38</td>
<td>31° 36'</td>
</tr>
<tr>
<td>39</td>
<td>31° 34'</td>
</tr>
<tr>
<td>40</td>
<td>31° 29'</td>
</tr>
<tr>
<td>41</td>
<td>31° 41'</td>
</tr>
<tr>
<td>42</td>
<td>31° 57'</td>
</tr>
<tr>
<td>43</td>
<td>32° 12'</td>
</tr>
<tr>
<td>44</td>
<td>32° 26'</td>
</tr>
</tbody>
</table>

Table 8.—Plankton volumes (half-meter silk net)
Table 8.—Plankton volumes (half-meter silk net), cont'd

<table>
<thead>
<tr>
<th>Sta.</th>
<th>N. Lat. W. Long.</th>
<th>(1953) Date</th>
<th>Time (EST)</th>
<th>Vol. water strained (m³)</th>
<th>Depth of haul in meters</th>
<th>Vol. per m³ strained (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>32°40'</td>
<td>May 6</td>
<td>0938 0959</td>
<td>122.6</td>
<td>0-3</td>
<td>0.261</td>
</tr>
<tr>
<td>46</td>
<td>32°54'</td>
<td>May 6</td>
<td>1214 1235</td>
<td>114.7</td>
<td>0-4</td>
<td>0.087</td>
</tr>
<tr>
<td>47</td>
<td>32°40'</td>
<td>May 6</td>
<td>1459 1521</td>
<td>111.0</td>
<td>0-11</td>
<td>0.595</td>
</tr>
<tr>
<td>48</td>
<td>32°24'</td>
<td>May 6</td>
<td>1903 1928</td>
<td>144.2</td>
<td>0-56</td>
<td>0.374</td>
</tr>
<tr>
<td>49</td>
<td>32°12'</td>
<td>May 6</td>
<td>2328 2353</td>
<td>151.3</td>
<td>0-42</td>
<td>0.430</td>
</tr>
<tr>
<td>53</td>
<td>32°50'</td>
<td>May 7</td>
<td>1319 1348</td>
<td>206.4</td>
<td>0-44</td>
<td>0.194</td>
</tr>
<tr>
<td>54</td>
<td>33°03'</td>
<td>May 7</td>
<td>1614 1635</td>
<td>122.9</td>
<td>0-11</td>
<td>0.651</td>
</tr>
<tr>
<td>55</td>
<td>33°17'</td>
<td>May 7</td>
<td>1911 1932</td>
<td>116.6</td>
<td>0-10</td>
<td>0.317</td>
</tr>
<tr>
<td>56</td>
<td>33°32'</td>
<td>May 7</td>
<td>2143 2203</td>
<td>106.1 Surface</td>
<td></td>
<td>0.396</td>
</tr>
<tr>
<td>57</td>
<td>33°34'</td>
<td>May 8</td>
<td>0056 0115</td>
<td>147.7</td>
<td>0-3</td>
<td>0.203</td>
</tr>
<tr>
<td>58</td>
<td>33°36'</td>
<td>May 8</td>
<td>0359 0420</td>
<td>160.8</td>
<td>0-3</td>
<td>0.162</td>
</tr>
<tr>
<td>59</td>
<td>33°22'</td>
<td>May 8</td>
<td>0644 0705</td>
<td>122.0</td>
<td>0-9</td>
<td>0.779</td>
</tr>
<tr>
<td>60</td>
<td>33°17'</td>
<td>May 8</td>
<td>0948 1020</td>
<td>192.4</td>
<td>0-62</td>
<td>0.203</td>
</tr>
<tr>
<td>61</td>
<td>32°54'</td>
<td>May 8</td>
<td>1331 1355</td>
<td>107.4</td>
<td>0-64</td>
<td>0.466</td>
</tr>
<tr>
<td>62</td>
<td>32°43'</td>
<td>May 8</td>
<td>1744 1808</td>
<td>175.8</td>
<td>0-50</td>
<td>0.159</td>
</tr>
<tr>
<td>63</td>
<td>33°15'</td>
<td>May 8</td>
<td>2205 2230</td>
<td>168.4</td>
<td>0-53</td>
<td>0.291</td>
</tr>
<tr>
<td>64</td>
<td>33°33'</td>
<td>May 9</td>
<td>0215 0237</td>
<td>153.7</td>
<td>0-35</td>
<td>0.488</td>
</tr>
<tr>
<td>65</td>
<td>33°42'</td>
<td>May 9</td>
<td>0405 0427</td>
<td>114.4</td>
<td>0-20</td>
<td>0.472</td>
</tr>
<tr>
<td>66</td>
<td>33°57'</td>
<td>May 9</td>
<td>0700 0721</td>
<td>178.7</td>
<td>0-11</td>
<td>0.476</td>
</tr>
<tr>
<td>67</td>
<td>34°11'</td>
<td>May 9</td>
<td>1104 1125</td>
<td>126.8</td>
<td>0-3</td>
<td>0.158</td>
</tr>
<tr>
<td>68</td>
<td>34°23'</td>
<td>May 9</td>
<td>1356 1417</td>
<td>170.2</td>
<td>0-3</td>
<td>0.088</td>
</tr>
<tr>
<td>69</td>
<td>34°32'</td>
<td>May 9</td>
<td>1637 1658</td>
<td>166.6</td>
<td>0-10</td>
<td>0.030</td>
</tr>
<tr>
<td>70</td>
<td>34°18'</td>
<td>May 9</td>
<td>1925 1946</td>
<td>117.1</td>
<td>0-9</td>
<td>0.137</td>
</tr>
<tr>
<td>71</td>
<td>34°04'</td>
<td>May 9</td>
<td>2230 2256</td>
<td>133.6</td>
<td>0-52</td>
<td>0.270</td>
</tr>
<tr>
<td>72</td>
<td>33°49'</td>
<td>May 10</td>
<td>0302 0325</td>
<td>164.4</td>
<td>0-47</td>
<td>0.243</td>
</tr>
<tr>
<td>73</td>
<td>34°10'</td>
<td>May 10</td>
<td>1024 1050</td>
<td>215.0</td>
<td>0-60</td>
<td>0.107</td>
</tr>
<tr>
<td>74</td>
<td>34°24'</td>
<td>May 10</td>
<td>1539 1604</td>
<td>194.0</td>
<td>0-64</td>
<td>0.026</td>
</tr>
<tr>
<td>75</td>
<td>34°39'</td>
<td>May 10</td>
<td>1922 1943</td>
<td>107.4</td>
<td>0-18</td>
<td>0.559</td>
</tr>
<tr>
<td>76</td>
<td>34°53'</td>
<td>May 10</td>
<td>2230 2251</td>
<td>127.6</td>
<td>0-4</td>
<td>0.118</td>
</tr>
<tr>
<td>77</td>
<td>35°01'</td>
<td>May 11</td>
<td>0132 0153</td>
<td>114.7</td>
<td>0-10</td>
<td>0.131</td>
</tr>
<tr>
<td>78</td>
<td>35°06'</td>
<td>May 11</td>
<td>0433 0454</td>
<td>122.9</td>
<td>0-10</td>
<td>0.179</td>
</tr>
<tr>
<td>80</td>
<td>34°38'</td>
<td>May 12</td>
<td>1355 1422</td>
<td>184.2</td>
<td>0-70</td>
<td>0.081</td>
</tr>
<tr>
<td>Spec 1</td>
<td>34°00'</td>
<td>May 12</td>
<td>2129 2155</td>
<td>119.8</td>
<td>0-56</td>
<td>0.150</td>
</tr>
<tr>
<td>Spec 2</td>
<td>33°00'</td>
<td>May 13</td>
<td>0804 0828</td>
<td>208.9</td>
<td>0-57</td>
<td>0.048</td>
</tr>
<tr>
<td>Spec 3</td>
<td>32°00'</td>
<td>May 13</td>
<td>1858 1923</td>
<td>181.2</td>
<td>0-42</td>
<td>0.077</td>
</tr>
<tr>
<td>Spec 4</td>
<td>31°00'</td>
<td>May 14</td>
<td>0558 0621</td>
<td>145.2</td>
<td>0-70</td>
<td>0.131</td>
</tr>
<tr>
<td>Spec 5</td>
<td>30°00'</td>
<td>Apr. 17</td>
<td>2250 2315</td>
<td>156.8</td>
<td>0-74</td>
<td>0.179</td>
</tr>
<tr>
<td>Spec 6</td>
<td>29°00'</td>
<td>Apr. 18</td>
<td>0807 0832</td>
<td>214.7</td>
<td>0-77</td>
<td>0.037</td>
</tr>
<tr>
<td>Spec 7</td>
<td>28°00'</td>
<td>Apr. 18</td>
<td>1609 1636</td>
<td>178.1</td>
<td>0-70</td>
<td>0.039</td>
</tr>
<tr>
<td>Spec 8</td>
<td>27°58'</td>
<td>Apr. 18-19</td>
<td>2350 0016</td>
<td>199.5</td>
<td>0-87</td>
<td>0.015</td>
</tr>
<tr>
<td>Spec 9</td>
<td>28°00'</td>
<td>Apr. 24</td>
<td>0044 0107</td>
<td>199.7</td>
<td>0-56</td>
<td>0.050</td>
</tr>
</tbody>
</table>
Table 9.--Numbers of plankton organisms per cubic meter of water (half-meter net)

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Reg. 1*</th>
<th>Reg. 2</th>
<th>Reg. 3</th>
<th>Reg. 4</th>
<th>Reg. 5</th>
<th>Reg. 6</th>
<th>Reg. 7</th>
<th>Reg. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>7800</td>
<td>17.2</td>
<td>8.2</td>
<td>18.8</td>
<td>59.8</td>
<td>10.3</td>
<td>34.1</td>
<td>37.8</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>940</td>
<td>4.4</td>
<td>7.2</td>
<td>1.7</td>
<td>4.1</td>
<td>4.4</td>
<td>3.9</td>
<td>3.4</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>880</td>
<td>7.6</td>
<td>3.3</td>
<td>15.0</td>
<td>6.2</td>
<td>9.9</td>
<td>2.4</td>
<td>3.9</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>120</td>
<td>0.8</td>
<td>1.3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Copepoda</td>
<td>7960</td>
<td>45.1</td>
<td>70.6</td>
<td>188.0</td>
<td>44.8</td>
<td>110.5</td>
<td>58.9</td>
<td>56.5</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>420</td>
<td>1.9</td>
<td>6.0</td>
<td>3.4</td>
<td>2.7</td>
<td>1.3</td>
<td>3.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>140</td>
<td>0.7</td>
<td>1.0</td>
<td>1.7</td>
<td>0.8</td>
<td>1.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Isopoda</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>480</td>
<td>2.1</td>
<td>-</td>
<td>28.1</td>
<td>4.5</td>
<td>1.3</td>
<td>5.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Shrimp</td>
<td>240</td>
<td>0.8</td>
<td>31.1</td>
<td>20.5</td>
<td>3.9</td>
<td>1.4</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Crabs</td>
<td>220</td>
<td>0.7</td>
<td>5.4</td>
<td>27.0</td>
<td>1.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>120</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>1.4</td>
<td>0.1</td>
<td>0.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>140</td>
<td>1.8</td>
<td>1.5</td>
<td>1.0</td>
<td>1.8</td>
<td>0.9</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>480</td>
<td>1.8</td>
<td>1.7</td>
<td>0.8</td>
<td>2.5</td>
<td>0.9</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Larvae</td>
<td>6500</td>
<td>1.6</td>
<td>1.3</td>
<td>16.0</td>
<td>15.9</td>
<td>3.5</td>
<td>23.8</td>
<td>13.4</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>160</td>
<td>2.9</td>
<td>4.1</td>
<td>4.0</td>
<td>5.2</td>
<td>1.1</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Leptocardia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>340</td>
<td>1.4</td>
<td>2.1</td>
<td>0.8</td>
<td>2.3</td>
<td>0.6</td>
<td>1.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Subtotal: 26940 91.0 145.8 328.6 158.5 149.4 142.0 128.0

Fish Eggs: 2 0.09 3.44 3.76 1.73 0.01 0.07 0.04
Fish Larvae: 186 0.45 1.64 1.13 0.69 0.27 1.23 0.72

Total: 27128 91.5 150.9 333.5 160.9 149.7 143.3 128.8

* Total number of organisms in sample, water volume not determined
<table>
<thead>
<tr>
<th>Station Number</th>
<th>Reg. 9</th>
<th>Reg. 10</th>
<th>Reg. 11</th>
<th>Reg. 12</th>
<th>Reg. 13</th>
<th>Reg. 14</th>
<th>Reg. 15</th>
<th>Reg. 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>13.3</td>
<td>35.2</td>
<td>39.2</td>
<td>13.6</td>
<td>19.6</td>
<td>38.6</td>
<td>12.8</td>
<td>28.4</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>5.7</td>
<td>7.8</td>
<td>0.4</td>
<td>0.9</td>
<td>0.6</td>
<td>11.0</td>
<td>9.7</td>
<td>4.4</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>6.2</td>
<td>9.0</td>
<td>17.6</td>
<td>6.4</td>
<td>17.4</td>
<td>9.6</td>
<td>5.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>0.5</td>
<td>1.3</td>
<td></td>
<td>29.9</td>
<td>2.7</td>
<td>0.6</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Copepoda</td>
<td>103.7</td>
<td>178.4</td>
<td>313.6</td>
<td>62.5</td>
<td>350.5</td>
<td>74.0</td>
<td>43.1</td>
<td>24.0</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>1.5</td>
<td></td>
<td>0.8</td>
<td>0.4</td>
<td>4.7</td>
<td>1.0</td>
<td>3.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>0.1</td>
<td></td>
<td></td>
<td>0.4</td>
<td>38.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>0.4</td>
<td>0.9</td>
<td></td>
<td></td>
<td>3.3</td>
<td>1.4</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomatopoda</td>
<td></td>
<td></td>
<td>1.6</td>
<td>0.2</td>
<td>1.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>1.2</td>
<td>4.9</td>
<td>5.6</td>
<td></td>
<td>12.3</td>
<td>2.8</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Shrimp</td>
<td>1.1</td>
<td>0.2</td>
<td>52.0</td>
<td>3.0</td>
<td>18.8</td>
<td>2.1</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Crabs</td>
<td>0.5</td>
<td>3.8</td>
<td>93.9</td>
<td>50.1</td>
<td>253.2</td>
<td>2.8</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td></td>
<td>1.6</td>
<td>0.1</td>
<td>59.5</td>
<td>2463.8</td>
<td>14.1</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>1.5</td>
<td>0.2</td>
<td></td>
<td>0.7</td>
<td>3.3</td>
<td>4.3</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>0.2</td>
<td>0.9</td>
<td>1.5</td>
<td>0.6</td>
<td>3.6</td>
<td>6.0</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Larvae</td>
<td>3.5</td>
<td>12.3</td>
<td>2.5</td>
<td>9.4</td>
<td>17.6</td>
<td>2.5</td>
<td>4.2</td>
<td>6.9</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>0.9</td>
<td>2.5</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>7.9</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Leptocardia</td>
<td></td>
<td></td>
<td><0.01</td>
<td>0.60</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>2.2</td>
<td>1.3</td>
<td>345.5</td>
<td>371.4</td>
<td>0.3</td>
<td>19.0</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Subtotal</td>
<td>142.5</td>
<td>260.3</td>
<td>874.6</td>
<td>609.2</td>
<td>3211.6</td>
<td>197.8</td>
<td>89.4</td>
<td>79.7</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>0.04</td>
<td>13.10</td>
<td>6.56</td>
<td>28.06</td>
<td>97.84</td>
<td>1.38</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>0.07</td>
<td>0.84</td>
<td>0.55</td>
<td>1.28</td>
<td>27.28</td>
<td>1.05</td>
<td>0.21</td>
<td>0.51</td>
</tr>
<tr>
<td>Total</td>
<td>142.6</td>
<td>274.2</td>
<td>881.7</td>
<td>638.5</td>
<td>3336.7</td>
<td>200.2</td>
<td>89.6</td>
<td>80.2</td>
</tr>
</tbody>
</table>
Table 9.--Numbers of plankton organisms per cubic meter of water (half-meter net), cont'd

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Reg. 17</th>
<th>Reg. 18</th>
<th>Reg. 19</th>
<th>Reg. 20</th>
<th>Reg. 21</th>
<th>Reg. 22</th>
<th>Reg. 23</th>
<th>Reg. 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>14.4</td>
<td>37.5</td>
<td>74.1</td>
<td>0.3</td>
<td>2.2</td>
<td>2.4</td>
<td>5.4</td>
<td>43.3</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>5.6</td>
<td>19.9</td>
<td>38.5</td>
<td>7.8</td>
<td>0.1</td>
<td>2.9</td>
<td>0.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>8.1</td>
<td>14.8</td>
<td>6.6</td>
<td>25.0</td>
<td>2.6</td>
<td>5.3</td>
<td>28.3</td>
<td>17.2</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>1.2</td>
<td>1.7</td>
<td>1.2</td>
<td>2.4</td>
<td>4.9</td>
<td>0.2</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Copepoda</td>
<td>54.1</td>
<td>219.7</td>
<td>351.3</td>
<td>213.2</td>
<td>66.0</td>
<td>195.5</td>
<td>15.4</td>
<td>211.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>2.2</td>
<td>4.8</td>
<td>1.8</td>
<td>15.2</td>
<td>0.3</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Mysidaecea</td>
<td>-</td>
<td>0.1</td>
<td>17.4</td>
<td>-</td>
<td>9.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphiopoda</td>
<td>1.0</td>
<td>3.3</td>
<td>2.6</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>Isopoda</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>1.9</td>
<td>3.8</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>5.1</td>
<td>8.4</td>
<td>1.9</td>
<td>0.7</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>Shrimp</td>
<td>2.3</td>
<td>1.4</td>
<td>14.6</td>
<td>8.4</td>
<td>7.9</td>
<td>9.9</td>
<td>0.8</td>
<td>15.6</td>
</tr>
<tr>
<td>Crabs</td>
<td>0.4</td>
<td>0.1</td>
<td>2.5</td>
<td>68.3</td>
<td>38.7</td>
<td>79.2</td>
<td>20.5</td>
<td>34.1</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>1.5</td>
<td>0.1</td>
<td>1.5</td>
<td>0.7</td>
<td>3.4</td>
<td>1.0</td>
<td>59.7</td>
<td>37.6</td>
</tr>
<tr>
<td>Pteropods</td>
<td>1.6</td>
<td>4.1</td>
<td>0.8</td>
<td>0.7</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>2.0</td>
<td>3.5</td>
<td>2.0</td>
<td>0.8</td>
<td>2.2</td>
<td>1.7</td>
<td>0.1</td>
<td>4.9</td>
</tr>
<tr>
<td>Larvaeae</td>
<td>7.6</td>
<td>8.5</td>
<td>5.9</td>
<td>13.2</td>
<td>37.4</td>
<td>249.8</td>
<td>8.8</td>
<td>30.6</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>0.7</td>
<td>2.3</td>
<td>10.3</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>Leptocardia</td>
<td>0.01</td>
<td>-</td>
<td>0.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.33</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>0.4</td>
<td>1.7</td>
<td>2.0</td>
<td>11.2</td>
<td>195.2</td>
<td>921.6</td>
<td>135.1</td>
<td>69.9</td>
</tr>
</tbody>
</table>

Subtotal | 108.2 | 331.9 | 536.0 | 370.8 | 373.8 | 1473.3 | 275.9 | 474.8 |

Fish Eggs | <0.01 | 0.01 | 15.94 | 22.54 | 3.11 | 7.59 | 83.35 | 46.15 |

Fish Larvae | 0.83 | 0.60 | 5.20 | 1.50 | 0.51 | 1.17 | 0.73 | 2.38 |

Total | 109.0 | 332.5 | 557.1 | 394.8 | 377.4 | 1482.1 | 360.0 | 523.4 |
<table>
<thead>
<tr>
<th>Station Number</th>
<th>Reg. 25</th>
<th>Reg. 26</th>
<th>Reg. 27</th>
<th>Reg. 28</th>
<th>Reg. 29</th>
<th>Reg. 30</th>
<th>Reg. 31</th>
<th>Reg. 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>34.5</td>
<td>51.7</td>
<td>12.2</td>
<td>29.4</td>
<td>15.3</td>
<td>14.0</td>
<td>38.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>14.0</td>
<td>9.2</td>
<td>62.4</td>
<td>19.2</td>
<td>3.6</td>
<td>9.1</td>
<td>26.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>18.7</td>
<td>20.6</td>
<td>5.9</td>
<td>9.4</td>
<td>3.9</td>
<td>11.8</td>
<td>10.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>2.9</td>
<td>0.8</td>
<td>2.5</td>
<td>1.0</td>
<td>0.4</td>
<td>0.4</td>
<td>1.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Copepoda</td>
<td>1419.6</td>
<td>363.7</td>
<td>49.3</td>
<td>41.0</td>
<td>31.0</td>
<td>90.0</td>
<td>243.8</td>
<td>166.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>3.1</td>
<td>10.0</td>
<td>2.6</td>
<td>2.1</td>
<td>1.6</td>
<td>2.1</td>
<td>0.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17.2</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>22.7</td>
<td>4.2</td>
<td>1.1</td>
<td>0.4</td>
<td>0.4</td>
<td>2.3</td>
<td>3.6</td>
<td>10.2</td>
</tr>
<tr>
<td>Isopoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>0.2</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>29.8</td>
<td>3.8</td>
<td>6.7</td>
<td>6.7</td>
<td>2.8</td>
<td>4.1</td>
<td>2.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Shrimp</td>
<td>77.6</td>
<td>26.6</td>
<td>0.2</td>
<td>1.9</td>
<td>1.5</td>
<td>1.7</td>
<td>33.3</td>
<td>16.9</td>
</tr>
<tr>
<td>Crabs</td>
<td>40.9</td>
<td>13.7</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>6.2</td>
<td>23.8</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>4.0</td>
<td>21.3</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
<td>1.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>2.7</td>
<td>3.5</td>
<td>1.3</td>
<td>0.8</td>
<td>0.1</td>
<td>1.1</td>
<td>3.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>3.6</td>
<td>8.4</td>
<td>5.1</td>
<td>3.0</td>
<td>1.6</td>
<td>3.2</td>
<td>3.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Larvae</td>
<td>18.2</td>
<td>11.6</td>
<td>2.5</td>
<td>9.3</td>
<td>3.0</td>
<td>9.6</td>
<td>13.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>10.9</td>
<td>13.7</td>
<td>0.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
<td>28.2</td>
<td>158.5</td>
</tr>
<tr>
<td>Leptocardi J</td>
<td>0.22</td>
<td>-</td>
<td>0.11</td>
<td>0.01</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>7.8</td>
<td>1.0</td>
<td>1.3</td>
<td>2.2</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1713.4</td>
<td>564.1</td>
<td>153.6</td>
<td>127.4</td>
<td>67.3</td>
<td>151.1</td>
<td>437.0</td>
<td>404.7</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>47.14</td>
<td>14.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>3.27</td>
<td>6.56</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>6.54</td>
<td>7.29</td>
<td>0.61</td>
<td>0.52</td>
<td>0.14</td>
<td>0.33</td>
<td>6.03</td>
<td>0.60</td>
</tr>
<tr>
<td>Total</td>
<td>1767.1</td>
<td>585.4</td>
<td>154.3</td>
<td>128.0</td>
<td>67.5</td>
<td>151.4</td>
<td>446.3</td>
<td>411.9</td>
</tr>
<tr>
<td>Station Number</td>
<td>Reg. 33</td>
<td>Reg. 34</td>
<td>Reg. 35</td>
<td>Reg. 36</td>
<td>Reg. 37</td>
<td>Reg. 38</td>
<td>Reg. 39</td>
<td>Reg. 40</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Protozoa</td>
<td>59.2</td>
<td>241.5</td>
<td>122.2</td>
<td>5.2</td>
<td>0.2</td>
<td>5.0</td>
<td>16.1</td>
<td>26.0</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>6.8</td>
<td>0.5</td>
<td>6.0</td>
<td>2.0</td>
<td>9.8</td>
<td>8.0</td>
<td>11.7</td>
<td>7.9</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>39.9</td>
<td>34.8</td>
<td>25.0</td>
<td>9.6</td>
<td>13.7</td>
<td>7.7</td>
<td>19.4</td>
<td>11.0</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>0.5</td>
<td>4.1</td>
<td>2.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Copepoda</td>
<td>260.6</td>
<td>125.0</td>
<td>653.2</td>
<td>117.7</td>
<td>189.5</td>
<td>451.6</td>
<td>176.7</td>
<td>110.2</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>16.8</td>
<td>0.2</td>
<td>0.9</td>
<td>4.3</td>
<td>1.9</td>
<td>1.6</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>1.0</td>
<td>0.1</td>
<td>4.9</td>
<td>1.4</td>
<td>0.3</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>25.9</td>
<td>0.9</td>
<td>8.3</td>
<td>4.7</td>
<td>6.4</td>
<td>1.2</td>
<td>2.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Isopoda</td>
<td>1.2</td>
<td>0.1</td>
<td>3.2</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Shrimp</td>
<td>36.8</td>
<td>2.3</td>
<td>1.6</td>
<td>1.1</td>
<td>3.3</td>
<td>20.7</td>
<td>3.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Crabs</td>
<td>28.2</td>
<td>50.2</td>
<td>28.9</td>
<td>10.7</td>
<td>31.5</td>
<td>10.3</td>
<td>1.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>8.4</td>
<td>153.9</td>
<td>722.6</td>
<td>11.2</td>
<td>2.6</td>
<td>3.4</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>5.1</td>
<td>1.0</td>
<td>7.1</td>
<td>3.1</td>
<td>0.2</td>
<td>2.0</td>
<td>4.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Larvae</td>
<td>0.6</td>
<td>10.6</td>
<td>7.1</td>
<td>11.8</td>
<td>35.0</td>
<td>14.3</td>
<td>13.0</td>
<td>6.9</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>5.4</td>
<td>0.2</td>
<td>-</td>
<td>0.4</td>
<td>14.0</td>
<td>5.3</td>
<td>3.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Leptocarcina</td>
<td>0.12</td>
<td>1.67</td>
<td>0.02</td>
<td>0.60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>0.2</td>
<td>139.9</td>
<td>1.5</td>
<td>8.7</td>
<td>15.7</td>
<td>0.5</td>
<td>3.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Subtotal</td>
<td>496.8</td>
<td>777.2</td>
<td>1650.7</td>
<td>193.1</td>
<td>324.9</td>
<td>534.1</td>
<td>265.9</td>
<td>179.1</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>34.51</td>
<td>9.68</td>
<td>32.58</td>
<td>23.02</td>
<td>27.78</td>
<td>3.51</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>4.97</td>
<td>2.06</td>
<td>6.10</td>
<td>0.69</td>
<td>2.34</td>
<td>4.96</td>
<td>0.58</td>
<td>1.08</td>
</tr>
<tr>
<td>Total</td>
<td>536.3</td>
<td>788.9</td>
<td>1689.4</td>
<td>216.8</td>
<td>355.0</td>
<td>542.6</td>
<td>266.5</td>
<td>180.2</td>
</tr>
</tbody>
</table>
Table 9.—Numbers of plankton organisms per cubic meter of water (half-meter net), cont’d

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Reg. 41</th>
<th>Reg. 42</th>
<th>Reg. 43</th>
<th>Reg. 44</th>
<th>Reg. 45</th>
<th>Reg. 46</th>
<th>Reg. 47</th>
<th>Reg. 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>14.6</td>
<td>23.9</td>
<td>6.0</td>
<td>105.1</td>
<td>11.9</td>
<td>9.8</td>
<td>5.0</td>
<td>120.5</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>9.9</td>
<td>6.1</td>
<td>6.2</td>
<td>16.4</td>
<td>0.6</td>
<td>4.4</td>
<td>6.7</td>
<td>13.6</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>6.4</td>
<td>7.1</td>
<td>14.3</td>
<td>11.3</td>
<td>11.7</td>
<td>4.9</td>
<td>13.0</td>
<td>11.8</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>0.9</td>
<td>2.4</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
<td>2.1</td>
</tr>
<tr>
<td>Copepoda</td>
<td>82.0</td>
<td>289.4</td>
<td>294.4</td>
<td>167.7</td>
<td>81.6</td>
<td>186.7</td>
<td>212.0</td>
<td>335.2</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>4.3</td>
<td>7.6</td>
<td>44.9</td>
<td>7.8</td>
<td>8.5</td>
<td>0.9</td>
<td>-</td>
<td>11.4</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>0.1</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>2.2</td>
<td>5.6</td>
<td>6.0</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>3.6</td>
<td>6.1</td>
</tr>
<tr>
<td>Isopoda</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>6.5</td>
<td>1.9</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>Shrimp</td>
<td>1.6</td>
<td>19.2</td>
<td>11.1</td>
<td>1.5</td>
<td>0.3</td>
<td>0.3</td>
<td>2.3</td>
<td>17.9</td>
</tr>
<tr>
<td>Crabs</td>
<td>0.2</td>
<td>6.3</td>
<td>28.4</td>
<td>72.0</td>
<td>43.6</td>
<td>17.1</td>
<td>4.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>1.0</td>
<td>10.8</td>
<td>1.1</td>
<td>106.6</td>
<td>20.7</td>
<td>20.7</td>
<td>0.9</td>
<td>9.4</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>3.5</td>
<td>1.6</td>
<td>1.7</td>
<td>0.3</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
<td>2.2</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>4.2</td>
<td>6.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
<td>-</td>
<td>1.1</td>
<td>6.0</td>
</tr>
<tr>
<td>Larvaea</td>
<td>9.7</td>
<td>13.9</td>
<td>7.5</td>
<td>2.0</td>
<td>33.1</td>
<td>18.0</td>
<td>4.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>2.5</td>
<td>9.2</td>
<td>20.3</td>
<td>0.7</td>
<td>18.9</td>
<td>-</td>
<td>14.6</td>
<td>23.3</td>
</tr>
<tr>
<td>Leptocardia</td>
<td><0.01</td>
<td><0.01</td>
<td>-</td>
<td>0.08</td>
<td>0.10</td>
<td>0.33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>1.5</td>
<td>2.9</td>
<td>66.0</td>
<td>1.6</td>
<td>12.7</td>
<td>53.5</td>
<td>17.6</td>
<td>31.8</td>
</tr>
</tbody>
</table>

Subtotal | 151.1 | 413.9 | 512.6 | 494.6 | 244.6 | 317.9 | 205.8 | 604.8 |

Fish Eggs | 0.01 | 2.91 | 16.46 | 19.80 | 9.36 | 23.34 | 16.02 | 0.53 |

Fish Larvae | 0.68 | 1.83 | 8.24 | 0.31 | 0.52 | 1.19 | 2.66 | 1.04 |

Total | 151.8 | 418.6 | 537.3 | 514.7 | 254.5 | 342.5 | 304.5 | 606.4 |
<table>
<thead>
<tr>
<th>Station Number</th>
<th>Reg. 49</th>
<th>Reg. 53</th>
<th>Reg. 54</th>
<th>Reg. 55</th>
<th>Reg. 56</th>
<th>Reg. 57</th>
<th>Reg. 58</th>
<th>Reg. 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>7.9</td>
<td>83.2</td>
<td>2.9</td>
<td>20.6</td>
<td>7.9</td>
<td>77.5</td>
<td>10.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>9.5</td>
<td>7.0</td>
<td>33.0</td>
<td>11.7</td>
<td>3.2</td>
<td>1.1</td>
<td>1.5</td>
<td>22.8</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>6.9</td>
<td>17.8</td>
<td>27.0</td>
<td>20.9</td>
<td>13.2</td>
<td>11.0</td>
<td>9.3</td>
<td>66.0</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>0.7</td>
<td>1.4</td>
<td>0.3</td>
<td>0.8</td>
<td>1.3</td>
<td>0.4</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Copepoda</td>
<td>306.9</td>
<td>139.7</td>
<td>826.2</td>
<td>467.3</td>
<td>633.4</td>
<td>358.8</td>
<td>37.3</td>
<td>952.3</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>6.5</td>
<td>2.7</td>
<td>0.8</td>
<td>32.6</td>
<td>1.7</td>
<td>2.3</td>
<td>0.1</td>
<td>272.8</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>1.5</td>
<td>13.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>3.3</td>
<td>1.9</td>
<td>6.2</td>
<td>2.2</td>
<td>2.8</td>
<td>1.8</td>
<td>2.7</td>
<td>50.4</td>
</tr>
<tr>
<td>Isopoda</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>0.2</td>
<td>0.4</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>3.0</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>24.3</td>
<td>2.9</td>
<td>4.9</td>
<td>6.9</td>
<td>7.0</td>
<td>9.9</td>
<td>1.9</td>
<td>5.7</td>
</tr>
<tr>
<td>Crabs</td>
<td>3.4</td>
<td>0.2</td>
<td>26.7</td>
<td>32.1</td>
<td>47.3</td>
<td>20.3</td>
<td>5.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>3.3</td>
<td>0.5</td>
<td>2.8</td>
<td>17.8</td>
<td>505.5</td>
<td>155.0</td>
<td>118.6</td>
<td>3.9</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>3.6</td>
<td>1.9</td>
<td>0.5</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>4.9</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>6.6</td>
<td>2.5</td>
<td>0.6</td>
<td>2.4</td>
<td>1.1</td>
<td>0.8</td>
<td>3.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Larvae</td>
<td>0.9</td>
<td>10.9</td>
<td>4.2</td>
<td>12.7</td>
<td>8.5</td>
<td>3.5</td>
<td>3.2</td>
<td>5.7</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>22.7</td>
<td>5.3</td>
<td>0.5</td>
<td>7.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>Leptocardia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.23</td>
<td>0.04</td>
<td>0.58</td>
<td><0.01</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>16.2</td>
<td>2.7</td>
<td>0.8</td>
<td>1.4</td>
<td>46.7</td>
<td>0.7</td>
<td>73.8</td>
<td>118.2</td>
</tr>
</tbody>
</table>

Subtotal | **426.4** | **286.4** | **937.7** | **639.2** | **1282.1** | **656.8** | **277.3** | **2574.2** |

Fish Eggs | 0.04 | 0.23 | 32.37 | 29.53 | 18.38 | 13.67 | 2.43 | 17.50 |
Fish Larvae | 1.42 | 0.48 | 2.99 | 1.28 | 2.09 | 0.85 | 0.16 | 2.40 |

Total | **427.9** | **287.1** | **973.1** | **670.0** | **1302.6** | **671.3** | **279.9** | **2594.1** |
Table 9.--Numbers of plankton organisms per cubic meter of water (half-meter net), cont'd

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Reg. 60</th>
<th>Reg. 61</th>
<th>Reg. 62</th>
<th>Reg. 63</th>
<th>Reg. 64</th>
<th>Reg. 65</th>
<th>Reg. 66</th>
<th>Reg. 67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>25.5</td>
<td>100.7</td>
<td>33.4</td>
<td>81.8</td>
<td>95.2</td>
<td>7.2</td>
<td>1.3</td>
<td>143.8</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>5.6</td>
<td>8.8</td>
<td>9.1</td>
<td>9.4</td>
<td>10.9</td>
<td>10.3</td>
<td>18.1</td>
<td>16.7</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>6.6</td>
<td>11.2</td>
<td>19.6</td>
<td>15.1</td>
<td>13.7</td>
<td>19.2</td>
<td>19.2</td>
<td>23.2</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>0.4</td>
<td>1.7</td>
<td>1.8</td>
<td>4.6</td>
<td>1.7</td>
<td>0.3</td>
<td>0.4</td>
<td>5.0</td>
</tr>
<tr>
<td>Copepoda</td>
<td>124.5</td>
<td>244.8</td>
<td>121.8</td>
<td>195.1</td>
<td>257.9</td>
<td>613.4</td>
<td>468.6</td>
<td>83.6</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>4.3</td>
<td>3.9</td>
<td>3.8</td>
<td>4.8</td>
<td>15.5</td>
<td>5.6</td>
<td>0.3</td>
<td>7.1</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>13.6</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>2.2</td>
<td>3.7</td>
<td>2.2</td>
<td>3.6</td>
<td>4.9</td>
<td>5.9</td>
<td>2.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Isopoda</td>
<td>-</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>4.0</td>
<td>1.1</td>
<td>5.0</td>
<td>4.4</td>
<td>5.6</td>
<td>3.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>1.2</td>
<td>13.2</td>
<td>1.3</td>
<td>1.5</td>
<td>33.8</td>
<td>7.5</td>
<td>4.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Crabs</td>
<td>0.6</td>
<td>2.2</td>
<td>-</td>
<td>0.7</td>
<td>2.0</td>
<td>3.5</td>
<td>3.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>2.7</td>
<td>2.0</td>
<td>0.2</td>
<td>0.7</td>
<td>2.1</td>
<td>3.7</td>
<td>10.4</td>
<td>25.4</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>1.2</td>
<td>3.4</td>
<td>1.5</td>
<td>3.8</td>
<td>1.6</td>
<td>3.7</td>
<td>2.8</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>1.4</td>
<td>3.9</td>
<td>4.0</td>
<td>8.4</td>
<td>1.6</td>
<td>2.3</td>
<td>0.4</td>
<td>41.8</td>
</tr>
<tr>
<td>Larvacea</td>
<td>4.7</td>
<td>6.1</td>
<td>5.3</td>
<td>14.1</td>
<td>5.1</td>
<td>13.3</td>
<td>1.1</td>
<td>47.8</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>4.9</td>
<td>11.2</td>
<td>3.9</td>
<td>8.6</td>
<td>25.8</td>
<td>3.5</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Leptocardia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.63</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>2.9</td>
<td>2.0</td>
<td>4.7</td>
<td>3.4</td>
<td>1.3</td>
<td>39.0</td>
<td>0.1</td>
<td>433.0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>192.7</td>
<td>420.1</td>
<td>217.9</td>
<td>360.1</td>
<td>480.1</td>
<td>756.2</td>
<td>536.2</td>
<td>936.8</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>25.94</td>
<td>0.13</td>
<td>0.01</td>
<td>0.04</td>
<td>2.18</td>
<td>7.88</td>
<td>9.27</td>
<td>0.53</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>0.30</td>
<td>1.47</td>
<td>0.56</td>
<td>0.80</td>
<td>1.72</td>
<td>1.11</td>
<td>3.06</td>
<td>0.75</td>
</tr>
<tr>
<td>Total</td>
<td>218.9</td>
<td>421.7</td>
<td>218.5</td>
<td>361.0</td>
<td>484.0</td>
<td>765.2</td>
<td>548.5</td>
<td>938.1</td>
</tr>
<tr>
<td>Station Number</td>
<td>Reg. 68</td>
<td>Reg. 69</td>
<td>Reg. 70</td>
<td>Reg. 71</td>
<td>Reg. 72</td>
<td>Reg. 73</td>
<td>Reg. 74</td>
<td>Reg. 75</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Protozoa</td>
<td>34.9</td>
<td>134.9</td>
<td>20.0</td>
<td>32.9</td>
<td>25.1</td>
<td>20.0</td>
<td>6.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>12.1</td>
<td>0.5</td>
<td>5.3</td>
<td>13.8</td>
<td>9.2</td>
<td>12.5</td>
<td>7.6</td>
<td>6.3</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>0.8</td>
<td>8.8</td>
<td>8.2</td>
<td>15.7</td>
<td>15.1</td>
<td>19.6</td>
<td>9.1</td>
<td>7.4</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>0.7</td>
<td>-</td>
<td>0.3</td>
<td>1.8</td>
<td>1.8</td>
<td>0.9</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Copepoda</td>
<td>127.0</td>
<td>1.2</td>
<td>74.2</td>
<td>111.1</td>
<td>140.6</td>
<td>94.6</td>
<td>63.4</td>
<td>375.0</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>1.4</td>
<td>-</td>
<td>0.8</td>
<td>13.5</td>
<td>8.4</td>
<td>3.1</td>
<td>3.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>0.9</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>2.1</td>
<td>-</td>
<td>0.7</td>
<td>2.2</td>
<td>3.3</td>
<td>0.7</td>
<td>1.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Isopoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
<td>7.8</td>
<td>4.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Shrimp</td>
<td>0.2</td>
<td>3.4</td>
<td>2.4</td>
<td>1.2</td>
<td>1.5</td>
<td>2.2</td>
<td>1.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Crabs</td>
<td>1.4</td>
<td>0.8</td>
<td>2.9</td>
<td>0.9</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>54.8</td>
<td>7.8</td>
<td>177.4</td>
<td>1.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.5</td>
<td>86.8</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>3.4</td>
<td>0.8</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>2.0</td>
<td>46.5</td>
<td>2.0</td>
<td>6.4</td>
<td>5.0</td>
<td>2.1</td>
<td>2.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Larvae</td>
<td>10.2</td>
<td>2.3</td>
<td>39.4</td>
<td>6.4</td>
<td>10.6</td>
<td>8.5</td>
<td>1.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>9.9</td>
<td>9.2</td>
<td>1.6</td>
<td>4.7</td>
<td>88.8</td>
</tr>
<tr>
<td>Leptocardia</td>
<td>0.04</td>
<td>0.04</td>
<td>0.90</td>
<td>0.01</td>
<td>-</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>1.6</td>
<td>62.4</td>
<td>166.6</td>
<td>18.6</td>
<td>13.4</td>
<td>11.1</td>
<td>6.0</td>
<td>91.2</td>
</tr>
<tr>
<td>Subtotal</td>
<td>249.3</td>
<td>268.6</td>
<td>501.4</td>
<td>244.0</td>
<td>255.2</td>
<td>183.1</td>
<td>116.9</td>
<td>678.0</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>6.60</td>
<td>0.44</td>
<td>5.60</td>
<td>3.61</td>
<td>0.01</td>
<td>0.12</td>
<td>0.08</td>
<td>15.09</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>0.18</td>
<td>0.14</td>
<td>0.06</td>
<td>0.61</td>
<td>0.59</td>
<td>0.65</td>
<td>0.19</td>
<td>1.32</td>
</tr>
<tr>
<td>Total</td>
<td>256.1</td>
<td>269.2</td>
<td>507.1</td>
<td>248.2</td>
<td>255.8</td>
<td>183.9</td>
<td>117.2</td>
<td>694.4</td>
</tr>
<tr>
<td>Station Number</td>
<td>Reg. 75</td>
<td>Reg. 77</td>
<td>Reg. 78</td>
<td>Reg. 80</td>
<td>Spc. 1</td>
<td>Spc. 2</td>
<td>Spc. 3</td>
<td>Spc. 4</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Protozoa</td>
<td>113.0</td>
<td>98.0</td>
<td>191.5</td>
<td>25.1</td>
<td>69.3</td>
<td>6.4</td>
<td>17.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>0.9</td>
<td>5.4</td>
<td>5.5</td>
<td>8.0</td>
<td>15.4</td>
<td>5.8</td>
<td>4.5</td>
<td>9.9</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>5.2</td>
<td>10.6</td>
<td>3.7</td>
<td>17.3</td>
<td>14.8</td>
<td>5.2</td>
<td>12.9</td>
<td>18.0</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>2.0</td>
<td>1.0</td>
<td>3.7</td>
<td>1.0</td>
<td>1.8</td>
<td>0.8</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Copepoda</td>
<td>21.5</td>
<td>133.1</td>
<td>101.8</td>
<td>66.8</td>
<td>134.6</td>
<td>29.0</td>
<td>61.8</td>
<td>102.9</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>16.0</td>
<td>1.1</td>
<td>6.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>9.2</td>
<td>13.9</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>0.9</td>
<td>0.5</td>
<td>0.2</td>
<td>1.2</td>
<td>1.3</td>
<td>0.7</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Isopoda</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>4.8</td>
<td>6.0</td>
<td>2.4</td>
<td>5.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Shrimp</td>
<td>5.5</td>
<td>4.5</td>
<td>2.1</td>
<td>1.6</td>
<td>1.7</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Crabs</td>
<td>7.5</td>
<td>3.8</td>
<td>1.0</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>22.4</td>
<td>81.3</td>
<td>67.3</td>
<td>1.1</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>4.7</td>
<td>0.1</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>0.3</td>
<td>4.5</td>
<td>5.7</td>
<td>2.5</td>
<td>1.8</td>
<td>1.2</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Larvacea</td>
<td>250.9</td>
<td>92.4</td>
<td>127.6</td>
<td>5.3</td>
<td>4.8</td>
<td>1.2</td>
<td>9.4</td>
<td>13.6</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>0.2</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Leptocarida</td>
<td>1.25</td>
<td>-</td>
<td>0.11</td>
<td>0.07</td>
<td>0.02</td>
<td>-</td>
<td>0.07</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>289.1</td>
<td>101.6</td>
<td>472.6</td>
<td>9.9</td>
<td>4.7</td>
<td>17.7</td>
<td>15.9</td>
<td>7.7</td>
</tr>
<tr>
<td>Subtotal</td>
<td>730.6</td>
<td>550.8</td>
<td>984.0</td>
<td>150.0</td>
<td>277.8</td>
<td>72.9</td>
<td>141.0</td>
<td>170.0</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>9.54</td>
<td>10.98</td>
<td>2.54</td>
<td>0.15</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
<td>0.61</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>0.30</td>
<td>0.15</td>
<td>0.14</td>
<td>0.50</td>
<td>1.95</td>
<td>0.48</td>
<td>1.58</td>
<td>1.16</td>
</tr>
<tr>
<td>Total</td>
<td>740.4</td>
<td>561.9</td>
<td>986.7</td>
<td>150.6</td>
<td>279.8</td>
<td>73.4</td>
<td>142.6</td>
<td>171.8</td>
</tr>
</tbody>
</table>
Table 9.—Numbers of plankton organisms per cubic meter of water (half-meter net), cont'd

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Spc. 5</th>
<th>Spc. 6</th>
<th>Spc. 7</th>
<th>Spc. 8</th>
<th>Spc. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoa</td>
<td>31.1</td>
<td>6.1</td>
<td>16.0</td>
<td>4.2</td>
<td>11.0</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>7.8</td>
<td>4.2</td>
<td>2.1</td>
<td>2.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>8.2</td>
<td>5.6</td>
<td>2.1</td>
<td>0.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>1.4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Copepoda</td>
<td>68.5</td>
<td>21.8</td>
<td>10.4</td>
<td>18.7</td>
<td>49.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>10.0</td>
<td>1.5</td>
<td>0.8</td>
<td>2.4</td>
<td>3.7</td>
</tr>
<tr>
<td>Mysidacea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>0.4</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>Isopoda</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stomatopoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Euphausiacea</td>
<td>10.0</td>
<td>-</td>
<td>0.5</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Shrimp</td>
<td>0.6</td>
<td>2.1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>0.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>0.2</td>
<td>0.1</td>
<td>0.8</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Pteropoda</td>
<td>0.7</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Misc. Mollusca</td>
<td>1.7</td>
<td>0.7</td>
<td>0.2</td>
<td>1.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Larvaea</td>
<td>6.8</td>
<td>6.3</td>
<td>0.7</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Misc. Tunicata</td>
<td>1.8</td>
<td>0.8</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Leptocardia</td>
<td>0.12</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>2.9</td>
<td>50.1</td>
<td>1.0</td>
<td>1.2</td>
<td>14.7</td>
</tr>
</tbody>
</table>

Subtotal | 152.2 | 100.8 | 35.9 | 36.5 | 98.8 |

Fish Eggs | 0.01 | 0.04 | 0.01 | <0.01 | 0.16 |
Fish Larvae | 0.38 | 0.45 | 0.22 | 0.31 | 0.88 |

Total | 152.6 | 101.3 | 36.1 | 36.8 | 99.8 |
Table 10.—Numbers of plankton organisms per cubic meter of water (continuous plankton sampler)

<table>
<thead>
<tr>
<th>Run No. 1 Date April 18, 1953</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0755</td>
<td>0851</td>
<td>0947</td>
<td>1043</td>
<td>1139</td>
<td>1235</td>
<td>1331</td>
<td>1427</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>28°54'</td>
<td>28°48'</td>
<td>28°39'</td>
<td>28°32'</td>
<td>28°23'</td>
<td>28°13'</td>
<td>28°03'</td>
<td>28°00'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>77°00'</td>
<td>77°00'</td>
<td>77°01'</td>
<td>77°00'</td>
<td>77°00'</td>
<td>77°00'</td>
<td>77°00'</td>
<td>77°00'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>28.6</td>
<td>10.7</td>
<td>14.3</td>
<td>10.7</td>
<td>7.2</td>
<td>-</td>
<td>3.6</td>
<td>7.2</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>3.6</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>7.2</td>
<td>3.6</td>
<td>14.3</td>
<td>10.7</td>
<td>3.6</td>
<td>-</td>
<td>3.6</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.6</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>28.6</td>
<td>21.5</td>
<td>21.5</td>
<td>32.2</td>
<td>21.5</td>
<td>3.6</td>
<td>3.6</td>
<td>10.8</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.6</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.7</td>
</tr>
<tr>
<td>Total</td>
<td>28.6</td>
<td>21.5</td>
<td>21.5</td>
<td>32.2</td>
<td>32.2</td>
<td>3.6</td>
<td>3.6</td>
<td>14.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No. 2 Date April 18, 1953</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1533</td>
<td>1629</td>
<td>1725</td>
<td>1821</td>
<td>1917</td>
<td>2013</td>
<td>2109</td>
<td>2205</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>28°00'</td>
<td>28°02'</td>
<td>28°03'</td>
<td>28°03'</td>
<td>28°01'</td>
<td>28°01'</td>
<td>28°00'</td>
<td>27°58'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>77°01'</td>
<td>77°09'</td>
<td>77°16'</td>
<td>77°24'</td>
<td>77°34'</td>
<td>77°44'</td>
<td>77°56'</td>
<td>78°00'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>6.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>13.8</td>
<td>3.4</td>
<td>6.9</td>
<td>-</td>
<td>10.3</td>
<td>24.1</td>
<td>13.8</td>
<td>6.9</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>3.4</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>10.3</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
<td>10.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Subtotal</td>
<td>37.8</td>
<td>3.4</td>
<td>13.7</td>
<td>-</td>
<td>10.3</td>
<td>37.8</td>
<td>20.6</td>
<td>10.3</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>41.2</td>
<td>3.4</td>
<td>13.7</td>
<td>-</td>
<td>10.3</td>
<td>37.8</td>
<td>20.6</td>
<td>10.3</td>
</tr>
</tbody>
</table>
Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont’d

<table>
<thead>
<tr>
<th>Run No. 3</th>
<th>Date</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td></td>
<td>0053</td>
<td>0149</td>
<td>0245</td>
<td>0341</td>
<td>0437</td>
<td>0535</td>
<td>0631</td>
<td>0727</td>
</tr>
<tr>
<td>Time (EST)</td>
<td></td>
<td>27°53'</td>
<td>27°46'</td>
<td>27°40'</td>
<td>27°35'</td>
<td>27°29'</td>
<td>27°23'</td>
<td>27°17'</td>
<td>27°11'</td>
</tr>
<tr>
<td>Ship: (W. Long.</td>
<td></td>
<td>77°56'</td>
<td>77°51'</td>
<td>77°47'</td>
<td>77°43'</td>
<td>77°40'</td>
<td>77°34'</td>
<td>77°26'</td>
<td>77°19'</td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
<td>3.2</td>
<td>-</td>
<td>9.5</td>
<td>9.5</td>
<td>19.0</td>
<td>15.8</td>
<td>12.6</td>
<td>22.1</td>
</tr>
<tr>
<td>Coelenterata</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ostracoda</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>6.4</td>
<td>16.0</td>
<td>28.6</td>
<td>15.8</td>
<td>25.4</td>
<td>19.0</td>
<td>25.3</td>
<td>56.9</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6.4</td>
<td>16.0</td>
<td>28.6</td>
<td>15.8</td>
<td>25.4</td>
<td>19.0</td>
<td>25.3</td>
<td>56.9</td>
</tr>
</tbody>
</table>

Run No. 4 | Date April 22-23, 1953

<table>
<thead>
<tr>
<th>Run No. 4</th>
<th>Date April 22-23, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td></td>
</tr>
<tr>
<td>Time (EST)</td>
<td></td>
</tr>
<tr>
<td>Position of (N. Lat.</td>
<td></td>
</tr>
<tr>
<td>Ship: (W. Long.</td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
</tr>
<tr>
<td>Coelenterata</td>
<td></td>
</tr>
<tr>
<td>Chaetognatha</td>
<td></td>
</tr>
<tr>
<td>Misc. Worms</td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
</tr>
<tr>
<td>Shrimp</td>
<td></td>
</tr>
<tr>
<td>Crabs</td>
<td></td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td></td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
<tr>
<td>Fish Eggs</td>
<td></td>
</tr>
<tr>
<td>Fish Larvae</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Table 10.—Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 5</td>
<td>April 23, 1953</td>
<td>1 2 3 4 5 6 7 8</td>
<td>0621 0728 0835 0942 1049 1156 1303 1410</td>
<td>27°10' 27°20' 27°22' 27°33' 27°40' 27°42' 27°43' 27°41'</td>
<td>80°03' 80°04' 80°05' 80°04' 80°04' 79°58' 79°47' 79°42'</td>
<td>16.2 - - - 6.5 32.3 6.5 -</td>
<td>- - - - - -</td>
<td>3.2 16.2 6.5 9.7 3.2 - -</td>
<td>- - - - - -</td>
<td>42.0 45.2 71.1 87.2 19.4 19.4 22.6 3.2</td>
<td>- - - - - -</td>
<td>19.4 12.9 6.5 6.5 3.2 3.2 3.2 6.5</td>
<td>- - - - - -</td>
<td>100.2 116.3 148.7 145.4 61.3 77.5 58.2 35.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 6</td>
<td>April 23-24, 1953</td>
<td>1 2 3 4 5 6 7 8</td>
<td>1558 1705 1813 1920 2028 2135 2243 2350</td>
<td>27°41' 27°44' 27°41' 27°40' 27°37' 27°33' 28°00' 28°00'</td>
<td>79°41' 79°34' 79°23' 79°18' 79°16' 79°09' 79°01' 79°01'</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td>5.7 - - - 2.8 2.8 2.8 -</td>
<td>- - - - - -</td>
<td>36.8 28.3 17.0 45.3 8.5 14.2 11.3 2.8</td>
<td>- - - - - -</td>
<td>2.8 - - - - - -</td>
<td>- - - - - -</td>
<td>51.0 36.8 17.0 70.8 28.3 45.4 31.1 28.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | | 56.7 39.6 17.0 70.8 39.6 45.4 31.1 28.2 | 6.5 3.2 3.2 6.5 6.5 19.4 - | - - - - - | 5.7 2.8 - 11.3 - | - - - - - | 42.0 45.2 71.1 87.2 19.4 19.4 22.6 3.2 | - - - - - | 19.4 12.9 6.5 6.5 3.2 3.2 3.2 6.5 | - - - - - | 100.2 116.3 148.7 145.4 61.3 77.5 58.2 35.5 |
Table 10.-Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>April 24, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0206</td>
<td>0310</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>28°07'</td>
<td>28°13'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>79°07'</td>
<td>79°12'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>13.5</td>
<td>27.0</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>Mollusca</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>Subtotal</td>
<td>18.9</td>
<td>37.8</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>18.9</td>
<td>37.8</td>
</tr>
</tbody>
</table>

Run No. 8 Date April 24, 1953

Compartment No.	1	2	3	4	5	6	7	8
Time (EST)	1132	1237	1341	1446	1550	1655	1759	1904
Position of (N. Lat.)	28°20'	28°18'	28°20'	28°20'	28°24'	28°31'	28°37'	28°41'
Ship: (W. Long.)	80°04'	80°10'	80°20'	80°32'	80°30'	80°26'	80°22'	80°26'
Protozoa	3.2	3.2	-	-	6.4	6.4	16.0	9.6
Coelenterata	-	-	-	-	-	-	-	-
Chaetognatha	-	-	9.6	9.6	25.7	3.2	-	-
Misc. Worms	-	-	-	-	-	-	-	-
Copepoda	22.5	83.5	44.9	12.8	54.6	96.3	77.0	77.0
Ostracoda	-	-	-	-	-	3.2	-	-
Amphipoda	-	-	-	3.2	22.5	22.5	19.3	-
Shrimp	-	-	3.2	3.2	15.1	51.4	32.1	3.2
Crabs	-	-	-	-	51.4	32.1	22.5	-
Misc. Crustaceans	-	3.2	6.4	3.2	3.2	25.7	28.9	-
Mollusca	-	-	-	-	-	-	22.5	-
Invertebrate Eggs	6.4	22.5	-	-	-	-	9.6	-
Misc. Organisms	9.6	-	3.2	3.2	41.7	35.3	25.7	-
Subtotal	41.7	109.2	48.1	35.2	150.9	250.4	221.4	166.9
Fish Eggs	3.2	32.1	-	-	-	9.6	22.5	12.8
Fish Larvae	-	-	-	-	-	-	-	-
Total	44.9	141.3	48.1	35.2	150.9	260.0	243.9	179.7
Table 10. --Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Compartiment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run No. 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (EST)</td>
<td>2037</td>
<td>2141</td>
<td>2246</td>
<td>2350</td>
<td>0055</td>
<td>0159</td>
<td>0304</td>
<td>0408</td>
</tr>
<tr>
<td>Position of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N. Lat.)</td>
<td>28°55'</td>
<td>29°00'</td>
<td>29°00'</td>
<td>29°00'</td>
<td>29°00'</td>
<td>29°00'</td>
<td>29°03'</td>
<td>29°02'</td>
</tr>
<tr>
<td>(W. Long.)</td>
<td>80°31'</td>
<td>80°33'</td>
<td>80°25'</td>
<td>80°17'</td>
<td>80°08'</td>
<td>80°04'</td>
<td>79°57'</td>
<td>79°51'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>10.4</td>
<td>17.3</td>
<td>10.4</td>
<td>3.5</td>
<td></td>
<td>3.5</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>-</td>
<td>6.9</td>
<td>10.4</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>512.1</td>
<td>193.8</td>
<td>328.7</td>
<td>166.1</td>
<td>27.7</td>
<td>83.0</td>
<td>13.8</td>
<td>20.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>6.9</td>
<td>17.3</td>
<td>13.8</td>
<td>3.5</td>
<td>13.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>3.5</td>
<td>3.5</td>
<td>10.4</td>
<td>10.4</td>
<td>13.8</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>13.8</td>
<td>27.7</td>
<td>13.8</td>
<td>6.9</td>
<td>3.5</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>90.0</td>
<td>72.7</td>
<td>51.9</td>
<td>17.3</td>
<td>-</td>
<td>10.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>515.5</td>
<td>986.1</td>
<td>176.5</td>
<td>10.4</td>
<td>10.4</td>
<td>6.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>17.3</td>
<td>6.9</td>
<td>17.3</td>
<td>-</td>
<td>6.9</td>
<td>3.5</td>
<td>3.5</td>
<td>6.9</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>6.9</td>
<td>-</td>
<td>10.4</td>
<td>13.8</td>
<td>13.8</td>
<td>27.7</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>31.1</td>
<td>31.1</td>
<td>24.2</td>
<td>-</td>
<td>17.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1207.5</td>
<td>1342.6</td>
<td>664.4</td>
<td>242.2</td>
<td>103.8</td>
<td>169.7</td>
<td>24.3</td>
<td>38.2</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>17.3</td>
<td>34.6</td>
<td>24.2</td>
<td>13.8</td>
<td>6.9</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>1224.8</td>
<td>1377.2</td>
<td>688.6</td>
<td>256.0</td>
<td>110.7</td>
<td>176.7</td>
<td>24.3</td>
<td>38.2</td>
</tr>
</tbody>
</table>

Run No. 10 Date April 25, 1953

<table>
<thead>
<tr>
<th>Compartiment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run No. 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0632</td>
<td>0735</td>
<td>0838</td>
<td>0941</td>
<td>1044</td>
<td>1147</td>
<td>1250</td>
<td>1354</td>
</tr>
<tr>
<td>Position of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N. Lat.)</td>
<td>29°01'</td>
<td>29°04'</td>
<td>29°01'</td>
<td>29°00'</td>
<td>29°00'</td>
<td>29°02'</td>
<td>29°10'</td>
<td>29°21'</td>
</tr>
<tr>
<td>(W. Long.)</td>
<td>79°47'</td>
<td>79°43'</td>
<td>79°36'</td>
<td>79°27'</td>
<td>79°26'</td>
<td>79°26'</td>
<td>79°28'</td>
<td>79°31'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>6.1</td>
<td>6.1</td>
<td>-</td>
<td>3.0</td>
<td>12.2</td>
<td>21.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
<td>6.1</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>48.8</td>
<td>18.3</td>
<td>48.8</td>
<td>30.5</td>
<td>9.2</td>
<td>12.2</td>
<td>12.2</td>
<td>15.2</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>9.2</td>
<td>6.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>39.6</td>
<td>27.4</td>
<td>24.4</td>
<td>3.0</td>
<td>-</td>
<td>6.1</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>6.1</td>
<td>3.0</td>
<td>6.1</td>
<td>-</td>
<td>-</td>
<td>9.2</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>3.0</td>
<td>12.2</td>
<td>3.0</td>
<td>12.2</td>
<td>3.0</td>
<td>9.2</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>106.6</td>
<td>64.0</td>
<td>100.6</td>
<td>48.7</td>
<td>21.3</td>
<td>45.7</td>
<td>36.6</td>
<td>30.4</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>106.6</td>
<td>64.0</td>
<td>100.6</td>
<td>48.7</td>
<td>21.3</td>
<td>45.7</td>
<td>36.6</td>
<td>30.4</td>
</tr>
</tbody>
</table>
Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No. 11 Date April 25, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
</tr>
<tr>
<td>Time (EST)</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
</tr>
<tr>
<td>Protozoa</td>
</tr>
<tr>
<td>Coelenterata</td>
</tr>
<tr>
<td>Chaetognatha</td>
</tr>
<tr>
<td>Misc. Worms</td>
</tr>
<tr>
<td>Copepoda</td>
</tr>
<tr>
<td>Ostracoda</td>
</tr>
<tr>
<td>Amphipoda</td>
</tr>
<tr>
<td>Shrimp</td>
</tr>
<tr>
<td>Crabs</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
</tr>
<tr>
<td>Mollusca</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
</tr>
<tr>
<td>Misc. Organisms</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Fish Eggs</td>
</tr>
<tr>
<td>Fish Larvae</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No. 12 Date April 26, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
</tr>
<tr>
<td>Time (EST)</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
</tr>
<tr>
<td>Protozoa</td>
</tr>
<tr>
<td>Coelenterata</td>
</tr>
<tr>
<td>Chaetognatha</td>
</tr>
<tr>
<td>Misc. Worms</td>
</tr>
<tr>
<td>Copepoda</td>
</tr>
<tr>
<td>Ostracoda</td>
</tr>
<tr>
<td>Amphipoda</td>
</tr>
<tr>
<td>Shrimp</td>
</tr>
<tr>
<td>Crabs</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
</tr>
<tr>
<td>Mollusca</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
</tr>
<tr>
<td>Misc. Organisms</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>Fish Eggs</td>
</tr>
<tr>
<td>Fish Larvae</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0912</td>
<td>1015</td>
<td>1119</td>
<td>1222</td>
<td>1325</td>
<td>1428</td>
<td>1531</td>
<td>1635</td>
<td></td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>29°40'</td>
<td>29°42'</td>
<td>29°49'</td>
<td>30°00'</td>
<td>30°06'</td>
<td>30°16'</td>
<td>30°20'</td>
<td>30°20'</td>
<td></td>
</tr>
<tr>
<td>(W. Long.)</td>
<td>01°02'</td>
<td>01°08'</td>
<td>01°13'</td>
<td>01°15'</td>
<td>01°19'</td>
<td>01°18'</td>
<td>01°11'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td>48.7</td>
<td>62.0</td>
<td>17.7</td>
<td>17.7</td>
<td>-</td>
<td>17.7</td>
<td>13.3</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>4.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>8.9</td>
<td>-</td>
<td>-</td>
<td>8.9</td>
<td>13.3</td>
<td>8.9</td>
<td>13.3</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td>177.2</td>
<td>93.0</td>
<td>93.0</td>
<td>101.9</td>
<td>128.5</td>
<td>75.3</td>
<td>17.7</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td>8.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.4</td>
<td>4.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>8.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Crabs</td>
<td>17.7</td>
<td>4.4</td>
<td>26.6</td>
<td>17.7</td>
<td>84.2</td>
<td>48.7</td>
<td>17.7</td>
<td>62.0</td>
<td></td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>22.2</td>
<td>8.9</td>
<td>22.2</td>
<td>13.3</td>
<td>4.4</td>
<td>53.2</td>
<td>57.6</td>
<td>141.8</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>-</td>
<td>4.4</td>
<td>-</td>
<td>4.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>13.3</td>
<td>-</td>
<td>35.4</td>
<td>26.6</td>
<td>4.4</td>
<td>4.4</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>283.6</td>
<td>194.9</td>
<td>163.9</td>
<td>194.9</td>
<td>261.4</td>
<td>212.6</td>
<td>128.4</td>
<td>257.0</td>
<td></td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>8.9</td>
<td>4.4</td>
<td>-</td>
<td>13.3</td>
<td>13.3</td>
<td>-</td>
<td>31.0</td>
<td>22.2</td>
<td></td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>292.5</td>
<td>199.3</td>
<td>163.9</td>
<td>208.2</td>
<td>274.7</td>
<td>212.6</td>
<td>159.4</td>
<td>279.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1817</td>
<td>1921</td>
<td>2023</td>
<td>2127</td>
<td>2230</td>
<td>2334</td>
<td>0037</td>
<td>0141</td>
<td></td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>30°21'</td>
<td>30°21'</td>
<td>30°21'</td>
<td>30°20'</td>
<td>30°19'</td>
<td>30°21'</td>
<td>30°22'</td>
<td>30°22'</td>
<td></td>
</tr>
<tr>
<td>(W. Long.)</td>
<td>01°01'</td>
<td>01°05'</td>
<td>01°09'</td>
<td>01°35'</td>
<td>01°23'</td>
<td>01°12'</td>
<td>01°11'</td>
<td>01°02'</td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td>133.6</td>
<td>186.0</td>
<td>357.8</td>
<td>310.0</td>
<td>353.0</td>
<td>133.6</td>
<td>186.0</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td>9.5</td>
<td>-</td>
<td>4.8</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>9.5</td>
<td>14.3</td>
<td>9.5</td>
<td>-</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Copepoda</td>
<td>133.6</td>
<td>186.0</td>
<td>357.8</td>
<td>310.0</td>
<td>353.0</td>
<td>133.6</td>
<td>186.0</td>
<td>33.4</td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14.8</td>
<td>-</td>
<td>4.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
<td>9.5</td>
<td>-</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>38.2</td>
<td>157.4</td>
<td>71.6</td>
<td>47.1</td>
<td>4.8</td>
<td>14.3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Crabs</td>
<td>19.1</td>
<td>23.8</td>
<td>4.8</td>
<td>23.8</td>
<td>19.1</td>
<td>-</td>
<td>9.5</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>38.2</td>
<td>85.9</td>
<td>-</td>
<td>9.5</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
<td>4.8</td>
<td>-</td>
<td>4.8</td>
<td>9.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
<td>9.5</td>
<td>-</td>
<td>4.8</td>
<td>4.8</td>
<td>66.8</td>
<td></td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>38.2</td>
<td>28.6</td>
<td>4.8</td>
<td>19.1</td>
<td>23.8</td>
<td>4.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>190.9</td>
<td>348.2</td>
<td>582.1</td>
<td>467.3</td>
<td>438.3</td>
<td>176.7</td>
<td>271.8</td>
<td>128.9</td>
<td></td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>4.8</td>
<td>4.8</td>
<td>9.5</td>
<td>28.6</td>
<td>23.8</td>
<td>19.1</td>
<td>33.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>195.7</td>
<td>353.0</td>
<td>591.6</td>
<td>495.9</td>
<td>466.9</td>
<td>195.8</td>
<td>305.2</td>
<td>128.9</td>
<td></td>
</tr>
</tbody>
</table>
Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No. 15</th>
<th>Date</th>
<th>April 27, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0307</td>
<td>0411</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>30°19'</td>
<td>30°23'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>79°51'</td>
<td>79°47'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>74.2</td>
<td>20.2</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>40.5</td>
<td>54.0</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>6.8</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>6.8</td>
</tr>
<tr>
<td>Subtotal</td>
<td>121.5</td>
<td>81.0</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>121.5</td>
<td>81.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No. 16</th>
<th>Date</th>
<th>April 27, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1227</td>
<td>1330</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>30°58'</td>
<td>31°00'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>79°16'</td>
<td>79°15'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>2.8</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>11.0</td>
<td>19.2</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>8.2</td>
<td>2.8</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>5.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Subtotal</td>
<td>27.5</td>
<td>30.4</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>27.5</td>
<td>30.4</td>
</tr>
</tbody>
</table>

36
Table 10. -- Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No. 17</th>
<th>Date</th>
<th>April 27-28, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>2102</td>
<td>2205</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>31°03'</td>
<td>31°02'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>79°57'</td>
<td>79°59'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>8.1</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>113.1</td>
<td>76.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>16.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>12.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Mollusca</td>
<td>4.0</td>
<td>8.1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>153.5</td>
<td>109.0</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>153.5</td>
<td>109.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No. 18</th>
<th>Date</th>
<th>May 4-5, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1710</td>
<td>1807</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>31°08'</td>
<td>31°13'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>81°12'</td>
<td>81°05'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>4.0</td>
<td>10.1</td>
</tr>
<tr>
<td>Copepoda</td>
<td>134.6</td>
<td>40.4</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>6.7</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>13.5</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>67.4</td>
<td>198.8</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>229.2</td>
<td>239.2</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>47.2</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>229.2</td>
<td>286.4</td>
</tr>
</tbody>
</table>
Table 10. Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

Run No. 19 Date May 5, 1953

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>0110</td>
<td>0206</td>
<td>0302</td>
<td>0358</td>
<td>0455</td>
<td>0551</td>
<td>0647</td>
<td>0743</td>
</tr>
</tbody>
</table>

Position of
ship:

<table>
<thead>
<tr>
<th>N. Lat.</th>
<th>31°41'</th>
<th>31°39'</th>
<th>31°39'</th>
<th>31°37'</th>
<th>31°37'</th>
<th>31°35'</th>
<th>31°35'</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Long.</td>
<td>80°22'</td>
<td>80°14'</td>
<td>80°10'</td>
<td>80°00'</td>
<td>80°49'</td>
<td>79°41'</td>
<td>79°34'</td>
</tr>
</tbody>
</table>

Protozoa 4.0 - - 7.9 7.9
Coelenterata - 7.9 - - 7.9 7.9
Chaetognatha 7.9 4.0 - - - -
Misc. Worms - - - 4.0 - - -

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>0853</td>
<td>0949</td>
<td>1045</td>
<td>1141</td>
<td>1238</td>
<td>1334</td>
<td>1430</td>
<td>1526</td>
</tr>
</tbody>
</table>

Position of
ship:

<table>
<thead>
<tr>
<th>N. Lat.</th>
<th>31°36'</th>
<th>31°40'</th>
<th>31°40'</th>
<th>31°38'</th>
<th>31°34'</th>
<th>31°31'</th>
<th>31°31'</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Long.</td>
<td>79°25'</td>
<td>79°22'</td>
<td>79°16'</td>
<td>79°07'</td>
<td>78°59'</td>
<td>78°41'</td>
<td>78°41'</td>
</tr>
</tbody>
</table>

Protozoa - - - - - - -
Coelenterata - - - - - - -
Chaetognatha 3.1 - 3.1 - - - -
Misc. Worms - - - - - - -

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>0949</td>
<td>1045</td>
<td>1141</td>
<td>1238</td>
<td>1334</td>
<td>1430</td>
<td>1526</td>
<td></td>
</tr>
</tbody>
</table>

Position of
ship:

<table>
<thead>
<tr>
<th>N. Lat.</th>
<th>31°40'</th>
<th>31°40'</th>
<th>31°38'</th>
<th>31°34'</th>
<th>31°31'</th>
<th>31°31'</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Long.</td>
<td>79°22'</td>
<td>79°16'</td>
<td>79°07'</td>
<td>78°59'</td>
<td>78°41'</td>
<td>78°41'</td>
</tr>
</tbody>
</table>

Protozoa - - - - - - -
Coelenterata - - - - - - -
Chaetognatha 3.1 - 3.1 - - - -
Misc. Worms - - - - - - -

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>1045</td>
<td>1141</td>
<td>1238</td>
<td>1334</td>
<td>1430</td>
<td>1526</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position of
ship:

<table>
<thead>
<tr>
<th>N. Lat.</th>
<th>31°38'</th>
<th>31°34'</th>
<th>31°31'</th>
<th>31°31'</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Long.</td>
<td>79°07'</td>
<td>78°59'</td>
<td>78°41'</td>
<td>78°41'</td>
</tr>
</tbody>
</table>

Protozoa - - - - - - -
Coelenterata - - - - - - -
Chaetognatha 3.1 - 3.1 - - - -
Misc. Worms - - - - - - -

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>1141</td>
<td>1238</td>
<td>1334</td>
<td>1430</td>
<td>1526</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position of
ship:

<table>
<thead>
<tr>
<th>N. Lat.</th>
<th>31°34'</th>
<th>31°31'</th>
<th>31°31'</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Long.</td>
<td>78°59'</td>
<td>78°41'</td>
<td>78°41'</td>
</tr>
</tbody>
</table>

Protozoa - - - - - - -
Coelenterata - - - - - - -
Chaetognatha 3.1 - 3.1 - - - -
Misc. Worms - - - - - - -

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>1238</td>
<td>1334</td>
<td>1430</td>
<td>1526</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position of
ship:

<table>
<thead>
<tr>
<th>N. Lat.</th>
<th>31°31'</th>
<th>31°31'</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Long.</td>
<td>78°59'</td>
<td>78°41'</td>
</tr>
</tbody>
</table>

Protozoa - - - - - - -
Coelenterata - - - - - - -
Chaetognatha 3.1 - 3.1 - - - -
Misc. Worms - - - - - - -

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>1334</td>
<td>1430</td>
<td>1526</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position of
ship:

<table>
<thead>
<tr>
<th>N. Lat.</th>
<th>31°31'</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Long.</td>
<td>78°59'</td>
</tr>
</tbody>
</table>

Protozoa - - - - - - -
Coelenterata - - - - - - -
Chaetognatha 3.1 - 3.1 - - - -
Misc. Worms - - - - - - -

Subtotal

<table>
<thead>
<tr>
<th></th>
<th>Run No. 19</th>
<th>Run No. 20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td>110.8</td>
<td>24.9</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>111.0</td>
<td>37.4</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>75.2</td>
<td>40.5</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>39.6</td>
<td>31.2</td>
</tr>
<tr>
<td>Copepoda</td>
<td>103.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>253.4</td>
<td>37.4</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>281.2</td>
<td>34.3</td>
</tr>
<tr>
<td>Shrimp</td>
<td>269.3</td>
<td>31.2</td>
</tr>
<tr>
<td>Crabs</td>
<td>301.0</td>
<td>15.6</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td></td>
<td>43.7</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td>15.6</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td></td>
<td>43.6</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td></td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>118.7</td>
<td>24.9</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>146.7</td>
<td>37.4</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>75.2</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>166.4</td>
<td>31.2</td>
</tr>
<tr>
<td></td>
<td>356.3</td>
<td>37.4</td>
</tr>
<tr>
<td></td>
<td>336.7</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>340.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>352.5</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal

<p>| | | |
| | | |
| Protozoa | 110.8 | 24.9 |
| Coelenterata | 111.0 | 37.4 |
| Chaetognatha | 75.2 | 40.5 |
| Misc. Worms | 39.6 | 31.2 |
| Copepoda | 103.0 | 25.0 |
| Ostracoda | 253.4 | 37.4 |
| Amphipoda | 281.2 | 34.3 |
| Shrimp | 269.3 | 31.2 |
| Crabs | 301.0 | 15.6 |
| Misc. Crustaceans | | 43.7 |
| Mollusca | | 15.6 |
| Invertebrate Eggs | | 43.6 |
| Misc. Organisms | | 43.7 |
| | 118.7 | 24.9 |
| Fish Eggs | 146.7 | 37.4 |
| Fish Larvae | 75.2 | 40.5 |
| | 166.4 | 31.2 |
| | 356.3 | 37.4 |
| | 336.7 | 40.5 |
| | 340.7 | |
| | 352.5 | |</p>
<table>
<thead>
<tr>
<th>Compartiment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>1650</td>
<td>1747</td>
<td>1844</td>
<td>1942</td>
<td>2039</td>
<td>2136</td>
<td>2233</td>
<td>2331</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>31°39’</td>
<td>31°30’</td>
<td>31°42’</td>
<td>31°43’</td>
<td>31°47’</td>
<td>31°51’</td>
<td>31°55’</td>
<td>31°57’</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>78°45’</td>
<td>78°51’</td>
<td>78°57’</td>
<td>78°59’</td>
<td>79°01’</td>
<td>79°06’</td>
<td>79°13’</td>
<td>79°17’</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>8.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>8.2</td>
<td>4.1</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>12.3</td>
<td>24.6</td>
<td>8.2</td>
<td>-</td>
<td>-</td>
<td>12.3</td>
<td>16.4</td>
<td>8.2</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>36.9</td>
<td>16.4</td>
<td>45.1</td>
<td>53.3</td>
<td>24.6</td>
<td>20.5</td>
<td>274.7</td>
<td>123.0</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.4</td>
<td>16.4</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.4</td>
<td>24.6</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Mollusca</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>4.1</td>
<td>4.1</td>
<td>45.1</td>
<td>8.2</td>
<td>4.1</td>
<td>45.2</td>
<td>24.6</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>16.4</td>
<td>61.5</td>
<td>16.4</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>57.4</td>
<td>45.1</td>
<td>73.8</td>
<td>102.5</td>
<td>45.1</td>
<td>69.7</td>
<td>479.8</td>
<td>233.7</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>57.4</td>
<td>45.1</td>
<td>73.8</td>
<td>106.6</td>
<td>45.1</td>
<td>69.7</td>
<td>479.8</td>
<td>237.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compartiment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>0103</td>
<td>0159</td>
<td>0255</td>
<td>0352</td>
<td>0446</td>
<td>0542</td>
<td>0638</td>
<td>0736</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>32°01’</td>
<td>32°08’</td>
<td>32°13’</td>
<td>32°13’</td>
<td>32°16’</td>
<td>32°22’</td>
<td>32°27’</td>
<td>32°31’</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>79°26’</td>
<td>79°29’</td>
<td>79°33’</td>
<td>79°33’</td>
<td>79°39’</td>
<td>79°44’</td>
<td>79°48’</td>
<td>79°45’</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>3.4</td>
<td>3.4</td>
<td>-</td>
<td>6.8</td>
<td>-</td>
<td>6.8</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>6.8</td>
<td>-</td>
<td>6.8</td>
<td>3.4</td>
<td>6.8</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>23.8</td>
<td>20.4</td>
<td>10.2</td>
<td>30.6</td>
<td>17.0</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>251.6</td>
<td>132.6</td>
<td>102.0</td>
<td>81.6</td>
<td>102.0</td>
<td>95.2</td>
<td>268.6</td>
<td>159.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>10.2</td>
<td>6.8</td>
<td>3.4</td>
<td>3.4</td>
<td>13.6</td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>6.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>23.8</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>20.4</td>
<td>37.4</td>
<td>10.2</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>20.4</td>
<td>13.6</td>
<td>3.4</td>
<td>6.8</td>
<td>-</td>
<td>10.2</td>
<td>27.2</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>51.0</td>
<td>3.4</td>
<td>6.8</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>13.6</td>
<td>10.2</td>
<td>10.2</td>
<td>10.2</td>
<td>17.0</td>
<td>3.4</td>
<td>10.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Subtotal</td>
<td>380.8</td>
<td>197.2</td>
<td>173.4</td>
<td>115.6</td>
<td>170.0</td>
<td>166.6</td>
<td>370.6</td>
<td>210.8</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>10.2</td>
<td>6.8</td>
<td>6.8</td>
<td>3.4</td>
<td>3.4</td>
<td>-</td>
<td>20.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>3.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>391.0</td>
<td>207.4</td>
<td>180.2</td>
<td>119.0</td>
<td>173.4</td>
<td>166.6</td>
<td>391.0</td>
<td>227.8</td>
</tr>
<tr>
<td>Run No. 23</td>
<td>Date</td>
<td>May 6, 1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0843</td>
<td>0939</td>
<td>1035</td>
<td>1131</td>
<td>1227</td>
<td>1324</td>
<td>1420</td>
<td>1517</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>32°38'</td>
<td>32°43'</td>
<td>32°56'</td>
<td>32°52'</td>
<td>32°55'</td>
<td>32°50'</td>
<td>32°45'</td>
<td>32°40'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>79°37'</td>
<td>79°31'</td>
<td>79°37'</td>
<td>79°19'</td>
<td>79°14'</td>
<td>79°08'</td>
<td>79°02'</td>
<td>78°58'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>7.0</td>
<td>-</td>
<td>10.5</td>
<td>-</td>
<td>3.5</td>
<td>21.1</td>
<td>14.0</td>
<td>21.1</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>80.7</td>
<td>52.6</td>
<td>52.6</td>
<td>91.3</td>
<td>235.2</td>
<td>161.5</td>
<td>119.3</td>
<td>73.7</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.5</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>3.5</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>3.5</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>21.1</td>
<td>-</td>
<td>14.0</td>
<td>3.5</td>
<td>-</td>
<td>3.5</td>
<td>7.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>14.0</td>
<td>17.6</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>3.5</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.5</td>
<td>3.5</td>
<td>21.1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>129.8</td>
<td>84.2</td>
<td>91.1</td>
<td>98.3</td>
<td>238.7</td>
<td>210.6</td>
<td>147.3</td>
<td>147.4</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>7.0</td>
<td>7.0</td>
<td>3.5</td>
<td>3.5</td>
<td>7.0</td>
<td>-</td>
<td>3.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>136.8</td>
<td>91.2</td>
<td>94.6</td>
<td>101.8</td>
<td>245.7</td>
<td>210.6</td>
<td>150.8</td>
<td>157.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No. 24</th>
<th>Date</th>
<th>May 6, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1629</td>
<td>1727</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>32°34'</td>
<td>32°31'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>78°50'</td>
<td>78°44'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>3.8</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>3.8</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>110.8</td>
<td>68.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>3.8</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Crabs</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>7.6</td>
<td>11.5</td>
</tr>
<tr>
<td>Mollusca</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>7.6</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>7.6</td>
</tr>
<tr>
<td>Subtotal</td>
<td>126.0</td>
<td>103.1</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>7.6</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>133.6</td>
<td>103.1</td>
</tr>
</tbody>
</table>
Table 10. - Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

Run No. 25 Date May 7, 1953

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>0148</td>
<td>0244</td>
<td>0340</td>
<td>0436</td>
<td>0533</td>
<td>0629</td>
<td>0725</td>
<td>0822</td>
</tr>
<tr>
<td>Position of N. Lat.</td>
<td>32°06'</td>
<td>32°06'</td>
<td>32°12'</td>
<td>32°18'</td>
<td>32°23'</td>
<td>32°26'</td>
<td>32°31'</td>
<td></td>
</tr>
<tr>
<td>Ship: W. Long.</td>
<td>78°12'</td>
<td>78°05'</td>
<td>77°57'</td>
<td>77°49'</td>
<td>77°41'</td>
<td>77°35'</td>
<td>77°39'</td>
<td></td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>71.7</td>
<td>44.8</td>
<td>89.6</td>
<td>134.4</td>
<td>107.5</td>
<td>103.0</td>
<td>246.4</td>
<td>71.7</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>4.5</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.5</td>
</tr>
<tr>
<td>Crabs</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>4.5</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>134.5</td>
<td>53.8</td>
<td>94.1</td>
<td>147.9</td>
<td>152.4</td>
<td>116.5</td>
<td>282.3</td>
<td>85.2</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>134.5</td>
<td>53.8</td>
<td>94.1</td>
<td>147.9</td>
<td>152.4</td>
<td>116.5</td>
<td>282.3</td>
<td>85.2</td>
</tr>
</tbody>
</table>

Run No. 26 Date May 7, 1953

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>0956</td>
<td>1052</td>
<td>1148</td>
<td>1244</td>
<td>1340</td>
<td>1436</td>
<td>1532</td>
<td>1628</td>
</tr>
<tr>
<td>Position of N. Lat.</td>
<td>32°36'</td>
<td>32°38'</td>
<td>32°45'</td>
<td>32°51'</td>
<td>32°53'</td>
<td>32°57'</td>
<td>33°01'</td>
<td>33°04'</td>
</tr>
<tr>
<td>Ship: W. Long.</td>
<td>77°47'</td>
<td>77°53'</td>
<td>77°59'</td>
<td>78°06'</td>
<td>78°06'</td>
<td>78°09'</td>
<td>78°17'</td>
<td>78°23'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>12.1</td>
<td>-</td>
<td>3.0</td>
<td>6.1</td>
<td>9.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>6.1</td>
<td>3.0</td>
<td>12.1</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>6.1</td>
<td>6.1</td>
<td>12.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>12.1</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>78.8</td>
<td>66.7</td>
<td>45.4</td>
<td>106.0</td>
<td>121.2</td>
<td>212.1</td>
<td>333.3</td>
<td>236.3</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>3.0</td>
<td>-</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>6.1</td>
<td>6.1</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.1</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>9.1</td>
<td>18.2</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15.2</td>
<td>42.4</td>
<td>9.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Mollusca</td>
<td>6.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>30.3</td>
<td>6.1</td>
<td>3.0</td>
<td>18.2</td>
<td>15.2</td>
<td>3.0</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>3.0</td>
<td>12.1</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>9.1</td>
<td>9.1</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>121.2</td>
<td>118.3</td>
<td>54.5</td>
<td>151.3</td>
<td>175.9</td>
<td>290.8</td>
<td>384.8</td>
<td>281.7</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.1</td>
<td>6.1</td>
<td>18.2</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>121.2</td>
<td>118.3</td>
<td>57.5</td>
<td>151.3</td>
<td>175.9</td>
<td>302.9</td>
<td>390.9</td>
<td>299.9</td>
</tr>
</tbody>
</table>
Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No. 27</th>
<th>Date</th>
<th>May 7-8, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compart. No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1733</td>
<td>1829</td>
</tr>
<tr>
<td>Position of</td>
<td>(N. Lat.</td>
<td>(W. Long.</td>
</tr>
<tr>
<td>Ship:</td>
<td>33°09'</td>
<td>33°15'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>4.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>4.4</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>8.8</td>
<td>30.7</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>215.1</td>
<td>987.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>4.4</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>4.4</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>8.8</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>8.8</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>8.8</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>8.8</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>4.4</td>
<td>22.0</td>
</tr>
</tbody>
</table>

Subtotal | 237.1 | 1075.7 | 553.2 | 382.0 | 641.0 | 1167.8 | 917.6 | 728.9 |

Fish Eggs
- 8.8 43.9 43.9 13.2 4.4 17.6 13.2 22.0

Fish Larvae

Total | 245.9 | 1119.6 | 597.1 | 395.2 | 645.4 | 1185.4 | 930.8 | 750.9 |

Run No. 28 Date May 8, 1953

<table>
<thead>
<tr>
<th>Run No. 28</th>
<th>Date</th>
<th>May 8, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compart. No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0131</td>
<td>0226</td>
</tr>
<tr>
<td>Position of</td>
<td>(N. Lat.</td>
<td>(W. Long.</td>
</tr>
<tr>
<td>Ship:</td>
<td>33°36'</td>
<td>33°36'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>3.1</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>3.1</td>
<td>18.6</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>9.3</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>282.1</td>
<td>176.7</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>3.1</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>6.2</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>24.8</td>
<td>9.3</td>
</tr>
<tr>
<td>Crabs</td>
<td>9.3</td>
<td>6.2</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>65.1</td>
<td>74.4</td>
</tr>
<tr>
<td>Mollusca</td>
<td>3.1</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>3.1</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Subtotal | 409.2 | 291.4 | 313.1 | 223.2 | 418.5 | 623.1 | 443.3 | 151.9 |

Fish Eggs
- 6.2 12.4 3.1 - 24.8 24.8 21.7 27.9

Fish Larvae

Total | 415.4 | 303.8 | 316.2 | 223.2 | 443.3 | 647.9 | 465.0 | 179.8 |
Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>May 8, 1953</td>
<td>1</td>
<td>0901</td>
<td>33°09' 33°08' 33°02'</td>
<td>77°21' 77°20'</td>
<td>-</td>
<td>8.2</td>
<td>8.2</td>
<td>-</td>
<td>148.0</td>
<td>8.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>16.4</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0956</td>
<td>33°58' 32°55' 32°55'</td>
<td>77°07' 77°04'</td>
<td>-</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>28.8</td>
<td>-</td>
<td>4.1</td>
<td>-</td>
<td>-</td>
<td>16.4</td>
<td>4.1</td>
<td>12.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1052</td>
<td>32°55' 32°52' 32°46'</td>
<td>77°04' 76°57' 76°50'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1147</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1243</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1338</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1434</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1529</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Subtotal | 169.0 | 69.8 | 61.6 | 45.2 | 131.5 | 184.9 | 176.7 | 148.0 |

Fish Eggs | 20.6 | 28.8 | - | - | - | - | - | 8.2 |
Fish Larvae | - | - | - | - | - | - | - | 4.1 |
Total | 209.6 | 98.6 | 61.6 | 45.2 | 131.5 | 184.9 | 176.7 | 160.3 |

Run No. 30 Date May 8, 1953

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1632</td>
<td>32°43' 32°43' 32°54'</td>
<td>76°17' 76°17' 76°35'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
<td>3.2</td>
<td>13.0</td>
<td>3.2</td>
<td>6.5</td>
<td>-</td>
<td>-</td>
<td>107.2</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1728</td>
<td>32°04' 33°15' 33°15'</td>
<td>76°28' 76°24' 76°24'</td>
<td>-</td>
<td>-</td>
<td>9.8</td>
<td>3.2</td>
<td>22.8</td>
<td>9.8</td>
<td>13.0</td>
<td>3.2</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>68.2</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>1824</td>
<td>33°16' 33°16' 33°26'</td>
<td>76°24' 76°24' 76°26'</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
<td>3.2</td>
<td>68.2</td>
<td>9.8</td>
<td>-</td>
<td>3.2</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>104.0</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>1920</td>
<td>32°43' 32°43' 32°54'</td>
<td>76°17' 76°17' 76°35'</td>
<td>-</td>
<td>-</td>
<td>9.8</td>
<td>3.2</td>
<td>3.2</td>
<td>9.8</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>5</td>
<td>2016</td>
<td>32°04' 33°15' 33°15'</td>
<td>76°28' 76°24' 76°24'</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
<td>3.2</td>
<td>9.8</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>6</td>
<td>2112</td>
<td>33°16' 33°16' 33°26'</td>
<td>76°24' 76°24' 76°26'</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
<td>3.2</td>
<td>9.8</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>7</td>
<td>2208</td>
<td>-</td>
<td>32°43' 32°43' 32°54'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
<td>3.2</td>
<td>9.8</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>2304</td>
<td>-</td>
<td>32°04' 33°15' 33°15'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
<td>3.2</td>
<td>9.8</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Subtotal | 16.1 | 22.6 | 48.6 | 120.1 | 178.6 | 107.3 | 123.4 | 191.6 |

Fish Eggs | 3.2 | - | - | - | - | - | - | - |
Fish Larvae | - | - | - | - | - | - | - | - |
Total | 19.3 | 22.6 | 48.6 | 120.1 | 178.6 | 107.3 | 123.4 | 191.6 |
Table 10.--Numbers of plankton organisms per cubic meter of water
(continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No. 31 Date</th>
<th>May 6-2, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0012 0108 0204 0301 0357 0453 0549 0646</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>33°30' 33°32' 33°34' 33°36' 33°38' 33°40' 33°42' 33°44'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>76°39' 76°50' 76°55' 76°57' 76°55' 76°59' 77°05' 77°13'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>3.6 18.0 – – – – –</td>
</tr>
<tr>
<td>Coeleterata</td>
<td>– 10.8 – – – 7.2 – –</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>7.2 10.8 7.2 – 3.6 14.4 18.0 3.6</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>– – – – – 3.6 3.6 3.6 –</td>
</tr>
<tr>
<td>Copepoda</td>
<td>169.7 144.4 90.2 57.8 72.2 238.3 476.5 148.0</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>3.6 7.2 10.8 – 3.6 – – –</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>– 3.6 3.6 – – – – –</td>
</tr>
<tr>
<td>Shrimp</td>
<td>7.2 18.0 14.4 10.8 10.8 10.8 – – –</td>
</tr>
<tr>
<td>Crabs</td>
<td>3.6 3.6 – – – 14.4 10.8 3.6 –</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>7.2 10.8 3.6 – 3.6 – 7.2 3.6</td>
</tr>
<tr>
<td>Mollusca</td>
<td>– 10.8 3.6 10.8 – – 3.6 –</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>7.2 10.8 7.2 7.2 7.2 3.6 – 10.8</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>– 43.3 7.2 21.7 14.4 3.6 7.2 3.6</td>
</tr>
<tr>
<td>Subtotal</td>
<td>209.3 292.1 147.8 108.3 119.0 295.9 526.9 173.2</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>– – – – 3.6 – 10.8 7.2</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>– – – – – – – –</td>
</tr>
<tr>
<td>Total</td>
<td>209.3 292.1 147.8 108.3 122.6 295.9 537.7 180.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No. 32 Date</th>
<th>May 9, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0749 0846 0943 1040 1137 1234 1331 1428</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>31°02' 31°08' 34°11' 34°11' 34°23' 34°28' 34°24' 34°25'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>77°16' 77°24' 77°29' 77°29' 77°26' 77°17' 77°09' 77°02'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>– – – – – – – –</td>
</tr>
<tr>
<td>Coeleterata</td>
<td>– – – – – – – –</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>12.4 33.1 8.3 – 8.3 4.1 8.3 –</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>– – – 4.1 4.1 – – –</td>
</tr>
<tr>
<td>Copepoda</td>
<td>529.9 190.4 33.1 29.0 37.3 74.5 99.4 74.5</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>4.1 – – 4.1 – – – –</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>– – – – 4.1 – – –</td>
</tr>
<tr>
<td>Shrimp</td>
<td>12.4 4.1 – 4.1 – – –</td>
</tr>
<tr>
<td>Crabs</td>
<td>– 4.1 4.1 – – – –</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>8.3 4.1 8.3 – 8.3 20.7 4.1 –</td>
</tr>
<tr>
<td>Mollusca</td>
<td>– – – 4.1 – – – –</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>24.8 – – – 4.1 4.1 4.1 –</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>78.7 33.1 16.6 – – 20.7 –</td>
</tr>
<tr>
<td>Subtotal</td>
<td>591.9 306.3 90.9 62.1 53.8 95.1 153.2 78.6</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>4.1 – – – – 12.4 –</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>– – – – – – – –</td>
</tr>
<tr>
<td>Total</td>
<td>596.0 306.3 90.9 62.1 53.8 95.1 165.6 78.6</td>
</tr>
</tbody>
</table>
Table 10.--Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont’d

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>May 9, 1953</td>
<td></td>
<td>1555</td>
<td>34°30' 34°32' 34°27' 34°21' 34°19' 34°12' 34°04' 34°04'</td>
<td>76°52' 76°50' 76°41' 76°33' 76°30' 76°23' 76°15' 76°14'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22.8</td>
<td>35.9</td>
<td>169.5</td>
<td>78.2</td>
<td>29.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1652</td>
<td>34°00' 33°53' 33°50' 33°52' 33°57' 34°03' 34°07' 34°09'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
<td>6.5</td>
<td>3.3</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1750</td>
<td>34°00' 33°53' 33°50' 33°52' 33°57' 34°03' 34°07' 34°09'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
<td>6.5</td>
<td>3.3</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>May 9-10, 1953</td>
<td></td>
<td>2347</td>
<td>76°07' 76°02' 75°59' 75°59' 75°58' 75°51' 75°40' 75°30'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>6.6</td>
<td>3.3</td>
<td>3.7</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0043</td>
<td>76°07' 76°02' 75°59' 75°59' 75°58' 75°51' 75°40' 75°30'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0140</td>
<td>76°07' 76°02' 75°59' 75°59' 75°58' 75°51' 75°40' 75°30'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0236</td>
<td>76°07' 76°02' 75°59' 75°59' 75°58' 75°51' 75°40' 75°30'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0333</td>
<td>76°07' 76°02' 75°59' 75°59' 75°58' 75°51' 75°40' 75°30'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0429</td>
<td>76°07' 76°02' 75°59' 75°59' 75°58' 75°51' 75°40' 75°30'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0526</td>
<td>76°07' 76°02' 75°59' 75°59' 75°58' 75°51' 75°40' 75°30'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0622</td>
<td>76°07' 76°02' 75°59' 75°59' 75°58' 75°51' 75°40' 75°30'</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fish Eggs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>7.4</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fish Larvae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>7.4</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>84.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table includes data from Run 33 and Run 34 with detailed information on the number of plankton organisms per cubic meter of water, including various categories such as Protozoa, Coelenterata, Chaetognatha, etc., along with additional categories like Subtotal, Fish Eggs, Fish Larvae, and Total. The data is collected over different dates and locations, indicating the variability in plankton population.
Table 10.--Numbers of plankton organisms per cubic meter of water
(continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>May 10, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0725</td>
<td>0822</td>
</tr>
<tr>
<td>Position of (N. Lat.</td>
<td>34°10'</td>
<td>34°10'</td>
</tr>
<tr>
<td>Ship: (W. Long.</td>
<td>75°20'</td>
<td>75°20'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>8.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>32.3</td>
<td>21.5</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>8.1</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>53.9</td>
<td>29.6</td>
</tr>
</tbody>
</table>

Fish Eggs	-	-	-	-	-	-	-	-
Fish Larvae	-	-	-	-	-	-	-	-
Total	53.9	29.6	29.6	37.7	5.4	21.6	64.6	32.2

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>May 10, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1508</td>
<td>1603</td>
</tr>
<tr>
<td>Position of (N. Lat.</td>
<td>34°24'</td>
<td>34°30'</td>
</tr>
<tr>
<td>Ship: (W. Long.</td>
<td>75°33'</td>
<td>75°31'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>6.6</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>39.6</td>
<td>19.8</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>3.3</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>3.3</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>3.3</td>
<td>13.2</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>3.3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>49.5</td>
<td>46.2</td>
</tr>
</tbody>
</table>

Fish Eggs	-	-	-	3.3	9.9	9.9	13.2	-
Fish Larvae	-	-	-	-	-	-	-	-
Total	49.5	46.2	66.0	227.7	198.0	260.7	214.5	92.4
Table 10.—Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>May 10-11, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>2303</td>
<td>0000</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>34°57'</td>
<td>34°58'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>74°59'</td>
<td>74°59'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>5.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>2.9</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>5.8</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>20.2</td>
<td>69.1</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>2.9</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Crabs</td>
<td>2.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>5.8</td>
<td>11.5</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>2.9</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>2.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Subtotal</td>
<td>54.9</td>
<td>112.3</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>8.6</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>54.9</td>
<td>120.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>May 11, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0649</td>
<td>0745</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>34°57'</td>
<td>34°58'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>74°59'</td>
<td>74°59'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>6.9</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>45.0</td>
<td>6.9</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>6.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Subtotal</td>
<td>65.8</td>
<td>24.4</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>69.3</td>
<td>24.4</td>
</tr>
</tbody>
</table>
Table 10.—Numbers of plankton organisms per cubic meter of water
(continuous plankton sampler), cont’d

<table>
<thead>
<tr>
<th>Run No. 39</th>
<th>Date</th>
<th>May 12, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1338</td>
<td>1433</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>34°38'</td>
<td>34°36'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>74°45'</td>
<td>74°43'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>5.9</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>38.5</td>
</tr>
<tr>
<td>Copepoda</td>
<td>5.9</td>
<td>26.6</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td>11.9</td>
<td>74.0</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>14.8</td>
</tr>
<tr>
<td>Total</td>
<td>11.9</td>
<td>88.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No. 40</th>
<th>Date</th>
<th>May 12-13, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>2119</td>
<td>2216</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>34°00'</td>
<td>34°00'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>74°18'</td>
<td>74°19'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>8.9</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Copepoda</td>
<td>14.8</td>
<td>41.4</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>11.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>3.0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>38.5</td>
<td>53.4</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>38.5</td>
<td>53.4</td>
</tr>
</tbody>
</table>
Table 10. Numbers of plankton organisms per cubic meter of water (continuous plankton sampler), cont'd

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>May 13, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>01</td>
</tr>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>0513</td>
<td>0609</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>33°08'</td>
<td>33°00'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>74°55'</td>
<td>75°00'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>2.7</td>
<td>13.6</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>27.2</td>
<td>35.4</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>5.4</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>-</td>
<td>13.6</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>Subtotal</td>
<td>29.9</td>
<td>57.1</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>29.9</td>
<td>57.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date</th>
<th>May 13, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Compartment No.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1351</td>
<td>1447</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>32°26'</td>
<td>32°19'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>75°33'</td>
<td>75°00'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>25.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>3.6</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>7.2</td>
<td>14.5</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>10.9</td>
<td>29.0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>32.5</td>
<td>32.6</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>32.5</td>
<td>32.6</td>
</tr>
</tbody>
</table>

49
<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>2038</td>
<td>2135</td>
<td>2232</td>
<td>2239</td>
<td>0026</td>
<td>0123</td>
<td>0220</td>
<td>0317</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>31°53'</td>
<td>31°47'</td>
<td>31°41'</td>
<td>31°34'</td>
<td>31°28'</td>
<td>31°22'</td>
<td>31°16'</td>
<td>31°08'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>76°11'</td>
<td>76°17'</td>
<td>76°24'</td>
<td>76°31'</td>
<td>76°37'</td>
<td>76°43'</td>
<td>76°50'</td>
<td>76°57'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
<td>5.1</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>5.1</td>
<td>2.6</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>7.6</td>
<td>5.1</td>
<td>5.1</td>
<td>20.4</td>
<td>2.6</td>
<td>2.6</td>
<td>7.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
<td>15.3</td>
<td>10.2</td>
<td>2.6</td>
<td>12.8</td>
<td>-</td>
<td>-</td>
<td>12.8</td>
</tr>
<tr>
<td>Copepoda</td>
<td>33.2</td>
<td>23.0</td>
<td>23.0</td>
<td>28.0</td>
<td>38.2</td>
<td>28.0</td>
<td>51.0</td>
<td>33.2</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
<td>5.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.6</td>
<td>5.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>-</td>
<td>2.6</td>
<td>5.1</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>2.6</td>
<td>10.2</td>
<td>2.6</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>5.1</td>
<td>15.3</td>
<td>20.4</td>
<td>10.2</td>
<td>10.2</td>
<td>17.8</td>
<td>30.6</td>
<td>10.2</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>7.6</td>
<td>2.6</td>
<td>5.1</td>
<td>12.8</td>
<td>5.1</td>
<td>2.6</td>
<td>5.1</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Subtotal | 56.1 | 66.5 | 84.3 | 84.3 | 71.5 | 56.2 | 102.0 | 66.5 |

Fish Eggs | - | - | - | - | - | - | - | - |
Fish Larvae | - | - | - | - | - | - | - | - |

Total | 56.1 | 66.5 | 84.3 | 84.3 | 71.5 | 56.2 | 102.0 | 66.5 |

<table>
<thead>
<tr>
<th>Compartment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (EST)</td>
<td>0428</td>
<td>0524</td>
<td>0620</td>
<td>0716</td>
<td>0812</td>
<td>0908</td>
<td>1004</td>
<td>1100</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>31°00'</td>
<td>31°00'</td>
<td>31°00'</td>
<td>31°01'</td>
<td>31°01'</td>
<td>31°03'</td>
<td>31°03'</td>
<td>31°03'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>76°59'</td>
<td>76°59'</td>
<td>77°03'</td>
<td>77°03'</td>
<td>77°03'</td>
<td>77°03'</td>
<td>77°03'</td>
<td>77°03'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
<td>-</td>
<td>16.1</td>
<td>5.4</td>
<td>2.7</td>
<td>-</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>-</td>
<td>-</td>
<td>10.7</td>
<td>2.7</td>
<td>16.1</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>5.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>45.6</td>
<td>37.5</td>
<td>16.1</td>
<td>5.4</td>
<td>16.1</td>
<td>40.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
<td>-</td>
<td>2.7</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>Mollusca</td>
<td>-</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>29.5</td>
<td>16.1</td>
<td>18.8</td>
<td>18.8</td>
<td>18.8</td>
<td>13.4</td>
<td>53.6</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Organisms</td>
<td>10.7</td>
<td>-</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Subtotal | 93.9 | 16.1 | 77.8 | 53.7 | 35.0 | 34.9 | 118.0 | 10.8 |

Fish Eggs | - | - | - | - | - | - | - | - |
Fish Larvae | - | - | - | - | - | - | - | - |

Total | 93.9 | 16.1 | 77.8 | 53.7 | 35.0 | 34.9 | 118.0 | 10.8 |
<table>
<thead>
<tr>
<th>Run No.</th>
<th>Date May 14, 1953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compartment No.</td>
<td>1</td>
</tr>
<tr>
<td>Time (EST)</td>
<td>1205</td>
</tr>
<tr>
<td>Position of (N. Lat.)</td>
<td>31°02'</td>
</tr>
<tr>
<td>Ship: (W. Long.)</td>
<td>78°09'</td>
</tr>
<tr>
<td>Protozoa</td>
<td>-</td>
</tr>
<tr>
<td>Coelenterata</td>
<td>-</td>
</tr>
<tr>
<td>Chaetognatha</td>
<td>4.8</td>
</tr>
<tr>
<td>Misc. Worms</td>
<td>-</td>
</tr>
<tr>
<td>Copepoda</td>
<td>14.3</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>-</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>-</td>
</tr>
<tr>
<td>Shrimp</td>
<td>-</td>
</tr>
<tr>
<td>Crabs</td>
<td>-</td>
</tr>
<tr>
<td>Misc. Crustaceans</td>
<td>14.3</td>
</tr>
<tr>
<td>Mollusca</td>
<td>4.8</td>
</tr>
<tr>
<td>Invertebrate Eggs</td>
<td>28.6</td>
</tr>
<tr>
<td>Subtotal</td>
<td>119.1</td>
</tr>
<tr>
<td>Fish Eggs</td>
<td>-</td>
</tr>
<tr>
<td>Fish Larvae</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>119.1</td>
</tr>
</tbody>
</table>
Table 11.---Numbers and species of fish taken by trolling

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Time (EST)</th>
<th>Location</th>
<th>Stage</th>
<th>Fork Length</th>
<th>Weight</th>
<th>Stomach Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcharhinus longimanus</td>
<td>Apr. 17</td>
<td>2200</td>
<td>30°00' 77°00'</td>
<td>F</td>
<td>2090/2</td>
<td>75</td>
<td>squid</td>
</tr>
<tr>
<td>Synodus foetens</td>
<td>Apr. 24</td>
<td>1140-1240</td>
<td>28°18.5' 80°10'</td>
<td>M(3)</td>
<td>252(1)/3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trachinopephalus myops</td>
<td>Apr. 23</td>
<td>0815</td>
<td>27°23' 80°06'</td>
<td>-</td>
<td>159/3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sphyraena barracuda</td>
<td>Apr. 22</td>
<td>0920</td>
<td>27°00' 78°00'</td>
<td>M</td>
<td>II-III</td>
<td>896</td>
<td>7.25 none</td>
</tr>
<tr>
<td>Acanthocybium solandri</td>
<td>Apr. 22</td>
<td>1815</td>
<td>27°00' 79°15'</td>
<td>F</td>
<td>V</td>
<td>1357</td>
<td>37.4 none</td>
</tr>
<tr>
<td>Thunnus atlanticus</td>
<td>Apr. 25</td>
<td>1240</td>
<td>29°07' 79°28'</td>
<td>M</td>
<td>II</td>
<td>584</td>
<td>8.8 Syngnathus sp. (1); Molidae (1); Acanthurus sp. ? (1); Chaetodontidae ? (4); crabs; squid</td>
</tr>
<tr>
<td></td>
<td>May 6</td>
<td>1730</td>
<td>32°30' 78°45'</td>
<td>F</td>
<td>II-III</td>
<td>548</td>
<td>7.7 none</td>
</tr>
</tbody>
</table>

/1. Bait fishing
/2. Total length
/3. Standard length
* Asterisked items follow Bailey's (1951) revision of the double authority Cuvier and Valenciennes.
Table 11.--Numbers and species of fish taken by trolling (cont'd)

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Time (EST)</th>
<th>Location</th>
<th>Stage</th>
<th>Fork Length (mm.)</th>
<th>Weight (lbs.)</th>
<th>Stomach Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euthynnus alletteratus</td>
<td>May 6</td>
<td>1530</td>
<td>32°38'</td>
<td>F</td>
<td>I</td>
<td>553</td>
<td>none</td>
</tr>
<tr>
<td>(Rafinesque)</td>
<td></td>
<td></td>
<td>78°58'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>May 8</td>
<td>0758</td>
<td>33°16'</td>
<td>F</td>
<td>III</td>
<td>602</td>
<td>7.2 Decapterus punctatus (Agassiz) (1); Haemulon flavolineatum (Demarest) (1)</td>
</tr>
<tr>
<td>"</td>
<td>May 9</td>
<td>1434</td>
<td>34°24'</td>
<td>M</td>
<td>II</td>
<td>617</td>
<td>8.3 Scomber colias Gmelin? (1); Etrumeus sadina (Mitchill) (1)</td>
</tr>
<tr>
<td>"</td>
<td>May 9</td>
<td>1440</td>
<td>34°24'</td>
<td>M</td>
<td>II</td>
<td>486</td>
<td>4.4 Etrumeus sadina (1); fish remains, unidentified</td>
</tr>
<tr>
<td>"</td>
<td>May 12</td>
<td>0715</td>
<td>35°00'</td>
<td>M</td>
<td>II-III</td>
<td>591</td>
<td>5.6 none</td>
</tr>
<tr>
<td>"</td>
<td>May 12</td>
<td>0715</td>
<td>35°00'</td>
<td>M</td>
<td>V</td>
<td>606</td>
<td>7.7 none</td>
</tr>
<tr>
<td>Seriola dumerili</td>
<td>July 6</td>
<td>0550</td>
<td>32°23'</td>
<td>F</td>
<td>I</td>
<td>769</td>
<td>11.0 none</td>
</tr>
<tr>
<td>(Risso)</td>
<td></td>
<td></td>
<td>79°46'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomatomus saltatrix</td>
<td>May 4</td>
<td>1340</td>
<td>75°34'</td>
<td>-</td>
<td>-</td>
<td>184/3</td>
<td>-</td>
</tr>
<tr>
<td>(Linnaeus)</td>
<td></td>
<td></td>
<td>35°14'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centropristes philadelphicus</td>
<td>Apr. 23</td>
<td>1140</td>
<td>24°41'</td>
<td>F</td>
<td>V</td>
<td>158 & 165/3</td>
<td>pecten (1); limpet (1); "olive shell" gastropods (3); coral crabs (2)</td>
</tr>
<tr>
<td>(Linnaeus)</td>
<td></td>
<td></td>
<td>79°59'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplectrum formosum</td>
<td>Apr. 24</td>
<td>1240</td>
<td>28°18.5'</td>
<td>F</td>
<td>VI</td>
<td>195/3</td>
<td>-</td>
</tr>
<tr>
<td>(Linnaeus)</td>
<td></td>
<td></td>
<td>80°10'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

/1. Bait fishing
/3. Standard length
Table 11.--Numbers and species of fish taken by trolling (cont'd)

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Time (EST)</th>
<th>Location</th>
<th>Stage</th>
<th>Fork Length (mm.)</th>
<th>Weight (lbs.)</th>
<th>Stomach Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coryphaena hippurus Linnaeus</td>
<td>Apr. 23</td>
<td>1215</td>
<td>27°42'</td>
<td>79°50'</td>
<td>873</td>
<td>12.1</td>
<td>Strongylura sp. (1)</td>
</tr>
<tr>
<td></td>
<td>Apr. 23</td>
<td>1315</td>
<td>27°42'</td>
<td>79°46'</td>
<td>601</td>
<td>3.9</td>
<td>Pseudupeneus maculatus (Bloch) (2); Hemirhamphus sp. (1); fish remains, unidentified (2)</td>
</tr>
<tr>
<td></td>
<td>Apr. 24</td>
<td>1010</td>
<td>28°20'</td>
<td>79°53'</td>
<td>V-VI</td>
<td>1210</td>
<td>30.8 fish vertebrae</td>
</tr>
<tr>
<td></td>
<td>Apr. 25</td>
<td>1355</td>
<td>29°20'</td>
<td>79°32'</td>
<td>V</td>
<td>947</td>
<td>16.5 fish bones and vertebrae</td>
</tr>
<tr>
<td></td>
<td>Apr. 25</td>
<td>1355</td>
<td>29°20'</td>
<td>79°32'</td>
<td>V</td>
<td>709</td>
<td>6.6 none</td>
</tr>
<tr>
<td></td>
<td>May 5</td>
<td>1300</td>
<td>31°31'</td>
<td>78°56'</td>
<td>II</td>
<td>502</td>
<td>4.4 none</td>
</tr>
<tr>
<td></td>
<td>May 5</td>
<td>1800</td>
<td>31°39'</td>
<td>78°53'</td>
<td>V</td>
<td>675</td>
<td>7.7 fish remains ?</td>
</tr>
<tr>
<td></td>
<td>May 5</td>
<td>1800</td>
<td>31°39'</td>
<td>78°53'</td>
<td>VI</td>
<td>625</td>
<td>4.4 fish remains ?</td>
</tr>
<tr>
<td></td>
<td>May 6</td>
<td>1605</td>
<td>32°34'</td>
<td>78°53'</td>
<td>III</td>
<td>526</td>
<td>3.3 shrimp (2)</td>
</tr>
<tr>
<td></td>
<td>May 12</td>
<td>1530</td>
<td>34°28.5'</td>
<td>74°38.5'</td>
<td>F-VI</td>
<td>629</td>
<td>5.5 Holocentrus miliarus Cuvier* (1); Holocentrus rufus (Walbaum) (1); Holocentrus bullisi Woods (3); Coryphaena hippurus (1); Xiphias gladius Linnaeus (1); Dactylopterus volitans (Linnaeus) (1); Genypterus serpens Cuvier* (1); Malacanthus plumieri (Bloch) (3); Spheroide sp. (2); Ophioctenius sp. (1); fish remains, unidentified (1); octopus (1); squid (1)</td>
</tr>
</tbody>
</table>

54
<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
<th>Time</th>
<th>N.Lat.</th>
<th>W.Long.</th>
<th>Sex</th>
<th>Stage</th>
<th>Gonad</th>
<th>Length (mm.)</th>
<th>Weight (lbs.)</th>
<th>Stomach Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. hippurus</td>
<td>May 12</td>
<td>1732</td>
<td>34°15'</td>
<td>74°28'</td>
<td>F</td>
<td>VI+</td>
<td>697</td>
<td>6.6</td>
<td></td>
<td>Psenes cyanophrys Valenciennes*(4)</td>
</tr>
<tr>
<td></td>
<td>Diodon sp. (1); fish remains, unidentified (3); octopus, (1); isopods</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>720</td>
<td>6.9</td>
<td></td>
<td>Psenes cyanophrys (6); Caranx ruber (Bloch) (1); Caranx bartholomaei Cuvier* (1);</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hippocampus hudsonius DeKay (1); fish remains, unidentified (2); nautilus (1); octopuses (2); squid (1)</td>
</tr>
<tr>
<td>Remora remora (Linnaeus) */4</td>
<td>Apr. 17</td>
<td>2200</td>
<td>30°00'</td>
<td>77°00'</td>
<td>-</td>
<td>-</td>
<td>130/3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Diodon hystrix (Linnaeus) */1</td>
<td>May 12</td>
<td>1930</td>
<td>34°00'</td>
<td>74°17.5'</td>
<td>-</td>
<td>-</td>
<td>254/2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

/1. Bait fishing
/2. Standard length
/3. Taken from shark
/4. Taken from shark
Table 12.—Numbers and species of fish taken by dip net

<table>
<thead>
<tr>
<th>Species</th>
<th>Location of capture, number and size range of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBULIDAE</td>
<td>-Reg. 71, (1 leptocephalus) 59 mm.</td>
</tr>
<tr>
<td>Albula vulpes (Linnaeus)</td>
<td>-Reg. 71, (1) 19 mm.</td>
</tr>
<tr>
<td>CLupeoidei</td>
<td>Cape Hatteras Bight, 35°13'N., 75°32'W., (2) 22 mm.</td>
</tr>
<tr>
<td>CLupeidae</td>
<td>Cape Hatteras Bight, (1) 62.5 mm.</td>
</tr>
<tr>
<td>ENGRAULIDAE</td>
<td></td>
</tr>
<tr>
<td>Anchoa lyolepis</td>
<td></td>
</tr>
<tr>
<td>(Evermann and Marsh)</td>
<td></td>
</tr>
<tr>
<td>SYNODIDAE</td>
<td></td>
</tr>
<tr>
<td>Trachinocephalus myops</td>
<td></td>
</tr>
<tr>
<td>(Forster) ?</td>
<td></td>
</tr>
<tr>
<td>Synodus sp. ?</td>
<td></td>
</tr>
<tr>
<td>MYCTOPHIDAE</td>
<td></td>
</tr>
<tr>
<td>Hygophum reinhardtii</td>
<td></td>
</tr>
<tr>
<td>(Lütken)</td>
<td></td>
</tr>
<tr>
<td>Myctophum rufinum</td>
<td></td>
</tr>
<tr>
<td>Taning</td>
<td></td>
</tr>
<tr>
<td>Myctophum affine</td>
<td></td>
</tr>
<tr>
<td>(Lütken)</td>
<td></td>
</tr>
<tr>
<td>Gonichthys cocco</td>
<td></td>
</tr>
<tr>
<td>(Cocco)</td>
<td></td>
</tr>
<tr>
<td>Centrobranchus nigro-</td>
<td></td>
</tr>
<tr>
<td>ocellatus</td>
<td></td>
</tr>
<tr>
<td>(Günther)</td>
<td></td>
</tr>
<tr>
<td>BELONIDAE</td>
<td></td>
</tr>
<tr>
<td>Strongylura sp.</td>
<td></td>
</tr>
<tr>
<td>Ablennes hians</td>
<td></td>
</tr>
<tr>
<td>(Valenciennes)*</td>
<td></td>
</tr>
<tr>
<td>HEMIRAMPHIDAE</td>
<td></td>
</tr>
<tr>
<td>Euleptorhamphus velox</td>
<td></td>
</tr>
<tr>
<td>Poey</td>
<td></td>
</tr>
</tbody>
</table>

* Asterisked items follow Bailey's (1951) revision of the double authority Cuvier and Valenciennes.
Table 12.—Numbers and species of fish taken by dip net (cont’d)

<table>
<thead>
<tr>
<th>Species</th>
<th>Location of capture, number and size range of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEMIRAMPHIDAE (cont’d)</td>
<td></td>
</tr>
</tbody>
</table>
| Hemiramphus sp. | -Reg. 3, (1) 13 mm.
 | Reg. 8, (1) 19 mm.
 | -Reg. 3, (2) 15-27.5 mm. |
| Hemiramphus brasiliensis (Linnaeus) | -Spc. Sta. 5, (1) 43 mm.
 | Reg. 63, (2) 22.5-28 mm. |
| Hemiramphus balao LeSueur | |
| EXOCOETIDAE | |
| Oxyporhamphus micropterus (Valenciennes)* | -Reg. 8, (1) 47 mm. |
| Parexocoetus brachypterus (Richardson) | -Reg. 19, (4) 113-123 mm.
 | Reg. 42, (1) 45.5 mm.
 | Reg. 43, (10) 110-122 mm.
 | Reg. 63, (7) 30.5-39.5 mm.
 | Reg. 72, (2) 37-47.5 mm.
 | -Reg. 63, (3) 24-24.5 mm. |
| Exocoetus volitans Linnaeus | -Spc. Sta. 5, (2) 36.5-66.5 mm.
 | Spc. Sta. 8, (1) 42.5 mm.
 | Reg. 18, (1) 45.5 mm.
 | Reg. 63, (4) 22-40 mm. |
| Exocoetus obtusirostris Günther | -Reg. 63, (1) 16 mm.
 | Reg. 72, (1) 20 mm. |
| Cypselurus cyanopterus (Valenciennes)* | -Reg. 1, (1) 40.5 mm.
 | Reg. 8, (1) 44.5 mm. |
| Cypselurus comatus (Mitchill) | |
| Cypselurus heterurus (Rafinesque) | -Spc. Sta. 5, (6) 98-120 mm.
 | Between Reg. 20 to Reg. 21, 29°40' N.
 | 80°57' W., (2) 194-216 mm.
 | Reg. 63, (11) 18.5-116 mm. |
| Prognichthys gibbifrons (Valenciennes)* | -Reg. 3, (8) 17-24 mm.
 | Reg. 5, (3) 11-15 mm.
 | Reg. 39, (8) 9-11 mm.
 | Reg. 53, (6) 8-14 mm.
 | Reg. 63, (10) 16-41.5 mm.
 | Reg. 71, (1) 39 mm.
 | Reg. 72, (3) 18.5-31.5 mm. |
| Hirundichthys affinis (Günther) | -Spc. Sta. 9, (1) 49.5 mm.
 | Reg. 2 (1) 54 mm.
 | Reg. 39, (1) 13 mm.
 | Reg. 63, (24) 35.5-72 mm.
 | Reg. 72, (10) 26.5-107 mm. |
Table 12.—Numbers and species of fish taken by dip net (cont’d)

<table>
<thead>
<tr>
<th>Species</th>
<th>Location of capture, number and size range of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLOCENTRIDAE</td>
<td></td>
</tr>
<tr>
<td>Holocentrus sp.</td>
<td>- Reg. 63, (1) 14 mm.</td>
</tr>
<tr>
<td>Holocentrus bullisi Woods</td>
<td>- Spec. Sta. 4, (1) 28.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Spec. Sta. 5, (1) 17.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 71, (3) 11-14.5 mm.</td>
</tr>
<tr>
<td>Holocentrus vexillarius Poey</td>
<td>- Reg. 63, (1) 34.5 mm.</td>
</tr>
<tr>
<td>Holocentrus rufus (Walbaum)</td>
<td>- Reg. 8, (1) 23 mm.</td>
</tr>
<tr>
<td>SYNGNATHIDAE</td>
<td></td>
</tr>
<tr>
<td>Hippocampus hudsonius DeKay</td>
<td>- Reg. 80, (1) 80 mm.</td>
</tr>
<tr>
<td>Syngnathus springeri Herald</td>
<td>- Reg. 20 to Reg. 21, 29°40'N., 80°57'W., (1) 61 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 42, (1) 119 mm.</td>
</tr>
<tr>
<td>ATHERINIDAE</td>
<td></td>
</tr>
<tr>
<td>Membras martinica (Valenciennes)</td>
<td>- Cape Hatteras Bight, (2) 84-85 mm.</td>
</tr>
<tr>
<td>MUGILIDAE</td>
<td></td>
</tr>
<tr>
<td>Mugil curema Valenciennes</td>
<td>- Std. Sta., 4/19-20/53, 1900-0400, (1) 22 mm.</td>
</tr>
<tr>
<td></td>
<td>Spec. Sta. 5, (1) 20.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 3, (4) 12-20.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 13, (1) 20.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 20 to Reg. 21, 29°40'N., 80°57'W., (1) 21.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 25, (4) 14.5-19 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 31, (1) 19 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 35, (1) 20.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 37, (2) 14-22.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 54, (2) 7 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 61, (7) 6.5-8 mm.</td>
</tr>
<tr>
<td></td>
<td>Cape Hatteras Bight, (14) 17.5-24 mm.</td>
</tr>
<tr>
<td>SPHYRAENIDAE</td>
<td></td>
</tr>
<tr>
<td>Sphyraena sp.</td>
<td>- Reg. 3, (1) 17.5 mm.</td>
</tr>
<tr>
<td>SCOMBRIDAE</td>
<td></td>
</tr>
<tr>
<td>Scombridsae</td>
<td>- Reg. 63, (1) 16 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 71, (8) 10.5-20 mm.</td>
</tr>
<tr>
<td>XIPHIIIDAE</td>
<td></td>
</tr>
<tr>
<td>Xiphias gladius Linnaeus</td>
<td>- Reg. 17, (1) 68.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 39, (1) 33 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 53, (1) 70 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 61, (1) 28.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 72, (1) 72.5 mm.</td>
</tr>
</tbody>
</table>

58
<table>
<thead>
<tr>
<th>Species</th>
<th>Location of capture, number and size range of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORYPHAENIDAE
Coryphaena hippurus
Linnaeus</td>
<td>-Spc. Sta. 5, (1) 53 mm.
Reg. 3, (4) 14.5-30.5 mm.
Reg. 5, (1) 22.5 mm.
Reg. 8, (1) 37 mm.
Reg. 39, (2) 15.5-23.5 mm.
Reg. 62, (1) 11.5 mm.
Reg. 63, (59) 16-102 mm.
Reg. 71, (6) 13-63 mm.
Reg. 72, (14) 15-87.5 mm.</td>
</tr>
<tr>
<td>NOMEIDAE
Nomeus gronovii (Gmelin)
Psenes cyanophrys
Valenciennes*</td>
<td>-Reg. 3, (1) 9 mm.
-Spc. Sta. 1, (1) 21.5 mm.
Spc. Sta. 2 to 3, 32°17'N., 75°42'W., (1) 54 mm.
Reg. 7, (3) 19.5-22 mm.
Reg. 40, (4) 19-26 mm.
Reg. 63, (6) 27.5-38.5 mm.
Reg. 80, (5) 32.5-36.5 mm.</td>
</tr>
<tr>
<td>CARANGIDAE
Seriola dumerili
(Risso)
Seriola zonata
(Mitchill)</td>
<td>-Reg. 31, (1) 20.5 mm.
Reg. 61, (1) 15 mm.
-Reg. 3, (29) 8.5-18 mm.
Reg. 31, (2) 16-29 mm.
Reg. 42, (1) 30 mm.</td>
</tr>
<tr>
<td>Decapterus punctatus
(Agassiz)</td>
<td>-Std. Sta., 4/19-20/53, 1900-0400, (1) 23.5 mm.
Spc. Sta. 1, (1) 52 mm.
Reg. 3, (12) 11.5-42 mm.
Reg. 5, (3) 13-17 mm.
Between Reg. 20 to Reg. 21, 29°40'N., 80°57'W., (3) 16.5-35.5 mm.
Reg. 42, (11) 25.5-40 mm.
Reg. 71, (3) 13-41 mm.</td>
</tr>
<tr>
<td>Trachinotus falcatus
(Linnaeus)</td>
<td>-Reg. 2, (1) 8 mm.</td>
</tr>
<tr>
<td>Caranx cryos (Mitchill)
Caranx ruber (Bloch)</td>
<td>-Reg. 63, (2) 12.5-29 mm.
-Spc. Sta. 1, (1) 45 mm.
Reg. 3, (1) 22.5 mm.
Reg. 7, (2) 23 mm.
Reg. 8, (7) 25-40 mm.
Reg. 40, (2) 20-23 mm.
Reg. 62, (3) 24-33 mm.</td>
</tr>
</tbody>
</table>
Table 12.--Numbers and species of fish taken by dip net (cont'd)

<table>
<thead>
<tr>
<th>Species</th>
<th>Location of capture, number and size range of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARANGIDAE (cont'd)</td>
<td></td>
</tr>
<tr>
<td>Caranx ruber Bloch (cont'd)</td>
<td>Reg. 63, (8) 25-57.5 mm. Reg. 72, (1) 65 mm. Reg. 80, (17) 26-52 mm.</td>
</tr>
<tr>
<td>Caranx bartholomaei Cuvier*</td>
<td>Reg. 7, (1) 21 mm. Reg. 48, (1) 19.5 mm. Reg. 63, (3) 35.5-40 mm. Reg. 80, (5) 23-37 mm.</td>
</tr>
<tr>
<td>Caranx latus Agassiz</td>
<td>Reg. 71, (1) 17 mm.</td>
</tr>
<tr>
<td>POMATOMIDAE</td>
<td></td>
</tr>
<tr>
<td>Pomatomus saltatrix (Linnaeus)</td>
<td>Cape Hatteras Bight, (22) 16.5-45 mm. Reg. 3, (3) 26.5-31.5 mm.</td>
</tr>
<tr>
<td>KYPHOSIDAE</td>
<td></td>
</tr>
<tr>
<td>Kyphosus sp.</td>
<td>Reg. 63, (3) 13-16 mm.</td>
</tr>
<tr>
<td>MULLIDAE</td>
<td></td>
</tr>
<tr>
<td>Pseudopeneus maculatus (Bloch)</td>
<td>Reg. 3, (1) 39 mm. Reg. 8, (1) 49 mm. Reg. 13, (16) 36.5-38 mm. Reg. 19, (2) 36.5-38 mm.</td>
</tr>
<tr>
<td>Mullus suratus Jordan and Gilbert</td>
<td>Reg. 20 to Reg. 21, 29°40'N., 80°57'W., (2) 36.5-38 mm. Reg. 25, (4) 17.5-25 mm. Reg. 31, (2) 15.5-18.5 mm. Reg. 36, (1) 17 mm. Reg. 42, (16) 19-34 mm. Reg. 43, (3) 21-27.5 mm. Reg. 49, (14) 22-35 mm. Reg. 76, (4) 24-35 mm. Reg. 20 to Reg. 21, 29°40'N., 80°57'W., (13) 33-39 mm. Reg. 20 to Reg. 21, 29°40'N., 80°57'W., (13) 33-39 mm.</td>
</tr>
<tr>
<td>POMACENTRIDAE</td>
<td></td>
</tr>
<tr>
<td>Eupomacentrus sp.?</td>
<td>-Reg. 3, (5) 8.5 mm. Reg. 63, (2) 11.5-14 mm. Reg. 71, (33) 10-14.5 mm.</td>
</tr>
</tbody>
</table>
Table 12.—Numbers and species of fish taken by dip net (cont'd)

<table>
<thead>
<tr>
<th>Species</th>
<th>Location of capture, number and size range of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>POMACENTRIDAe (cont'd)</td>
<td></td>
</tr>
<tr>
<td>Abudefduf saxatilis (Linnaeus)</td>
<td>-Reg. 39, (1) 10.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 80, (2) 21.5-28.5 mm.</td>
</tr>
<tr>
<td>BLENNIIDAE</td>
<td></td>
</tr>
<tr>
<td>Blenniidae</td>
<td>-Reg. 3, (60) 15-18 mm.</td>
</tr>
<tr>
<td>Ophioblennius sp.</td>
<td>-Reg. 42, (1) 43.5 mm.</td>
</tr>
<tr>
<td>BALISTIDAE</td>
<td></td>
</tr>
<tr>
<td>Canthidermis sufflamen (Mitchill)</td>
<td>-Reg. 39, (1) 12.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 40, (1) 16 mm.</td>
</tr>
<tr>
<td>ALUTERIDAE</td>
<td></td>
</tr>
<tr>
<td>Stephanolepis setifer (Bennett)</td>
<td>-Reg. 40, (1) 24.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 63, (1) 17 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 72, (1) 18.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 80, (1) 40 mm.</td>
</tr>
<tr>
<td>Stephanolepis hispidus (Linnaeus)</td>
<td>-Reg. 61, (3) 10-12.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 62, (2) 10-11 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 63, (3) 11-12.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 72, (1) 15 mm.</td>
</tr>
<tr>
<td>Monacanthus ciliatus (Mitchill)</td>
<td>-Reg. 3, (3) 15-19.5 mm.</td>
</tr>
<tr>
<td>Alutera sp. /1</td>
<td></td>
</tr>
<tr>
<td>Alutera scripta (Osbeck)</td>
<td>-Reg. 5, (1) 15.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 80, (1) 63 mm.</td>
</tr>
<tr>
<td>TETRAODONTIDAE</td>
<td></td>
</tr>
<tr>
<td>Spherooides sp.</td>
<td>-Reg. 3, (41) 6.5-12.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 8, (2) 14-15 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 42, (1) 7 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 61, (1) 7.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 68, (1) 9.5 mm.</td>
</tr>
<tr>
<td>DIODONTIDAE</td>
<td></td>
</tr>
<tr>
<td>Diodon hystrix Linnaeus</td>
<td>-Reg. 63, (1) 167 mm.</td>
</tr>
<tr>
<td>Diodon hystrix/2</td>
<td>-Reg. 3, (1) 43 mm.</td>
</tr>
<tr>
<td>ANTENNARIIDAE</td>
<td></td>
</tr>
<tr>
<td>Histrio gibba (Mitchill)</td>
<td>-Sp. Sta. 2 to Spc. Sta. 3, 32°17'N., 75°42'W., (37) 11-66 mm.</td>
</tr>
<tr>
<td></td>
<td>Spc. Sta. 4, (1) 15.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Spc. Sta. 8, (1) 14 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 40, (1) 13.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 63, (3) 10-34.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 72, (1) 13.5 mm.</td>
</tr>
<tr>
<td></td>
<td>Reg. 80, (42) 10.5-35 mm.</td>
</tr>
</tbody>
</table>

1/ A. schoepfi (Walbaum) or A. punctata Agassiz
2/ D. holacanthus Linnaeus, if valid.
Figure 5.—Distribution of temperature (°C), salinity (%), and density (\(\sigma_t\)) across section of stations 1, 2, and 3 (Jupiter Section).

Figure 6.—Distribution of temperature (°C), salinity (%), and density (\(\sigma_t\)) across section of stations 5, 6, and 7 (Vero Section).
Figure 7.—Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 8, 9, 10, and 11 (Canaveral Section).
Figure 8.—Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 13, 14, 15, and 16 (Ponce de Leon Section).
Figure 9.--Distribution of temperature (°C), salinity (‰), and density (σ_t) across section of stations 17, 18, 19, 20, and 21 (Matanzas Section).
Figure 10.—Distribution of temperature (°C), salinity (%), and density (σt) across section of stations 23, 24, 25, 26, 27, and 28 (Jacksonville Section).
Figure 11.--Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 29, 30, 31, 32, 33, and 34 (Brunswick Section).
Figure 12.--Distribution of temperature (°C), salinity (‰), and density (σ_t) across section of stations 36, 37, 38, 39, and 40 (Savannah Section).
Figure 13.--Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 40, 41, 42, 43, and 44 (Charleston Section).

Figure 14.--Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 46, 47, 48, and 49 (Cape Romain Section).
Figure 15.--Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 53, 54, 55, and 56 (Long Bay Section).

Figure 16.--Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 58, 59, 60, 61, and 62 (Cape Fear Section).
Figure 17.—Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 63, 64, 65, 66, and 67 (Onslow Bay Section).

Figure 18.—Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 69, 70, 71, and 72 (Cape Lookout Section).
Figure 19.--Distribution of temperature (°C), salinity (‰), and density (σ_t) across section of stations 73, 74, 75, and 76 (Raleigh Bay Section).
Figure 20.—Distribution of temperature (°C), salinity (%), and density (σ_t) across section of stations 78, 79, and 80 (Hatteras Section).
STATION 1

DATE April 23, 1953 **LAT.** 27°00' N. **LONG.** 79°18' W. **TIME** 01

DEPTH 644 **WIND** 4, 09 **BAR.** 22 **AIR TEMP:** dry 22.2°C, wet 15.6°C
HUMIDITY 50% **WEATHER** Type 8, **amt.** 1 **SEA:** dir. 00, **amt.** 2
SWELL: dir. 18, **amt.** 1 **VIS.** 7 **WATER TRANS.** -

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.70**</td>
<td>36.10</td>
<td>23.66</td>
<td>4.48</td>
</tr>
<tr>
<td>10</td>
<td>26.03</td>
<td>36.06</td>
<td>23.84</td>
<td>4.61</td>
</tr>
<tr>
<td>19</td>
<td>25.99</td>
<td>36.07</td>
<td>23.86</td>
<td>4.61</td>
</tr>
<tr>
<td>47</td>
<td>25.98</td>
<td>36.06</td>
<td>23.86</td>
<td>4.58</td>
</tr>
<tr>
<td>94</td>
<td>25.00</td>
<td>36.27</td>
<td>24.32</td>
<td>4.29</td>
</tr>
<tr>
<td>143</td>
<td>21.96</td>
<td>36.73</td>
<td>25.56</td>
<td>3.68</td>
</tr>
<tr>
<td>193*</td>
<td>19.87</td>
<td>36.69</td>
<td>26.10</td>
<td>3.72</td>
</tr>
<tr>
<td>222</td>
<td>18.16</td>
<td>36.44</td>
<td>26.35</td>
<td>3.79</td>
</tr>
<tr>
<td>269*</td>
<td>17.07</td>
<td>36.27</td>
<td>26.49</td>
<td>3.40</td>
</tr>
<tr>
<td>364</td>
<td>13.37</td>
<td>35.71</td>
<td>26.88</td>
<td>3.00</td>
</tr>
<tr>
<td>462</td>
<td>10.39</td>
<td>35.27</td>
<td>27.11</td>
<td>2.79</td>
</tr>
</tbody>
</table>

* Value questionable
** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.70</td>
<td>36.10</td>
<td>23.66</td>
<td>4.48</td>
</tr>
<tr>
<td>10</td>
<td>26.03</td>
<td>36.06</td>
<td>23.84</td>
<td>4.61</td>
</tr>
<tr>
<td>20</td>
<td>25.99</td>
<td>36.07</td>
<td>23.86</td>
<td>4.61</td>
</tr>
<tr>
<td>30</td>
<td>25.98</td>
<td>36.06</td>
<td>23.86</td>
<td>4.60</td>
</tr>
<tr>
<td>50</td>
<td>25.96</td>
<td>36.07</td>
<td>23.87</td>
<td>4.55</td>
</tr>
<tr>
<td>75</td>
<td>25.47</td>
<td>36.16</td>
<td>24.09</td>
<td>4.43</td>
</tr>
<tr>
<td>100</td>
<td>24.57</td>
<td>36.35</td>
<td>24.51</td>
<td>4.23</td>
</tr>
<tr>
<td>150</td>
<td>21.59</td>
<td>36.72</td>
<td>25.66</td>
<td>3.69</td>
</tr>
<tr>
<td>200</td>
<td>19.05</td>
<td>36.63</td>
<td>26.27</td>
<td>3.73</td>
</tr>
<tr>
<td>250</td>
<td>17.11</td>
<td>36.31</td>
<td>26.51</td>
<td>3.56</td>
</tr>
<tr>
<td>300</td>
<td>15.40</td>
<td>36.06</td>
<td>26.72</td>
<td>3.25</td>
</tr>
<tr>
<td>400</td>
<td>12.18</td>
<td>35.53</td>
<td>26.98</td>
<td>2.80</td>
</tr>
</tbody>
</table>

74
STATION 1

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO(_4)-P (µg at/l)</th>
<th>NO(_3^--NO_2) (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>0.3</td>
<td>1.5</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>47</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>94</td>
<td>-</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>143</td>
<td>0.6</td>
<td>0.6</td>
<td>3.0</td>
<td>1.8</td>
<td>0.1</td>
</tr>
<tr>
<td>193*</td>
<td>0.9</td>
<td>0.1</td>
<td>2.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>222</td>
<td>-</td>
<td>0.6</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>269*</td>
<td>-</td>
<td>0.7</td>
<td>6.0</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>364</td>
<td>0.8</td>
<td>-</td>
<td>11.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>462</td>
<td>-</td>
<td>1.3</td>
<td>9.5</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO(_4)-P (µg at/l)</th>
<th>NO(_3^--NO_2) (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.3</td>
<td>1.5</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>75</td>
<td>0.6</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>100</td>
<td>0.6</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>150</td>
<td>0.6</td>
<td>0.6</td>
<td>3.0</td>
<td>1.8</td>
<td>0.1</td>
</tr>
<tr>
<td>200</td>
<td>0.6</td>
<td>0.6</td>
<td>3.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>250</td>
<td>0.7</td>
<td>0.7</td>
<td>5.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>300</td>
<td>0.7</td>
<td>0.8</td>
<td>8.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>1.1</td>
<td>10.5</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>

75
STATION 2

DATE April 23, 1953 LAT. 26°56' N. LONG. 79°41'W. TIME 06

DEPTH 338 WIND 5, 14 BAR. 23 AIR TEMP: dry 22.2°C, wet 16.2°C
HUMIDITY 54% WEATHER 02 CLOUDS: type __, amt. __ SEA: dir. __, amt. __
SWELL: dir. __, amt. __ VIS. 8 WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.22</td>
<td>36.25</td>
<td>24.24</td>
<td>4.73</td>
</tr>
<tr>
<td>9</td>
<td>25.19</td>
<td>36.22</td>
<td>24.23</td>
<td>4.65</td>
</tr>
<tr>
<td>17</td>
<td>25.20</td>
<td>36.26</td>
<td>24.25</td>
<td>4.87</td>
</tr>
<tr>
<td>43</td>
<td>24.16</td>
<td>36.34</td>
<td>24.63</td>
<td>4.87</td>
</tr>
<tr>
<td>84</td>
<td>19.93</td>
<td>36.31</td>
<td>25.80</td>
<td>4.79</td>
</tr>
<tr>
<td>121</td>
<td>15.52</td>
<td>35.90</td>
<td>26.57</td>
<td>3.49</td>
</tr>
<tr>
<td>153</td>
<td>12.25</td>
<td>35.50</td>
<td>26.95</td>
<td>2.99</td>
</tr>
<tr>
<td>167</td>
<td>10.40</td>
<td>35.27</td>
<td>27.11</td>
<td>2.91</td>
</tr>
<tr>
<td>177</td>
<td>11.60*</td>
<td>35.46*</td>
<td>27.04</td>
<td>-</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.22</td>
<td>36.25</td>
<td>24.24</td>
<td>4.73</td>
</tr>
<tr>
<td>10</td>
<td>25.20</td>
<td>36.23</td>
<td>24.23</td>
<td>4.70</td>
</tr>
<tr>
<td>20</td>
<td>25.15</td>
<td>36.27</td>
<td>24.28</td>
<td>4.87</td>
</tr>
<tr>
<td>30</td>
<td>24.84</td>
<td>36.31</td>
<td>24.40</td>
<td>4.87</td>
</tr>
<tr>
<td>50</td>
<td>23.49</td>
<td>36.34</td>
<td>24.83</td>
<td>4.86</td>
</tr>
<tr>
<td>75</td>
<td>20.92</td>
<td>36.32</td>
<td>25.54</td>
<td>4.82</td>
</tr>
<tr>
<td>100</td>
<td>17.94</td>
<td>36.14</td>
<td>26.18</td>
<td>4.40</td>
</tr>
<tr>
<td>150</td>
<td>12.61</td>
<td>35.54</td>
<td>26.91</td>
<td>3.05</td>
</tr>
</tbody>
</table>
STATION 2

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄⁻P (µg at/l)</th>
<th>NO₃⁻NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.7</td>
<td>1.0</td>
<td>3.1</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>17</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>43</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>84</td>
<td>-</td>
<td>0.8</td>
<td>1.5</td>
<td>13.8</td>
<td>0.2</td>
</tr>
<tr>
<td>121</td>
<td>-</td>
<td>1.2</td>
<td>7.5</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>153</td>
<td>-</td>
<td>1.6</td>
<td>7.0</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>167</td>
<td>-</td>
<td>1.7</td>
<td>11.0</td>
<td>5.1</td>
<td>0.1</td>
</tr>
<tr>
<td>177</td>
<td>-</td>
<td>1.8</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄⁻P (µg at/l)</th>
<th>NO₃⁻NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.7</td>
<td>1.0</td>
<td>3.1</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.5</td>
<td>1.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.7</td>
<td>1.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>1.0</td>
<td>4.0</td>
<td>8.4</td>
<td>0.5</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>1.6</td>
<td>7.0</td>
<td>3.7</td>
<td>1.3</td>
</tr>
</tbody>
</table>
STATION 3

DATE April 23, 1953 LAT. 27°01' N. LONG. 80°04' W. TIME 09
DEPTH 11 WIND 5°, 09 BAR. 21 AIR TEMP: dry 21.7°C, wet 15.6°C
HUMIDITY 52% WEATHER 02 CLOUDS: type - , amt. 1 SEA: dir. 09, amt. 1
SWELL: dir. - , amt. - VIS. 8 WATER TRANS. -

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.91</td>
<td>36.26</td>
<td>24.93</td>
<td>4.87</td>
</tr>
<tr>
<td>10</td>
<td>22.86</td>
<td>36.30</td>
<td>24.98</td>
<td>5.20</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.91</td>
<td>36.26</td>
<td>24.93</td>
<td>4.87</td>
</tr>
<tr>
<td>10</td>
<td>22.86</td>
<td>36.30</td>
<td>24.98</td>
<td>5.20</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
<td><0.1</td>
<td>1.5</td>
<td>5.6</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9</td>
<td><0.1</td>
<td>1.5</td>
<td>5.6</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
</tr>
</tbody>
</table>
STATION 4

DATE: April 23, 1953
LAT.: 27°20'N.
LONG.: 80°04'W.
TIME: 13

DEPTH: 22
WIND: 4, 14
BAR.:
AIR TEMP: dry — °C, wet — °C
HUMIDITY — %
WEATHER C2
CLOUDS: type______, amt.______
SEA: dir.______, amt.______
SWELL: dir.______, amt.______
VIS.: 8
WATER TRANS.:

<table>
<thead>
<tr>
<th>OBSERVED</th>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>T*</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>22.86</td>
<td>36.30</td>
<td>24.98</td>
<td>5.36</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>22.82</td>
<td>36.27</td>
<td>24.97</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>21.64</td>
<td>36.26</td>
<td>25.29</td>
<td>5.05</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>T*</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.86</td>
<td>36.30</td>
<td>24.98</td>
<td>5.36</td>
</tr>
<tr>
<td>10</td>
<td>22.82</td>
<td>36.27</td>
<td>24.97</td>
<td>5.26</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.4</td>
<td>1.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
<td>5.3</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>3.1</td>
<td>-</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.4</td>
<td>1.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
<td>5.3</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>3.1</td>
<td>-</td>
</tr>
</tbody>
</table>
STATION 5

DATE April 23, 1953 LAT. 27°40' N. LONG. 80°04' W. TIME 16
DEPT. 40 WIND 4, 10 BAR. 23 AIR TEMP: dry 22.2°C, wet 16.7°C
HUMIDITY 57% WEATHER 02 CLOUDS: type 8, amt. 3 SEA: dir. 09, amt. 2
SWELL: dir. 00, amt. 2 VIS. 7 WATER TRANS.

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.90</td>
<td>36.30</td>
<td>24.67</td>
<td>5.03</td>
</tr>
<tr>
<td>10</td>
<td>23.56</td>
<td>36.26</td>
<td>24.74</td>
<td>5.12</td>
</tr>
<tr>
<td>20</td>
<td>20.70</td>
<td>36.12</td>
<td>25.45</td>
<td>4.43</td>
</tr>
<tr>
<td>30</td>
<td>18.41*</td>
<td>36.08</td>
<td>26.01</td>
<td>4.32</td>
</tr>
<tr>
<td>40</td>
<td>17.77</td>
<td>36.03</td>
<td>26.13</td>
<td>4.06</td>
</tr>
</tbody>
</table>

*Value questionable

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.90</td>
<td>36.30</td>
<td>24.67</td>
<td>5.03</td>
</tr>
<tr>
<td>10</td>
<td>23.56</td>
<td>36.26</td>
<td>24.74</td>
<td>5.12</td>
</tr>
<tr>
<td>20</td>
<td>20.70</td>
<td>36.12</td>
<td>25.45</td>
<td>4.43</td>
</tr>
<tr>
<td>30</td>
<td>18.99</td>
<td>36.08</td>
<td>25.87</td>
<td>4.32</td>
</tr>
</tbody>
</table>
STATION 5

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
<td>0.6</td>
<td>4.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>0.7</td>
<td>5.5</td>
<td>1.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.5</td>
<td>2.5</td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
<td>0.6</td>
<td>4.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>
STATION 6

DATE April 23, 1953 LAT. 27°40' N. LONG. 79°41' W. TIME 20
DEPTH 567 WIND 14 BAR. 23 AIR TEMP: dry 22.8°C, wet 16.7°C
HUMIDITY 54% WEATHER 02 CLOUDS: type 8, amt. 2 SEA: dir. --, amt. 1
SWELL: dir. --, amt. 1 VIS: 8 WATER TRANS: 33

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.21</td>
<td>36.18</td>
<td>23.88</td>
<td>4.63</td>
</tr>
<tr>
<td>9</td>
<td>25.93</td>
<td>36.13</td>
<td>23.93</td>
<td>4.64</td>
</tr>
<tr>
<td>18</td>
<td>25.92</td>
<td>36.09</td>
<td>23.90</td>
<td>4.63</td>
</tr>
<tr>
<td>42</td>
<td>25.85</td>
<td>36.09</td>
<td>23.92</td>
<td>4.63</td>
</tr>
<tr>
<td>83</td>
<td>23.01</td>
<td>36.34</td>
<td>24.97</td>
<td>4.07</td>
</tr>
<tr>
<td>124</td>
<td>20.08</td>
<td>36.39</td>
<td>25.82</td>
<td>4.51</td>
</tr>
<tr>
<td>166</td>
<td>18.25</td>
<td>36.44</td>
<td>26.33</td>
<td>3.49</td>
</tr>
<tr>
<td>209</td>
<td>16.50</td>
<td>36.20</td>
<td>26.57</td>
<td>3.39</td>
</tr>
<tr>
<td>253</td>
<td>14.28</td>
<td>35.59</td>
<td>26.60</td>
<td>2.95</td>
</tr>
<tr>
<td>298</td>
<td>12.54</td>
<td>35.89</td>
<td>27.19</td>
<td>2.83</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.21</td>
<td>36.18</td>
<td>23.88</td>
<td>4.63</td>
</tr>
<tr>
<td>10</td>
<td>25.93</td>
<td>36.12</td>
<td>23.92</td>
<td>4.64</td>
</tr>
<tr>
<td>20</td>
<td>25.90</td>
<td>36.09</td>
<td>23.91</td>
<td>4.63</td>
</tr>
<tr>
<td>30</td>
<td>25.88</td>
<td>36.09</td>
<td>23.91</td>
<td>4.63</td>
</tr>
<tr>
<td>50</td>
<td>25.55</td>
<td>36.13</td>
<td>24.05</td>
<td>4.68</td>
</tr>
<tr>
<td>75</td>
<td>23.57</td>
<td>36.28</td>
<td>24.76</td>
<td>4.83</td>
</tr>
<tr>
<td>100</td>
<td>21.66</td>
<td>36.38</td>
<td>25.38</td>
<td>4.72</td>
</tr>
<tr>
<td>150</td>
<td>18.93</td>
<td>36.43</td>
<td>26.15</td>
<td>3.88</td>
</tr>
<tr>
<td>200</td>
<td>16.90</td>
<td>36.28</td>
<td>26.54</td>
<td>3.41</td>
</tr>
<tr>
<td>250</td>
<td>14.42</td>
<td>36.01</td>
<td>26.89</td>
<td>2.98</td>
</tr>
</tbody>
</table>

84
STATION 6

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.2</td>
<td>0.2</td>
<td>1.5</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>18</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>83</td>
<td>-</td>
<td>0.3</td>
<td><0.5</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>124</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>6.0</td>
<td>0.3</td>
</tr>
<tr>
<td>166</td>
<td>-</td>
<td>0.6</td>
<td>9.0</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>209</td>
<td>-</td>
<td>1.1</td>
<td>11.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>253</td>
<td>-</td>
<td>1.1</td>
<td>18.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>298</td>
<td>-</td>
<td>1.3</td>
<td>20.5</td>
<td>2.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
<td>1.5</td>
<td><0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>1.8</td>
<td><0.1</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.3</td>
<td><0.5</td>
<td>1.7</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>3.4</td>
<td>0.2</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.4</td>
<td>6.0</td>
<td>3.8</td>
<td>0.3</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.0</td>
<td>11.5</td>
<td>2.3</td>
<td>0.5</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>1.1</td>
<td>18.0</td>
<td>2.2</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>1.3</td>
<td>20.5</td>
<td>2.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>
STATION 7

DATE April 24, 1953 LAT. 27°40'N. LONG. 79°18'W. TIME 00
DEPTH 521 WIND 5° 09 BAR. 22 AIR TEMP: dry 22.8°C, wet 20.6°C
HUMIDITY 90% WEATHER 02 CLOUDS: type 8, amt. 2 SEA: dir. 09, amt. 1
SWELL: dir. _, amt. _ VIS. _ WATER TRANS._

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.90**</td>
<td>36.13</td>
<td>23.94</td>
<td>4.63</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>36.12</td>
<td>-</td>
<td>4.58</td>
</tr>
<tr>
<td>20</td>
<td>25.90</td>
<td>36.09</td>
<td>23.91</td>
<td>4.65</td>
</tr>
<tr>
<td>49</td>
<td>25.84</td>
<td>36.08</td>
<td>23.92</td>
<td>4.49</td>
</tr>
<tr>
<td>99</td>
<td>23.98</td>
<td>36.45</td>
<td>24.76</td>
<td>4.06</td>
</tr>
<tr>
<td>148</td>
<td>21.20</td>
<td>36.70</td>
<td>25.75</td>
<td>3.65</td>
</tr>
<tr>
<td>197</td>
<td>19.71</td>
<td>36.62</td>
<td>26.09</td>
<td>3.73</td>
</tr>
<tr>
<td>297</td>
<td>17.22</td>
<td>36.32</td>
<td>26.49</td>
<td>3.51</td>
</tr>
<tr>
<td>397</td>
<td>14.45</td>
<td>35.85</td>
<td>26.76</td>
<td>2.92</td>
</tr>
<tr>
<td>447</td>
<td>13.12</td>
<td>35.67</td>
<td>26.91</td>
<td>3.11</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.90</td>
<td>36.13</td>
<td>23.94</td>
<td>4.63</td>
</tr>
<tr>
<td>10</td>
<td>25.90</td>
<td>36.12</td>
<td>23.93</td>
<td>4.58</td>
</tr>
<tr>
<td>20</td>
<td>25.90</td>
<td>36.09</td>
<td>23.91</td>
<td>4.65</td>
</tr>
<tr>
<td>30</td>
<td>25.88</td>
<td>36.09</td>
<td>23.91</td>
<td>4.60</td>
</tr>
<tr>
<td>50</td>
<td>25.82</td>
<td>36.08</td>
<td>23.92</td>
<td>4.48</td>
</tr>
<tr>
<td>75</td>
<td>25.12</td>
<td>36.26</td>
<td>24.28</td>
<td>4.28</td>
</tr>
<tr>
<td>100</td>
<td>23.93</td>
<td>36.46</td>
<td>24.79</td>
<td>4.05</td>
</tr>
<tr>
<td>150</td>
<td>21.13</td>
<td>36.70</td>
<td>25.77</td>
<td>3.65</td>
</tr>
<tr>
<td>200</td>
<td>19.64</td>
<td>36.62</td>
<td>26.11</td>
<td>3.73</td>
</tr>
<tr>
<td>250</td>
<td>18.36</td>
<td>36.47</td>
<td>26.32</td>
<td>3.62</td>
</tr>
<tr>
<td>300</td>
<td>17.15</td>
<td>36.30</td>
<td>26.49</td>
<td>3.50</td>
</tr>
<tr>
<td>400</td>
<td>14.38</td>
<td>35.84</td>
<td>26.77</td>
<td>2.92</td>
</tr>
</tbody>
</table>
STATION 7

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.1</td>
<td>< 0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>49</td>
<td>-</td>
<td>0.1</td>
<td>1.5</td>
<td>4.6</td>
<td>0.2</td>
</tr>
<tr>
<td>99</td>
<td>0.3</td>
<td>0.1</td>
<td>1.6</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>148</td>
<td>-</td>
<td>0.6</td>
<td>3.5</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>197</td>
<td>-</td>
<td>1.5</td>
<td>7.0</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>297</td>
<td>-</td>
<td>1.4</td>
<td>3.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>397</td>
<td>-</td>
<td>1.3</td>
<td>15.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>0.1</td>
<td>< 0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>4.6</td>
<td>0.2</td>
</tr>
<tr>
<td>30</td>
<td>0.4</td>
<td>0.2</td>
<td>0.5</td>
<td>4.2</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>0.4</td>
<td>0.1</td>
<td>3.4</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>75</td>
<td>0.4</td>
<td>0.1</td>
<td>2.5</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>100</td>
<td>0.3</td>
<td>0.1</td>
<td>1.6</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.6</td>
<td>2.5</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.4</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>1.5</td>
<td>7.0</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
</tr>
</tbody>
</table>

87
STATION 8

DATE April 24, 1973 LAT. 28°19' N. LONG. 79°26' W. TIME 10

DEPTH 795 WIND 3, 20 BAR. 20 AIR TEMP: dry 22.8°C, wet 16.7°C
HUMIDITY 54% WEATHER 02 CLOUDS: type-, amt. 0 SEA: dir. ___, amt. 2
Swell: dir. ___, amt. ___ VIS. 7 WATER TRANS. ___

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σₜ</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.90**</td>
<td>36.07</td>
<td>23.89</td>
<td>4.64</td>
</tr>
<tr>
<td>10</td>
<td>28.84*</td>
<td>36.06</td>
<td>22.93</td>
<td>4.64</td>
</tr>
<tr>
<td>19</td>
<td>25.96</td>
<td>36.11</td>
<td>23.90</td>
<td>4.57</td>
</tr>
<tr>
<td>49</td>
<td>25.97</td>
<td>36.06</td>
<td>23.86</td>
<td>4.53</td>
</tr>
<tr>
<td>97</td>
<td>23.56</td>
<td>36.56</td>
<td>24.97</td>
<td>4.06</td>
</tr>
<tr>
<td>145</td>
<td>20.55</td>
<td>36.64</td>
<td>25.88</td>
<td>3.99</td>
</tr>
<tr>
<td>193</td>
<td>19.63</td>
<td>36.62</td>
<td>26.11</td>
<td>3.90</td>
</tr>
<tr>
<td>381</td>
<td>15.19*</td>
<td>35.97*</td>
<td>26.69</td>
<td>3.09</td>
</tr>
<tr>
<td>474</td>
<td>11.67*</td>
<td>35.48*</td>
<td>27.04</td>
<td>3.09</td>
</tr>
<tr>
<td>657</td>
<td>8.22</td>
<td>34.97</td>
<td>27.24</td>
<td>2.83</td>
</tr>
</tbody>
</table>

* Value questionable
** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σₜ</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.90</td>
<td>36.07</td>
<td>23.89</td>
<td>4.64</td>
</tr>
<tr>
<td>10</td>
<td>25.93</td>
<td>36.06</td>
<td>23.88</td>
<td>4.64</td>
</tr>
<tr>
<td>20</td>
<td>25.98</td>
<td>36.10</td>
<td>23.90</td>
<td>4.57</td>
</tr>
<tr>
<td>30</td>
<td>25.96</td>
<td>36.10</td>
<td>23.90</td>
<td>4.56</td>
</tr>
<tr>
<td>50</td>
<td>25.93</td>
<td>36.07</td>
<td>23.88</td>
<td>4.53</td>
</tr>
<tr>
<td>75</td>
<td>24.74</td>
<td>36.36</td>
<td>24.47</td>
<td>4.28</td>
</tr>
<tr>
<td>100</td>
<td>23.31</td>
<td>36.57</td>
<td>25.05</td>
<td>4.06</td>
</tr>
<tr>
<td>150</td>
<td>20.46</td>
<td>36.64</td>
<td>25.91</td>
<td>3.98</td>
</tr>
<tr>
<td>200</td>
<td>19.49</td>
<td>36.60</td>
<td>26.13</td>
<td>3.88</td>
</tr>
<tr>
<td>250</td>
<td>18.27</td>
<td>36.46</td>
<td>26.34</td>
<td>3.69</td>
</tr>
<tr>
<td>300</td>
<td>17.09</td>
<td>36.27</td>
<td>26.48</td>
<td>3.47</td>
</tr>
<tr>
<td>400</td>
<td>14.65</td>
<td>35.88</td>
<td>26.74</td>
<td>3.09</td>
</tr>
<tr>
<td>500</td>
<td>11.91</td>
<td>35.49</td>
<td>27.00</td>
<td>3.07</td>
</tr>
<tr>
<td>600</td>
<td>9.56</td>
<td>35.14</td>
<td>27.16</td>
<td>2.95</td>
</tr>
</tbody>
</table>
STATION 8

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>< 0.1</td>
<td>< 0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
<td>< 0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>19</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>49</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>97</td>
<td>0.3</td>
<td>0.3</td>
<td>3.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>145</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>193</td>
<td>-</td>
<td>0.4</td>
<td>4.0</td>
<td>2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>381</td>
<td>0.4</td>
<td>-</td>
<td>5.0</td>
<td>3.8</td>
<td>0.4</td>
</tr>
<tr>
<td>474</td>
<td>-</td>
<td>1.4</td>
<td>5.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>657</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td>2.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>< 0.1</td>
<td>< 0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
<td>< 0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>75</td>
<td>0.3</td>
<td>0.2</td>
<td>2.0</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>0.3</td>
<td>0.3</td>
<td>3.0</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>150</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0</td>
<td>2.3</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.4</td>
<td>4.0</td>
<td>2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.6</td>
<td>4.5</td>
<td>3.2</td>
<td>0.7</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>0.8</td>
<td>4.5</td>
<td>3.4</td>
<td>0.6</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>1.1</td>
<td>5.0</td>
<td>3.7</td>
<td>0.4</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>1.5</td>
<td>4.5</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
<td>2.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>
STATION 9

DATE April 24, 1953 LAT. 28°20'N. LONG. 79°48'W. TIME 14
DEPTH 371 WIND 3, 14 BAR. 20 AIR TEMP: dry 23.9°C, wet 21.7°C
HUMIDITY 83% WEATHER 02 CLOUDS: type 8, amt. 2 SEA: dir. - , amt. -
SWELL: dir. - , amt. - VIS. 8 WATER TRANS. 37

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>T (ml/l)</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.65**</td>
<td>36.12</td>
<td>24.01</td>
<td>4.73</td>
</tr>
<tr>
<td>8</td>
<td>25.65</td>
<td>36.08</td>
<td>23.98</td>
<td>4.63</td>
</tr>
<tr>
<td>16</td>
<td>25.67</td>
<td>36.14</td>
<td>24.02</td>
<td>4.57</td>
</tr>
<tr>
<td>40</td>
<td>25.54</td>
<td>36.13</td>
<td>24.05</td>
<td>4.53</td>
</tr>
<tr>
<td>81</td>
<td>22.14</td>
<td>36.38</td>
<td>25.25</td>
<td>4.61</td>
</tr>
<tr>
<td>122</td>
<td>20.04</td>
<td>36.44</td>
<td>25.87</td>
<td>4.55</td>
</tr>
<tr>
<td>164</td>
<td>18.46</td>
<td>36.42</td>
<td>26.26</td>
<td>3.25</td>
</tr>
<tr>
<td>206</td>
<td>16.46</td>
<td>36.15</td>
<td>26.54</td>
<td>3.17</td>
</tr>
<tr>
<td>246</td>
<td>12.76</td>
<td>35.61</td>
<td>26.93</td>
<td>2.87</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>T (ml/l)</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.65</td>
<td>36.12</td>
<td>24.01</td>
<td>4.73</td>
</tr>
<tr>
<td>10</td>
<td>25.66</td>
<td>36.10</td>
<td>23.99</td>
<td>4.62</td>
</tr>
<tr>
<td>20</td>
<td>25.65</td>
<td>36.13</td>
<td>24.02</td>
<td>4.58</td>
</tr>
<tr>
<td>30</td>
<td>25.60</td>
<td>36.13</td>
<td>24.03</td>
<td>4.60</td>
</tr>
<tr>
<td>50</td>
<td>24.59</td>
<td>36.21</td>
<td>24.40</td>
<td>4.68</td>
</tr>
<tr>
<td>75</td>
<td>22.56</td>
<td>36.36</td>
<td>25.11</td>
<td>4.78</td>
</tr>
<tr>
<td>100</td>
<td>21.10</td>
<td>36.42</td>
<td>25.57</td>
<td>4.72</td>
</tr>
<tr>
<td>150</td>
<td>19.05</td>
<td>36.44</td>
<td>26.13</td>
<td>3.64</td>
</tr>
<tr>
<td>200</td>
<td>16.87</td>
<td>36.21</td>
<td>26.49</td>
<td>3.18</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
<td>9.4</td>
</tr>
<tr>
<td>16</td>
<td>0.3</td>
<td>0.2</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>81</td>
<td>0.6</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>122</td>
<td>-</td>
<td>0.4</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>164</td>
<td>-</td>
<td>0.8</td>
<td>14.0</td>
<td>-</td>
</tr>
<tr>
<td>206</td>
<td>-</td>
<td>1.0</td>
<td>5.5</td>
<td>-</td>
</tr>
<tr>
<td>246</td>
<td>-</td>
<td>1.7</td>
<td>4.0</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.3</td>
<td>2.0</td>
<td>9.4</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.2</td>
<td>3.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>30</td>
<td>0.4</td>
<td>0.3</td>
<td>2.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.4</td>
<td>0.4</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>75</td>
<td>0.6</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.3</td>
<td>2.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.7</td>
<td>10.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.0</td>
<td>5.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>1.7</td>
<td>4.0</td>
<td>-</td>
<td>0.4</td>
</tr>
</tbody>
</table>
STATION 10

DATE April 24, 1953 LAT. 28°18' N. LONG. 80°10' W. TIME 17
DEPTH 36 WIND 3 ,16 BAR. 22 AIR TEMP: dry 23.9°C, wet 21.7°C HUMIDITY 83% WEATHER 02 CLOUDS: type B ,amt. 2 SEA:dir. 16 ,amt. 1
SWELL:dir.____,amt.____ VIS.____ WATER TRANS. 14

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.20</td>
<td>36.29</td>
<td>24.58</td>
<td>4.98</td>
</tr>
<tr>
<td>10</td>
<td>23.52</td>
<td>36.26</td>
<td>24.76</td>
<td>4.95</td>
</tr>
<tr>
<td>20</td>
<td>19.73</td>
<td>36.11</td>
<td>25.70</td>
<td>4.75</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.20</td>
<td>36.29</td>
<td>24.58</td>
<td>4.98</td>
</tr>
<tr>
<td>10</td>
<td>23.52</td>
<td>36.26</td>
<td>24.76</td>
<td>4.95</td>
</tr>
<tr>
<td>20</td>
<td>19.73</td>
<td>36.11</td>
<td>25.70</td>
<td>4.75</td>
</tr>
</tbody>
</table>
STATION 10

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.5</td>
<td>3.5</td>
<td>1.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.2</td>
<td>1.0</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.5</td>
<td>3.5</td>
<td>1.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>
STATION 11

DATE April 24, 1953 LAT. 28°20' N. LONG. 80°32' W. TIME 20

DEPTH 12 WIND 4, 14 BAR. AIR TEMP: dry - °C, wet - °C

HUMIDITY _% WEATHER 02 CLOUDS: type , amt. 2 SEA: dir. , amt.

SWELL: dir. , amt. VIS. 8 WATER TRANS.

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.73</td>
<td>36.27</td>
<td>24.99</td>
<td>4.90</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.73</td>
<td>26.27</td>
<td>24.99</td>
<td>4.90</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
<td><0.5</td>
<td>3.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td><0.5</td>
<td>3.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>
STATION 12

DATE April 24, 1953 LAT. 28°41' N. LONG. 80°26' W. TIME 24
DEPTH 18 WIND 4, 14 BAR. 19 AIR TEMP: dry 22.8°C, wet 19.4°C
HUMIDITY 73% WEATHER 02 CLOUDS: type 1, amt. 3 SEA: dir. 14, amt. 1
SWELL: dir. --, amt. -- VIS. -- WATER TRANS. --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.37</td>
<td>36.24</td>
<td>25.35</td>
<td>5.20</td>
</tr>
<tr>
<td>10</td>
<td>21.13</td>
<td>36.27</td>
<td>25.44</td>
<td>5.28</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.37</td>
<td>36.24</td>
<td>25.35</td>
<td>5.20</td>
</tr>
<tr>
<td>10</td>
<td>21.13</td>
<td>36.27</td>
<td>25.44</td>
<td>5.28</td>
</tr>
</tbody>
</table>
STATION 12

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO$_4$-P (μg at/l)</th>
<th>NO$_3$-NO$_2$ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.4</td>
<td>8.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO$_4$-P (μg at/l)</th>
<th>NO$_3$-NO$_2$ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.4</td>
<td>8.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>
STATION 13

DATE April 25, 1953 **LAT.** 29°00'N. **LONG.** 80°33'W. **TIME** 01

DEPTH 17 **WIND** 6, 14 BAR. **AIR TEMP:** dry __°C, wet __°C
HUMIDITY: % **WEATHER:** CLOUDS: type __, amt. __
SEA: dir. __, amt. __
SWELL: dir. __, amt. __
VIS: __
WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.00*</td>
<td>36.22</td>
<td>25.71</td>
<td>5.46</td>
</tr>
<tr>
<td>10</td>
<td>21.65</td>
<td>36.24</td>
<td>25.28</td>
<td>5.44</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>36.22</td>
<td>-</td>
<td>5.46</td>
</tr>
<tr>
<td>10</td>
<td>21.65</td>
<td>36.24</td>
<td>25.28</td>
<td>5.44</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>1.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>1.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>
STATION 14

DATE April 25, 1953 LAT. 29°01' N. LONG. 80°08' W. TIME 06
DEPTH 82 WIND 5, 10 BAR. 19 AIR TEMP: dry 21.1 °C, wet 19.4 °C
HUMIDITY 86% WEATHER 00 CLOUDS: type -, amt. 6 SEA: dir. 10, amt. 1
SWELL: dir. --, amt. -- VIS. 7 WATER TRANS. --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.97</td>
<td>36.35</td>
<td>24.39</td>
<td>4.61</td>
</tr>
<tr>
<td>10</td>
<td>25.00</td>
<td>36.33</td>
<td>24.37</td>
<td>4.47</td>
</tr>
<tr>
<td>20</td>
<td>24.95</td>
<td>36.31</td>
<td>24.37</td>
<td>4.08</td>
</tr>
<tr>
<td>30</td>
<td>24.90</td>
<td>36.29</td>
<td>24.37</td>
<td>4.45</td>
</tr>
<tr>
<td>49</td>
<td>22.55</td>
<td>36.27</td>
<td>25.05</td>
<td>--</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.97</td>
<td>36.35</td>
<td>24.39</td>
<td>4.61</td>
</tr>
<tr>
<td>10</td>
<td>25.00</td>
<td>36.33</td>
<td>24.37</td>
<td>4.47</td>
</tr>
<tr>
<td>20</td>
<td>24.95</td>
<td>36.31</td>
<td>24.37</td>
<td>4.08</td>
</tr>
<tr>
<td>30</td>
<td>24.90</td>
<td>36.29</td>
<td>24.37</td>
<td>4.45</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td><0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.2</td>
<td>4.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>49</td>
<td>0.3</td>
<td>0.2</td>
<td>2.5</td>
<td>0.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td><0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.2</td>
<td>4.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td>0.2</td>
<td>2.5</td>
<td>0.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>
STATION 15

DATE April 25, 1953 LAT. 28°58' N. LONG. 79°47' W. TIME 10

DEPTH 732 WIND 6., 20 BAR. AIR TEMP: dry -- °C, wet -- °C

HUMIDITY -- % WEATHER 01 CLOUDS: type 3, amt. 5 SEA: dir. -- , amt. --

SWELL: dir. -- , amt. -- VIS. 7 WATER TRANS. --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.00**</td>
<td>36.08</td>
<td>23.87</td>
<td>4.65</td>
</tr>
<tr>
<td>10</td>
<td>26.02</td>
<td>36.09</td>
<td>23.87</td>
<td>4.55</td>
</tr>
<tr>
<td>20</td>
<td>26.03</td>
<td>36.08</td>
<td>23.86</td>
<td>4.55</td>
</tr>
<tr>
<td>50</td>
<td>26.00</td>
<td>36.06</td>
<td>23.85</td>
<td>4.59</td>
</tr>
<tr>
<td>100</td>
<td>24.68</td>
<td>36.39</td>
<td>24.51</td>
<td>4.04</td>
</tr>
<tr>
<td>150</td>
<td>22.20</td>
<td>36.65</td>
<td>25.43</td>
<td>3.98</td>
</tr>
<tr>
<td>200</td>
<td>19.88</td>
<td>36.61</td>
<td>26.04</td>
<td>3.52</td>
</tr>
<tr>
<td>300</td>
<td>18.19</td>
<td>36.45</td>
<td>26.35</td>
<td>3.65</td>
</tr>
<tr>
<td>500</td>
<td>13.94</td>
<td>35.77</td>
<td>26.81</td>
<td>2.68</td>
</tr>
<tr>
<td>600</td>
<td>10.73</td>
<td>35.32</td>
<td>27.09</td>
<td>2.74</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.00</td>
<td>36.08</td>
<td>23.87</td>
<td>4.65</td>
</tr>
<tr>
<td>10</td>
<td>26.02</td>
<td>36.09</td>
<td>23.87</td>
<td>4.55</td>
</tr>
<tr>
<td>20</td>
<td>26.03</td>
<td>36.08</td>
<td>23.86</td>
<td>4.55</td>
</tr>
<tr>
<td>30</td>
<td>26.01</td>
<td>36.06</td>
<td>23.85</td>
<td>4.57</td>
</tr>
<tr>
<td>50</td>
<td>26.00</td>
<td>36.06</td>
<td>23.85</td>
<td>4.59</td>
</tr>
<tr>
<td>75</td>
<td>25.34</td>
<td>36.23</td>
<td>24.19</td>
<td>4.30</td>
</tr>
<tr>
<td>100</td>
<td>24.68</td>
<td>36.39</td>
<td>24.51</td>
<td>4.04</td>
</tr>
<tr>
<td>150</td>
<td>22.20</td>
<td>36.65</td>
<td>25.43</td>
<td>3.98</td>
</tr>
<tr>
<td>200</td>
<td>19.88</td>
<td>36.61</td>
<td>26.04</td>
<td>3.52</td>
</tr>
<tr>
<td>250</td>
<td>19.07</td>
<td>36.54</td>
<td>26.20</td>
<td>3.58</td>
</tr>
<tr>
<td>300</td>
<td>18.19</td>
<td>36.45</td>
<td>26.35</td>
<td>3.65</td>
</tr>
<tr>
<td>400</td>
<td>16.43</td>
<td>36.15</td>
<td>26.55</td>
<td>3.15</td>
</tr>
<tr>
<td>500</td>
<td>13.94</td>
<td>35.77</td>
<td>26.81</td>
<td>2.68</td>
</tr>
<tr>
<td>600</td>
<td>10.73</td>
<td>35.32</td>
<td>27.09</td>
<td>2.74</td>
</tr>
</tbody>
</table>
Station 15

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>20</td>
<td>2.9</td>
<td>0.2</td>
<td>3.0</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td><0.1</td>
<td>0.5</td>
<td>-</td>
<td><0.1</td>
</tr>
<tr>
<td>100</td>
<td>0.4</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>150</td>
<td>0.5</td>
<td>0.2</td>
<td>4.0</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>200</td>
<td>0.5</td>
<td>0.4</td>
<td>3.0</td>
<td>1.8</td>
<td>0.2</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>0.6</td>
<td>1.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>1.2</td>
<td>16.0</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>1.3</td>
<td>20.5</td>
<td>5.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>20</td>
<td>2.9</td>
<td>0.2</td>
<td>3.0</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>30</td>
<td>2.0</td>
<td>0.1</td>
<td>2.0</td>
<td>3.8</td>
<td>0.4</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td><0.1</td>
<td>0.5</td>
<td>3.5</td>
<td>0.0</td>
</tr>
<tr>
<td>75</td>
<td>0.4</td>
<td>0.1</td>
<td>1.0</td>
<td>3.1</td>
<td><0.1</td>
</tr>
<tr>
<td>100</td>
<td>0.4</td>
<td>0.1</td>
<td>1.5</td>
<td>2.7</td>
<td>0.1</td>
</tr>
<tr>
<td>150</td>
<td>0.5</td>
<td>0.2</td>
<td>4.0</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>200</td>
<td>0.5</td>
<td>0.4</td>
<td>3.0</td>
<td>1.8</td>
<td>0.2</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.5</td>
<td>2.0</td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>0.6</td>
<td>1.5</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>0.9</td>
<td>8.5</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>1.2</td>
<td>16.0</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>1.3</td>
<td>20.5</td>
<td>5.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>
STATION 16

DATE April 23, 1953 LAT. 29°00'N. LONG. 79°26'W. TIME 16

DEPTH 160 WIND 10, 16 BAR. 19 AIR TEMP: dry 26.7°C, wet 20.4°C
HUMIDITY 58% WEATHER 01 CLOUDS: type 8, amt. 5 SEA: dir. --, amt. --
Swell: dir. --, amt. -- VIS. 7 WATER TRANS. 22

** From BT

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.70**</td>
<td>36.08</td>
<td>23.96</td>
<td>4.61</td>
</tr>
<tr>
<td>10</td>
<td>25.76</td>
<td>36.08</td>
<td>23.94</td>
<td>4.61</td>
</tr>
<tr>
<td>20</td>
<td>25.78</td>
<td>36.04</td>
<td>23.91</td>
<td>4.67</td>
</tr>
<tr>
<td>48</td>
<td>23.60</td>
<td>36.53</td>
<td>24.94</td>
<td>4.86</td>
</tr>
<tr>
<td>95</td>
<td>22.98</td>
<td>36.66</td>
<td>25.22</td>
<td>4.90</td>
</tr>
<tr>
<td>143</td>
<td>21.76</td>
<td>36.68</td>
<td>25.58</td>
<td>4.94</td>
</tr>
<tr>
<td>191</td>
<td>20.02</td>
<td>36.59</td>
<td>25.99</td>
<td>4.86</td>
</tr>
<tr>
<td>386</td>
<td>16.99</td>
<td>36.31</td>
<td>26.54</td>
<td>3.92</td>
</tr>
<tr>
<td>580</td>
<td>11.97</td>
<td>35.53</td>
<td>27.02</td>
<td>3.23</td>
</tr>
<tr>
<td>775</td>
<td>8.28</td>
<td>35.12</td>
<td>27.35</td>
<td>3.34</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.70</td>
<td>36.08</td>
<td>23.96</td>
<td>4.61</td>
</tr>
<tr>
<td>10</td>
<td>25.76</td>
<td>36.08</td>
<td>23.94</td>
<td>4.61</td>
</tr>
<tr>
<td>20</td>
<td>25.78</td>
<td>36.04</td>
<td>23.91</td>
<td>4.67</td>
</tr>
<tr>
<td>30</td>
<td>24.85</td>
<td>36.25</td>
<td>24.35</td>
<td>4.79</td>
</tr>
<tr>
<td>50</td>
<td>23.59</td>
<td>36.54</td>
<td>24.95</td>
<td>4.87</td>
</tr>
<tr>
<td>75</td>
<td>23.31</td>
<td>36.62</td>
<td>25.09</td>
<td>4.90</td>
</tr>
<tr>
<td>100</td>
<td>22.88</td>
<td>36.67</td>
<td>25.25</td>
<td>4.93</td>
</tr>
<tr>
<td>150</td>
<td>21.48</td>
<td>36.67</td>
<td>25.65</td>
<td>4.93</td>
</tr>
<tr>
<td>200</td>
<td>19.92</td>
<td>36.58</td>
<td>26.01</td>
<td>4.83</td>
</tr>
<tr>
<td>250</td>
<td>19.08</td>
<td>36.51</td>
<td>26.17</td>
<td>4.58</td>
</tr>
<tr>
<td>300</td>
<td>18.32</td>
<td>36.44</td>
<td>26.31</td>
<td>4.35</td>
</tr>
<tr>
<td>400</td>
<td>16.58</td>
<td>36.27</td>
<td>26.61</td>
<td>3.86</td>
</tr>
<tr>
<td>500</td>
<td>13.88</td>
<td>35.86</td>
<td>26.89</td>
<td>3.49</td>
</tr>
<tr>
<td>600</td>
<td>11.53</td>
<td>35.47</td>
<td>27.06</td>
<td>3.25</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.4</td>
<td>1.5</td>
<td>2.3</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>0.3</td>
<td>2.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>48</td>
<td>2.4</td>
<td>0.0</td>
<td>3.0</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>95</td>
<td>0.8</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>143</td>
<td>0.8</td>
<td>0.8</td>
<td>2.0</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td>191</td>
<td>1.9</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>386</td>
<td>-</td>
<td>0.9</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>580</td>
<td>-</td>
<td>1.6</td>
<td>13.5</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>775</td>
<td>2.4</td>
<td>1.6</td>
<td>4.5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6</td>
<td>0.4</td>
<td>1.5</td>
<td>2.3</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>0.3</td>
<td>2.0</td>
<td>2.2</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>30</td>
<td>1.2</td>
<td>0.1</td>
<td>1.5</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td>50</td>
<td>2.4</td>
<td>0.0</td>
<td>3.0</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>75</td>
<td>1.6</td>
<td><0.1</td>
<td>2.0</td>
<td>1.7</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>0.8</td>
<td>0.1</td>
<td>1.0</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>150</td>
<td>0.8</td>
<td>0.8</td>
<td>2.0</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td>200</td>
<td>1.9</td>
<td>0.1</td>
<td>1.5</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.3</td>
<td>2.5</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>0.5</td>
<td>3.5</td>
<td>1.4</td>
<td>0.5</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>1.0</td>
<td>5.5</td>
<td>1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>1.3</td>
<td>10.0</td>
<td>1.6</td>
<td>0.7</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>1.6</td>
<td>12.5</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>700</td>
<td>2.4</td>
<td>1.6</td>
<td>8.0</td>
<td>1.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>
STATION 17

DATE April 25, 1953 LAT. 29°40' N. LONG. 79°37' W. TIME 21
DEPTH 823 WIND 8, 17 BAR. 17 AIR TEMP: dry 27.2 °C, wet 20.6 °C
HUMIDITY 52% WEATHER 01 CLOUDS: type 8, amt. 1 SEA: dir. , amt. -
SWELL: dir. , amt. - VIS. 7 WATER TRANS. -

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.00**</td>
<td>36.13</td>
<td>23.91</td>
<td>4.55</td>
</tr>
<tr>
<td>8</td>
<td>25.97</td>
<td>36.09</td>
<td>23.89</td>
<td>4.61</td>
</tr>
<tr>
<td>15</td>
<td>25.93</td>
<td>36.10</td>
<td>23.91</td>
<td>4.57</td>
</tr>
<tr>
<td>40</td>
<td>24.15</td>
<td>36.28</td>
<td>24.59</td>
<td>4.77</td>
</tr>
<tr>
<td>80</td>
<td>22.94</td>
<td>36.70</td>
<td>25.26</td>
<td>4.79</td>
</tr>
<tr>
<td>119</td>
<td>21.91</td>
<td>36.65</td>
<td>25.52</td>
<td>4.87</td>
</tr>
<tr>
<td>158</td>
<td>20.45</td>
<td>36.62</td>
<td>25.89</td>
<td>4.61</td>
</tr>
<tr>
<td>218</td>
<td>17.58</td>
<td>36.42</td>
<td>26.48</td>
<td>4.33</td>
</tr>
<tr>
<td>480</td>
<td>13.40</td>
<td>35.71</td>
<td>26.88</td>
<td>3.25</td>
</tr>
<tr>
<td>645</td>
<td>8.54</td>
<td>35.01</td>
<td>27.22</td>
<td>2.74</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.00</td>
<td>36.13</td>
<td>23.91</td>
<td>4.55</td>
</tr>
<tr>
<td>10</td>
<td>25.96</td>
<td>36.09</td>
<td>23.89</td>
<td>4.60</td>
</tr>
<tr>
<td>20</td>
<td>25.51</td>
<td>36.13</td>
<td>24.06</td>
<td>4.58</td>
</tr>
<tr>
<td>30</td>
<td>24.77</td>
<td>36.20</td>
<td>24.34</td>
<td>4.70</td>
</tr>
<tr>
<td>50</td>
<td>23.83</td>
<td>36.43</td>
<td>24.79</td>
<td>4.78</td>
</tr>
<tr>
<td>75</td>
<td>23.08</td>
<td>36.67</td>
<td>25.20</td>
<td>4.79</td>
</tr>
<tr>
<td>100</td>
<td>22.47</td>
<td>36.68</td>
<td>25.38</td>
<td>4.84</td>
</tr>
<tr>
<td>150</td>
<td>20.73</td>
<td>36.63</td>
<td>25.83</td>
<td>4.63</td>
</tr>
<tr>
<td>200</td>
<td>19.82</td>
<td>36.60</td>
<td>26.05</td>
<td>4.56</td>
</tr>
<tr>
<td>250</td>
<td>18.95</td>
<td>36.55</td>
<td>26.24</td>
<td>4.48</td>
</tr>
<tr>
<td>300</td>
<td>17.97</td>
<td>36.47</td>
<td>26.42</td>
<td>4.38</td>
</tr>
<tr>
<td>400</td>
<td>16.54</td>
<td>36.10</td>
<td>26.72</td>
<td>3.82</td>
</tr>
<tr>
<td>500</td>
<td>12.84</td>
<td>35.62</td>
<td>26.92</td>
<td>3.15</td>
</tr>
<tr>
<td>600</td>
<td>9.93</td>
<td>35.20</td>
<td>27.14</td>
<td>2.82</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.4</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>2.2</td>
<td>1.0</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>0.6</td>
<td>0.1</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>0.6</td>
<td>0.4</td>
<td>16.0*</td>
<td>-</td>
</tr>
<tr>
<td>119</td>
<td>0.7</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>158</td>
<td>0.7</td>
<td>0.2</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>318</td>
<td>0.6</td>
<td>0.3</td>
<td>5.0</td>
<td>-</td>
</tr>
<tr>
<td>480</td>
<td>-</td>
<td>1.3</td>
<td>4.5</td>
<td>1.5</td>
</tr>
<tr>
<td>645</td>
<td>-</td>
<td>2.1</td>
<td>4.5</td>
<td>-</td>
</tr>
</tbody>
</table>

* Value questionable

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.8</td>
<td>0.4</td>
<td>2.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>1.7</td>
<td>0.8</td>
<td>2.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>2.3</td>
</tr>
<tr>
<td>30</td>
<td>0.6</td>
<td>0.1</td>
<td>2.5</td>
<td>-</td>
<td>4.8</td>
</tr>
<tr>
<td>50</td>
<td>0.6</td>
<td>0.2</td>
<td>3.0</td>
<td>-</td>
<td>5.7</td>
</tr>
<tr>
<td>75</td>
<td>0.6</td>
<td>0.4</td>
<td>2.5</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>100</td>
<td>0.7</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>150</td>
<td>0.7</td>
<td>0.2</td>
<td>3.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>200</td>
<td>0.7</td>
<td>0.2</td>
<td>3.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>250</td>
<td>0.6</td>
<td>0.3</td>
<td>4.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>300</td>
<td>0.6</td>
<td>0.3</td>
<td>5.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>0.8</td>
<td>4.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>1.4</td>
<td>4.5</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>1.9</td>
<td>4.5</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>
STATION 18

DATE April 26, 1953 LAT. 29°40’ N. LONG. 80°00’ W. TIME 02
DEPTH 539 WIND 10, 18 BAR. 15 AIR TEMP: dry 25.0°C, wet 21.7°C
HUMIDITY 75% WEATHER 60 CLOUDS: type 8, amt. 8 SEA: dir. 18, amt. 3
SWELL: dir. --, amt. -- VIS. 6 WATER TRANS. --

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.80**</td>
<td>36.12</td>
<td>23.96</td>
<td>4.55</td>
</tr>
<tr>
<td>5</td>
<td>25.74</td>
<td>36.11</td>
<td>23.97</td>
<td>4.53</td>
</tr>
<tr>
<td>10</td>
<td>25.75</td>
<td>36.10</td>
<td>23.96</td>
<td>4.57</td>
</tr>
<tr>
<td>25</td>
<td>25.68</td>
<td>36.15</td>
<td>24.02</td>
<td>4.57</td>
</tr>
<tr>
<td>51</td>
<td>24.41</td>
<td>36.36</td>
<td>24.57</td>
<td>4.29</td>
</tr>
<tr>
<td>78</td>
<td>22.08</td>
<td>36.43</td>
<td>25.30</td>
<td>4.63</td>
</tr>
<tr>
<td>105</td>
<td>20.00</td>
<td>36.40</td>
<td>25.85</td>
<td>4.37</td>
</tr>
<tr>
<td>156</td>
<td>18.28</td>
<td>36.40</td>
<td>26.29</td>
<td>3.19</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.80</td>
<td>36.12</td>
<td>23.96</td>
<td>4.55</td>
</tr>
<tr>
<td>10</td>
<td>25.75</td>
<td>36.10</td>
<td>23.96</td>
<td>4.57</td>
</tr>
<tr>
<td>20</td>
<td>25.72</td>
<td>36.13</td>
<td>23.99</td>
<td>4.55</td>
</tr>
<tr>
<td>30</td>
<td>25.51</td>
<td>36.20</td>
<td>24.11</td>
<td>4.49</td>
</tr>
<tr>
<td>50</td>
<td>24.48</td>
<td>36.35</td>
<td>24.54</td>
<td>4.30</td>
</tr>
<tr>
<td>75</td>
<td>22.33</td>
<td>36.43</td>
<td>25.23</td>
<td>4.61</td>
</tr>
<tr>
<td>100</td>
<td>20.32</td>
<td>36.40</td>
<td>25.76</td>
<td>4.44</td>
</tr>
<tr>
<td>150</td>
<td>18.33</td>
<td>36.40</td>
<td>26.28</td>
<td>3.34</td>
</tr>
</tbody>
</table>
STATION 18

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>0.2</td>
<td>1.5</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>25</td>
<td>3.3</td>
<td>< 0.1</td>
<td>2.0</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>51</td>
<td>0.7</td>
<td>0.4</td>
<td>2.0</td>
<td>.1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>78</td>
<td>0.9</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>105</td>
<td>1.6</td>
<td>0.2</td>
<td>1.0</td>
<td>10.0</td>
<td>1.1</td>
</tr>
<tr>
<td>156</td>
<td>-</td>
<td>0.4</td>
<td>10.0</td>
<td>-</td>
<td>0.9</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>2.5</td>
<td>< 0.1</td>
<td>1.5</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>30</td>
<td>2.8</td>
<td>< 0.1</td>
<td>2.0</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td>50</td>
<td>0.7</td>
<td>0.4</td>
<td>2.0</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>75</td>
<td>0.9</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>100</td>
<td>1.6</td>
<td>0.2</td>
<td>1.0</td>
<td>10.0</td>
<td>1.1</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.4</td>
<td>10.0</td>
<td>-</td>
<td>0.9</td>
</tr>
</tbody>
</table>
STATION 19

DATE April 26, 1953 LAT. 29°39' N. LONG. 80°23' W. TIME 07

DEPTH 42 WIND 4, 25 BAR. AIR TEMPERATURE: dry __°C, wet __°C

HUMIDITY __% WEATHER 13 CLOUDS: type __, amt. __ SEAS: dir. __, amt. __

SWELL: dir. __, amt. __ VIS: 6 WATER TRANS. __

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.68</td>
<td>36.33</td>
<td>25.05</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>22.72</td>
<td>36.34</td>
<td>25.05</td>
<td>5.11</td>
</tr>
<tr>
<td>20</td>
<td>22.74</td>
<td>36.27</td>
<td>24.99</td>
<td>5.11</td>
</tr>
<tr>
<td>30</td>
<td>20.18</td>
<td>36.19</td>
<td>25.64</td>
<td>5.64</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.68</td>
<td>36.33</td>
<td>25.05</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>22.72</td>
<td>36.34</td>
<td>25.05</td>
<td>5.11</td>
</tr>
<tr>
<td>20</td>
<td>22.74</td>
<td>36.27</td>
<td>24.99</td>
<td>5.11</td>
</tr>
<tr>
<td>30</td>
<td>20.18</td>
<td>36.19</td>
<td>25.64</td>
<td>5.64</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>0.0</td>
<td>2.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>2.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>1.1</td>
<td>1.0</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.5</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>0.0</td>
<td>2.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>2.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>1.1</td>
<td>1.0</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.5</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>
STATION 20

DATE April 26, 1933 LAT. 29°40' N. LONG. 80°45' W. TIME 12

DEPTH 27 WIND 9 , 18 BAR. AIR TEMP: dry - __°C, wet __ °C
HUMIDITY - __% WEATHER __ CLOUDS: __, __ SEA: __
SWELL: __, __ VIS. __ WATER TRANS. __

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.75</td>
<td>36.36</td>
<td>25.34</td>
<td>4.98</td>
</tr>
<tr>
<td>10</td>
<td>21.74</td>
<td>36.36</td>
<td>25.34</td>
<td>4.99</td>
</tr>
<tr>
<td>20</td>
<td>21.30</td>
<td>36.29</td>
<td>25.41</td>
<td>4.91</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.75</td>
<td>36.36</td>
<td>25.34</td>
<td>4.98</td>
</tr>
<tr>
<td>10</td>
<td>21.74</td>
<td>36.36</td>
<td>25.34</td>
<td>4.99</td>
</tr>
<tr>
<td>20</td>
<td>21.30</td>
<td>36.29</td>
<td>25.41</td>
<td>4.91</td>
</tr>
</tbody>
</table>

112
STATION 20

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.7</td>
<td>0.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.7</td>
<td>0.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>
DATE: April 26, 1953 LAT. 29°39' N. LONG. 81°08' W. TIME 15
DEPTH 16 WIND - - - BAR. - - AIR TEMP: dry - °C, wet - °C
HUMIDITY - % WEATHER 65 CLOUDS: type 7, amt. 8 SEA: dir. - , amt. 4
SWELL: dir. - , amt. - VIS. 5 WATER TRANS. -

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.11</td>
<td>35.97</td>
<td>25.22</td>
<td>5.06</td>
</tr>
<tr>
<td>10</td>
<td>21.03</td>
<td>35.95</td>
<td>25.23</td>
<td>5.03</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.11</td>
<td>35.97</td>
<td>25.22</td>
<td>5.06</td>
</tr>
<tr>
<td>10</td>
<td>21.03</td>
<td>35.95</td>
<td>25.23</td>
<td>5.03</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (μg at/l)</td>
<td>PO₄-P (μg at/l)</td>
<td>NO₃-NO₂ (μg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1.3</td>
<td>0.3</td>
<td>0.5</td>
<td>3.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>1.3</td>
<td>0.3</td>
<td>0.5</td>
<td>3.9</td>
<td>0.5</td>
</tr>
</tbody>
</table>
DATE April 26, 1953 LAT. 30°00'N. LONG. 81°14'W. TIME 18

DEPTH 13 WIND - BAR. - AIR TEMP: dry - °C, wet - °C
HUMIDITY - % WEATHER 03 CLOUDS: type 7, amt. 8 SEA: dir. - , amt. -
SWELL: dir. - , amt. - VIS. 6 WATER TRANS. -

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.84</td>
<td>36.00</td>
<td>25.32</td>
<td>5.10</td>
</tr>
<tr>
<td>10</td>
<td>20.79</td>
<td>35.99</td>
<td>25.32</td>
<td>5.10</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.84</td>
<td>36.00</td>
<td>25.32</td>
<td>5.10</td>
</tr>
<tr>
<td>10</td>
<td>20.79</td>
<td>35.99</td>
<td>25.32</td>
<td>5.10</td>
</tr>
</tbody>
</table>
STATION 22

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSO (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>0.2</td>
<td>0.5</td>
<td>0.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSO (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>0.2</td>
<td>0.5</td>
<td>0.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>
DATE April 26, 1953 LAT. 30°20'N. LONG. 81°20'W. TIME 20
DEPTH 16 WIND --- BAR. --- AIR TEMP: dry --- °C, wet --- °C
HUMIDITY --- % WEATHER: --- CLOUDS: type ---, amt. --- SEA: dir. ---, amt. ---
SWELL: dir. ---, amt. --- VIS. --- WATER TRANS. ---

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.75</td>
<td>35.58</td>
<td>25.02</td>
<td>4.49</td>
</tr>
<tr>
<td>10</td>
<td>20.55</td>
<td>35.62</td>
<td>25.11</td>
<td>5.10</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.75</td>
<td>35.58</td>
<td>25.02</td>
<td>4.49</td>
</tr>
<tr>
<td>10</td>
<td>20.55</td>
<td>35.62</td>
<td>25.11</td>
<td>5.10</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td><0.1</td>
<td>2.5</td>
<td>1.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td><0.1</td>
<td>2.5</td>
<td>1.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
DATE April 26, 1953 LAT. 30°20' N. LONG. 80°57' W. TIME 23

DEPTTH 20 WIND --- BAR. --- AIR TEMP: dry --- °C, wet --- °C

HUMIDITY - % WEATHER 25 CLOUDS: type , amt. SEA: dir. ---, amt. ---

SWELL: dir. ---, amt. --- VIS. 6 WATER TRANS. ---

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.19</td>
<td>36.13</td>
<td>25.32</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>21.18</td>
<td>36.13</td>
<td>25.32</td>
<td>5.16</td>
</tr>
<tr>
<td>20</td>
<td>21.09</td>
<td>36.22</td>
<td>25.42</td>
<td>4.99</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.19</td>
<td>36.13</td>
<td>25.32</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>21.18</td>
<td>36.13</td>
<td>25.32</td>
<td>5.16</td>
</tr>
<tr>
<td>20</td>
<td>21.09</td>
<td>36.22</td>
<td>25.42</td>
<td>4.99</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>2.1</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.3</td>
<td>2.0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>0.8</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>2.1</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.3</td>
<td>2.0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>0.8</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
STATION 25

DATE April 27, 1953 LAT. 30°20' N. LONG. 80°35' W. TIME 02
DEPTH 33 WIND --, -- BAR. -- AIR TEMP: dry -- °C, wet -- °C
HUMIDITY --% WEATHER 03 CLOUDS: type 6, amt. 6 SEA: dir. -- , amt. --
SWELL: dir. -- , amt. -- VIS. 6 WATER TRANS. --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.62</td>
<td>36.36</td>
<td>25.38</td>
<td>5.17</td>
</tr>
<tr>
<td>10</td>
<td>21.65</td>
<td>36.30</td>
<td>25.32</td>
<td>5.16</td>
</tr>
<tr>
<td>25</td>
<td>20.73</td>
<td>36.22</td>
<td>25.51</td>
<td>4.99</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.62</td>
<td>36.36</td>
<td>25.38</td>
<td>5.17</td>
</tr>
<tr>
<td>10</td>
<td>21.65</td>
<td>36.30</td>
<td>25.32</td>
<td>5.16</td>
</tr>
<tr>
<td>20</td>
<td>21.17</td>
<td>36.24</td>
<td>25.41</td>
<td>5.07</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/1)</th>
<th>PO$_4$-P (μg at/1)</th>
<th>NO$_3$-NO$_2$ (μg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>0.5</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td>25</td>
<td>1.3</td>
<td>0.0</td>
<td>0.5</td>
<td>1.7</td>
<td>-</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/1)</th>
<th>PO$_4$-P (μg at/1)</th>
<th>NO$_3$-NO$_2$ (μg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1.4</td>
<td>< 0.1</td>
<td>0.5</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>1.3</td>
<td>0.0</td>
<td>0.5</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>T (°C)</td>
<td>S (%)</td>
<td>σt</td>
<td>O₂ (ml/l)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23.24</td>
<td>36.35</td>
<td>24.91</td>
<td>4.87</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23.16*</td>
<td>36.35</td>
<td>24.93</td>
<td>4.87</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>23.23</td>
<td>36.31</td>
<td>24.88</td>
<td>4.87</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>22.99</td>
<td>36.36</td>
<td>24.99</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>22.30</td>
<td>36.36</td>
<td>25.18</td>
<td>5.03</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>19.57</td>
<td>36.27</td>
<td>25.86</td>
<td>4.04</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>16.27</td>
<td>36.03</td>
<td>26.49</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>8.83</td>
<td>35.17</td>
<td>27.30</td>
<td>2.92</td>
<td></td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.24</td>
<td>36.35</td>
<td>24.91</td>
<td>4.87</td>
</tr>
<tr>
<td>10</td>
<td>23.23</td>
<td>36.33</td>
<td>24.89</td>
<td>4.87</td>
</tr>
<tr>
<td>20</td>
<td>23.16</td>
<td>36.33</td>
<td>24.91</td>
<td>4.70</td>
</tr>
<tr>
<td>30</td>
<td>22.94</td>
<td>36.36</td>
<td>25.00</td>
<td>4.52</td>
</tr>
<tr>
<td>50</td>
<td>21.51</td>
<td>36.35</td>
<td>25.40</td>
<td>4.74</td>
</tr>
<tr>
<td>75</td>
<td>18.02</td>
<td>36.17</td>
<td>26.18</td>
<td>3.44</td>
</tr>
<tr>
<td>100</td>
<td>13.98</td>
<td>35.81</td>
<td>26.83</td>
<td>2.83</td>
</tr>
</tbody>
</table>
STATION 26

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.2</td>
<td>2.5</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>0.1</td>
<td>2.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>6.0</td>
<td>0.3</td>
</tr>
<tr>
<td>43</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>65</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>86</td>
<td>-</td>
<td>0.7</td>
<td>6.0</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>130</td>
<td>-</td>
<td>1.6</td>
<td>22.5</td>
<td>6.2</td>
<td>2.8</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.2</td>
<td>2.5</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.1</td>
<td>2.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>5.5</td>
<td>0.4</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>2.8</td>
<td>0.5</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.5</td>
<td>3.0</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>1.0</td>
<td>11.0</td>
<td>3.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>
STATION 27

DATE April 27, 1953 LAT. 30°19' N. LONG. 79°50' W. TIME 08

DEPTH 503 WIND 11, 27 BAR. 12 AIR TEMP: dry 22.2°C, wet 18.3°C
HUMIDITY 69% WEATHER 01 CLOUDS: type __, amt. __ SEA: dir.___, amt. __
SWELL: dir.___, amt. __ VIS. __ WATER TRANS.__

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.70**</td>
<td>36.15</td>
<td>24.01</td>
<td>4.49</td>
</tr>
<tr>
<td>5</td>
<td>25.68</td>
<td>36.14</td>
<td>24.01</td>
<td>4.49</td>
</tr>
<tr>
<td>11</td>
<td>25.65</td>
<td>36.13</td>
<td>24.02</td>
<td>4.55</td>
</tr>
<tr>
<td>30</td>
<td>25.62</td>
<td>36.13</td>
<td>24.02</td>
<td>4.55</td>
</tr>
<tr>
<td>46</td>
<td>-</td>
<td>36.26</td>
<td>-</td>
<td>4.55</td>
</tr>
<tr>
<td>63</td>
<td>24.12</td>
<td>36.53</td>
<td>24.78</td>
<td>3.80</td>
</tr>
<tr>
<td>126</td>
<td>19.86</td>
<td>36.68</td>
<td>26.10</td>
<td>3.56</td>
</tr>
<tr>
<td>191</td>
<td>17.37</td>
<td>36.38</td>
<td>26.50</td>
<td>3.65</td>
</tr>
<tr>
<td>255</td>
<td>14.96</td>
<td>36.02</td>
<td>26.78</td>
<td>2.91</td>
</tr>
<tr>
<td>321*</td>
<td>18.25</td>
<td>36.64</td>
<td>26.48</td>
<td>3.65</td>
</tr>
</tbody>
</table>

* Value questionable
** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.70</td>
<td>36.15</td>
<td>24.01</td>
<td>4.49</td>
</tr>
<tr>
<td>10</td>
<td>25.65</td>
<td>36.13</td>
<td>24.02</td>
<td>4.56</td>
</tr>
<tr>
<td>20</td>
<td>25.63</td>
<td>36.13</td>
<td>24.02</td>
<td>4.55</td>
</tr>
<tr>
<td>30</td>
<td>25.62</td>
<td>36.13</td>
<td>24.02</td>
<td>4.55</td>
</tr>
<tr>
<td>50</td>
<td>24.80</td>
<td>36.40</td>
<td>24.48</td>
<td>4.40</td>
</tr>
<tr>
<td>75</td>
<td>23.30</td>
<td>36.62</td>
<td>25.09</td>
<td>3.75</td>
</tr>
<tr>
<td>100</td>
<td>21.40</td>
<td>36.68</td>
<td>25.68</td>
<td>3.65</td>
</tr>
<tr>
<td>150</td>
<td>18.90</td>
<td>36.58</td>
<td>26.27</td>
<td>3.58</td>
</tr>
<tr>
<td>200</td>
<td>17.00</td>
<td>36.32</td>
<td>26.54</td>
<td>3.62</td>
</tr>
<tr>
<td>250</td>
<td>15.15</td>
<td>36.04</td>
<td>26.76</td>
<td>2.93</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.4</td>
<td>14.5*</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>-</td>
<td>0.5</td>
<td>2.3</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>0.2</td>
<td>< 0.1</td>
<td>6.0*</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>< 0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>46</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>63</td>
<td>< 0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>126</td>
<td>-</td>
<td>0.5</td>
<td>1.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>191</td>
<td>-</td>
<td>0.7</td>
<td>5.5</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>255</td>
<td>-</td>
<td>0.9</td>
<td>9.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>< 0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>< 0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>< 0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>50</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.1</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.3</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.6</td>
<td>3.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.7</td>
<td>5.5</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.9</td>
<td>9.0</td>
<td>-</td>
<td>1.7</td>
</tr>
</tbody>
</table>
STATION 28

DATE April 27, 1953 LAT. 30°20' N. LONG. 79°28' W. TIME 12

DEPTH 786 WIND 8 BAR. 13 AIR TEMP: dry 22.2°C, wet 16.7°C

HUMIDITY 57% WEATHER: 01 CLOUDS: type B, amt. 3 SEA: dir. ___, amt. __

SWELL: dir. ___, amt. ___ VIS. 7 WATER TRANS. ___

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.80**</td>
<td>36.21</td>
<td>24.03</td>
<td>5.07</td>
</tr>
<tr>
<td>8</td>
<td>25.77</td>
<td>36.20</td>
<td>24.05</td>
<td>4.67</td>
</tr>
<tr>
<td>15</td>
<td>25.70</td>
<td>36.20</td>
<td>24.05</td>
<td>4.59</td>
</tr>
<tr>
<td>38</td>
<td>25.59</td>
<td>36.20</td>
<td>24.09</td>
<td>4.59</td>
</tr>
<tr>
<td>77</td>
<td>22.51</td>
<td>36.63</td>
<td>25.32</td>
<td>4.79</td>
</tr>
<tr>
<td>117</td>
<td>21.85</td>
<td>36.63</td>
<td>25.52</td>
<td>4.86</td>
</tr>
<tr>
<td>156</td>
<td>20.87</td>
<td>36.67</td>
<td>25.82</td>
<td>4.83</td>
</tr>
<tr>
<td>316</td>
<td>17.73</td>
<td>36.51</td>
<td>26.51</td>
<td>4.38</td>
</tr>
<tr>
<td>476</td>
<td>14.53</td>
<td>36.01</td>
<td>26.87</td>
<td>3.60</td>
</tr>
<tr>
<td>577</td>
<td>11.89</td>
<td>35.56</td>
<td>27.06</td>
<td>3.19</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.80</td>
<td>36.21</td>
<td>24.03</td>
<td>5.07</td>
</tr>
<tr>
<td>10</td>
<td>25.75</td>
<td>36.20</td>
<td>24.04</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>25.68</td>
<td>36.20</td>
<td>24.06</td>
<td>4.59</td>
</tr>
<tr>
<td>30</td>
<td>25.63</td>
<td>36.20</td>
<td>24.07</td>
<td>4.59</td>
</tr>
<tr>
<td>50</td>
<td>24.39</td>
<td>36.37</td>
<td>24.58</td>
<td>4.66</td>
</tr>
<tr>
<td>75</td>
<td>22.61</td>
<td>36.61</td>
<td>25.29</td>
<td>4.79</td>
</tr>
<tr>
<td>100</td>
<td>22.17</td>
<td>36.62</td>
<td>25.42</td>
<td>4.85</td>
</tr>
<tr>
<td>150</td>
<td>21.02</td>
<td>36.67</td>
<td>25.78</td>
<td>4.84</td>
</tr>
<tr>
<td>200</td>
<td>20.01</td>
<td>36.66</td>
<td>26.04</td>
<td>4.73</td>
</tr>
<tr>
<td>250</td>
<td>19.03</td>
<td>36.62</td>
<td>26.27</td>
<td>4.60</td>
</tr>
<tr>
<td>300</td>
<td>18.05</td>
<td>36.54</td>
<td>26.46</td>
<td>4.44</td>
</tr>
<tr>
<td>400</td>
<td>16.05</td>
<td>36.28</td>
<td>26.74</td>
<td>3.99</td>
</tr>
<tr>
<td>500</td>
<td>13.95</td>
<td>35.91</td>
<td>26.92</td>
<td>3.50</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>0.0</td>
<td>1.0</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>1.1</td>
<td>0.0</td>
<td>2.0</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>15</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>38</td>
<td>0.3</td>
<td>-</td>
<td>14.0*</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>77</td>
<td>0.9</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>117</td>
<td>-</td>
<td>0.3</td>
<td>3.0</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>156</td>
<td>4.5</td>
<td>0.6</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>316</td>
<td>2.3</td>
<td>0.1</td>
<td>2.5</td>
<td>3.3</td>
<td>0.5</td>
</tr>
<tr>
<td>476</td>
<td>-</td>
<td>1.1</td>
<td>4.5</td>
<td>5.3</td>
<td>1.0</td>
</tr>
<tr>
<td>577</td>
<td>6.5</td>
<td>0.5</td>
<td>5.0</td>
<td>-</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
<td>0.0</td>
<td>1.0</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>< 0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>75</td>
<td>0.9</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>2.0</td>
<td>0.2</td>
<td>2.0</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>4.2</td>
<td>0.6</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>200</td>
<td>3.9</td>
<td>0.5</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>250</td>
<td>3.2</td>
<td>0.3</td>
<td>2.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>2.5</td>
<td>0.2</td>
<td>2.0</td>
<td>3.3</td>
<td>0.5</td>
</tr>
<tr>
<td>400</td>
<td>3.6</td>
<td>0.6</td>
<td>3.5</td>
<td>4.3</td>
<td>0.8</td>
</tr>
<tr>
<td>500</td>
<td>5.2</td>
<td>1.0</td>
<td>4.5</td>
<td>5.3</td>
<td>1.1</td>
</tr>
</tbody>
</table>
STATION 29

DATE April 27, 1953 LAT. 30°56' N. LONG. 79°16' W. TIME 17
DEPTH 759 WIND 8, 27 BAR. 13 AIR TEMP: dry 22.2°C, wet 16.7°C HUMIDITY 57% WEATHER 01 CLOUDS: type 8, amt. 2 SEA: dir. ___, amt. ___ SWELL: dir. ___, amt. ___, VIS. 8 WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.80**</td>
<td>36.21</td>
<td>24.03</td>
<td>4.57</td>
</tr>
<tr>
<td>7</td>
<td>25.76</td>
<td>36.18</td>
<td>24.02</td>
<td>4.59</td>
</tr>
<tr>
<td>13</td>
<td>25.77</td>
<td>36.20</td>
<td>24.03</td>
<td>4.59</td>
</tr>
<tr>
<td>35</td>
<td>25.71</td>
<td>36.22</td>
<td>24.06</td>
<td>4.57</td>
</tr>
<tr>
<td>70</td>
<td>23.65</td>
<td>36.54</td>
<td>24.93</td>
<td>4.79</td>
</tr>
<tr>
<td>107</td>
<td>21.97</td>
<td>36.65</td>
<td>25.50</td>
<td>4.79</td>
</tr>
<tr>
<td>143</td>
<td>20.39</td>
<td>36.74</td>
<td>26.00</td>
<td>4.55</td>
</tr>
<tr>
<td>287</td>
<td>17.88</td>
<td>36.54</td>
<td>26.50</td>
<td>4.55</td>
</tr>
<tr>
<td>433</td>
<td>13.48</td>
<td>35.81</td>
<td>26.94</td>
<td>3.33</td>
</tr>
<tr>
<td>505</td>
<td>10.19</td>
<td>35.26</td>
<td>27.14</td>
<td>3.09</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.80</td>
<td>36.21</td>
<td>24.03</td>
<td>4.57</td>
</tr>
<tr>
<td>10</td>
<td>25.77</td>
<td>36.19</td>
<td>24.02</td>
<td>4.59</td>
</tr>
<tr>
<td>20</td>
<td>25.75</td>
<td>36.20</td>
<td>24.04</td>
<td>4.58</td>
</tr>
<tr>
<td>30</td>
<td>25.73</td>
<td>36.21</td>
<td>24.05</td>
<td>4.57</td>
</tr>
<tr>
<td>50</td>
<td>24.77</td>
<td>36.38</td>
<td>24.47</td>
<td>4.66</td>
</tr>
<tr>
<td>75</td>
<td>23.42</td>
<td>36.56</td>
<td>25.01</td>
<td>4.79</td>
</tr>
<tr>
<td>100</td>
<td>22.28</td>
<td>36.63</td>
<td>25.40</td>
<td>4.79</td>
</tr>
<tr>
<td>150</td>
<td>20.31</td>
<td>36.74</td>
<td>26.02</td>
<td>4.55</td>
</tr>
<tr>
<td>200</td>
<td>19.61</td>
<td>36.72</td>
<td>26.19</td>
<td>4.55</td>
</tr>
<tr>
<td>250</td>
<td>18.70</td>
<td>36.64</td>
<td>26.37</td>
<td>4.55</td>
</tr>
<tr>
<td>300</td>
<td>17.61</td>
<td>36.50</td>
<td>26.53</td>
<td>4.55</td>
</tr>
<tr>
<td>400</td>
<td>14.74</td>
<td>36.02</td>
<td>26.83</td>
<td>3.63</td>
</tr>
<tr>
<td>500</td>
<td>10.44</td>
<td>35.30</td>
<td>27.13</td>
<td>3.12</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>0.0</td>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>13</td>
<td>0.6</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>0.6</td>
<td>0.4</td>
<td>2.0</td>
<td>0.9</td>
</tr>
<tr>
<td>70</td>
<td>1.1</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td>0.3</td>
<td>0.0</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>143</td>
<td>0.4</td>
<td>-</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>287</td>
<td>2.2</td>
<td>0.2</td>
<td>5.0</td>
<td>1.1</td>
</tr>
<tr>
<td>433</td>
<td>5.7</td>
<td>< 0.1</td>
<td>2.5</td>
<td>4.0</td>
</tr>
<tr>
<td>505</td>
<td>1.7</td>
<td>1.2</td>
<td>25.0</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>1.0</td>
<td>4.4</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
<td>0.1</td>
<td>1.5</td>
<td>3.0</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>0.6</td>
<td>0.3</td>
<td>1.5</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>50</td>
<td>0.8</td>
<td>0.2</td>
<td>1.5</td>
<td>1.1</td>
<td>2.4</td>
</tr>
<tr>
<td>75</td>
<td>1.0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>0.0</td>
<td>2.0</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td>150</td>
<td>0.5</td>
<td>< 0.1</td>
<td>4.0</td>
<td>1.8</td>
<td>< 0.1</td>
</tr>
<tr>
<td>200</td>
<td>1.1</td>
<td>0.1</td>
<td>4.5</td>
<td>1.6</td>
<td>0.6</td>
</tr>
<tr>
<td>250</td>
<td>1.7</td>
<td>0.2</td>
<td>4.5</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>300</td>
<td>2.5</td>
<td>0.2</td>
<td>4.5</td>
<td>1.4</td>
<td>0.1</td>
</tr>
<tr>
<td>400</td>
<td>4.9</td>
<td>0.1</td>
<td>3.0</td>
<td>3.4</td>
<td>< 0.1</td>
</tr>
<tr>
<td>500</td>
<td>1.7</td>
<td>1.2</td>
<td>25.0</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.20**</td>
<td>36.26</td>
<td>24.25</td>
<td>4.63</td>
</tr>
<tr>
<td>6</td>
<td>25.00</td>
<td>36.27</td>
<td>24.32</td>
<td>4.69</td>
</tr>
<tr>
<td>12</td>
<td>24.98</td>
<td>36.27</td>
<td>24.33</td>
<td>4.81</td>
</tr>
<tr>
<td>30</td>
<td>24.53</td>
<td>36.37</td>
<td>24.54</td>
<td>4.81</td>
</tr>
<tr>
<td>62</td>
<td>22.99</td>
<td>36.73</td>
<td>25.27</td>
<td>3.80</td>
</tr>
<tr>
<td>95</td>
<td>20.00</td>
<td>36.60</td>
<td>26.00</td>
<td>3.52</td>
</tr>
<tr>
<td>125</td>
<td>18.72</td>
<td>36.44</td>
<td>26.21</td>
<td>3.31</td>
</tr>
<tr>
<td>190</td>
<td>16.67</td>
<td>35.26</td>
<td>26.58</td>
<td>3.19</td>
</tr>
<tr>
<td>255</td>
<td>14.05</td>
<td>35.90</td>
<td>26.89</td>
<td>2.60*</td>
</tr>
<tr>
<td>375</td>
<td>8.88</td>
<td>35.16</td>
<td>27.28</td>
<td>2.83</td>
</tr>
</tbody>
</table>

* Value questionable
** From BT

Interpolated and Calculated

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.20</td>
<td>36.26</td>
<td>24.25</td>
<td>4.63</td>
</tr>
<tr>
<td>10</td>
<td>24.98</td>
<td>36.27</td>
<td>24.33</td>
<td>4.78</td>
</tr>
<tr>
<td>20</td>
<td>24.86</td>
<td>36.30</td>
<td>24.39</td>
<td>4.81</td>
</tr>
<tr>
<td>30</td>
<td>24.53</td>
<td>36.37</td>
<td>24.54</td>
<td>4.81</td>
</tr>
<tr>
<td>50</td>
<td>23.79</td>
<td>36.60</td>
<td>24.93</td>
<td>4.06</td>
</tr>
<tr>
<td>75</td>
<td>22.18</td>
<td>36.71</td>
<td>25.48</td>
<td>3.67</td>
</tr>
<tr>
<td>100</td>
<td>19.80</td>
<td>36.57</td>
<td>26.03</td>
<td>3.47</td>
</tr>
<tr>
<td>150</td>
<td>17.95</td>
<td>36.37</td>
<td>26.35</td>
<td>3.27</td>
</tr>
<tr>
<td>200</td>
<td>16.35</td>
<td>36.22</td>
<td>26.62</td>
<td>3.18</td>
</tr>
<tr>
<td>250</td>
<td>14.36</td>
<td>35.95</td>
<td>26.86</td>
<td>3.09</td>
</tr>
<tr>
<td>300</td>
<td>12.18</td>
<td>35.64</td>
<td>27.07</td>
<td>2.99</td>
</tr>
</tbody>
</table>
STATION 30

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>0.7</td>
<td>0.0</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>2.7</td>
<td>0.0</td>
<td>2.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.6</td>
<td>0.4</td>
<td>3.5</td>
<td>6.1</td>
<td>0.7</td>
</tr>
<tr>
<td>62</td>
<td>0.3</td>
<td>0.2</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>95</td>
<td>0.5</td>
<td>0.3</td>
<td>8.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>125</td>
<td>-</td>
<td>0.5</td>
<td>8.5</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td>190</td>
<td>-</td>
<td>0.8</td>
<td>1.5</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td>253</td>
<td>1.0</td>
<td>0.9</td>
<td>6.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>375</td>
<td>-</td>
<td>1.7</td>
<td>8.0</td>
<td>1.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>10</td>
<td>2.3</td>
<td>0.2</td>
<td>1.5</td>
<td>1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>1.7</td>
<td>0.2</td>
<td>2.5</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>30</td>
<td>0.6</td>
<td>0.4</td>
<td>3.5</td>
<td>6.1</td>
<td>0.7</td>
</tr>
<tr>
<td>50</td>
<td>0.4</td>
<td>0.3</td>
<td>2.5</td>
<td>4.8</td>
<td>0.4</td>
</tr>
<tr>
<td>75</td>
<td>0.4</td>
<td>0.2</td>
<td>4.5</td>
<td>3.2</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>0.3</td>
<td>8.5</td>
<td>1.6</td>
<td>0.3</td>
</tr>
<tr>
<td>150</td>
<td>0.7</td>
<td>0.6</td>
<td>6.0</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>200</td>
<td>0.8</td>
<td>0.8</td>
<td>2.0</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td>250</td>
<td>1.0</td>
<td>0.9</td>
<td>6.0</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>1.2</td>
<td>7.0</td>
<td>1.6</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>
STATION 31

DATE April 28, 1953 LAT. 31°00' N. LONG. 79°59' W. TIME 04
DEPTH 51 WIND 6, 31 BAR. 13 AIR TEMP: dry 20.6°C, wet 13.3°C
HUMIDITY 44% WEATHER 01 CLOUDS: type ___, amt. ___, SEA: dir. ___, amt. ___,
SWELL: dir. ___, amt. ___, VIS. ___, WATER TRANS. ___

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.74</td>
<td>36.37</td>
<td>25.07</td>
<td>5.03</td>
</tr>
<tr>
<td>10</td>
<td>22.73</td>
<td>36.40</td>
<td>25.09</td>
<td>5.03</td>
</tr>
<tr>
<td>20</td>
<td>22.66</td>
<td>36.39</td>
<td>25.10</td>
<td>4.98</td>
</tr>
<tr>
<td>30</td>
<td>22.66</td>
<td>36.40</td>
<td>25.11</td>
<td>4.87</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.74</td>
<td>36.37</td>
<td>25.07</td>
<td>5.03</td>
</tr>
<tr>
<td>10</td>
<td>22.73</td>
<td>36.40</td>
<td>25.09</td>
<td>5.03</td>
</tr>
<tr>
<td>20</td>
<td>22.66</td>
<td>36.39</td>
<td>25.10</td>
<td>4.98</td>
</tr>
<tr>
<td>30</td>
<td>22.66</td>
<td>36.40</td>
<td>25.11</td>
<td>4.87</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0</td>
<td>0.1</td>
<td>1.0</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
<td>0.0</td>
<td>0.5</td>
<td>2.9</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>1.1</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.0</td>
<td>0.1</td>
<td>1.0</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
<td>0.0</td>
<td>0.5</td>
<td>2.9</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>1.1</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>
DATE April 28, 1953 LAT. 31°00' N. LONG. 80°23' W. TIME 06

DEPTH 341 WIND - - BAR. - - AIR TEMP: dry - - °C, wet - - °C
HUMIDITY - - % WEATHER 02 CLOUDS: type - - , amt. - - SEA: dir. - - , amt. - -
SWELL: dir.- - , amt.- - VIS. 7 WATER TRANS. - -

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.55</td>
<td>36.10</td>
<td>25.47</td>
<td>5.06</td>
</tr>
<tr>
<td>10</td>
<td>20.52</td>
<td>36.13</td>
<td>25.50</td>
<td>5.06</td>
</tr>
<tr>
<td>20</td>
<td>20.70</td>
<td>36.22</td>
<td>25.52</td>
<td>5.03</td>
</tr>
<tr>
<td>30</td>
<td>20.81</td>
<td>36.22</td>
<td>25.49</td>
<td>4.98</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.55</td>
<td>36.10</td>
<td>25.47</td>
<td>5.06</td>
</tr>
<tr>
<td>10</td>
<td>20.52</td>
<td>36.13</td>
<td>25.50</td>
<td>5.06</td>
</tr>
<tr>
<td>20</td>
<td>20.70</td>
<td>36.22</td>
<td>25.52</td>
<td>5.03</td>
</tr>
<tr>
<td>30</td>
<td>20.81</td>
<td>36.22</td>
<td>25.49</td>
<td>4.98</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.3</td>
<td>0.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>20</td>
<td>0.7</td>
<td>0.2</td>
<td>0.5</td>
<td>5.0</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6</td>
<td>0.3</td>
<td>0.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>20</td>
<td>0.7</td>
<td>0.2</td>
<td>0.5</td>
<td>5.0</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>
STATION 33

DATE April 28, 1953 LAT. 31°00' N. LONG. 80°46' W. TIME 09

DEPTH 23 WIND - - BAR. - - AIR TEMP: dry - - °C, wet - - °C
HUMIDITY - % WEATHER 02 CLOUDS: type - , amt. 0 SEA: dir. - - , amt. - -
SWELL: dir. - - , amt. - - VIS. 8 WATER TRANS. - -

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ<sub>t</sub></th>
<th>O<sub>2</sub> (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.93</td>
<td>35.17</td>
<td>24.93</td>
<td>5.20</td>
</tr>
<tr>
<td>15</td>
<td>20.03</td>
<td>35.46</td>
<td>25.12</td>
<td>5.12</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ<sub>t</sub></th>
<th>O<sub>2</sub> (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.93</td>
<td>35.17</td>
<td>24.93</td>
<td>5.20</td>
</tr>
<tr>
<td>10</td>
<td>20.00</td>
<td>35.37</td>
<td>25.06</td>
<td>5.14</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.4</td>
<td>0.2</td>
<td>1.5</td>
<td>1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>1.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.4</td>
<td>0.2</td>
<td>1.5</td>
<td>1.7</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>
STATION 34

DATE April 28, 1953 LAT. 31°00'N. LONG. 81°09'W. TIME 11
DEPTH 11' WIND --, -- BAR. -- AIR TEMP: dry -- °C, wet -- °C
HUMIDITY -- % WEATHER -- CLOUDS: type __, amt. __ SEA: dir. __, amt. __
SWELL: dir. __, amt. __ VIS. __ WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>ß_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.79</td>
<td>34.70</td>
<td>24.61</td>
<td>5.12</td>
</tr>
<tr>
<td>10</td>
<td>19.80</td>
<td>34.75</td>
<td>24.64</td>
<td>5.12</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>ß_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.79</td>
<td>34.70</td>
<td>24.61</td>
<td>5.12</td>
</tr>
<tr>
<td>10</td>
<td>19.80</td>
<td>34.75</td>
<td>24.64</td>
<td>5.12</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>< 0.1</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.8</td>
<td>0.4</td>
<td>2.5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>< 0.1</td>
<td>0.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.8</td>
<td>0.4</td>
<td>2.5</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>
DATE May 5, 1953 LAT. 31°21' N. LONG. 80°55' W. TIME 01
DEPTH 15 WIND 5, 14 BAR. AIR TEMP: dry —°C, wet —°C
HUMIDITY —% WEATHER 02 CLOUDS: type 0, amt. 1 SEA: dir., amt. -
SWELL: dir. __, amt. __ VIS. 8 WATER TRANS. —

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.11</td>
<td>34.69</td>
<td>23.97</td>
<td>4.91</td>
</tr>
<tr>
<td>10</td>
<td>20.90</td>
<td>34.86</td>
<td>24.43</td>
<td>4.95</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.11</td>
<td>34.69</td>
<td>23.97</td>
<td>4.91</td>
</tr>
<tr>
<td>10</td>
<td>20.90</td>
<td>34.86</td>
<td>24.43</td>
<td>4.95</td>
</tr>
</tbody>
</table>
STATION 35

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSINE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td><0.1</td>
<td>0.5</td>
<td>0.6</td>
<td>1.4</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSINE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td><0.1</td>
<td>0.5</td>
<td>0.6</td>
<td>1.4</td>
</tr>
</tbody>
</table>
DATE: May 5, 1953 LAT.: 31°42’ N. LONG.: 80°38’ W. TIME: 04

DEPTH: 21 WIND: 7,14 BAR.: -- AIR TEMP: dry -- °C, wet -- °C

HUMIDITY: --% WEATHER: 02 CLOUDS: type --, amt. -- SEA: dir. --, amt. --

SWELL: dir. --, amt. -- VIS.: 7 WATER TRANS: --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.98</td>
<td>34.61</td>
<td>23.95</td>
<td>5.02</td>
</tr>
<tr>
<td>15</td>
<td>20.18</td>
<td>34.79</td>
<td>24.57</td>
<td>4.99</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.98</td>
<td>34.61</td>
<td>23.95</td>
<td>5.02</td>
</tr>
<tr>
<td>10</td>
<td>21.21</td>
<td>34.69</td>
<td>24.22</td>
<td>5.00</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>4.0</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.3</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>4.0</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>

STATION 37

DATE May 5, 1953 **LAT.** 31°38'N. **LONG.** 80°14'W. **TIME** 07

DEPTH 32 **WIND** 9, 17 BAR. **AIR TEMP:** dry -- °C, wet -- °C

HUMIDITY: % **WEATHER:** CLOUDS: type --, amt. -- **SEA:** dir. --, amt. -- **SWELL:** dir. --, amt. -- **VIS:** 7

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.78</td>
<td>34.63</td>
<td>23.74</td>
<td>4.95</td>
</tr>
<tr>
<td>10</td>
<td>21.97</td>
<td>34.69</td>
<td>24.01</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>21.23</td>
<td>35.99*</td>
<td>25.20</td>
<td>4.95</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.78</td>
<td>34.63</td>
<td>23.74</td>
<td>4.95</td>
</tr>
<tr>
<td>10</td>
<td>21.97</td>
<td>34.69</td>
<td>24.01</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>21.23</td>
<td>-</td>
<td>-</td>
<td>4.95</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.0</td>
<td>< 0.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.0</td>
<td>< 0.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>
DATE May 5, 1953 LAT. 31°36'N. LONG. 79°51'W. TIME 11
DEPTH 145 WIND 8, 17 BAR. AIR TEMP: dry ___ °C, wet ___ °C
HUMIDITY ___ % WEATHER: type 2, amt. 3 SEA: dir. ___, amt. __
SWELL: dir. ___, amt. __ VIS. 8 WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.34</td>
<td>35.70</td>
<td>24.39</td>
<td>4.98</td>
</tr>
<tr>
<td>10</td>
<td>23.26</td>
<td>35.71</td>
<td>24.42</td>
<td>5.12</td>
</tr>
<tr>
<td>20</td>
<td>22.33</td>
<td>36.35*</td>
<td>25.17</td>
<td>5.12</td>
</tr>
<tr>
<td>30</td>
<td>18.27</td>
<td>36.15</td>
<td>26.10</td>
<td>4.42</td>
</tr>
</tbody>
</table>

* Value questionable

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.34</td>
<td>35.70</td>
<td>24.39</td>
<td>4.98</td>
</tr>
<tr>
<td>10</td>
<td>23.26</td>
<td>35.71</td>
<td>24.42</td>
<td>5.12</td>
</tr>
<tr>
<td>20</td>
<td>22.33</td>
<td>35.89</td>
<td>24.82</td>
<td>5.12</td>
</tr>
<tr>
<td>30</td>
<td>18.27</td>
<td>36.15</td>
<td>26.10</td>
<td>4.42</td>
</tr>
</tbody>
</table>
Station 38

Observed

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.7</td>
<td>5.0</td>
<td>-</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.7</td>
<td>5.0</td>
<td>-</td>
<td>0.8</td>
</tr>
</tbody>
</table>
DATE May 5, 1953 LAT. 31°34'.N. LONG. 79°27'.W. TIME 14
DEPTH 468 WIND 9°, 18 BAR. 23 AIR TEMP: dry 25.6°C, wet 23.3°C
HUMIDITY 83% WEATHER 03 CLOUDS: type 8, amt. 6 SEA: dir. ---, amt. ---
SWELL: dir. ---, amt. --- VIS. 8 WATER TRANS. ---

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.74</td>
<td>36.36</td>
<td>24.16</td>
<td>4.63</td>
</tr>
<tr>
<td>4</td>
<td>25.73</td>
<td>36.37</td>
<td>24.17</td>
<td>4.59</td>
</tr>
<tr>
<td>8</td>
<td>25.72</td>
<td>36.36</td>
<td>24.17</td>
<td>4.65</td>
</tr>
<tr>
<td>23</td>
<td>24.45</td>
<td>36.36</td>
<td>24.56</td>
<td>4.77</td>
</tr>
<tr>
<td>33</td>
<td>23.48</td>
<td>36.34</td>
<td>24.83</td>
<td>4.87</td>
</tr>
<tr>
<td>45</td>
<td>22.76</td>
<td>36.29</td>
<td>25.00</td>
<td>4.87</td>
</tr>
<tr>
<td>70</td>
<td>20.60</td>
<td>36.09</td>
<td>25.45</td>
<td>4.49</td>
</tr>
<tr>
<td>92</td>
<td>17.18</td>
<td>35.86</td>
<td>26.15</td>
<td>4.02</td>
</tr>
<tr>
<td>145</td>
<td>13.65</td>
<td>35.71</td>
<td>26.83</td>
<td>3.09</td>
</tr>
<tr>
<td>200</td>
<td>10.90</td>
<td>35.41</td>
<td>27.13</td>
<td>2.84</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.74</td>
<td>36.36</td>
<td>24.16</td>
<td>4.63</td>
</tr>
<tr>
<td>10</td>
<td>25.59</td>
<td>36.36</td>
<td>24.21</td>
<td>4.67</td>
</tr>
<tr>
<td>20</td>
<td>24.75</td>
<td>36.36</td>
<td>24.47</td>
<td>4.75</td>
</tr>
<tr>
<td>30</td>
<td>23.77</td>
<td>36.35</td>
<td>24.75</td>
<td>4.65</td>
</tr>
<tr>
<td>50</td>
<td>22.40</td>
<td>36.26</td>
<td>25.08</td>
<td>4.80</td>
</tr>
<tr>
<td>75</td>
<td>19.84</td>
<td>36.02</td>
<td>25.60</td>
<td>4.46</td>
</tr>
<tr>
<td>100</td>
<td>16.59</td>
<td>35.84</td>
<td>26.27</td>
<td>3.86</td>
</tr>
<tr>
<td>150</td>
<td>13.40</td>
<td>35.69</td>
<td>26.86</td>
<td>3.01</td>
</tr>
<tr>
<td>200</td>
<td>10.90</td>
<td>35.41</td>
<td>27.13</td>
<td>2.84</td>
</tr>
</tbody>
</table>
STATION 39

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.1</td>
<td>1.5</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
<td>< 0.1</td>
<td>0.5</td>
<td>4.4</td>
<td>0.5</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>0.2</td>
<td>0.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>33</td>
<td>0.1</td>
<td>< 0.1</td>
<td>0.5</td>
<td>5.6</td>
<td>0.1</td>
</tr>
<tr>
<td>45</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>70</td>
<td>-</td>
<td>0.2</td>
<td>2.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>92</td>
<td>-</td>
<td>1.0</td>
<td>6.0</td>
<td>3.9</td>
<td>0.3</td>
</tr>
<tr>
<td>145</td>
<td>-</td>
<td>1.2</td>
<td>7.5</td>
<td>-</td>
<td>< 0.1</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.4</td>
<td>22.0</td>
<td>2.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.1</td>
<td>1.5</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>4.5</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.2</td>
<td>0.0</td>
<td>5.0</td>
<td>0.2</td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>5.5</td>
<td>0.1</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>< 0.1</td>
<td>1.5</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.4</td>
<td>3.0</td>
<td>2.6</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>1.1</td>
<td>6.0</td>
<td>3.8</td>
<td>0.3</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>1.2</td>
<td>7.5</td>
<td>2.9</td>
<td>< 0.1</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.4</td>
<td>22.0</td>
<td>2.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>
DATE May 5, 1953 LAT. 31°29'N. LONG. 78°41'W. TIME 20
DEPTH 53'4 WIND 7, 19 BAR. 22 AIR TEMP: dry 26.1°C, wet 22.8°C
HUMIDITY 76% WEATHER 02 CLOUDS: type 8, amt. 2 SEA: dir. --, amt. --
SWELL: dir. --, amt. -- VIS. 8 WATER TRANS. --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.77</td>
<td>36.13</td>
<td>23.66</td>
<td>4.59</td>
</tr>
<tr>
<td>10</td>
<td>26.71</td>
<td>36.13</td>
<td>23.68</td>
<td>4.59</td>
</tr>
<tr>
<td>18</td>
<td>26.57</td>
<td>36.13</td>
<td>23.73</td>
<td>4.63</td>
</tr>
<tr>
<td>44</td>
<td>25.84</td>
<td>36.15</td>
<td>23.97</td>
<td>4.30</td>
</tr>
<tr>
<td>88</td>
<td>23.24</td>
<td>36.41</td>
<td>24.95</td>
<td>4.63</td>
</tr>
<tr>
<td>132</td>
<td>22.06</td>
<td>36.60</td>
<td>25.43</td>
<td>4.71</td>
</tr>
<tr>
<td>177</td>
<td>20.03</td>
<td>36.60</td>
<td>25.99</td>
<td>4.67</td>
</tr>
<tr>
<td>265</td>
<td>18.14</td>
<td>36.51</td>
<td>26.41</td>
<td>4.55</td>
</tr>
<tr>
<td>355</td>
<td>16.70</td>
<td>36.29</td>
<td>26.59</td>
<td>4.47</td>
</tr>
<tr>
<td>444</td>
<td>13.55</td>
<td>35.75</td>
<td>26.88</td>
<td>3.25</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.77</td>
<td>36.13</td>
<td>23.66</td>
<td>4.59</td>
</tr>
<tr>
<td>10</td>
<td>26.71</td>
<td>36.13</td>
<td>23.68</td>
<td>4.59</td>
</tr>
<tr>
<td>20</td>
<td>26.54</td>
<td>36.13</td>
<td>23.74</td>
<td>4.62</td>
</tr>
<tr>
<td>30</td>
<td>26.31</td>
<td>36.13</td>
<td>23.81</td>
<td>4.45</td>
</tr>
<tr>
<td>50</td>
<td>25.40</td>
<td>36.19</td>
<td>24.14</td>
<td>4.32</td>
</tr>
<tr>
<td>75</td>
<td>23.86</td>
<td>36.34</td>
<td>24.72</td>
<td>4.60</td>
</tr>
<tr>
<td>100</td>
<td>23.00</td>
<td>36.48</td>
<td>25.07</td>
<td>4.66</td>
</tr>
<tr>
<td>150</td>
<td>21.16</td>
<td>36.60</td>
<td>25.69</td>
<td>4.70</td>
</tr>
<tr>
<td>200</td>
<td>19.49</td>
<td>36.59</td>
<td>26.13</td>
<td>4.63</td>
</tr>
<tr>
<td>250</td>
<td>18.43</td>
<td>36.53</td>
<td>26.35</td>
<td>4.57</td>
</tr>
<tr>
<td>300</td>
<td>17.82</td>
<td>36.47</td>
<td>26.46</td>
<td>4.52</td>
</tr>
<tr>
<td>400</td>
<td>15.50</td>
<td>36.11</td>
<td>26.73</td>
<td>3.86</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.0</td>
<td>3.0</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.1</td>
<td>2.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>18</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>44</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>88</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>132</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>1.1</td>
</tr>
<tr>
<td>177</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>265</td>
<td>-</td>
<td>0.2</td>
<td>3.5</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>355</td>
<td>-</td>
<td>0.6</td>
<td>4.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>444</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
<td>-</td>
<td>1.1</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.0</td>
<td>3.0</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.1</td>
<td>2.0</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>75</td>
<td>0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>100</td>
<td>0.2</td>
<td>0.0</td>
<td>2.5</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>150</td>
<td>0.4</td>
<td>0.0</td>
<td>1.5</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>200</td>
<td>0.2</td>
<td>< 0.1</td>
<td>1.5</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.2</td>
<td>3.0</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>0.4</td>
<td>3.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>-</td>
<td>5.5</td>
<td>-</td>
<td>0.7</td>
</tr>
</tbody>
</table>
STATION 41

DATE: May 6, 1953 LAT.: 31°41' N. LONG.: 79°00' W. TIME: 00

DEPTH: 503 WIND: 7, 17 BAR: 21 AIR TEMP: dry 25.6°C, wet 23.3°C
HUMIDITY: 83% WEATHER: 03 CLOUDS: type 2, amt. 3 SEA: dir. __, amt. __
SWELL: dir. __, amt. __ VIS: 7 WATER TRANS: __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.00</td>
<td>36.18</td>
<td>23.63</td>
<td>4.75</td>
</tr>
<tr>
<td>6</td>
<td>26.92</td>
<td>36.18</td>
<td>23.65</td>
<td>4.55</td>
</tr>
<tr>
<td>13</td>
<td>26.96</td>
<td>36.17</td>
<td>23.63</td>
<td>4.63</td>
</tr>
<tr>
<td>35</td>
<td>26.35</td>
<td>36.11</td>
<td>23.78</td>
<td>4.71</td>
</tr>
<tr>
<td>73</td>
<td>24.50</td>
<td>36.43</td>
<td>24.59</td>
<td>4.63</td>
</tr>
<tr>
<td>112</td>
<td>21.66</td>
<td>36.71</td>
<td>25.63</td>
<td>3.90</td>
</tr>
<tr>
<td>150</td>
<td>19.29</td>
<td>36.59</td>
<td>26.18</td>
<td>3.49</td>
</tr>
<tr>
<td>190</td>
<td>16.60</td>
<td>36.22</td>
<td>26.56</td>
<td>3.41</td>
</tr>
<tr>
<td>230</td>
<td>14.32</td>
<td>35.90</td>
<td>26.83</td>
<td>3.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27.00</td>
<td>36.18</td>
<td>23.63</td>
<td>4.75</td>
</tr>
<tr>
<td>10</td>
<td>26.96</td>
<td>36.17</td>
<td>23.63</td>
<td>4.51</td>
</tr>
<tr>
<td>20</td>
<td>26.80</td>
<td>36.13</td>
<td>23.65</td>
<td>4.65</td>
</tr>
<tr>
<td>30</td>
<td>26.52</td>
<td>36.11</td>
<td>23.73</td>
<td>4.69</td>
</tr>
<tr>
<td>40</td>
<td>25.73</td>
<td>36.24</td>
<td>24.07</td>
<td>4.68</td>
</tr>
<tr>
<td>75</td>
<td>24.34</td>
<td>36.45</td>
<td>24.66</td>
<td>4.64</td>
</tr>
<tr>
<td>100</td>
<td>22.49</td>
<td>36.67</td>
<td>25.37</td>
<td>4.18</td>
</tr>
<tr>
<td>150</td>
<td>19.29</td>
<td>36.59</td>
<td>26.18</td>
<td>3.49</td>
</tr>
<tr>
<td>200</td>
<td>15.99</td>
<td>36.10</td>
<td>26.61</td>
<td>3.35</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED
Observed

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>1.6</td>
<td>0.1</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>73</td>
<td>-</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>112</td>
<td>-</td>
<td>0.3</td>
<td>1.0</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.5</td>
<td>4.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>190</td>
<td>-</td>
<td>1.1</td>
<td>1.0</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>230</td>
<td>-</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>0.5</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>< 0.1</td>
<td>1.0</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.0</td>
<td>1.0</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.5</td>
<td>4.0</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.1</td>
<td>1.0</td>
<td>1.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>
DATE May 6, 1953 LAT. 31°57'N. LONG. 79°18'W. TIME 04
DEPTH 137 WIND - - BAR. - - AIR TEMP: dry - °C, wet - °C
HUMIDITY - % WEATHER 02 CLOUDS: type - , amt. - SEA: dir. - , amt. -
SWELL: dir. - , amt. - VIS. 7 WATER TRANS. -

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>θ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.16</td>
<td>34.85</td>
<td>24.08</td>
<td>5.44</td>
</tr>
<tr>
<td>10</td>
<td>21.89</td>
<td>34.81</td>
<td>24.12</td>
<td>5.14</td>
</tr>
<tr>
<td>20</td>
<td>22.41*</td>
<td>36.08*</td>
<td>24.94</td>
<td>4.95</td>
</tr>
<tr>
<td>50</td>
<td>16.57</td>
<td>36.07</td>
<td>26.45</td>
<td>3.41</td>
</tr>
<tr>
<td>75</td>
<td>14.84</td>
<td>35.96</td>
<td>26.76</td>
<td>3.23</td>
</tr>
<tr>
<td>100</td>
<td>13.30</td>
<td>35.68</td>
<td>26.88</td>
<td>2.92</td>
</tr>
</tbody>
</table>

* Value questionable

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>θ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.16</td>
<td>34.85</td>
<td>24.08</td>
<td>5.44</td>
</tr>
<tr>
<td>10</td>
<td>21.89</td>
<td>34.81</td>
<td>24.12</td>
<td>5.14</td>
</tr>
<tr>
<td>20</td>
<td>20.94</td>
<td>35.02</td>
<td>24.54</td>
<td>4.95</td>
</tr>
<tr>
<td>30</td>
<td>19.05</td>
<td>35.61</td>
<td>25.49</td>
<td>4.42</td>
</tr>
<tr>
<td>50</td>
<td>16.57</td>
<td>36.07</td>
<td>26.45</td>
<td>3.41</td>
</tr>
<tr>
<td>75</td>
<td>14.84</td>
<td>35.96</td>
<td>26.76</td>
<td>3.23</td>
</tr>
<tr>
<td>100</td>
<td>13.30</td>
<td>35.68</td>
<td>26.88</td>
<td>2.92</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.3</td>
<td>1.0</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.3</td>
<td>4.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>1.0</td>
<td>2.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>1.2</td>
<td>3.5</td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.3</td>
<td>1.0</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.3</td>
<td>2.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.3</td>
<td>4.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>1.0</td>
<td>2.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>1.2</td>
<td>3.5</td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>
STATION 43

DATE: May 6, 1953 LAT.: 32°12'N. LONG.: 79°33'W. TIME 08

DEPTH: 31 WIND: 4, 17 BAR.: 19 AIR TEMP: dry 23.9°C, wet 22.8°C

HUMIDITY: 91% WEATHER: 02 CLOUDS: type 8, amt. 4 SEA: dir. __, amt. __

SWELL: dir. __, amt. __ VIS: 8 WATER TRANS. __

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.63</td>
<td>-</td>
<td>-</td>
<td>5.04</td>
</tr>
<tr>
<td>10</td>
<td>22.34</td>
<td>-</td>
<td>-</td>
<td>5.03</td>
</tr>
<tr>
<td>20</td>
<td>20.12</td>
<td>36.14</td>
<td>25.62</td>
<td>4.60</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.63</td>
<td>-</td>
<td>-</td>
<td>5.04</td>
</tr>
<tr>
<td>10</td>
<td>22.34</td>
<td>-</td>
<td>-</td>
<td>5.03</td>
</tr>
<tr>
<td>20</td>
<td>20.12</td>
<td>36.14</td>
<td>25.62</td>
<td>4.60</td>
</tr>
</tbody>
</table>
STATION 43

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.1</td>
<td>0.0</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>0.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>< 0.1</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.1</td>
<td>0.0</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>0.0</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>< 0.1</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
STATION 44

DATE May 6, 1953 LAT. 32°26' N. LONG. 79°50' W. TIME 12
DEPTH 15 WIND 3, 18 BAR. - AIR TEMP: dry - °C, wet - °C
HUMIDITY - % WEATHER CLOUDS: type 2, amt. 6 SEA: dir., amt.
SWELL: dir., amt. VIS. 8 WATER TRANS.

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.01</td>
<td>33.58</td>
<td>23.16</td>
<td>5.29</td>
</tr>
<tr>
<td>10</td>
<td>19.59</td>
<td>34.36</td>
<td>24.40</td>
<td>5.03</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.01</td>
<td>33.58</td>
<td>23.16</td>
<td>5.29</td>
</tr>
<tr>
<td>10</td>
<td>19.59</td>
<td>34.36</td>
<td>24.40</td>
<td>5.03</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/1)</td>
<td>PO₄-P (µg at/1)</td>
<td>NO₃-NO₂ (µg at/1)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td><0.1</td>
<td>0.0</td>
<td>5.1</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.2</td>
<td>1.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td><0.1</td>
<td>0.0</td>
<td>5.1</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.2</td>
<td>1.5</td>
<td>0.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>
STATION 45

DATE May 6, 1953 LAT. 32°40'N. LONG. 79°32'W. TIME 14

DEPTH 15 WIND 5, 20 BAR. - AIR TEMP: dry — °C, wet — °C
HUMIDITY — % WEATHER 02 CLOUDS: type 1, amt. 4 SEA: dir. — , amt. —
SWELL: dir. — , amt. — VIS. 6 WATER TRANS. —

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.04</td>
<td>33.44</td>
<td>23.04</td>
<td>5.44</td>
</tr>
<tr>
<td>10</td>
<td>19.04</td>
<td>34.75</td>
<td>24.84</td>
<td>5.68</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.04</td>
<td>33.44</td>
<td>23.04</td>
<td>5.44</td>
</tr>
<tr>
<td>10</td>
<td>19.04</td>
<td>34.75</td>
<td>24.84</td>
<td>5.68</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

163
STATION 46

DATE May 6, 1953 LAT. 32°54' N. LONG. 79°16' W. TIME 17
DEPTH 11 WIND 5, 20 BAR. -- AIR TEMP: dry -- °C, wet -- °C
HUMIDITY --% WEATHER 03 CLOUDS: type 8, amt. 6 SEA: dir. --, amt. --
SWELL: dir. --, amt. -- VIS. 6 WATER TRANS. --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.31</td>
<td>33.91</td>
<td>23.33</td>
<td>5.12</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.31</td>
<td>33.91</td>
<td>23.33</td>
<td>5.12</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>
STATION 47

DATE: May 6, 1953
LAT.: 32°40' N.
LONG.: 79°00' W.
TIME: 20

DEPTH: 29
WIND: 7, 18
BAR.: 18
AIR TEMP: dry --°C, wet --°C
HUMIDITY: %
WEATHER:
CLOUDS: type 9
SEA: dir., amt.
SWELL: dir., amt.
VIS.: 5
WATER TRANS.:

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.32</td>
<td>34.56</td>
<td>23.81</td>
<td>5.14</td>
</tr>
<tr>
<td>10</td>
<td>20.20</td>
<td>34.78</td>
<td>24.56</td>
<td>5.36</td>
</tr>
<tr>
<td>20</td>
<td>18.06</td>
<td>35.99</td>
<td>26.03</td>
<td>4.53</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.32</td>
<td>34.56</td>
<td>23.81</td>
<td>5.14</td>
</tr>
<tr>
<td>10</td>
<td>20.20</td>
<td>34.78</td>
<td>24.56</td>
<td>5.36</td>
</tr>
<tr>
<td>20</td>
<td>18.06</td>
<td>35.99</td>
<td>26.03</td>
<td>4.53</td>
</tr>
</tbody>
</table>
STATION 47

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.5</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.5</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>
DATE May 6, 1953 LAT. 32°24' N. LONG. 78°43' W. TIME 24
DEPTH 366. WIND 10, 20 BAR. 17 AIR TEMP: dry 23.9°C, wet 21.7°C
HUMIDITY 83% WEATHER 96. CLOUDS: type __, amt. __ SEA: dir. __, amt. __
SWELL: dir. __, amt. __ VIS. 5 WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.25</td>
<td>36.26</td>
<td>24.54</td>
<td>4.91</td>
</tr>
<tr>
<td>10</td>
<td>24.13</td>
<td>36.27</td>
<td>24.58</td>
<td>4.98</td>
</tr>
<tr>
<td>20</td>
<td>22.58</td>
<td>36.34</td>
<td>25.09</td>
<td>5.06</td>
</tr>
<tr>
<td>50</td>
<td>18.71</td>
<td>36.35</td>
<td>26.14</td>
<td>4.21</td>
</tr>
<tr>
<td>100</td>
<td>15.86</td>
<td>36.17</td>
<td>26.70</td>
<td>3.17</td>
</tr>
<tr>
<td>150</td>
<td>13.73</td>
<td>35.80</td>
<td>26.88</td>
<td>3.04</td>
</tr>
<tr>
<td>200</td>
<td>10.46</td>
<td>35.35</td>
<td>27.16</td>
<td>3.09</td>
</tr>
<tr>
<td>250</td>
<td>8.53</td>
<td>35.08</td>
<td>27.28</td>
<td>3.03</td>
</tr>
<tr>
<td>300</td>
<td>6.76</td>
<td>34.96</td>
<td>27.44</td>
<td>3.17</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.25</td>
<td>36.26</td>
<td>24.54</td>
<td>4.91</td>
</tr>
<tr>
<td>10</td>
<td>24.13</td>
<td>36.27</td>
<td>24.58</td>
<td>4.98</td>
</tr>
<tr>
<td>20</td>
<td>22.58</td>
<td>36.34</td>
<td>25.09</td>
<td>5.06</td>
</tr>
<tr>
<td>30</td>
<td>21.11</td>
<td>36.35</td>
<td>25.51</td>
<td>5.00</td>
</tr>
<tr>
<td>50</td>
<td>18.71</td>
<td>36.35</td>
<td>26.14</td>
<td>4.21</td>
</tr>
<tr>
<td>75</td>
<td>17.20</td>
<td>36.28</td>
<td>26.47</td>
<td>3.55</td>
</tr>
<tr>
<td>100</td>
<td>15.86</td>
<td>36.17</td>
<td>26.70</td>
<td>3.17</td>
</tr>
<tr>
<td>150</td>
<td>13.73</td>
<td>35.80</td>
<td>26.88</td>
<td>3.04</td>
</tr>
<tr>
<td>200</td>
<td>10.46</td>
<td>35.35</td>
<td>27.16</td>
<td>3.09</td>
</tr>
<tr>
<td>250</td>
<td>8.53</td>
<td>35.08</td>
<td>27.28</td>
<td>3.03</td>
</tr>
<tr>
<td>300</td>
<td>6.76</td>
<td>34.96</td>
<td>27.44</td>
<td>3.17</td>
</tr>
</tbody>
</table>
STATION 48

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>4.6</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.5</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.0</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.9</td>
<td>2.5</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.8</td>
<td>3.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>1.3</td>
<td>11.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.7</td>
<td>3.5</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>1.8</td>
<td>9.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>2.1</td>
<td>5.5</td>
<td>1.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>4.6</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.5</td>
<td>2.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.0</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.3</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.9</td>
<td>2.5</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.9</td>
<td>3.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.8</td>
<td>3.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>1.3</td>
<td>11.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.7</td>
<td>3.5</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>1.8</td>
<td>9.0</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>2.1</td>
<td>5.5</td>
<td>1.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

169
STATION 49

DATE: May 7, 1953
LAT.: 32°12' N.
LONG.: 78°25' W.
TIME: 04

DEPTH: 338
WIND: 11, 18
BAR.: 16
AIR TEMP: dry 25.0 °C, wet 22.8 °C
HUMIDITY: 82%
WEATHER: 29
CLOUDS: type 9, amt. 3
SEA: dir. 18, amt. 5
SWELL: dir. 18, amt. 5
VIS: 6
WATER TRANS.

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.77</td>
<td>36.11</td>
<td>24.57</td>
<td>4.87</td>
</tr>
<tr>
<td>9</td>
<td>23.75</td>
<td>36.14</td>
<td>24.60</td>
<td>4.87</td>
</tr>
<tr>
<td>18</td>
<td>23.78</td>
<td>36.18</td>
<td>24.62</td>
<td>4.95</td>
</tr>
<tr>
<td>45</td>
<td>20.83</td>
<td>36.26</td>
<td>25.52</td>
<td>5.16</td>
</tr>
<tr>
<td>90</td>
<td>14.92</td>
<td>35.96</td>
<td>26.75</td>
<td>3.33</td>
</tr>
<tr>
<td>135</td>
<td>13.26</td>
<td>35.70</td>
<td>26.90</td>
<td>3.25</td>
</tr>
<tr>
<td>180</td>
<td>10.63</td>
<td>35.38</td>
<td>27.16</td>
<td>2.92</td>
</tr>
<tr>
<td>226</td>
<td>7.90</td>
<td>35.05</td>
<td>27.35</td>
<td>3.17</td>
</tr>
<tr>
<td>273</td>
<td>6.76</td>
<td>34.95</td>
<td>27.43</td>
<td>3.25</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.77</td>
<td>36.11</td>
<td>24.57</td>
<td>4.87</td>
</tr>
<tr>
<td>10</td>
<td>23.76</td>
<td>36.15</td>
<td>24.60</td>
<td>4.87</td>
</tr>
<tr>
<td>20</td>
<td>23.58</td>
<td>36.19</td>
<td>24.69</td>
<td>4.97</td>
</tr>
<tr>
<td>30</td>
<td>22.52</td>
<td>36.24</td>
<td>25.03</td>
<td>5.05</td>
</tr>
<tr>
<td>50</td>
<td>19.96</td>
<td>36.22</td>
<td>25.72</td>
<td>5.00</td>
</tr>
<tr>
<td>75</td>
<td>16.42</td>
<td>36.06</td>
<td>26.48</td>
<td>3.97</td>
</tr>
<tr>
<td>100</td>
<td>14.63</td>
<td>35.91</td>
<td>26.77</td>
<td>3.30</td>
</tr>
<tr>
<td>150</td>
<td>12.39</td>
<td>35.59</td>
<td>26.99</td>
<td>3.15</td>
</tr>
<tr>
<td>200</td>
<td>9.25</td>
<td>35.21</td>
<td>27.26</td>
<td>3.03</td>
</tr>
<tr>
<td>250</td>
<td>7.11</td>
<td>34.97</td>
<td>27.40</td>
<td>3.21</td>
</tr>
</tbody>
</table>

170
STATION 49

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>< 0.1</td>
<td>0.5</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>< 0.1</td>
<td>1.5</td>
<td>4.2</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>< 0.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>90</td>
<td>-</td>
<td>1.0</td>
<td>9.0</td>
<td>4.2</td>
<td>0.7</td>
</tr>
<tr>
<td>135</td>
<td>-</td>
<td>1.3</td>
<td>14.0</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>180</td>
<td>1.6</td>
<td>1.7</td>
<td>19.5</td>
<td>1.6</td>
<td>0.6</td>
</tr>
<tr>
<td>226</td>
<td>-</td>
<td>1.9</td>
<td>21.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>273</td>
<td>2.4</td>
<td>1.7</td>
<td>24.5</td>
<td>-</td>
<td>0.4</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>< 0.1</td>
<td>0.5</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>< 0.1</td>
<td>1.5</td>
<td>3.8</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.4</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.8</td>
<td>6.0</td>
<td>3.2</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>1.1</td>
<td>10.0</td>
<td>3.7</td>
<td>0.6</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>1.4</td>
<td>15.5</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>1.8</td>
<td>1.8</td>
<td>20.5</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>250</td>
<td>2.2</td>
<td>1.8</td>
<td>23.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>
DATE: May 7, 1953
LAT: 32°50'N.
LONG: 78°05'W.
TIME: 18

DEPTH: 16.4
WIND: 8, 19
BAR: 15
AIR TEMP: dry 23.3°C, wet 22.2°C
HUMIDITY: 91%
WEATHER: 95
CLOUDS: type_, amt._
SEA: dir., amt._
SWELL: dir., amt._
VIS: 1/4
WATER TRANS.:

STATION 53

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.57</td>
<td>36.35</td>
<td>24.51</td>
<td>4.73</td>
</tr>
<tr>
<td>10</td>
<td>24.59</td>
<td>36.35</td>
<td>24.51</td>
<td>4.79</td>
</tr>
<tr>
<td>20</td>
<td>24.60</td>
<td>36.34</td>
<td>24.50</td>
<td>4.79</td>
</tr>
<tr>
<td>50</td>
<td>22.62</td>
<td>36.43</td>
<td>25.15</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>18.36</td>
<td>36.36</td>
<td>26.24</td>
<td>3.53</td>
</tr>
<tr>
<td>150</td>
<td>14.64</td>
<td>35.95</td>
<td>26.80</td>
<td>3.39</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.57</td>
<td>36.35</td>
<td>24.51</td>
<td>4.73</td>
</tr>
<tr>
<td>10</td>
<td>24.59</td>
<td>36.35</td>
<td>24.51</td>
<td>4.79</td>
</tr>
<tr>
<td>20</td>
<td>24.60</td>
<td>36.34</td>
<td>24.50</td>
<td>4.79</td>
</tr>
<tr>
<td>30</td>
<td>23.99</td>
<td>36.38</td>
<td>24.71</td>
<td>4.66</td>
</tr>
<tr>
<td>50</td>
<td>22.62</td>
<td>36.43</td>
<td>25.15</td>
<td>4.35</td>
</tr>
<tr>
<td>75</td>
<td>20.42</td>
<td>36.41</td>
<td>25.74</td>
<td>3.95</td>
</tr>
<tr>
<td>100</td>
<td>18.36</td>
<td>36.36</td>
<td>26.24</td>
<td>3.53</td>
</tr>
<tr>
<td>150</td>
<td>14.64</td>
<td>35.95</td>
<td>26.80</td>
<td>3.39</td>
</tr>
</tbody>
</table>
STATION 53

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/1)</th>
<th>PO₄-P (μg at/1)</th>
<th>NO₃-NO₂ (μg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.9</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>1.6</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.4</td>
<td>< 0.5</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>50</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>4.3</td>
<td>1.3</td>
<td>8.5</td>
<td>8.8</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>2.3</td>
<td>1.4</td>
<td>5.0</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/1)</th>
<th>PO₄-P (μg at/1)</th>
<th>NO₃-NO₂ (μg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.9</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>1.6</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>1.6</td>
<td>0.4</td>
<td>< 0.5</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>30</td>
<td>1.7</td>
<td>0.3</td>
<td>< 0.5</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>50</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>75</td>
<td>3.1</td>
<td>0.7</td>
<td>4.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>100</td>
<td>4.3</td>
<td>1.3</td>
<td>8.5</td>
<td>8.8</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>2.3</td>
<td>1.4</td>
<td>5.0</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>
STATION 54

DATE May 7, 1953 LAT. 33°03' N. LONG. 78°21' W. TIME 21
DEPTH 30 WIND 6,19 BAR. - AIR TEMP: dry - °C, wet - °C
HUMIDITY - % WEATHER 02 CLOUDS: type 7, amt. 8 SEA: dir. ___, amt. ___
SWELL: dir. ___, amt. ___ VIS. 6 WATER TRANS. ___

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>ρ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.03</td>
<td>34.25</td>
<td>23.66</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>22.04</td>
<td>35.93</td>
<td>24.93</td>
<td>5.28</td>
</tr>
<tr>
<td>20</td>
<td>21.00</td>
<td>36.15</td>
<td>25.39</td>
<td>5.20</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>ρ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.03</td>
<td>34.25</td>
<td>23.66</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>22.04</td>
<td>35.93</td>
<td>24.93</td>
<td>5.28</td>
</tr>
<tr>
<td>20</td>
<td>21.00</td>
<td>36.15</td>
<td>25.39</td>
<td>5.20</td>
</tr>
</tbody>
</table>
STATION 54

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>3.9</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>1.1</td>
<td>0.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.0</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>3.9</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>1.1</td>
<td>0.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.35</td>
<td>33.77</td>
<td>23.21</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>20.34</td>
<td>35.70</td>
<td>25.22</td>
<td>5.20</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.35</td>
<td>33.77</td>
<td>23.21</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>20.34</td>
<td>35.70</td>
<td>25.22</td>
<td>5.20</td>
</tr>
</tbody>
</table>

176
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>3.2</td>
<td>0.2</td>
<td>1.0</td>
<td>15.2</td>
<td>1.4</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>3.2</td>
<td>0.2</td>
<td>1.0</td>
<td>15.2</td>
<td>1.4</td>
</tr>
</tbody>
</table>

177
STATION 56

DATE May 8, 1953 LAT. 33°32' N. LONG. 78°55' W. TIME 03

DEPTH 9 WIND 10, 24 BAR. 13 AIR TEMP: dry 21.7°C, wet 21.1°C
HUMIDITY 95% WEATHER 01 CLOUDS: type __, amt. 2 SEA: dir. 22, amt. 3
SWELL: dir. 18, amt. 4 VIS. 6 WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.26</td>
<td>33.49</td>
<td>23.30</td>
<td>5.11</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.26</td>
<td>33.49</td>
<td>23.30</td>
<td>5.11</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.1</td>
<td>0.0</td>
<td>1.5</td>
<td>1.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.1</td>
<td>0.0</td>
<td>1.5</td>
<td>1.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>
DATE May 8, 1953 LAT. 33°34' N. LONG. 78°25' W. TIME 06
DEPTH 20 WIND 8, 22 BAR. 12 AIR TEMP: dry 21.1°C, wet 20.6°C
HUMIDITY 96% WEATHER 13 CLOUDS: type _, amt. 0 SEA: dir. 25, amt. 3
SWELL: dir. 18, amt. 4 VIS. 6 WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.47</td>
<td>33.66</td>
<td>23.37</td>
<td>5.52</td>
</tr>
<tr>
<td>10</td>
<td>21.00</td>
<td>33.75</td>
<td>23.56</td>
<td>5.28</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.47</td>
<td>33.66</td>
<td>23.37</td>
<td>5.52</td>
</tr>
<tr>
<td>10</td>
<td>21.00</td>
<td>33.75</td>
<td>23.56</td>
<td>5.28</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>1.4</td>
<td>0.0</td>
<td><0.5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>1.4</td>
<td>0.0</td>
<td><0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
</tbody>
</table>
DATE May 8, 1953 LAT. 33°36' N. LONG. 77°56' W. TIME 09

DEPTH 20 WIND 5, 27 BAR. 12 AIR TEMP: dry 20.6°C, wet 19.4°C
HUIMIDITY 90% WEATHER 13 CLOUDS: type 9, amt. 1 SEA: dir. 27, amt. 2
SWELL: dir. 22, amt. 3 VIS. 6 WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.24</td>
<td>33.76</td>
<td>23.51</td>
<td>5.07</td>
</tr>
<tr>
<td>10</td>
<td>19.41</td>
<td>35.29</td>
<td>25.16</td>
<td>4.99</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.24</td>
<td>33.76</td>
<td>23.51</td>
<td>5.07</td>
</tr>
<tr>
<td>10</td>
<td>19.41</td>
<td>35.29</td>
<td>25.16</td>
<td>4.99</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO$_4$-P (µg at/l)</td>
<td>NO$_3$-NO$_2$ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>4.1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>2.7</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>2.7</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
STATION 59

DATE May 8, 1953 LAT. 33°22' N. LONG. 77°37' W. TIME 12

DEPTH 22 WIND 6, 29 BAR. 14 AIR TEMP: dry 22.8°C, wet 19.4°C
HUMIDITY 73% WEATHER CLOUDS: type 0, amt. 1 SEA: dir. 29, amt. 1
SWELL: dir. 20, amt. 3 VIS. 7 WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.39</td>
<td>35.10</td>
<td>24.48</td>
<td>4.98</td>
</tr>
<tr>
<td>10</td>
<td>21.00</td>
<td>35.32</td>
<td>24.76</td>
<td>5.11</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.39</td>
<td>35.10</td>
<td>24.48</td>
<td>4.98</td>
</tr>
<tr>
<td>10</td>
<td>21.00</td>
<td>35.32</td>
<td>24.76</td>
<td>5.11</td>
</tr>
</tbody>
</table>

184
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>3.4</td>
<td>0.1</td>
<td>0.5</td>
<td>7.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>3.4</td>
<td>0.1</td>
<td>0.5</td>
<td>7.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
STATION 60

DATE May 8, 1953 LAT. 33°07'N. LONG. 77°20'W. TIME 14
DEPTH 265 WIND 2, 32 BAR. 15 AIR TEMP: dry 24.4°C, wet 20.6°C HUMIDITY 71% WEATHER 01 CLOUDS: type 1, amt. 1 SEA: dir. --, amt. 1 SWELL: dir. 22, amt. 4 VIS. 7 WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.75</td>
<td>35.65</td>
<td>24.80</td>
<td>5.03</td>
</tr>
<tr>
<td>10</td>
<td>21.73</td>
<td>35.80</td>
<td>24.92</td>
<td>5.07</td>
</tr>
<tr>
<td>20</td>
<td>22.41</td>
<td>36.15</td>
<td>24.99</td>
<td>5.03</td>
</tr>
<tr>
<td>50</td>
<td>19.15</td>
<td>36.34</td>
<td>26.02</td>
<td>4.38</td>
</tr>
<tr>
<td>75</td>
<td>17.89</td>
<td>36.31</td>
<td>26.32</td>
<td>3.90</td>
</tr>
<tr>
<td>100</td>
<td>16.00</td>
<td>36.11</td>
<td>26.62</td>
<td>3.49</td>
</tr>
<tr>
<td>150</td>
<td>14.12</td>
<td>35.84</td>
<td>26.83</td>
<td>3.25</td>
</tr>
<tr>
<td>200</td>
<td>12.33</td>
<td>35.64</td>
<td>27.04</td>
<td>3.33</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.75</td>
<td>35.65</td>
<td>24.80</td>
<td>5.03</td>
</tr>
<tr>
<td>10</td>
<td>21.73</td>
<td>35.80</td>
<td>24.92</td>
<td>5.07</td>
</tr>
<tr>
<td>20</td>
<td>22.41</td>
<td>36.15</td>
<td>24.99</td>
<td>5.03</td>
</tr>
<tr>
<td>30</td>
<td>21.11</td>
<td>36.24</td>
<td>25.43</td>
<td>4.75</td>
</tr>
<tr>
<td>50</td>
<td>19.15</td>
<td>36.34</td>
<td>26.02</td>
<td>4.38</td>
</tr>
<tr>
<td>75</td>
<td>17.89</td>
<td>36.31</td>
<td>26.32</td>
<td>3.90</td>
</tr>
<tr>
<td>100</td>
<td>16.00</td>
<td>36.11</td>
<td>26.62</td>
<td>3.49</td>
</tr>
<tr>
<td>150</td>
<td>14.12</td>
<td>35.84</td>
<td>26.83</td>
<td>3.25</td>
</tr>
<tr>
<td>200</td>
<td>12.33</td>
<td>35.64</td>
<td>27.04</td>
<td>3.33</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (μg at/l)</td>
<td>PO₄-P (μg at/l)</td>
<td>NO₃-NO₂ (μg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>0.0</td>
<td><0.5</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1.3</td>
<td>0.2</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>2.4</td>
<td>0.2</td>
<td>3.0</td>
<td>5.3</td>
</tr>
<tr>
<td>75</td>
<td>1.8</td>
<td>0.7</td>
<td>-</td>
<td>2.7</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.9</td>
<td>10.5</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>2.3</td>
<td>1.2</td>
<td>11.0</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>2.5</td>
<td>1.3</td>
<td>10.5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>1.3</td>
<td>0.2</td>
<td><0.5</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>2.1</td>
<td>0.1</td>
<td>1.5</td>
<td>3.1</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>2.4</td>
<td>0.2</td>
<td>3.0</td>
<td>5.3</td>
<td>0.2</td>
</tr>
<tr>
<td>75</td>
<td>1.8</td>
<td>0.7</td>
<td>7.0</td>
<td>2.7</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>2.0</td>
<td>0.9</td>
<td>10.5</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>150</td>
<td>2.3</td>
<td>1.2</td>
<td>11.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>200</td>
<td>2.5</td>
<td>1.3</td>
<td>10.5</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>
STATION 61

DATE May 8, 1953 LAT. 32°54' N. LONG. 77°04' W. TIME 18
DEPTH 512 WIND 2, 32 BAR. 14 AIR TEMP: dry 23.3° C, wet 18.2° C
HUMIDITY 65% WEATHER 02 CLOUDS: type 6, amt. 3 SEA: dir. 18, amt. 4
SWELL: dir. 18, amt. 4 VIS. 7 WATER TRANS.

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>Σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.08</td>
<td>36.20</td>
<td>24.55</td>
<td>4.75</td>
</tr>
<tr>
<td>10</td>
<td>23.61</td>
<td>36.18</td>
<td>24.67</td>
<td>4.86</td>
</tr>
<tr>
<td>20</td>
<td>23.58</td>
<td>36.18</td>
<td>24.68</td>
<td>4.79</td>
</tr>
<tr>
<td>50</td>
<td>17.25</td>
<td>35.99</td>
<td>26.23</td>
<td>3.90</td>
</tr>
<tr>
<td>75</td>
<td>15.22</td>
<td>35.66</td>
<td>26.88</td>
<td>3.17</td>
</tr>
<tr>
<td>100</td>
<td>11.15</td>
<td>35.39</td>
<td>27.07</td>
<td>2.84</td>
</tr>
<tr>
<td>150</td>
<td>9.72</td>
<td>35.21</td>
<td>27.18</td>
<td>2.84</td>
</tr>
<tr>
<td>200</td>
<td>8.82</td>
<td>35.15</td>
<td>27.28</td>
<td>2.96</td>
</tr>
<tr>
<td>300</td>
<td>7.93</td>
<td>35.01</td>
<td>27.31</td>
<td>3.00</td>
</tr>
<tr>
<td>400</td>
<td>7.59</td>
<td>34.99</td>
<td>27.35</td>
<td>3.17</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>Σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.08</td>
<td>36.20</td>
<td>24.55</td>
<td>4.75</td>
</tr>
<tr>
<td>10</td>
<td>23.61</td>
<td>36.18</td>
<td>24.67</td>
<td>4.86</td>
</tr>
<tr>
<td>20</td>
<td>23.58</td>
<td>36.18</td>
<td>24.68</td>
<td>4.79</td>
</tr>
<tr>
<td>30</td>
<td>21.29</td>
<td>36.14</td>
<td>25.30</td>
<td>4.50</td>
</tr>
<tr>
<td>50</td>
<td>17.25</td>
<td>35.99</td>
<td>26.23</td>
<td>3.90</td>
</tr>
<tr>
<td>75</td>
<td>13.22</td>
<td>35.66</td>
<td>26.88</td>
<td>3.17</td>
</tr>
<tr>
<td>100</td>
<td>11.15</td>
<td>35.39</td>
<td>27.07</td>
<td>2.84</td>
</tr>
<tr>
<td>150</td>
<td>9.72</td>
<td>35.21</td>
<td>27.18</td>
<td>2.84</td>
</tr>
<tr>
<td>200</td>
<td>8.82</td>
<td>35.15</td>
<td>27.28</td>
<td>2.96</td>
</tr>
<tr>
<td>250</td>
<td>8.25</td>
<td>35.07</td>
<td>27.31</td>
<td>2.97</td>
</tr>
<tr>
<td>300</td>
<td>7.93</td>
<td>35.01</td>
<td>27.31</td>
<td>3.00</td>
</tr>
<tr>
<td>400</td>
<td>7.59</td>
<td>34.99</td>
<td>27.35</td>
<td>3.17</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>2.0</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>1.3</td>
<td>0.1</td>
<td>< 0.5</td>
<td>5.3</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>1.4</td>
<td>0.5</td>
<td>7.0</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>75</td>
<td>2.0</td>
<td>1.5</td>
<td>12.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>1.9</td>
<td>4.5</td>
<td>6.8</td>
<td>0.8</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>1.9</td>
<td>3.5</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>200</td>
<td>3.0</td>
<td>2.2</td>
<td>4.5</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>300</td>
<td>3.5</td>
<td>2.0</td>
<td>11.0</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>2.1</td>
<td>19.0</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>2.0</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>1.3</td>
<td>0.1</td>
<td>< 0.5</td>
<td>5.3</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>1.3</td>
<td>0.2</td>
<td>2.5</td>
<td>4.4</td>
<td>0.2</td>
</tr>
<tr>
<td>50</td>
<td>1.4</td>
<td>0.5</td>
<td>7.0</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>75</td>
<td>2.0</td>
<td>1.5</td>
<td>12.0</td>
<td>4.8</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>2.2</td>
<td>1.9</td>
<td>4.5</td>
<td>6.8</td>
<td>0.8</td>
</tr>
<tr>
<td>150</td>
<td>2.6</td>
<td>1.9</td>
<td>3.5</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>200</td>
<td>3.0</td>
<td>2.2</td>
<td>4.5</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>250</td>
<td>3.3</td>
<td>2.1</td>
<td>7.5</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>300</td>
<td>3.5</td>
<td>2.0</td>
<td>11.0</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>2.1</td>
<td>19.0</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>
STATION 62
DATE May 8, 1953 LAT. 32°43'N. LONG. 76°48'W. TIME 22
DEPTH 805 WIND 3,16 BAR 12 AIR TEMP: dry 23.9°C, wet 20.0°C
HUMIDITY 70% WEATHER 02 CLOUDS type 8, amt. 3 SEA: dir. 14, amt. 2
SWELL: dir. 14, amt. 3 VIS. 8 WATER TRANS. —

<table>
<thead>
<tr>
<th>OBSERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPTH (m)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>106</td>
</tr>
<tr>
<td>157</td>
</tr>
<tr>
<td>209</td>
</tr>
<tr>
<td>316*</td>
</tr>
<tr>
<td>425</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.00</td>
<td>36.24</td>
<td>23.99</td>
<td>4.57</td>
</tr>
<tr>
<td>10</td>
<td>25.80</td>
<td>36.27</td>
<td>24.07</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>25.75</td>
<td>36.29</td>
<td>24.11</td>
<td>4.63</td>
</tr>
<tr>
<td>30</td>
<td>25.48</td>
<td>36.32</td>
<td>24.21</td>
<td>4.63</td>
</tr>
<tr>
<td>50</td>
<td>24.66</td>
<td>36.43</td>
<td>24.55</td>
<td>4.63</td>
</tr>
<tr>
<td>75</td>
<td>22.99</td>
<td>36.44</td>
<td>25.05</td>
<td>4.69</td>
</tr>
<tr>
<td>100</td>
<td>21.56</td>
<td>36.43</td>
<td>25.45</td>
<td>4.77</td>
</tr>
<tr>
<td>150</td>
<td>19.87</td>
<td>36.58</td>
<td>26.02</td>
<td>3.42</td>
</tr>
<tr>
<td>200</td>
<td>17.79</td>
<td>36.39</td>
<td>26.41</td>
<td>3.41</td>
</tr>
<tr>
<td>250</td>
<td>17.00</td>
<td>36.29</td>
<td>26.52</td>
<td>3.41</td>
</tr>
<tr>
<td>300</td>
<td>16.37</td>
<td>36.20</td>
<td>26.60</td>
<td>3.41</td>
</tr>
<tr>
<td>400</td>
<td>15.19</td>
<td>36.14</td>
<td>26.83</td>
<td>3.41</td>
</tr>
</tbody>
</table>
STATION 62

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td>3.0</td>
<td>1.6</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>0.1</td>
<td>< 0.1</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>28</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>54</td>
<td>0.2</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>106</td>
<td>0.0</td>
<td>< 0.1</td>
<td>1.5</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>157</td>
<td>-</td>
<td>1.4</td>
<td>2.5</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>209</td>
<td>-</td>
<td>0.7</td>
<td>2.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>316*$</td>
<td>-</td>
<td>0.0</td>
<td>1.0</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>425</td>
<td>-</td>
<td>1.4</td>
<td>6.5</td>
<td>-</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.0</td>
<td>3.0</td>
<td>1.6</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>< 0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>75</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>100</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>1.5</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>1.4</td>
<td>2.5</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.7</td>
<td>2.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.8</td>
<td>3.5</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>1.0</td>
<td>4.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>1.3</td>
<td>5.0</td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.04</td>
<td>36.36</td>
<td>24.38</td>
<td>4.61</td>
</tr>
<tr>
<td>5</td>
<td>24.91</td>
<td>36.36</td>
<td>24.42</td>
<td>4.71</td>
</tr>
<tr>
<td>7</td>
<td>24.96</td>
<td>36.40</td>
<td>24.43</td>
<td>4.75</td>
</tr>
<tr>
<td>13</td>
<td>24.85</td>
<td>36.37</td>
<td>24.44</td>
<td>4.77</td>
</tr>
<tr>
<td>33</td>
<td>24.60</td>
<td>36.35</td>
<td>24.50</td>
<td>4.71</td>
</tr>
<tr>
<td>75</td>
<td>21.35</td>
<td>36.40</td>
<td>25.48</td>
<td>4.87</td>
</tr>
<tr>
<td>114</td>
<td>16.80</td>
<td>35.91</td>
<td>26.28</td>
<td>3.82</td>
</tr>
<tr>
<td>155</td>
<td>14.69</td>
<td>35.80</td>
<td>26.67</td>
<td>3.17</td>
</tr>
<tr>
<td>232*</td>
<td>19.78</td>
<td>36.38</td>
<td>25.89</td>
<td>4.87</td>
</tr>
<tr>
<td>280*</td>
<td>15.42</td>
<td>35.90</td>
<td>26.59</td>
<td>3.41</td>
</tr>
</tbody>
</table>

* Value questionable

Interpolated and Calculated

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.04</td>
<td>36.36</td>
<td>24.38</td>
<td>4.61</td>
</tr>
<tr>
<td>10</td>
<td>24.90</td>
<td>36.38</td>
<td>24.43</td>
<td>4.77</td>
</tr>
<tr>
<td>20</td>
<td>24.79</td>
<td>36.36</td>
<td>24.45</td>
<td>4.75</td>
</tr>
<tr>
<td>30</td>
<td>24.69</td>
<td>36.35</td>
<td>24.48</td>
<td>4.72</td>
</tr>
<tr>
<td>50</td>
<td>23.49</td>
<td>36.37</td>
<td>24.85</td>
<td>4.77</td>
</tr>
<tr>
<td>75</td>
<td>21.35</td>
<td>36.40</td>
<td>25.48</td>
<td>4.87</td>
</tr>
<tr>
<td>100</td>
<td>18.15</td>
<td>36.04</td>
<td>26.05</td>
<td>4.21</td>
</tr>
<tr>
<td>150</td>
<td>14.77</td>
<td>35.80</td>
<td>26.66</td>
<td>3.24</td>
</tr>
</tbody>
</table>
STATION 63

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>4.3</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>13</td>
<td>0.1</td>
<td>0.1</td>
<td>2.0</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>33</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>75</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>114</td>
<td>-</td>
<td>0.7</td>
<td>4.5</td>
<td>3.5</td>
<td>0.4</td>
</tr>
<tr>
<td>155</td>
<td>-</td>
<td>1.0</td>
<td>3.5</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>4.3</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>< 0.1</td>
<td>1.0</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>< 0.1</td>
<td>1.5</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
<td>< 0.1</td>
<td>1.0</td>
<td>1.7</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>2.1</td>
<td>0.6</td>
</tr>
<tr>
<td>75</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>2.6</td>
<td>0.5</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.4</td>
<td>3.0</td>
<td>3.2</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>1.0</td>
<td>3.5</td>
<td>2.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>
DATE May 9, 1953 LAT. 33°33' N. LONG. 76°56' W. TIME 07
DEPTH 68 WIND 12, 26 BAR. 10 AIR TEMP: dry 22.2 °C, wet 20.6 °C
HUMIDITY 86% WEATHER 13 CLOUDS: type 8, amt. 3 SEA: dir. 26, amt. 3
Swell: dir. 17, amt. 2 VIS. 7 WATER TRANS._

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.62</td>
<td>36.24</td>
<td>24.71</td>
<td>4.94</td>
</tr>
<tr>
<td>10</td>
<td>23.55</td>
<td>36.24</td>
<td>24.73</td>
<td>4.98</td>
</tr>
<tr>
<td>20</td>
<td>19.50</td>
<td>36.40</td>
<td>25.98</td>
<td>4.79</td>
</tr>
<tr>
<td>50</td>
<td>18.69</td>
<td>36.40</td>
<td>26.19</td>
<td>3.73</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.62</td>
<td>36.24</td>
<td>24.71</td>
<td>4.94</td>
</tr>
<tr>
<td>10</td>
<td>23.55</td>
<td>36.24</td>
<td>24.73</td>
<td>4.98</td>
</tr>
<tr>
<td>20</td>
<td>19.50</td>
<td>36.40</td>
<td>25.98</td>
<td>4.79</td>
</tr>
<tr>
<td>30</td>
<td>19.20</td>
<td>36.40</td>
<td>26.06</td>
<td>4.50</td>
</tr>
<tr>
<td>50</td>
<td>18.69</td>
<td>36.40</td>
<td>26.19</td>
<td>3.73</td>
</tr>
</tbody>
</table>
STATION 64

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>2.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.7</td>
<td>4.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>2.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.4</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.7</td>
<td>4.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>
DATE May 9, 1953 LAT. 33°42' N. LONG. 76°56' W. TIME 10
DEPTH 42 WIND 6, 25 BAR. 11 AIR TEMP: dry 21.1°C, wet 20.0°C
HUMIDITY 90% WEATHER 13 CLOUDS: type 8, amt. 3 SEA: dir. 25, amt. 1
SWELL: dir. 16, amt. 1 VIS. 6 WATER TRANS.

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.94</td>
<td>35.59</td>
<td>24.70</td>
<td>5.02</td>
</tr>
<tr>
<td>10</td>
<td>21.98</td>
<td>35.64</td>
<td>24.73</td>
<td>4.95</td>
</tr>
<tr>
<td>20</td>
<td>21.69</td>
<td>36.08</td>
<td>25.14</td>
<td>4.87</td>
</tr>
<tr>
<td>30</td>
<td>20.17</td>
<td>36.42</td>
<td>25.82</td>
<td>4.24</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.94</td>
<td>35.59</td>
<td>24.70</td>
<td>5.02</td>
</tr>
<tr>
<td>10</td>
<td>21.98</td>
<td>35.64</td>
<td>24.73</td>
<td>4.95</td>
</tr>
<tr>
<td>20</td>
<td>21.69</td>
<td>36.08</td>
<td>25.14</td>
<td>4.87</td>
</tr>
<tr>
<td>30</td>
<td>20.17</td>
<td>36.42</td>
<td>25.82</td>
<td>4.24</td>
</tr>
</tbody>
</table>
STATION 65

OBSERVED

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO\textsubscript{4}-P (µg at/l)</th>
<th>NO\textsubscript{3}-NO\textsubscript{2} (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>0.4</td>
<td>0.1</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO\textsubscript{4}-P (µg at/l)</th>
<th>NO\textsubscript{3}-NO\textsubscript{2} (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>0.4</td>
<td>0.1</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>
STATION 66

DATE May 9, 1953 LAT. 33°57' N. LONG. 77°13' W. TIME 12

DEPT. 28 WIND 7, 35 BAR. 13 AIR TEMP: dry 20.6°C, wet 17.2°C

HUMIDITY 72% WEATHER 01 CLOUDS: type A, amt. 1 SEA: dir. 32°, amt. 2

SWELL: dir. 22°, amt. 2 VIS. 7 WATER TRANS.

| OBSERVED |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| DEPTH (m) | T (°C) | S (%) | σt | O2 (ml/l) |
| 1 | 21.20 | 34.36 | 23.97 | 5.16 |
| 10 | 20.83 | 34.85 | 24.45 | 5.20 |
| 20 | 19.46 | 36.19 | 25.83 | 4.38 |

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.20</td>
<td>34.36</td>
<td>23.97</td>
<td>5.16</td>
</tr>
<tr>
<td>10</td>
<td>20.83</td>
<td>34.85</td>
<td>24.45</td>
<td>5.20</td>
</tr>
<tr>
<td>20</td>
<td>19.46</td>
<td>36.19</td>
<td>25.83</td>
<td>4.38</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO$_4$-P (μg at/l)</th>
<th>NO$_3$-NO$_2$ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td><0.1</td>
<td>1.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO$_4$-P (μg at/l)</th>
<th>NO$_3$-NO$_2$ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td><0.1</td>
<td>1.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
</tbody>
</table>
STATION 67

DATE May 9, 1953 LAT. 34°11' N. LONG. 77°30' W. TIME 15
DEPTH 16. WIND 3, 18 BAR. 14 AIR TEMP: dry 18.9 °C, wet 16.7 °C
HUMIDITY 80% WEATHER 01 CLOUDS: type --, amt. 0. SEA: dir. --, amt. 1
SWELL: dir. --, amt. 1

VIS. 8 WATER TRANS. --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.63</td>
<td>34.22</td>
<td>24.02</td>
<td>5.28</td>
</tr>
<tr>
<td>10</td>
<td>19.50</td>
<td>35.71</td>
<td>25.45</td>
<td>4.75</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.63</td>
<td>34.22</td>
<td>24.02</td>
<td>5.28</td>
</tr>
<tr>
<td>10</td>
<td>19.50</td>
<td>35.71</td>
<td>25.45</td>
<td>4.75</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/1)</td>
<td>PO₄-P (µg at/1)</td>
<td>NO₃-NO₂ (µg at/1)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td><0.1</td>
<td>-</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td><0.1</td>
<td>-</td>
<td>0.0</td>
<td><0.1</td>
</tr>
</tbody>
</table>
STATION 68

DATE: May 9, 1953 LAT. 34°23' N. LONG. 77°10' W. TIME 19

DEPTH 20 WIND 4, 22 BAR. 12 AIR TEMP: dry 21.7°C, wet 17.2°C
HUMIDITY 64% WEATHER: 03 CLOUDS: type 8, amt. 2 SEA: dir. 22, amt. 1
SWELL: dir. 22, amt. 1 VIS. 8 WATER TRANS.

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.14</td>
<td>34.76</td>
<td>24.29</td>
<td>5.16</td>
</tr>
<tr>
<td>10</td>
<td>20.32</td>
<td>34.76</td>
<td>24.51</td>
<td>5.28</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.14</td>
<td>34.76</td>
<td>24.29</td>
<td>5.16</td>
</tr>
<tr>
<td>10</td>
<td>20.32</td>
<td>34.76</td>
<td>24.51</td>
<td>5.28</td>
</tr>
</tbody>
</table>

202
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO$_4$-P (μg at/l)</th>
<th>NO$_3$-NO$_2$ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>< 0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO$_4$-P (μg at/l)</th>
<th>NO$_3$-NO$_2$ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>< 0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>
STATION 69

DATE May 9, 1953 LAT. 34°32' N. LONG. 76°50' W. TIME 21
DEPTH 10 WIND 4, 22 BAR. 12 AIR TEMP: dry 22.8°C, wet 18.9°C
HUMIDITY 79% WEATHER 03 CLOUDS: type 6, amt. 3 SEA: dir. 22, amt. 1
SWELL: dir. 22, amt. 1 VIS. 7 WATER TRANS. -

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.02</td>
<td>34.60</td>
<td>24.20</td>
<td>5.22</td>
</tr>
<tr>
<td>10</td>
<td>20.29</td>
<td>34.63</td>
<td>24.42</td>
<td>5.28</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.02</td>
<td>34.60</td>
<td>24.20</td>
<td>5.22</td>
</tr>
<tr>
<td>10</td>
<td>20.29</td>
<td>34.63</td>
<td>24.42</td>
<td>5.28</td>
</tr>
</tbody>
</table>
STATION 69

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.8</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.8</td>
</tr>
</tbody>
</table>
DATE May 10, 1953 LAT. 34°18'N. LONG. 76°32'W. TIME 00
DEPTH 26 WIND 3, 20 BAR. 13 AIR TEMP: dry 22.2°C, wet 18.0°C
HUMIDITY 73% WEATHER 13 CLOUDS: type 1, amt. 2 SEA: dir. 22, amt. 2
SWELL: dir. 18, amt. 1 VIS. 7 WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.78</td>
<td>34.60</td>
<td>24.27</td>
<td>5.28</td>
</tr>
<tr>
<td>10</td>
<td>20.14</td>
<td>34.61</td>
<td>24.45</td>
<td>5.36</td>
</tr>
<tr>
<td>20</td>
<td>19.21</td>
<td>35.68</td>
<td>25.50</td>
<td>5.11</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.78</td>
<td>34.60</td>
<td>24.27</td>
<td>5.28</td>
</tr>
<tr>
<td>10</td>
<td>20.14</td>
<td>34.61</td>
<td>24.45</td>
<td>5.36</td>
</tr>
<tr>
<td>20</td>
<td>19.21</td>
<td>35.68</td>
<td>25.50</td>
<td>5.11</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>< 0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>< 0.1</td>
<td>0.5</td>
<td>1.9</td>
<td>0.7</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>< 0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>< 0.1</td>
<td>0.5</td>
<td>1.9</td>
<td>0.7</td>
</tr>
</tbody>
</table>
STATION 71

DATE May 10, 1953 LAT. 34°04' N. LONG. 76°15' W. TIME 03

DEPTH 118 WIND 8, 32 BAR. 13 AIR TEMP: dry 22.2°C, wet 18.9°C
HUMIDITY 73% WEATHER 03 CLOUDS: type __, amt. __ SEA: dir. 22, amt. 2
SWELL: dir. 18, amt. 1 VIS. 7 WATER TRANS. __

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.23</td>
<td>36.36</td>
<td>24.32</td>
<td>4.71</td>
</tr>
<tr>
<td>10</td>
<td>25.27</td>
<td>36.33</td>
<td>24.28</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>25.00</td>
<td>36.36</td>
<td>24.39</td>
<td>4.79</td>
</tr>
<tr>
<td>50</td>
<td>24.36</td>
<td>36.36</td>
<td>24.58</td>
<td>4.95</td>
</tr>
<tr>
<td>75</td>
<td>23.06</td>
<td>36.38</td>
<td>24.98</td>
<td>4.87</td>
</tr>
<tr>
<td>100</td>
<td>21.48</td>
<td>36.42</td>
<td>25.46</td>
<td>4.87</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.23</td>
<td>36.36</td>
<td>24.32</td>
<td>4.71</td>
</tr>
<tr>
<td>10</td>
<td>25.27</td>
<td>36.33</td>
<td>24.28</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>25.00</td>
<td>36.36</td>
<td>24.39</td>
<td>4.79</td>
</tr>
<tr>
<td>30</td>
<td>24.90</td>
<td>36.36</td>
<td>24.42</td>
<td>4.86</td>
</tr>
<tr>
<td>50</td>
<td>24.36</td>
<td>36.36</td>
<td>24.58</td>
<td>4.95</td>
</tr>
<tr>
<td>75</td>
<td>23.06</td>
<td>36.38</td>
<td>24.98</td>
<td>4.87</td>
</tr>
<tr>
<td>100</td>
<td>21.48</td>
<td>36.42</td>
<td>25.46</td>
<td>4.87</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO<sub>4</sub>-P (μg at/l)</th>
<th>NO<sub>3</sub>-NO<sub>2</sub> (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td><0.1</td>
<td>2.0</td>
<td>-</td>
<td><0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>75</td>
<td>0.3</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>100</td>
<td>0.8</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO<sub>4</sub>-P (μg at/l)</th>
<th>NO<sub>3</sub>-NO<sub>2</sub> (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td><0.1</td>
<td>2.0</td>
<td>-</td>
<td><0.1</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>75</td>
<td>0.3</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>100</td>
<td>0.8</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>
STATION 72

DATE May 10, 1933 LAT. 33°49'N. LONG. 75°59'W. TIME 07

DEPTH 594 WIND 6, 36 BAR. 12 AIR TEMP: dry 22.2°C, wet 17.2°C HUMIDITY 61% WEATHER 13 CLOUDS: type 2, amt. 3 SEA: dir. 36, amt. 2 SWELL: dir. 32, amt. 2 VIS. 6

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σₜ</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.40</td>
<td>36.29</td>
<td>24.21</td>
<td>4.63</td>
</tr>
<tr>
<td>6</td>
<td>25.44</td>
<td>36.30</td>
<td>24.21</td>
<td>4.63</td>
</tr>
<tr>
<td>12</td>
<td>25.43</td>
<td>36.33</td>
<td>24.23</td>
<td>4.67</td>
</tr>
<tr>
<td>30</td>
<td>24.42</td>
<td>36.43</td>
<td>24.62</td>
<td>4.55</td>
</tr>
<tr>
<td>61</td>
<td>22.65</td>
<td>36.49</td>
<td>25.18</td>
<td>4.47</td>
</tr>
<tr>
<td>89</td>
<td>20.48</td>
<td>36.40</td>
<td>25.72</td>
<td>4.79</td>
</tr>
<tr>
<td>116</td>
<td>19.10</td>
<td>36.46</td>
<td>26.13</td>
<td>3.73</td>
</tr>
<tr>
<td>162</td>
<td>14.19</td>
<td>35.93</td>
<td>26.88</td>
<td>3.37</td>
</tr>
<tr>
<td>336</td>
<td>11.50</td>
<td>35.51</td>
<td>27.10</td>
<td>3.33</td>
</tr>
<tr>
<td>418</td>
<td>8.09</td>
<td>35.03</td>
<td>27.30</td>
<td>3.04</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σₜ</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.40</td>
<td>36.29</td>
<td>24.21</td>
<td>4.63</td>
</tr>
<tr>
<td>10</td>
<td>25.44</td>
<td>36.32</td>
<td>24.22</td>
<td>4.64</td>
</tr>
<tr>
<td>20</td>
<td>25.23</td>
<td>36.35</td>
<td>24.31</td>
<td>4.63</td>
</tr>
<tr>
<td>30</td>
<td>24.42</td>
<td>36.43</td>
<td>24.62</td>
<td>4.55</td>
</tr>
<tr>
<td>50</td>
<td>23.25</td>
<td>36.46</td>
<td>24.99</td>
<td>4.49</td>
</tr>
<tr>
<td>75</td>
<td>21.60</td>
<td>36.46</td>
<td>25.46</td>
<td>4.63</td>
</tr>
<tr>
<td>100</td>
<td>19.85</td>
<td>36.43</td>
<td>25.91</td>
<td>4.25</td>
</tr>
<tr>
<td>150</td>
<td>14.95</td>
<td>36.06</td>
<td>26.82</td>
<td>3.43</td>
</tr>
<tr>
<td>200</td>
<td>13.58</td>
<td>35.84</td>
<td>26.94</td>
<td>3.35</td>
</tr>
<tr>
<td>250</td>
<td>12.80</td>
<td>35.73</td>
<td>27.02</td>
<td>3.34</td>
</tr>
<tr>
<td>300</td>
<td>12.02</td>
<td>35.62</td>
<td>27.08</td>
<td>3.33</td>
</tr>
<tr>
<td>400</td>
<td>8.88</td>
<td>35.14</td>
<td>27.27</td>
<td>3.10</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.1</td>
<td>3.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>0.6</td>
<td>< 0.1</td>
<td>1.0</td>
<td>1.6</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>61</td>
<td>0.5</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td>89</td>
<td>0.4</td>
<td>-</td>
<td>2.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>116</td>
<td>0.4</td>
<td>0.4</td>
<td>4.5</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>162</td>
<td>-</td>
<td>1.1</td>
<td>7.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>336</td>
<td>-</td>
<td>1.8</td>
<td>2.5</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>418</td>
<td>-</td>
<td>2.5</td>
<td>9.0</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>10</td>
<td>0.6</td>
<td>0.1</td>
<td>2.0</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>< 0.1</td>
<td>1.0</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>50</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>75</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>100</td>
<td>0.4</td>
<td>0.3</td>
<td>3.0</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.9</td>
<td>6.5</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.3</td>
<td>6.0</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>1.5</td>
<td>4.5</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>1.7</td>
<td>3.5</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>2.4</td>
<td>7.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>
STATION 73

DATE: May 10, 1953 LAT.: 34°10'N LONG.: 75°20'W TIME: 12

DEPTH: 3100 WIND: 4 BAR: 12 AIR TEMP: dry 20.6°C, wet 16.7°C
HUMIDITY: 68% WEATHER: 18 CLOUDS: type 4, amt. 2 SEA: dir. 09, amt. 2
SWELL: dir. 09, amt. 2 VIS: 6 WATER TRANS: -

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.74</td>
<td>36.11</td>
<td>23.97</td>
<td>4.63</td>
</tr>
<tr>
<td>10</td>
<td>25.74</td>
<td>36.10</td>
<td>23.96</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>25.77</td>
<td>36.11</td>
<td>23.96</td>
<td>4.63</td>
</tr>
<tr>
<td>50</td>
<td>25.21</td>
<td>36.27</td>
<td>24.26</td>
<td>4.47</td>
</tr>
<tr>
<td>100</td>
<td>22.63</td>
<td>36.54</td>
<td>25.23</td>
<td>4.71</td>
</tr>
<tr>
<td>150</td>
<td>21.39</td>
<td>36.65</td>
<td>25.66</td>
<td>4.55</td>
</tr>
<tr>
<td>200</td>
<td>20.08</td>
<td>36.65</td>
<td>26.02</td>
<td>4.34</td>
</tr>
<tr>
<td>250</td>
<td>18.80</td>
<td>36.56</td>
<td>26.28</td>
<td>4.30</td>
</tr>
<tr>
<td>300</td>
<td>18.18</td>
<td>36.46</td>
<td>26.36</td>
<td>4.34</td>
</tr>
<tr>
<td>380*</td>
<td>-</td>
<td>36.18</td>
<td>-</td>
<td>4.55</td>
</tr>
<tr>
<td>400</td>
<td>16.31</td>
<td>36.18</td>
<td>26.60</td>
<td>3.45</td>
</tr>
<tr>
<td>458*</td>
<td>13.44</td>
<td>35.74</td>
<td>26.89</td>
<td>3.13</td>
</tr>
<tr>
<td>614</td>
<td>11.00*</td>
<td>35.41*</td>
<td>27.11</td>
<td>3.09</td>
</tr>
<tr>
<td>768</td>
<td>11.61</td>
<td>35.52</td>
<td>27.09</td>
<td>2.60</td>
</tr>
<tr>
<td>925</td>
<td>9.89</td>
<td>35.53*</td>
<td>27.40</td>
<td>2.44</td>
</tr>
<tr>
<td>1161*</td>
<td>7.37</td>
<td>35.09</td>
<td>27.46</td>
<td>2.84</td>
</tr>
<tr>
<td>1560*</td>
<td>4.44</td>
<td>35.01</td>
<td>27.77</td>
<td>5.52</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.74</td>
<td>36.11</td>
<td>23.97</td>
<td>4.63</td>
</tr>
<tr>
<td>10</td>
<td>25.74</td>
<td>36.10</td>
<td>23.96</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>25.77</td>
<td>36.11</td>
<td>23.96</td>
<td>4.63</td>
</tr>
<tr>
<td>30</td>
<td>25.67</td>
<td>36.16</td>
<td>24.03</td>
<td>4.57</td>
</tr>
<tr>
<td>50</td>
<td>25.21</td>
<td>36.27</td>
<td>24.26</td>
<td>4.47</td>
</tr>
<tr>
<td>75</td>
<td>23.75</td>
<td>36.43</td>
<td>24.82</td>
<td>4.58</td>
</tr>
<tr>
<td>100</td>
<td>22.63</td>
<td>36.54</td>
<td>25.23</td>
<td>4.71</td>
</tr>
<tr>
<td>150</td>
<td>21.39</td>
<td>36.65</td>
<td>25.66</td>
<td>4.55</td>
</tr>
<tr>
<td>200</td>
<td>20.06</td>
<td>36.65</td>
<td>26.02</td>
<td>4.34</td>
</tr>
<tr>
<td>250</td>
<td>18.80</td>
<td>36.56</td>
<td>26.28</td>
<td>4.30</td>
</tr>
<tr>
<td>300</td>
<td>18.18</td>
<td>36.46</td>
<td>26.36</td>
<td>4.34</td>
</tr>
<tr>
<td>400</td>
<td>16.31</td>
<td>36.18</td>
<td>26.60</td>
<td>3.45</td>
</tr>
</tbody>
</table>

212
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/1)</th>
<th>PO₄-P (μg at/1)</th>
<th>NO₃-NO₂ (μg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>4.6</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>0.6</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>150</td>
<td>0.3</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>200</td>
<td>0.4</td>
<td>0.3</td>
<td>1.5</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>250</td>
<td>0.4</td>
<td>0.2</td>
<td>4.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>300</td>
<td>0.5</td>
<td>0.2</td>
<td>2.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>380*</td>
<td>-</td>
<td>0.7</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>400</td>
<td>0.4</td>
<td>0.0</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>458*</td>
<td>-</td>
<td>1.0</td>
<td>3.0</td>
<td>2.7</td>
<td>0.8</td>
</tr>
<tr>
<td>614</td>
<td>-</td>
<td>1.6</td>
<td>17.5</td>
<td>2.9</td>
<td>0.7</td>
</tr>
<tr>
<td>768</td>
<td>-</td>
<td>1.2</td>
<td>18.5</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>925</td>
<td>-</td>
<td>1.8</td>
<td>6.5</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>1161*</td>
<td>-</td>
<td>1.6</td>
<td>4.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>1560</td>
<td>-</td>
<td>1.0</td>
<td>2.0</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* Value questionable

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/1)</th>
<th>PO₄-P (μg at/1)</th>
<th>NO₃-NO₂ (μg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
<td>< 0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>4.6</td>
<td>0.6</td>
</tr>
<tr>
<td>30</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>4.0</td>
<td>0.7</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>0.0</td>
<td>1.0</td>
<td>2.8</td>
<td>1.0</td>
</tr>
<tr>
<td>75</td>
<td>0.5</td>
<td>0.0</td>
<td>1.0</td>
<td>1.5</td>
<td>0.7</td>
</tr>
<tr>
<td>100</td>
<td>0.6</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>150</td>
<td>0.3</td>
<td>0.2</td>
<td>1.5</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>200</td>
<td>0.4</td>
<td>0.3</td>
<td>1.5</td>
<td>0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>250</td>
<td>0.4</td>
<td>0.2</td>
<td>4.0</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>300</td>
<td>0.5</td>
<td>0.2</td>
<td>2.5</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>400</td>
<td>0.4</td>
<td>0.0</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>
DATE: May 10, 1953
LAT: 34°24' N.
LONG: 75°36' W.
TIME: 18

DEEP: 2103
WIND: 12
BAR: 13

AIR TEMP: dry 21.7°C, wet 16.7°C
HUMIDITY: 61%
WEATHER: type 8, cloud: 2
SEA: dir. 36, amt. 3
SWELL: dir. 00, amt. 0

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.98</td>
<td>36.15</td>
<td>23.93</td>
<td>4.41</td>
</tr>
<tr>
<td>10</td>
<td>25.98</td>
<td>36.13</td>
<td>23.91</td>
<td>4.63</td>
</tr>
<tr>
<td>19</td>
<td>26.01</td>
<td>36.09</td>
<td>23.87</td>
<td>4.55</td>
</tr>
<tr>
<td>48</td>
<td>24.95</td>
<td>36.27</td>
<td>24.34</td>
<td>4.26</td>
</tr>
<tr>
<td>97</td>
<td>22.64</td>
<td>36.54</td>
<td>25.22</td>
<td>4.46</td>
</tr>
<tr>
<td>195</td>
<td>18.35</td>
<td>36.51</td>
<td>26.36</td>
<td>3.65</td>
</tr>
<tr>
<td>293</td>
<td>15.84</td>
<td>36.15</td>
<td>26.69</td>
<td>3.41</td>
</tr>
<tr>
<td>344</td>
<td>13.42</td>
<td>35.75</td>
<td>26.91</td>
<td>-</td>
</tr>
<tr>
<td>391*</td>
<td>-</td>
<td>35.65</td>
<td>-</td>
<td>3.33</td>
</tr>
<tr>
<td>403</td>
<td>11.69</td>
<td>35.51</td>
<td>27.06</td>
<td>3.25</td>
</tr>
<tr>
<td>540</td>
<td>6.15</td>
<td>35.08</td>
<td>27.62</td>
<td>4.06</td>
</tr>
<tr>
<td>676</td>
<td>4.60</td>
<td>35.07</td>
<td>27.80</td>
<td>5.11</td>
</tr>
<tr>
<td>819</td>
<td>4.14</td>
<td>34.99</td>
<td>27.78</td>
<td>6.17</td>
</tr>
<tr>
<td>960</td>
<td>4.02</td>
<td>35.07*</td>
<td>27.86</td>
<td>6.01</td>
</tr>
<tr>
<td>1031</td>
<td>3.99</td>
<td>34.97</td>
<td>27.78</td>
<td>6.01</td>
</tr>
</tbody>
</table>

* Value questionable

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.98</td>
<td>36.15</td>
<td>23.93</td>
<td>4.41</td>
</tr>
<tr>
<td>10</td>
<td>25.98</td>
<td>36.13</td>
<td>23.91</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>25.98</td>
<td>36.10</td>
<td>23.89</td>
<td>4.55</td>
</tr>
<tr>
<td>30</td>
<td>25.63</td>
<td>36.16</td>
<td>24.04</td>
<td>4.42</td>
</tr>
<tr>
<td>50</td>
<td>24.85</td>
<td>36.28</td>
<td>24.37</td>
<td>4.26</td>
</tr>
<tr>
<td>75</td>
<td>23.66</td>
<td>36.44</td>
<td>24.85</td>
<td>4.40</td>
</tr>
<tr>
<td>100</td>
<td>22.48</td>
<td>36.54</td>
<td>25.27</td>
<td>4.44</td>
</tr>
<tr>
<td>150</td>
<td>20.10</td>
<td>36.53</td>
<td>25.92</td>
<td>4.01</td>
</tr>
<tr>
<td>200</td>
<td>18.29</td>
<td>36.50</td>
<td>26.37</td>
<td>3.64</td>
</tr>
<tr>
<td>250</td>
<td>17.29</td>
<td>36.37</td>
<td>26.51</td>
<td>3.51</td>
</tr>
<tr>
<td>300</td>
<td>15.46</td>
<td>36.08</td>
<td>26.72</td>
<td>3.40</td>
</tr>
<tr>
<td>400</td>
<td>11.79</td>
<td>35.52</td>
<td>27.05</td>
<td>3.26</td>
</tr>
<tr>
<td>500</td>
<td>7.35</td>
<td>35.16</td>
<td>27.52</td>
<td>3.83</td>
</tr>
<tr>
<td>600</td>
<td>5.33</td>
<td>35.08</td>
<td>27.72</td>
<td>4.52</td>
</tr>
<tr>
<td>800</td>
<td>4.18</td>
<td>34.99</td>
<td>27.78</td>
<td>6.06</td>
</tr>
<tr>
<td>1000</td>
<td>4.00</td>
<td>34.97</td>
<td>27.78</td>
<td>6.01</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>6.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>19</td>
<td>0.4</td>
<td>0.0</td>
<td>3.0</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>48</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>97</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>195</td>
<td>0.3</td>
<td>0.4</td>
<td>7.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>293</td>
<td>-</td>
<td>0.8</td>
<td>4.0</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>344</td>
<td>-</td>
<td>1.2</td>
<td>5.5</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>391*</td>
<td>-</td>
<td>1.3</td>
<td>7.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>403</td>
<td>-</td>
<td>1.3</td>
<td>7.5</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>540</td>
<td>-</td>
<td>1.6</td>
<td>21.0</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>676</td>
<td>-</td>
<td>1.5</td>
<td>5.0</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>819</td>
<td>-</td>
<td>1.4</td>
<td>14.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>960</td>
<td>-</td>
<td>1.4</td>
<td>4.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>1031</td>
<td>-</td>
<td>1.2</td>
<td>9.5</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>6.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
<td>0.0</td>
<td>3.0</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.0</td>
<td>2.5</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
<td><0.1</td>
<td>1.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>75</td>
<td>0.3</td>
<td><0.1</td>
<td>1.0</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>0.3</td>
<td>0.1</td>
<td>1.0</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>150</td>
<td>0.3</td>
<td>0.3</td>
<td>4.0</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.4</td>
<td>7.0</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.6</td>
<td>5.5</td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>0.9</td>
<td>4.0</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>1.3</td>
<td>7.5</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>1.5</td>
<td>17.0</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>1.5</td>
<td>14.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>1.5</td>
<td>6.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>1.4</td>
<td>13.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.3</td>
<td>6.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>
STATION 75

DATE May 11, 1953 LAT. 34°39' N. LONG. 75°53' W. TIME 00
DEPTH 39 WIND 11, 04 BAR. 14 AIR TEMP: dry 20.0°C, wet 16.7°C
HUMIDITY 72% WEATHER 01 CLOUDS: type 0, amount 1
SEA: direction 04, amount 3
SWELL: direction 36, amount 4
VIS. 7
WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.25</td>
<td>35.64</td>
<td>24.93</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>21.24</td>
<td>35.60</td>
<td>24.91</td>
<td>5.11</td>
</tr>
<tr>
<td>20</td>
<td>20.74</td>
<td>35.61</td>
<td>25.05</td>
<td>5.28</td>
</tr>
<tr>
<td>30</td>
<td>19.99</td>
<td>36.02</td>
<td>25.56</td>
<td>5.03</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.25</td>
<td>35.64</td>
<td>24.93</td>
<td>5.11</td>
</tr>
<tr>
<td>10</td>
<td>21.24</td>
<td>35.60</td>
<td>24.91</td>
<td>5.11</td>
</tr>
<tr>
<td>20</td>
<td>20.74</td>
<td>35.61</td>
<td>25.05</td>
<td>5.28</td>
</tr>
<tr>
<td>30</td>
<td>19.99</td>
<td>36.02</td>
<td>25.56</td>
<td>5.03</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>< 0.1</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>< 0.1</td>
<td>4.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Interpolated

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>< 0.1</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>< 0.1</td>
<td>4.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>
STATION 76

DATE May 11, 1953 LAT. 34°53' N. LONG. 76°10' W. TIME 03

DEPTH 14 WIND 5, 07 BAR. 14 AIR TEMP: dry 20.0 °C, wet 17.2 °C
HUMIDITY 76% WEATHER 02 CLOUDS: type, amt. SEA: dir. 04, amt. 2
SWELL: dir. 04, amt. 2 VIS. 6 WATER TRANS. -

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.85</td>
<td>-</td>
<td>-</td>
<td>5.56</td>
</tr>
<tr>
<td>10</td>
<td>19.84</td>
<td>-</td>
<td>-</td>
<td>5.60</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.85</td>
<td>-</td>
<td>-</td>
<td>5.56</td>
</tr>
<tr>
<td>10</td>
<td>19.84</td>
<td>-</td>
<td>-</td>
<td>5.60</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>2.2</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>
STATION 77

DATE May 11, 1953 LAT. 35°01'N. LONG. 75°45'W. TIME 06

DEPTH 21 WIND 5, 36 BAR. 13 AIR TEMP: dry 20.0°C, wet 16.1°C
HUMIDITY 67% WEATHER 00 CLOUDS: type —, amt. — SEA: dir. 00, amt. 0
SWELL: dir. 00, amt. 0 VIS. 6 WATER TRANS. —

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.05</td>
<td>35.62</td>
<td>25.24</td>
<td>5.28</td>
</tr>
<tr>
<td>10</td>
<td>20.04</td>
<td>35.62</td>
<td>25.24</td>
<td>5.28</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.05</td>
<td>35.62</td>
<td>25.24</td>
<td>5.28</td>
</tr>
<tr>
<td>10</td>
<td>20.04</td>
<td>35.62</td>
<td>25.24</td>
<td>5.28</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.0</td>
<td>< 0.5</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.0</td>
<td>< 0.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.9</td>
</tr>
</tbody>
</table>
STATION 78

DATE May 11, 1953 LAT. 35°06' N. LONG. 75°21' W. TIME 09

DEPTH 30 WIND 10, 36 BAR. 12 AIR TEMP: dry 19.4°C, wet 16.1°C
HUMIDITY 71% WEATHER 02 CLOUDS: type B, amt. 2 SEA: dir. 36, amt. 2
SWELL: dir. 36, amt. 3 VIS.: 7 WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.96</td>
<td>35.07</td>
<td>24.94</td>
<td>4.47</td>
</tr>
<tr>
<td>10</td>
<td>19.94</td>
<td>35.07</td>
<td>24.85</td>
<td>4.42</td>
</tr>
<tr>
<td>20</td>
<td>19.76</td>
<td>35.12</td>
<td>24.94</td>
<td>4.57</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.96</td>
<td>35.07</td>
<td>24.84</td>
<td>4.47</td>
</tr>
<tr>
<td>10</td>
<td>19.94</td>
<td>35.07</td>
<td>24.85</td>
<td>4.42</td>
</tr>
<tr>
<td>20</td>
<td>19.76</td>
<td>35.12</td>
<td>24.94</td>
<td>4.57</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.2</td>
<td>< 0.5</td>
<td>5.0</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.0</td>
<td>1.5</td>
<td>8.5</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>1.2</td>
<td>0.9</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/1)</th>
<th>PO₄-P (µg at/1)</th>
<th>NO₃-NO₂ (µg at/1)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.2</td>
<td>< 0.5</td>
<td>5.0</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.0</td>
<td>1.5</td>
<td>8.5</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>1.2</td>
<td>0.9</td>
</tr>
</tbody>
</table>
DATE May 11, 1953 LAT. 34°57' N. LONG. 74°52' W. TIME 12
DEPTH 2743 WIND 14°, 36 BAR. 12 AIR TEMP: dry 21.7°C, wet 18.3°C
HUMIDITY 73% WEATHER 03 CLOUDS: type 3, amt. 2 SEA: dir. 36, amt. 4
SWELL: dir. 36, amt. 4 VIS. 7 WATER TRANS.

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ<sub>t</sub></th>
<th>O<sub>2</sub> (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.35</td>
<td>36.27</td>
<td>24.21</td>
<td>4.71</td>
</tr>
<tr>
<td>7</td>
<td>25.34</td>
<td>36.27</td>
<td>24.22</td>
<td>4.71</td>
</tr>
<tr>
<td>15</td>
<td>25.39</td>
<td>36.26</td>
<td>24.19</td>
<td>4.63</td>
</tr>
<tr>
<td>40</td>
<td>25.36</td>
<td>36.27</td>
<td>24.21</td>
<td>4.65</td>
</tr>
<tr>
<td>80</td>
<td>22.65</td>
<td>36.51</td>
<td>25.20</td>
<td>4.71</td>
</tr>
<tr>
<td>163</td>
<td>17.79</td>
<td>36.38</td>
<td>26.40</td>
<td>3.33</td>
</tr>
<tr>
<td>246</td>
<td>13.66</td>
<td>35.79</td>
<td>26.89</td>
<td>3.17</td>
</tr>
<tr>
<td>331</td>
<td>10.27</td>
<td>35.28</td>
<td>27.14</td>
<td>2.92</td>
</tr>
</tbody>
</table>

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ<sub>t</sub></th>
<th>O<sub>2</sub> (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.35</td>
<td>36.27</td>
<td>24.21</td>
<td>4.71</td>
</tr>
<tr>
<td>10</td>
<td>25.36</td>
<td>36.27</td>
<td>24.21</td>
<td>4.68</td>
</tr>
<tr>
<td>20</td>
<td>25.38</td>
<td>36.16</td>
<td>24.20</td>
<td>4.63</td>
</tr>
<tr>
<td>30</td>
<td>25.37</td>
<td>36.27</td>
<td>24.21</td>
<td>4.64</td>
</tr>
<tr>
<td>50</td>
<td>24.66</td>
<td>36.35</td>
<td>24.48</td>
<td>4.67</td>
</tr>
<tr>
<td>75</td>
<td>22.98</td>
<td>36.49</td>
<td>25.09</td>
<td>4.71</td>
</tr>
<tr>
<td>100</td>
<td>21.41</td>
<td>36.49</td>
<td>25.53</td>
<td>4.50</td>
</tr>
<tr>
<td>150</td>
<td>18.50</td>
<td>36.40</td>
<td>26.24</td>
<td>3.42</td>
</tr>
<tr>
<td>200</td>
<td>15.85</td>
<td>36.11</td>
<td>26.65</td>
<td>3.25</td>
</tr>
<tr>
<td>250</td>
<td>13.48</td>
<td>35.76</td>
<td>26.90</td>
<td>3.16</td>
</tr>
<tr>
<td>300</td>
<td>11.41</td>
<td>35.45</td>
<td>27.07</td>
<td>3.03</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO_4^-P (μg at/l)</th>
<th>$NO_3^-NO_2$ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>< 0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>0.5</td>
<td>0.0</td>
<td>< 0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>15</td>
<td>0.3</td>
<td>0.0</td>
<td>3.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>40</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>0.5</td>
<td>2.0</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>163</td>
<td>-</td>
<td>0.7</td>
<td>7.0</td>
<td>6.7</td>
<td>0.2</td>
</tr>
<tr>
<td>246</td>
<td>-</td>
<td>1.1</td>
<td>10.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>331</td>
<td>-</td>
<td>1.6</td>
<td>25.5</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO_4^-P (μg at/l)</th>
<th>$NO_3^-NO_2$ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>< 0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>< 0.1</td>
<td>3.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.5</td>
<td>2.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.5</td>
<td>3.0</td>
<td>2.8</td>
<td>0.1</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.7</td>
<td>6.0</td>
<td>5.9</td>
<td>0.2</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.9</td>
<td>8.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>1.1</td>
<td>10.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>1.4</td>
<td>20.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>
DATE May 12, 1953 LAT. 34°38' N. LONG. 74°46' W. TIME 17
DEPTH 3109 WIND 6, 36 BAR. 15 AIR TEMP: dry 23.3°C, wet 19.4°C
HUMIDITY 70% WEATHER 01 CLOUDS: type 8, amt. 2 SEA: dir. 36, amt. 2
SWELL: dir. 04, amt. 3 VIS. 7 WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.69</td>
<td>36.17</td>
<td>24.03</td>
<td>4.55</td>
</tr>
<tr>
<td>10</td>
<td>25.65</td>
<td>36.15</td>
<td>24.03</td>
<td>4.63</td>
</tr>
<tr>
<td>19</td>
<td>25.64</td>
<td>36.18</td>
<td>24.06</td>
<td>4.71</td>
</tr>
<tr>
<td>47</td>
<td>25.64</td>
<td>36.22</td>
<td>24.09</td>
<td>4.71</td>
</tr>
<tr>
<td>95</td>
<td>22.46</td>
<td>36.40</td>
<td>25.17</td>
<td>4.87</td>
</tr>
<tr>
<td>191</td>
<td>19.86</td>
<td>36.56</td>
<td>26.01</td>
<td>4.87</td>
</tr>
<tr>
<td>288</td>
<td>18.41</td>
<td>36.51</td>
<td>26.34</td>
<td>3.49*</td>
</tr>
<tr>
<td>386</td>
<td>16.73*</td>
<td>36.51*</td>
<td>26.75</td>
<td>4.14</td>
</tr>
<tr>
<td>475</td>
<td>15.81</td>
<td>36.14</td>
<td>26.69</td>
<td>3.65</td>
</tr>
<tr>
<td>570</td>
<td>13.06</td>
<td>35.70</td>
<td>26.94</td>
<td>3.25</td>
</tr>
<tr>
<td>665</td>
<td>10.90</td>
<td>35.41</td>
<td>27.13</td>
<td>3.09</td>
</tr>
<tr>
<td>760</td>
<td>8.15</td>
<td>35.08</td>
<td>27.33</td>
<td>3.33</td>
</tr>
<tr>
<td>950</td>
<td>4.99</td>
<td>35.03</td>
<td>27.72</td>
<td>5.36</td>
</tr>
<tr>
<td>1140</td>
<td>4.27</td>
<td>34.99</td>
<td>27.77</td>
<td>5.85</td>
</tr>
<tr>
<td>1426</td>
<td>3.92</td>
<td>34.96</td>
<td>27.78</td>
<td>6.09</td>
</tr>
<tr>
<td>1910</td>
<td>3.66</td>
<td>34.96</td>
<td>27.81</td>
<td>6.09</td>
</tr>
</tbody>
</table>

* Value questionable
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>19</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>4.7</td>
<td>0.5</td>
</tr>
<tr>
<td>47</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>95</td>
<td>-</td>
<td>0.0</td>
<td>11.5*</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>191</td>
<td>0.3</td>
<td>< 0.1</td>
<td>0.5</td>
<td>5.5</td>
<td>-</td>
</tr>
<tr>
<td>288</td>
<td>-</td>
<td>0.5</td>
<td>5.0</td>
<td>5.1</td>
<td>0.3</td>
</tr>
<tr>
<td>386</td>
<td>-</td>
<td>0.5</td>
<td>7.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>475</td>
<td>-</td>
<td>1.0</td>
<td>13.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>570</td>
<td>1.0</td>
<td>1.0</td>
<td>19.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>665</td>
<td>-</td>
<td>1.5</td>
<td>19.5</td>
<td>1.8</td>
<td>0.7</td>
</tr>
<tr>
<td>760</td>
<td>-</td>
<td>1.5</td>
<td>15.5</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>950</td>
<td>-</td>
<td>2.0</td>
<td>11.5</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>1140</td>
<td>-</td>
<td>1.4</td>
<td>14.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>1426</td>
<td>-</td>
<td>1.1</td>
<td>13.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>1910</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* Value questionable
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.69</td>
<td>36.17</td>
<td>24.03</td>
<td>4.55</td>
</tr>
<tr>
<td>10</td>
<td>25.65</td>
<td>36.15</td>
<td>24.03</td>
<td>4.63</td>
</tr>
<tr>
<td>20</td>
<td>25.64</td>
<td>36.18</td>
<td>24.06</td>
<td>4.71</td>
</tr>
<tr>
<td>30</td>
<td>25.64</td>
<td>36.19</td>
<td>24.06</td>
<td>4.71</td>
</tr>
<tr>
<td>50</td>
<td>25.40</td>
<td>36.23</td>
<td>24.17</td>
<td>4.72</td>
</tr>
<tr>
<td>75</td>
<td>23.63</td>
<td>36.33</td>
<td>24.78</td>
<td>4.61</td>
</tr>
<tr>
<td>100</td>
<td>22.30</td>
<td>36.41</td>
<td>25.22</td>
<td>4.87</td>
</tr>
<tr>
<td>150</td>
<td>20.83</td>
<td>36.52</td>
<td>25.72</td>
<td>4.87</td>
</tr>
<tr>
<td>200</td>
<td>19.73</td>
<td>36.55</td>
<td>26.03</td>
<td>4.86</td>
</tr>
<tr>
<td>250</td>
<td>19.00</td>
<td>36.54</td>
<td>26.22</td>
<td>4.72</td>
</tr>
<tr>
<td>300</td>
<td>18.27</td>
<td>36.50</td>
<td>26.37</td>
<td>4.59</td>
</tr>
<tr>
<td>400</td>
<td>16.86</td>
<td>36.32</td>
<td>26.57</td>
<td>4.07</td>
</tr>
<tr>
<td>500</td>
<td>15.03</td>
<td>36.01</td>
<td>26.76</td>
<td>3.55</td>
</tr>
<tr>
<td>600</td>
<td>12.44</td>
<td>35.61</td>
<td>27.00</td>
<td>3.19</td>
</tr>
<tr>
<td>800</td>
<td>7.15</td>
<td>35.07</td>
<td>27.47</td>
<td>4.00</td>
</tr>
<tr>
<td>1000</td>
<td>4.73</td>
<td>35.02</td>
<td>27.74</td>
<td>5.54</td>
</tr>
<tr>
<td>1200</td>
<td>4.18</td>
<td>34.98</td>
<td>27.77</td>
<td>5.93</td>
</tr>
<tr>
<td>1500</td>
<td>3.85</td>
<td>34.96</td>
<td>27.79</td>
<td>6.09</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>2.3</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>4.7</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>3.5</td>
</tr>
<tr>
<td>50</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>1.6</td>
</tr>
<tr>
<td>75</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>100</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>150</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>2.8</td>
</tr>
<tr>
<td>200</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>5.5</td>
</tr>
<tr>
<td>250</td>
<td>0.4</td>
<td>0.3</td>
<td>3.0</td>
<td>5.3</td>
</tr>
<tr>
<td>300</td>
<td>0.5</td>
<td>0.5</td>
<td>5.5</td>
<td>5.0</td>
</tr>
<tr>
<td>400</td>
<td>0.8</td>
<td>0.6</td>
<td>8.5</td>
<td>4.1</td>
</tr>
<tr>
<td>500</td>
<td>1.0</td>
<td>1.0</td>
<td>14.5</td>
<td>3.3</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>1.2</td>
<td>19.0</td>
<td>2.4</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>1.5</td>
<td>18.0</td>
<td>1.6</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>1.6</td>
<td>14.5</td>
<td>1.4</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.8</td>
<td>12.0</td>
<td>1.8</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>1.3</td>
<td>14.0</td>
<td>-</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
<td>1.1</td>
<td>13.0</td>
<td>-</td>
</tr>
</tbody>
</table>
STATION Standard 1

DATE April 19, 1953 LAT. 26°19'N. LONG. 76°44'W. TIME 21

DEPTH 4754 m WIND 3, 18 BAR. 16 AIR TEMP: dry 25.6°C, wet 22.2°C
HUMIDITY 75% WEATHER 03 CLOUDS: type 0, amt. 8 SEA: dir. 18, amt. 3
SWELL: dir., amt. VIS. 7 WATER TRANS. 26

** From BT

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.00**</td>
<td>36.42</td>
<td>24.43</td>
<td>4.77</td>
</tr>
<tr>
<td>9</td>
<td>24.83</td>
<td>36.43</td>
<td>24.49</td>
<td>4.68</td>
</tr>
<tr>
<td>47</td>
<td>23.92</td>
<td>36.47</td>
<td>24.80</td>
<td>4.76</td>
</tr>
<tr>
<td>94</td>
<td>23.28</td>
<td>36.67</td>
<td>25.14</td>
<td>4.78</td>
</tr>
<tr>
<td>142</td>
<td>22.13</td>
<td>36.69</td>
<td>25.48</td>
<td>4.62</td>
</tr>
<tr>
<td>190</td>
<td>20.35</td>
<td>36.67</td>
<td>25.96</td>
<td>4.62</td>
</tr>
<tr>
<td>287</td>
<td>18.50</td>
<td>36.55</td>
<td>26.35</td>
<td>4.46</td>
</tr>
<tr>
<td>387</td>
<td>17.63</td>
<td>36.47</td>
<td>26.51</td>
<td>4.26</td>
</tr>
<tr>
<td>487</td>
<td>16.29</td>
<td>36.24</td>
<td>26.65</td>
<td>3.95</td>
</tr>
<tr>
<td>587</td>
<td>13.87</td>
<td>35.84</td>
<td>26.88</td>
<td>3.69</td>
</tr>
<tr>
<td>687</td>
<td>10.90</td>
<td>35.41</td>
<td>27.13</td>
<td>3.22</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.00</td>
<td>36.42</td>
<td>24.43</td>
<td>4.77</td>
</tr>
<tr>
<td>10</td>
<td>24.83</td>
<td>36.43</td>
<td>24.49</td>
<td>4.68</td>
</tr>
<tr>
<td>20</td>
<td>24.72</td>
<td>36.43</td>
<td>24.53</td>
<td>4.69</td>
</tr>
<tr>
<td>30</td>
<td>24.51</td>
<td>36.44</td>
<td>24.60</td>
<td>4.72</td>
</tr>
<tr>
<td>50</td>
<td>23.78</td>
<td>36.49</td>
<td>24.85</td>
<td>4.77</td>
</tr>
<tr>
<td>75</td>
<td>23.54</td>
<td>36.61</td>
<td>25.02</td>
<td>4.77</td>
</tr>
<tr>
<td>100</td>
<td>23.17</td>
<td>36.67</td>
<td>25.17</td>
<td>4.76</td>
</tr>
<tr>
<td>150</td>
<td>21.79</td>
<td>36.69</td>
<td>25.58</td>
<td>4.62</td>
</tr>
<tr>
<td>200</td>
<td>20.12</td>
<td>36.66</td>
<td>26.01</td>
<td>4.60</td>
</tr>
<tr>
<td>250</td>
<td>19.10</td>
<td>36.59</td>
<td>26.23</td>
<td>4.52</td>
</tr>
<tr>
<td>300</td>
<td>18.42</td>
<td>36.55</td>
<td>26.37</td>
<td>4.43</td>
</tr>
<tr>
<td>400</td>
<td>17.52</td>
<td>36.45</td>
<td>26.52</td>
<td>4.22</td>
</tr>
<tr>
<td>500</td>
<td>16.01</td>
<td>36.19</td>
<td>26.68</td>
<td>3.91</td>
</tr>
<tr>
<td>600</td>
<td>13.52</td>
<td>35.79</td>
<td>26.92</td>
<td>3.62</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>0.4</td>
<td>0.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>47</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>94</td>
<td>-</td>
<td>0.8</td>
<td><0.5</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>142</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>190</td>
<td>-</td>
<td>0.5</td>
<td>2.0</td>
<td>-</td>
<td><0.1</td>
</tr>
<tr>
<td>288</td>
<td>-</td>
<td>0.7</td>
<td>1.5</td>
<td>1.9</td>
<td>0.8</td>
</tr>
<tr>
<td>387</td>
<td>-</td>
<td>0.8</td>
<td>7.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>487</td>
<td>-</td>
<td>1.3</td>
<td>2.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>587</td>
<td>-</td>
<td>1.0</td>
<td>0.5*</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>687</td>
<td>2.2</td>
<td>1.5</td>
<td>7.0</td>
<td>-</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* Value questionable

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.4</td>
<td>0.0</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.6</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.8</td>
<td><0.5</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.7</td>
<td>0.5</td>
<td>1.7</td>
<td>0.2</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.5</td>
<td>2.0</td>
<td>1.8</td>
<td>0.1</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.6</td>
<td>1.5</td>
<td>1.8</td>
<td>0.5</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>0.7</td>
<td>2.0</td>
<td>1.9</td>
<td>0.8</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>0.9</td>
<td>6.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>1.3</td>
<td>3.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>600</td>
<td>2.2</td>
<td>1.1</td>
<td>5.0</td>
<td>-</td>
<td>1.7</td>
</tr>
</tbody>
</table>
STATION Standard 2

DATE April 19, 1953 LAT. 26°19' N. LONG. 76°43' W. TIME 24
DEPTH 4755 WIND 7, 22 BAR. 16. AIR TEMP: dry 25.6°C, wet 23.3°C
HUMIDITY 83. WEATHER 03 CLOUDS: type ,amt. SEA: dir.,amt. SWELL: dir.,amt. VIS. WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.80**</td>
<td>36.40</td>
<td>24.48</td>
<td>4.70</td>
</tr>
<tr>
<td>9</td>
<td>24.80</td>
<td>36.42</td>
<td>24.50</td>
<td>4.68</td>
</tr>
<tr>
<td>48</td>
<td>23.84</td>
<td>36.55</td>
<td>24.88</td>
<td>4.78</td>
</tr>
<tr>
<td>97</td>
<td>23.19</td>
<td>36.61</td>
<td>25.12</td>
<td>4.76</td>
</tr>
<tr>
<td>146</td>
<td>21.95</td>
<td>36.66</td>
<td>25.51</td>
<td>4.64</td>
</tr>
<tr>
<td>195</td>
<td>20.26</td>
<td>36.62</td>
<td>25.95</td>
<td>4.82</td>
</tr>
<tr>
<td>294</td>
<td>18.42</td>
<td>36.59</td>
<td>26.40</td>
<td>4.54</td>
</tr>
<tr>
<td>393</td>
<td>17.56</td>
<td>36.54</td>
<td>26.50</td>
<td>4.66</td>
</tr>
<tr>
<td>493</td>
<td>16.09</td>
<td>36.22</td>
<td>26.68</td>
<td>3.97</td>
</tr>
<tr>
<td>593</td>
<td>13.80</td>
<td>35.85</td>
<td>26.90</td>
<td>3.65</td>
</tr>
<tr>
<td>693</td>
<td>10.99</td>
<td>35.48</td>
<td>27.17</td>
<td>3.24</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.80</td>
<td>36.40</td>
<td>24.48</td>
<td>4.70</td>
</tr>
<tr>
<td>10</td>
<td>24.77</td>
<td>36.42</td>
<td>24.50</td>
<td>4.68</td>
</tr>
<tr>
<td>20</td>
<td>24.49</td>
<td>36.46</td>
<td>24.62</td>
<td>4.72</td>
</tr>
<tr>
<td>30</td>
<td>24.23</td>
<td>36.50</td>
<td>24.73</td>
<td>4.97</td>
</tr>
<tr>
<td>50</td>
<td>23.82</td>
<td>36.55</td>
<td>24.89</td>
<td>4.78</td>
</tr>
<tr>
<td>75</td>
<td>23.55</td>
<td>36.58</td>
<td>24.99</td>
<td>4.77</td>
</tr>
<tr>
<td>100</td>
<td>23.13</td>
<td>36.62</td>
<td>25.14</td>
<td>4.75</td>
</tr>
<tr>
<td>150</td>
<td>21.79</td>
<td>36.66</td>
<td>25.56</td>
<td>4.65</td>
</tr>
<tr>
<td>200</td>
<td>20.14</td>
<td>36.62</td>
<td>25.98</td>
<td>4.82</td>
</tr>
<tr>
<td>250</td>
<td>19.12</td>
<td>36.60</td>
<td>26.23</td>
<td>4.67</td>
</tr>
<tr>
<td>300</td>
<td>18.38</td>
<td>36.58</td>
<td>26.40</td>
<td>4.55</td>
</tr>
<tr>
<td>400</td>
<td>17.48</td>
<td>36.43</td>
<td>26.51</td>
<td>4.63</td>
</tr>
<tr>
<td>500</td>
<td>15.95</td>
<td>36.19</td>
<td>26.69</td>
<td>3.94</td>
</tr>
<tr>
<td>600</td>
<td>13.62</td>
<td>35.82</td>
<td>26.92</td>
<td>3.63</td>
</tr>
</tbody>
</table>
STATION Standard 3

DATE April 20, 1953 LAT. 26°19'N. LONG. 76°43'W. TIME 02

DEPT 4754 WIND 7, 22 BAR. 16 AIR TEMP: dry 25.6°C, wet 23.3°C
HUMIDITY 82% WEATHER 01 CLOUDS: type _, amt. 0 SEA: dir. 22, amt. 2
SWELL: dir. ___, amt. ___ VIS. 8 WATER TRANS. ___

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>o_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.80**</td>
<td>36.40</td>
<td>24.48</td>
<td>4.70</td>
</tr>
<tr>
<td>9</td>
<td>24.82</td>
<td>36.35</td>
<td>24.44</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>23.79</td>
<td>36.55</td>
<td>24.90</td>
<td>4.84</td>
</tr>
<tr>
<td>97</td>
<td>23.25</td>
<td>36.69</td>
<td>25.16</td>
<td>-</td>
</tr>
<tr>
<td>146</td>
<td>22.07</td>
<td>36.70</td>
<td>25.51</td>
<td>4.60</td>
</tr>
<tr>
<td>195</td>
<td>20.33</td>
<td>36.71</td>
<td>26.00</td>
<td>-</td>
</tr>
<tr>
<td>295</td>
<td>18.51</td>
<td>36.51</td>
<td>26.32</td>
<td>4.46</td>
</tr>
<tr>
<td>394</td>
<td>17.58</td>
<td>36.42</td>
<td>26.48</td>
<td>-</td>
</tr>
<tr>
<td>494</td>
<td>16.16</td>
<td>36.19</td>
<td>26.64</td>
<td>3.99</td>
</tr>
<tr>
<td>593</td>
<td>13.84</td>
<td>35.82</td>
<td>26.87</td>
<td>-</td>
</tr>
<tr>
<td>693</td>
<td>11.28</td>
<td>35.44</td>
<td>27.09</td>
<td>3.32</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>o_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.80</td>
<td>36.40</td>
<td>24.48</td>
<td>4.70</td>
</tr>
<tr>
<td>10</td>
<td>24.79</td>
<td>36.36</td>
<td>24.45</td>
<td>4.73</td>
</tr>
<tr>
<td>20</td>
<td>24.48</td>
<td>36.41</td>
<td>24.58</td>
<td>4.77</td>
</tr>
<tr>
<td>30</td>
<td>24.20</td>
<td>36.47</td>
<td>24.71</td>
<td>4.80</td>
</tr>
<tr>
<td>50</td>
<td>23.78</td>
<td>36.56</td>
<td>24.91</td>
<td>4.84</td>
</tr>
<tr>
<td>75</td>
<td>23.50</td>
<td>36.64</td>
<td>25.05</td>
<td>4.77</td>
</tr>
<tr>
<td>100</td>
<td>23.19</td>
<td>36.69</td>
<td>25.18</td>
<td>4.71</td>
</tr>
<tr>
<td>150</td>
<td>21.91</td>
<td>36.70</td>
<td>25.55</td>
<td>4.59</td>
</tr>
<tr>
<td>200</td>
<td>20.22</td>
<td>36.70</td>
<td>26.02</td>
<td>4.55</td>
</tr>
<tr>
<td>250</td>
<td>19.22</td>
<td>36.59</td>
<td>26.20</td>
<td>4.50</td>
</tr>
<tr>
<td>300</td>
<td>18.47</td>
<td>36.51</td>
<td>26.33</td>
<td>4.44</td>
</tr>
<tr>
<td>400</td>
<td>17.52</td>
<td>36.41</td>
<td>26.49</td>
<td>4.22</td>
</tr>
<tr>
<td>500</td>
<td>16.03</td>
<td>36.17</td>
<td>26.66</td>
<td>3.98</td>
</tr>
<tr>
<td>600</td>
<td>13.67</td>
<td>35.79</td>
<td>26.88</td>
<td>3.71</td>
</tr>
</tbody>
</table>

233
STATION Standard 4

DATE April 20, 1953 LAT. 26°17'N. LONG. 76°41'W. TIME 05

DEPTH 4663 WIND 9, 22 BAR. 15 AIR TEMP: dry 25.0°C, wet 23.3°C

HUMIDITY 87% WEATHER 01 CLOUDS: type, amt. 7 SEA: dir. 22, amt. 2

SWELL: dir. __, amt. __ VIS. 6 WATER TRANS. __

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.80**</td>
<td>36.38</td>
<td>24.47</td>
<td>4.70</td>
</tr>
<tr>
<td>10</td>
<td>24.66</td>
<td>36.38</td>
<td>24.51</td>
<td>4.70</td>
</tr>
<tr>
<td>48</td>
<td>23.74</td>
<td>36.47</td>
<td>24.85</td>
<td>4.78</td>
</tr>
<tr>
<td>96</td>
<td>23.09</td>
<td>36.70</td>
<td>25.22</td>
<td>4.70</td>
</tr>
<tr>
<td>143</td>
<td>22.24</td>
<td>36.71</td>
<td>25.47</td>
<td>4.62</td>
</tr>
<tr>
<td>190</td>
<td>20.75</td>
<td>36.74</td>
<td>25.90</td>
<td>4.86</td>
</tr>
<tr>
<td>283</td>
<td>18.60</td>
<td>36.62</td>
<td>26.38</td>
<td>4.54</td>
</tr>
<tr>
<td>374</td>
<td>17.58</td>
<td>36.40</td>
<td>26.46</td>
<td>4.29</td>
</tr>
<tr>
<td>464</td>
<td>16.42</td>
<td>36.22</td>
<td>26.61</td>
<td>3.97</td>
</tr>
<tr>
<td>553</td>
<td>14.04</td>
<td>35.86</td>
<td>26.86</td>
<td>3.73</td>
</tr>
<tr>
<td>643*</td>
<td>20.52</td>
<td>36.70</td>
<td>25.94</td>
<td>4.46</td>
</tr>
</tbody>
</table>

* Value questionable
** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.80</td>
<td>36.38</td>
<td>24.47</td>
<td>4.70</td>
</tr>
<tr>
<td>10</td>
<td>24.66</td>
<td>36.38</td>
<td>24.51</td>
<td>4.70</td>
</tr>
<tr>
<td>20</td>
<td>24.38</td>
<td>36.40</td>
<td>24.61</td>
<td>4.71</td>
</tr>
<tr>
<td>30</td>
<td>24.13</td>
<td>36.42</td>
<td>24.70</td>
<td>4.74</td>
</tr>
<tr>
<td>50</td>
<td>23.70</td>
<td>36.48</td>
<td>24.87</td>
<td>4.78</td>
</tr>
<tr>
<td>50</td>
<td>23.27</td>
<td>36.63</td>
<td>25.11</td>
<td>4.74</td>
</tr>
<tr>
<td>100</td>
<td>23.00</td>
<td>36.70</td>
<td>25.24</td>
<td>4.69</td>
</tr>
<tr>
<td>150</td>
<td>22.10</td>
<td>36.72</td>
<td>25.51</td>
<td>4.63</td>
</tr>
<tr>
<td>200</td>
<td>20.47</td>
<td>36.73</td>
<td>25.97</td>
<td>4.84</td>
</tr>
<tr>
<td>250</td>
<td>19.23</td>
<td>36.67</td>
<td>26.26</td>
<td>4.66</td>
</tr>
<tr>
<td>300</td>
<td>18.42</td>
<td>36.58</td>
<td>26.39</td>
<td>4.50</td>
</tr>
<tr>
<td>400</td>
<td>17.37</td>
<td>36.37</td>
<td>26.49</td>
<td>4.21</td>
</tr>
<tr>
<td>500</td>
<td>15.60</td>
<td>36.10</td>
<td>26.70</td>
<td>3.86</td>
</tr>
</tbody>
</table>
STATION Standard 5

DATE April 20, 1953 LAT. 26°19'N. LONG. 76°43'W. TIME 08
DEPTH 53.03 WIND 10, 22 BAR. 14 AIR TEMP: dry 24.7°C, wet 22.8°C
HUMIDITY 87% WEATHER 01 CLOUDS: type 8, amt. 3 SEA: dir. 20, amt. 2
SWELL: dir. __, amt. __ VIS: 7 WATER TRANS: __

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.70**</td>
<td>36.36</td>
<td>24.48</td>
<td>4.74</td>
</tr>
<tr>
<td>9</td>
<td>24.73</td>
<td>36.36</td>
<td>24.47</td>
<td>-</td>
</tr>
<tr>
<td>43</td>
<td>23.94</td>
<td>36.44</td>
<td>24.77</td>
<td>5.31</td>
</tr>
<tr>
<td>91</td>
<td>23.30</td>
<td>36.64</td>
<td>25.11</td>
<td>-</td>
</tr>
<tr>
<td>137</td>
<td>22.63</td>
<td>36.66</td>
<td>25.32</td>
<td>4.90</td>
</tr>
<tr>
<td>184</td>
<td>20.81</td>
<td>36.63</td>
<td>25.80</td>
<td>-</td>
</tr>
<tr>
<td>278</td>
<td>18.62</td>
<td>36.56</td>
<td>26.33</td>
<td>4.84</td>
</tr>
<tr>
<td>374</td>
<td>17.67</td>
<td>36.42</td>
<td>26.46</td>
<td>-</td>
</tr>
<tr>
<td>473</td>
<td>16.33</td>
<td>36.19</td>
<td>26.60</td>
<td>4.46</td>
</tr>
<tr>
<td>572</td>
<td>14.21</td>
<td>35.88</td>
<td>26.84</td>
<td>-</td>
</tr>
<tr>
<td>672</td>
<td>11.59</td>
<td>35.51</td>
<td>27.06</td>
<td>3.45</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.70</td>
<td>36.36</td>
<td>24.48</td>
<td>4.74</td>
</tr>
<tr>
<td>10</td>
<td>24.70</td>
<td>36.36</td>
<td>24.48</td>
<td>4.86</td>
</tr>
<tr>
<td>20</td>
<td>24.44</td>
<td>36.38</td>
<td>24.57</td>
<td>5.05</td>
</tr>
<tr>
<td>30</td>
<td>24.21</td>
<td>36.40</td>
<td>24.66</td>
<td>5.23</td>
</tr>
<tr>
<td>50</td>
<td>23.85</td>
<td>36.48</td>
<td>24.83</td>
<td>5.30</td>
</tr>
<tr>
<td>75</td>
<td>23.52</td>
<td>36.59</td>
<td>25.01</td>
<td>5.19</td>
</tr>
<tr>
<td>100</td>
<td>23.20</td>
<td>36.65</td>
<td>25.15</td>
<td>5.07</td>
</tr>
<tr>
<td>150</td>
<td>22.21</td>
<td>36.65</td>
<td>25.43</td>
<td>4.88</td>
</tr>
<tr>
<td>200</td>
<td>20.35</td>
<td>36.62</td>
<td>25.92</td>
<td>4.87</td>
</tr>
<tr>
<td>250</td>
<td>19.14</td>
<td>36.59</td>
<td>26.22</td>
<td>4.85</td>
</tr>
<tr>
<td>300</td>
<td>18.43</td>
<td>36.54</td>
<td>26.36</td>
<td>4.81</td>
</tr>
<tr>
<td>400</td>
<td>17.39</td>
<td>36.37</td>
<td>26.49</td>
<td>4.62</td>
</tr>
<tr>
<td>500</td>
<td>15.79</td>
<td>36.11</td>
<td>26.67</td>
<td>4.34</td>
</tr>
<tr>
<td>600</td>
<td>13.54</td>
<td>35.78</td>
<td>26.90</td>
<td>3.84</td>
</tr>
</tbody>
</table>

235
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>9</td>
<td>0.3</td>
<td>0.3</td>
<td>1.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>43</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>91</td>
<td>1.1</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>137</td>
<td>1.7</td>
<td>-</td>
<td>0.5</td>
<td>9.3</td>
<td>0.0</td>
</tr>
<tr>
<td>184</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>278</td>
<td>1.0</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>374</td>
<td>1.6</td>
<td>0.7</td>
<td>4.5</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>473</td>
<td>0.9</td>
<td>0.8</td>
<td>4.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>572</td>
<td>-</td>
<td>1.2</td>
<td>6.0</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>672</td>
<td>2.6</td>
<td>-</td>
<td>6.0</td>
<td>-</td>
<td>0.2</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.3</td>
<td>1.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>50</td>
<td>0.6</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>75</td>
<td>0.9</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>100</td>
<td>1.2</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>150</td>
<td>1.3</td>
<td>-</td>
<td>0.5</td>
<td>6.9</td>
<td>0.0</td>
</tr>
<tr>
<td>200</td>
<td>0.3</td>
<td>-</td>
<td>0.5</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>250</td>
<td>0.7</td>
<td>0.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>300</td>
<td>1.1</td>
<td>0.2</td>
<td>2.0</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>400</td>
<td>1.4</td>
<td>0.7</td>
<td>4.5</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>500</td>
<td>1.1</td>
<td>0.9</td>
<td>5.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>600</td>
<td>2.0</td>
<td>-</td>
<td>6.0</td>
<td>-</td>
<td>1.3</td>
</tr>
</tbody>
</table>
STATION Standard 6

DATE April 20, 1953 LAT. 26°19'N. LONG. 76°44'W. TIME 11
DEPTH 4572 WIND 6. BAR. 15 AIR TEMP: dry 25.0°C, wet 22.8°C
HUMIDITY 83% WEATHER 03 CLOUDS: type 3, amt. 7 SEA: dir. 20, amt. 2
Swell: dir. --, amt. -- VIS. 8 WATER TRANS. --

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.80**</td>
<td>36.38</td>
<td>24.47</td>
<td>4.74</td>
</tr>
<tr>
<td>9</td>
<td>24.81</td>
<td>36.38</td>
<td>24.46</td>
<td>4.66</td>
</tr>
<tr>
<td>46</td>
<td>23.97</td>
<td>36.40</td>
<td>24.73</td>
<td>4.72</td>
</tr>
<tr>
<td>91</td>
<td>23.30</td>
<td>36.64</td>
<td>25.11</td>
<td>4.84</td>
</tr>
<tr>
<td>137</td>
<td>22.44</td>
<td>36.67</td>
<td>25.38</td>
<td>4.85</td>
</tr>
<tr>
<td>185</td>
<td>20.02</td>
<td>36.57</td>
<td>25.81</td>
<td>4.78</td>
</tr>
<tr>
<td>281</td>
<td>18.68</td>
<td>36.53</td>
<td>26.29</td>
<td>4.46</td>
</tr>
<tr>
<td>379</td>
<td>17.70</td>
<td>36.37</td>
<td>26.41</td>
<td>4.36</td>
</tr>
<tr>
<td>478</td>
<td>16.36</td>
<td>36.20</td>
<td>26.60</td>
<td>4.05</td>
</tr>
<tr>
<td>577</td>
<td>14.30</td>
<td>35.88</td>
<td>26.82</td>
<td>3.73</td>
</tr>
<tr>
<td>677</td>
<td>11.57</td>
<td>35.48</td>
<td>27.06</td>
<td>3.22</td>
</tr>
</tbody>
</table>

From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.80</td>
<td>36.38</td>
<td>24.47</td>
<td>4.74</td>
</tr>
<tr>
<td>10</td>
<td>24.78</td>
<td>36.38</td>
<td>24.47</td>
<td>4.66</td>
</tr>
<tr>
<td>20</td>
<td>24.53</td>
<td>36.39</td>
<td>24.55</td>
<td>4.67</td>
</tr>
<tr>
<td>30</td>
<td>24.30</td>
<td>36.39</td>
<td>24.62</td>
<td>4.68</td>
</tr>
<tr>
<td>50</td>
<td>23.92</td>
<td>36.42</td>
<td>24.76</td>
<td>4.73</td>
</tr>
<tr>
<td>75</td>
<td>23.56</td>
<td>36.58</td>
<td>24.99</td>
<td>4.81</td>
</tr>
<tr>
<td>100</td>
<td>23.20</td>
<td>36.65</td>
<td>25.15</td>
<td>4.85</td>
</tr>
<tr>
<td>150</td>
<td>21.89</td>
<td>36.64</td>
<td>25.51</td>
<td>4.83</td>
</tr>
<tr>
<td>200</td>
<td>20.25</td>
<td>36.56</td>
<td>25.90</td>
<td>4.74</td>
</tr>
<tr>
<td>250</td>
<td>19.20</td>
<td>36.54</td>
<td>26.16</td>
<td>4.58</td>
</tr>
<tr>
<td>300</td>
<td>18.52</td>
<td>36.50</td>
<td>26.31</td>
<td>4.43</td>
</tr>
<tr>
<td>400</td>
<td>17.48</td>
<td>36.33</td>
<td>26.44</td>
<td>4.30</td>
</tr>
<tr>
<td>500</td>
<td>15.96</td>
<td>36.14</td>
<td>26.65</td>
<td>3.99</td>
</tr>
<tr>
<td>600</td>
<td>13.73</td>
<td>35.79</td>
<td>26.87</td>
<td>3.62</td>
</tr>
</tbody>
</table>
STATION Standard 7

DATE April 20, 1953 LAT. 26°20' N. LONG. 76°40' W. TIME 14

DEPTH 4938 WIND 9 BAR. 16 AIR TEMP: dry 23.9 °C, wet 20.0 °C

HUMIDITY 70 % WEATHER 02 CLOUDS: type 8, amt. 1 SEA: dir. 36, amt. 2

SWELL: dir. 20, amt. 2 VIS. 8 WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.80**</td>
<td>36.36</td>
<td>24.45</td>
<td>4.72</td>
</tr>
<tr>
<td>8</td>
<td>24.76</td>
<td>36.35</td>
<td>24.45</td>
<td>4.70</td>
</tr>
<tr>
<td>42</td>
<td>23.98</td>
<td>36.39</td>
<td>24.72</td>
<td>4.86</td>
</tr>
<tr>
<td>85</td>
<td>23.59</td>
<td>36.55</td>
<td>24.96</td>
<td>4.86</td>
</tr>
<tr>
<td>127</td>
<td>23.00</td>
<td>36.71</td>
<td>25.25</td>
<td>4.66</td>
</tr>
<tr>
<td>170</td>
<td>22.00</td>
<td>36.67</td>
<td>25.51</td>
<td>4.58</td>
</tr>
<tr>
<td>255</td>
<td>19.22</td>
<td>36.64</td>
<td>26.23</td>
<td>4.35</td>
</tr>
<tr>
<td>340</td>
<td>18.13</td>
<td>36.52</td>
<td>26.42</td>
<td>4.46</td>
</tr>
<tr>
<td>425</td>
<td>17.48</td>
<td>36.48</td>
<td>26.55</td>
<td>4.13</td>
</tr>
<tr>
<td>509</td>
<td>16.07</td>
<td>36.22</td>
<td>26.69</td>
<td>4.03</td>
</tr>
<tr>
<td>594</td>
<td>13.73</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>994</td>
<td>5.56</td>
<td>35.06</td>
<td>27.68</td>
<td>4.78</td>
</tr>
<tr>
<td>1192</td>
<td>4.44</td>
<td>35.02</td>
<td>27.78</td>
<td>5.53</td>
</tr>
<tr>
<td>1488</td>
<td>3.70</td>
<td>34.96</td>
<td>27.81</td>
<td>5.78</td>
</tr>
<tr>
<td>1982</td>
<td>3.84</td>
<td>34.97</td>
<td>27.82</td>
<td>5.82</td>
</tr>
<tr>
<td>2475</td>
<td>3.30</td>
<td>34.96</td>
<td>27.85</td>
<td>5.65</td>
</tr>
<tr>
<td>2967</td>
<td>2.83</td>
<td>34.92</td>
<td>27.86</td>
<td>5.87</td>
</tr>
<tr>
<td>3944</td>
<td>2.51</td>
<td>34.90</td>
<td>27.87</td>
<td>5.27</td>
</tr>
</tbody>
</table>

** From BT
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.3</td>
<td>1.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>42</td>
<td>0.4</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>85</td>
<td>< 0.1</td>
<td>0.0</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>127</td>
<td>0.7</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>170</td>
<td>-</td>
<td>1.0</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>255</td>
<td>0.3</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>340</td>
<td>0.3</td>
<td>-</td>
<td>4.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>425</td>
<td>-</td>
<td>1.0</td>
<td>3.5</td>
<td>3.3</td>
<td>1.2</td>
</tr>
<tr>
<td>509</td>
<td>1.6</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>994</td>
<td>-</td>
<td>1.0</td>
<td>17.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>1192</td>
<td>-</td>
<td>1.2</td>
<td>10.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>1488</td>
<td>-</td>
<td>1.1</td>
<td>1.5</td>
<td>6.1</td>
<td>0.7</td>
</tr>
<tr>
<td>1982</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>3.8</td>
<td>0.2</td>
</tr>
<tr>
<td>2475</td>
<td>-</td>
<td>0.9</td>
<td>6.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>2967</td>
<td>-</td>
<td>1.1</td>
<td>6.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>3944</td>
<td>-</td>
<td>0.8</td>
<td>1.5</td>
<td>-</td>
<td>1.3</td>
</tr>
</tbody>
</table>
INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O$_2$ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.80</td>
<td>36.36</td>
<td>24.45</td>
<td>4.72</td>
</tr>
<tr>
<td>10</td>
<td>24.70</td>
<td>36.35</td>
<td>24.47</td>
<td>4.70</td>
</tr>
<tr>
<td>20</td>
<td>24.48</td>
<td>36.36</td>
<td>24.55</td>
<td>4.78</td>
</tr>
<tr>
<td>30</td>
<td>24.19</td>
<td>36.37</td>
<td>24.64</td>
<td>4.84</td>
</tr>
<tr>
<td>50</td>
<td>23.92</td>
<td>36.42</td>
<td>24.76</td>
<td>4.86</td>
</tr>
<tr>
<td>75</td>
<td>23.70</td>
<td>36.51</td>
<td>24.89</td>
<td>4.86</td>
</tr>
<tr>
<td>100</td>
<td>23.37</td>
<td>36.61</td>
<td>25.07</td>
<td>4.78</td>
</tr>
<tr>
<td>150</td>
<td>22.50</td>
<td>36.69</td>
<td>25.38</td>
<td>4.62</td>
</tr>
<tr>
<td>200</td>
<td>21.02</td>
<td>36.66</td>
<td>25.77</td>
<td>4.51</td>
</tr>
<tr>
<td>250</td>
<td>19.25</td>
<td>36.65</td>
<td>26.33</td>
<td>4.36</td>
</tr>
<tr>
<td>300</td>
<td>18.59</td>
<td>36.57</td>
<td>26.34</td>
<td>4.42</td>
</tr>
<tr>
<td>400</td>
<td>17.70</td>
<td>36.50</td>
<td>26.51</td>
<td>4.22</td>
</tr>
<tr>
<td>500</td>
<td>16.26</td>
<td>36.25</td>
<td>26.67</td>
<td>4.03</td>
</tr>
<tr>
<td>600</td>
<td>13.55</td>
<td>35.93</td>
<td>27.02</td>
<td>4.11</td>
</tr>
<tr>
<td>800</td>
<td>8.54</td>
<td>35.39</td>
<td>27.52</td>
<td>4.44</td>
</tr>
<tr>
<td>1000</td>
<td>5.52</td>
<td>35.06</td>
<td>27.68</td>
<td>4.80</td>
</tr>
<tr>
<td>1200</td>
<td>4.41</td>
<td>35.02</td>
<td>27.78</td>
<td>5.55</td>
</tr>
<tr>
<td>1500</td>
<td>3.70</td>
<td>34.96</td>
<td>27.81</td>
<td>5.78</td>
</tr>
<tr>
<td>2000</td>
<td>3.63</td>
<td>34.97</td>
<td>27.82</td>
<td>5.82</td>
</tr>
<tr>
<td>2500</td>
<td>3.27</td>
<td>34.96</td>
<td>27.85</td>
<td>5.65</td>
</tr>
<tr>
<td>3000</td>
<td>2.61</td>
<td>34.92</td>
<td>27.86</td>
<td>5.85</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0.3</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>75</td>
<td>0.1</td>
<td>0.0</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>1.0</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>1.0</td>
<td>3.5</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>1.0</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>500</td>
<td>1.6</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.0</td>
<td>17.0</td>
<td>-</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>1.2</td>
<td>10.5</td>
<td>-</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
<td>1.1</td>
<td>1.5</td>
<td>6.1</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>0.7</td>
<td>1.5</td>
<td>3.8</td>
</tr>
<tr>
<td>2500</td>
<td>-</td>
<td>0.9</td>
<td>6.5</td>
<td>-</td>
</tr>
<tr>
<td>3000</td>
<td>-</td>
<td>1.1</td>
<td>6.5</td>
<td>-</td>
</tr>
<tr>
<td>4000</td>
<td>-</td>
<td>0.5</td>
<td>1.5</td>
<td>-</td>
</tr>
</tbody>
</table>

241
STATION Standard 8

DATE April 20, 1953 LAT. 26°20' N. LONG. 76°44' W. TIME 22

DEPTH 14755 WIND 12, 34 BAR. 16 AIR TEMP: dry 22.2°C, wet 18.3°C HUMIDITY 69% WEATHER 60 CLOUDS: type 7, amt. 8 SEA: dir. 22, amt. 2 SWELL: dir. —, amt. — VIS. 8 WATER TRANS. —

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.70**</td>
<td>36.38</td>
<td>24.50</td>
<td>4.93</td>
</tr>
<tr>
<td>9</td>
<td>24.62</td>
<td>36.36</td>
<td>24.50</td>
<td>4.70</td>
</tr>
<tr>
<td>39</td>
<td>23.90</td>
<td>36.42</td>
<td>24.77</td>
<td>4.76</td>
</tr>
<tr>
<td>78</td>
<td>23.65</td>
<td>36.58</td>
<td>24.96</td>
<td>4.78</td>
</tr>
<tr>
<td>118</td>
<td>23.04</td>
<td>36.58</td>
<td>25.14</td>
<td>4.74</td>
</tr>
<tr>
<td>160</td>
<td>21.94</td>
<td>36.65</td>
<td>25.51</td>
<td>4.50</td>
</tr>
<tr>
<td>244</td>
<td>19.36</td>
<td>36.64</td>
<td>26.20</td>
<td>4.30</td>
</tr>
<tr>
<td>333</td>
<td>18.16</td>
<td>36.49</td>
<td>26.39</td>
<td>4.38</td>
</tr>
<tr>
<td>428</td>
<td>17.09</td>
<td>36.34</td>
<td>26.54</td>
<td>4.11</td>
</tr>
<tr>
<td>526</td>
<td>15.67</td>
<td>36.30</td>
<td>26.84</td>
<td>—</td>
</tr>
<tr>
<td>625*</td>
<td>22.98</td>
<td>36.60</td>
<td>25.17</td>
<td>4.78</td>
</tr>
</tbody>
</table>

* Value questionable
** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.70</td>
<td>35.38</td>
<td>24.50</td>
<td>4.93</td>
</tr>
<tr>
<td>10</td>
<td>24.60</td>
<td>36.36</td>
<td>24.51</td>
<td>4.70</td>
</tr>
<tr>
<td>20</td>
<td>24.30</td>
<td>36.38</td>
<td>24.62</td>
<td>4.72</td>
</tr>
<tr>
<td>30</td>
<td>24.00</td>
<td>36.40</td>
<td>24.72</td>
<td>4.75</td>
</tr>
<tr>
<td>50</td>
<td>23.86</td>
<td>36.48</td>
<td>24.82</td>
<td>4.77</td>
</tr>
<tr>
<td>75</td>
<td>23.68</td>
<td>36.57</td>
<td>24.94</td>
<td>4.78</td>
</tr>
<tr>
<td>100</td>
<td>23.37</td>
<td>36.58</td>
<td>25.04</td>
<td>4.76</td>
</tr>
<tr>
<td>150</td>
<td>22.21</td>
<td>36.64</td>
<td>25.42</td>
<td>4.56</td>
</tr>
<tr>
<td>200</td>
<td>20.54</td>
<td>36.65</td>
<td>25.89</td>
<td>4.40</td>
</tr>
<tr>
<td>250</td>
<td>19.27</td>
<td>36.63</td>
<td>26.21</td>
<td>4.30</td>
</tr>
<tr>
<td>300</td>
<td>18.56</td>
<td>36.54</td>
<td>26.33</td>
<td>4.37</td>
</tr>
<tr>
<td>400</td>
<td>17.43</td>
<td>36.37</td>
<td>26.48</td>
<td>4.18</td>
</tr>
<tr>
<td>500</td>
<td>16.08</td>
<td>36.31</td>
<td>26.75</td>
<td>—</td>
</tr>
</tbody>
</table>

242
STATION Standard 9

DATE April 21, 1953 LAT. 26°20' N. LONG. 76°44' W. TIME 01

DEPTH 4755 WIND 8, 35 BAR. 18 AIR TEMP: dry 20.6°C, wet 16.1°C

HUMIDITY 63% WEATHER 02 CLOUDS: type 0, amt. 3 SEA: dir. 36, amt. 3

SWELL: dir. --, amt. -- VIS. 7 WATER TRANS. --

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.60**</td>
<td>36.43</td>
<td>24.56</td>
<td>4.74</td>
</tr>
<tr>
<td>9</td>
<td>24.48</td>
<td>36.37</td>
<td>24.55</td>
<td>4.78</td>
</tr>
<tr>
<td>38</td>
<td>23.98</td>
<td>36.42</td>
<td>24.74</td>
<td>4.80</td>
</tr>
<tr>
<td>76</td>
<td>23.61</td>
<td>36.53</td>
<td>24.93</td>
<td>4.72</td>
</tr>
<tr>
<td>116</td>
<td>23.02</td>
<td>36.62</td>
<td>25.18</td>
<td>4.70</td>
</tr>
<tr>
<td>154</td>
<td>22.15</td>
<td>36.68</td>
<td>25.47</td>
<td>4.54</td>
</tr>
<tr>
<td>237</td>
<td>19.47</td>
<td>36.61</td>
<td>26.15</td>
<td>4.23</td>
</tr>
<tr>
<td>316</td>
<td>18.19</td>
<td>36.49</td>
<td>26.38</td>
<td>4.40</td>
</tr>
<tr>
<td>418</td>
<td>17.20</td>
<td>36.37</td>
<td>26.53</td>
<td>4.05</td>
</tr>
<tr>
<td>513</td>
<td>15.32</td>
<td>36.05</td>
<td>26.73</td>
<td>3.89</td>
</tr>
<tr>
<td>610</td>
<td>13.28</td>
<td>35.73</td>
<td>26.92</td>
<td>3.49</td>
</tr>
</tbody>
</table>

From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.60</td>
<td>36.43</td>
<td>24.56</td>
<td>4.74</td>
</tr>
<tr>
<td>10</td>
<td>24.46</td>
<td>36.37</td>
<td>24.56</td>
<td>4.78</td>
</tr>
<tr>
<td>20</td>
<td>24.27</td>
<td>36.39</td>
<td>24.63</td>
<td>4.80</td>
</tr>
<tr>
<td>30</td>
<td>24.10</td>
<td>36.40</td>
<td>24.69</td>
<td>4.80</td>
</tr>
<tr>
<td>50</td>
<td>23.88</td>
<td>36.46</td>
<td>24.80</td>
<td>4.78</td>
</tr>
<tr>
<td>75</td>
<td>23.62</td>
<td>36.53</td>
<td>24.93</td>
<td>4.72</td>
</tr>
<tr>
<td>100</td>
<td>23.17</td>
<td>36.59</td>
<td>25.11</td>
<td>4.71</td>
</tr>
<tr>
<td>150</td>
<td>22.28</td>
<td>36.67</td>
<td>25.43</td>
<td>4.56</td>
</tr>
<tr>
<td>200</td>
<td>20.65</td>
<td>36.66</td>
<td>25.87</td>
<td>4.35</td>
</tr>
<tr>
<td>250</td>
<td>19.23</td>
<td>36.59</td>
<td>26.19</td>
<td>4.24</td>
</tr>
<tr>
<td>300</td>
<td>18.39</td>
<td>36.51</td>
<td>26.35</td>
<td>4.38</td>
</tr>
<tr>
<td>400</td>
<td>17.42</td>
<td>36.39</td>
<td>26.50</td>
<td>4.10</td>
</tr>
<tr>
<td>500</td>
<td>15.63</td>
<td>36.10</td>
<td>26.70</td>
<td>3.97</td>
</tr>
<tr>
<td>600</td>
<td>13.46</td>
<td>35.76</td>
<td>26.90</td>
<td>3.54</td>
</tr>
</tbody>
</table>

243
STATION Standard 10

DATE: April 21, 1953 LAT.: 26°18'N. LONG.: 76°44'W. TIME: 04

DEPTH: — WIND: 7, 36 BAR: 18 AIR TEMP: dry 20.0°C, wet 14.2°C
HUMIDITY: 54% WEATHER: CLOUDS: type_, amount_. SEA: direction 32, amount 2
SWELL: 36, amount 3 VIS.: 7 WATER TRANS.:

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.30**</td>
<td>36.36</td>
<td>24.60</td>
<td>4.78</td>
</tr>
<tr>
<td>8</td>
<td>24.25</td>
<td>36.36</td>
<td>24.62</td>
<td>4.78</td>
</tr>
<tr>
<td>41</td>
<td>23.90</td>
<td>36.37</td>
<td>24.73</td>
<td>4.80</td>
</tr>
<tr>
<td>82</td>
<td>23.55</td>
<td>36.58</td>
<td>24.99</td>
<td>4.84</td>
</tr>
<tr>
<td>125</td>
<td>22.93</td>
<td>36.65</td>
<td>25.22</td>
<td>4.65</td>
</tr>
<tr>
<td>168</td>
<td>21.82</td>
<td>36.62</td>
<td>25.52</td>
<td>4.71</td>
</tr>
<tr>
<td>259</td>
<td>19.47</td>
<td>36.61</td>
<td>26.15</td>
<td>4.33</td>
</tr>
<tr>
<td>354</td>
<td>18.08</td>
<td>36.44</td>
<td>26.37</td>
<td>4.42</td>
</tr>
<tr>
<td>451</td>
<td>16.51</td>
<td>36.38*</td>
<td>26.71</td>
<td>4.05</td>
</tr>
<tr>
<td>551</td>
<td>14.80</td>
<td>35.98</td>
<td>26.79</td>
<td>3.40</td>
</tr>
<tr>
<td>650</td>
<td>12.41</td>
<td>35.57</td>
<td>26.97</td>
<td>3.81</td>
</tr>
</tbody>
</table>

* value questionable
** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.30</td>
<td>36.36</td>
<td>24.60</td>
<td>4.78</td>
</tr>
<tr>
<td>10</td>
<td>24.23</td>
<td>36.36</td>
<td>24.62</td>
<td>4.78</td>
</tr>
<tr>
<td>20</td>
<td>24.15</td>
<td>36.36</td>
<td>24.65</td>
<td>4.78</td>
</tr>
<tr>
<td>30</td>
<td>24.02</td>
<td>36.37</td>
<td>24.69</td>
<td>4.79</td>
</tr>
<tr>
<td>50</td>
<td>23.84</td>
<td>36.40</td>
<td>24.77</td>
<td>4.90</td>
</tr>
<tr>
<td>75</td>
<td>23.62</td>
<td>36.52</td>
<td>24.92</td>
<td>4.83</td>
</tr>
<tr>
<td>100</td>
<td>23.31</td>
<td>36.61</td>
<td>25.08</td>
<td>4.82</td>
</tr>
<tr>
<td>150</td>
<td>22.35</td>
<td>36.63</td>
<td>25.38</td>
<td>4.70</td>
</tr>
<tr>
<td>200</td>
<td>20.98</td>
<td>36.62</td>
<td>25.75</td>
<td>4.59</td>
</tr>
<tr>
<td>250</td>
<td>19.60</td>
<td>36.61</td>
<td>26.11</td>
<td>4.35</td>
</tr>
<tr>
<td>300</td>
<td>18.85</td>
<td>36.53</td>
<td>26.25</td>
<td>4.37</td>
</tr>
<tr>
<td>400</td>
<td>17.40</td>
<td>36.35</td>
<td>26.47</td>
<td>4.31</td>
</tr>
<tr>
<td>500</td>
<td>15.75</td>
<td>36.13</td>
<td>26.69</td>
<td>3.69</td>
</tr>
<tr>
<td>600</td>
<td>13.68</td>
<td>35.81</td>
<td>26.90</td>
<td>3.57</td>
</tr>
</tbody>
</table>
STATION Special 1

DATE May 13, 1953 LAT. 34° 30' N. LONG. 74° 16' W. TIME 01
DEPTH 4114 M WIND 5, 01 BAR. 15 AIR TEMP: dry 22.2°C, wet 20.6°C
HUMIDITY 86% WEATHER 02 CLOUDS: type 3, amt. 1 SEA: dir. --, amt. --
SWELL: dir. --, amt. -- VIS. 7 WATER TRANS. --

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.99</td>
<td>36.44</td>
<td>25.05</td>
<td>4.73</td>
</tr>
<tr>
<td>10</td>
<td>22.83</td>
<td>36.40</td>
<td>25.06</td>
<td>4.74</td>
</tr>
<tr>
<td>20</td>
<td>22.55</td>
<td>36.41</td>
<td>25.12</td>
<td>4.89</td>
</tr>
<tr>
<td>50</td>
<td>20.28</td>
<td>36.56</td>
<td>25.89</td>
<td>4.92</td>
</tr>
<tr>
<td>100</td>
<td>19.65</td>
<td>36.56</td>
<td>26.06</td>
<td>4.89</td>
</tr>
<tr>
<td>200</td>
<td>18.54</td>
<td>36.53</td>
<td>26.32</td>
<td>4.96</td>
</tr>
<tr>
<td>300</td>
<td>18.06</td>
<td>36.49</td>
<td>26.42</td>
<td>4.89</td>
</tr>
<tr>
<td>400</td>
<td>17.48</td>
<td>36.48</td>
<td>26.55</td>
<td>4.19</td>
</tr>
<tr>
<td>470</td>
<td>16.48</td>
<td>36.24*</td>
<td>26.61</td>
<td>4.01</td>
</tr>
<tr>
<td>565</td>
<td>15.05</td>
<td>-</td>
<td>-</td>
<td>3.83</td>
</tr>
<tr>
<td>660</td>
<td>13.20</td>
<td>35.79</td>
<td>26.98</td>
<td>3.50</td>
</tr>
<tr>
<td>755</td>
<td>10.86</td>
<td>35.44</td>
<td>27.16</td>
<td>3.28</td>
</tr>
<tr>
<td>949</td>
<td>7.36</td>
<td>35.16</td>
<td>27.51</td>
<td>4.01</td>
</tr>
<tr>
<td>1142</td>
<td>5.42</td>
<td>35.11</td>
<td>27.73</td>
<td>4.89</td>
</tr>
<tr>
<td>1434</td>
<td>4.53</td>
<td>35.12</td>
<td>27.85</td>
<td>5.48</td>
</tr>
<tr>
<td>1926</td>
<td>3.82</td>
<td>35.12</td>
<td>27.92</td>
<td>5.77</td>
</tr>
</tbody>
</table>

* Value questionable
STATION Special 1

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSIDE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>< 0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>0.7</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.3</td>
<td>2.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>300</td>
<td>0.3</td>
<td>0.3</td>
<td>14.5*</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>400</td>
<td>0.3</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>470</td>
<td>-</td>
<td>0.4</td>
<td>2.0</td>
<td>3.5</td>
<td>1.0</td>
</tr>
<tr>
<td>565</td>
<td>-</td>
<td>0.5</td>
<td>3.0</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>660</td>
<td>-</td>
<td>0.9</td>
<td>4.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>755</td>
<td>-</td>
<td>1.2</td>
<td>4.5</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>949</td>
<td>-</td>
<td>1.6</td>
<td>9.5</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>1142</td>
<td>-</td>
<td>-</td>
<td>20.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>1434</td>
<td>-</td>
<td>1.3</td>
<td>14.0</td>
<td>4.3</td>
<td>0.6</td>
</tr>
<tr>
<td>1926</td>
<td>-</td>
<td>1.3</td>
<td>12.0</td>
<td>2.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

* Value questionable
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.99</td>
<td>36.44</td>
<td>25.05</td>
<td>4.73</td>
</tr>
<tr>
<td>10</td>
<td>22.83</td>
<td>36.40</td>
<td>25.06</td>
<td>4.74</td>
</tr>
<tr>
<td>20</td>
<td>22.65</td>
<td>36.41</td>
<td>25.12</td>
<td>4.89</td>
</tr>
<tr>
<td>30</td>
<td>21.59</td>
<td>36.47</td>
<td>25.44</td>
<td>4.91</td>
</tr>
<tr>
<td>50</td>
<td>20.28</td>
<td>36.56</td>
<td>25.89</td>
<td>4.92</td>
</tr>
<tr>
<td>75</td>
<td>19.96</td>
<td>36.56</td>
<td>25.98</td>
<td>4.90</td>
</tr>
<tr>
<td>100</td>
<td>19.65</td>
<td>36.56</td>
<td>26.06</td>
<td>4.89</td>
</tr>
<tr>
<td>150</td>
<td>19.02</td>
<td>36.55</td>
<td>26.22</td>
<td>4.93</td>
</tr>
<tr>
<td>200</td>
<td>18.54</td>
<td>36.53</td>
<td>26.32</td>
<td>4.96</td>
</tr>
<tr>
<td>250</td>
<td>18.31</td>
<td>36.51</td>
<td>26.37</td>
<td>4.94</td>
</tr>
<tr>
<td>300</td>
<td>18.06</td>
<td>36.49</td>
<td>26.42</td>
<td>4.89</td>
</tr>
<tr>
<td>400</td>
<td>17.48</td>
<td>36.48</td>
<td>26.55</td>
<td>4.19</td>
</tr>
<tr>
<td>500</td>
<td>16.07</td>
<td>36.24</td>
<td>26.70</td>
<td>3.95</td>
</tr>
<tr>
<td>600</td>
<td>14.43</td>
<td>35.97</td>
<td>26.86</td>
<td>3.71</td>
</tr>
<tr>
<td>800</td>
<td>9.91</td>
<td>35.35</td>
<td>27.26</td>
<td>3.44</td>
</tr>
<tr>
<td>1000</td>
<td>6.74</td>
<td>35.14</td>
<td>27.59</td>
<td>4.26</td>
</tr>
<tr>
<td>1200</td>
<td>5.22</td>
<td>35.11</td>
<td>27.76</td>
<td>5.03</td>
</tr>
<tr>
<td>1500</td>
<td>4.38</td>
<td>35.12</td>
<td>27.86</td>
<td>5.53</td>
</tr>
</tbody>
</table>
INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>0.7</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>75</td>
<td>0.4</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.2</td>
<td>2.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.3</td>
<td>2.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.3</td>
<td>2.0</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>0.3</td>
<td>0.3</td>
<td>1.5</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>400</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>0.4</td>
<td>2.5</td>
<td>2.9</td>
<td>1.1</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>0.7</td>
<td>3.5</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>1.0</td>
<td>4.5</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>1.3</td>
<td>5.5</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.6</td>
<td>12.5</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>1.4</td>
<td>19.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
<td>1.3</td>
<td>14.0</td>
<td>4.3</td>
<td>0.6</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>1.3</td>
<td>12.0</td>
<td>2.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
STATION Special 2

DATE May 13, 1953 LAT. 33°00' N. LONG. 75°01' W. TIME 11
DEPTH 4206 WIND 2, 36 BAR 16 AIR TEMP: dry 25.0 °C, wet 21.7 °C
HUMIDITY 74% WEATHER 02 CLOUDS: type _, amt. _ SEA: dir. _, amt. _
SWELL: dir. _, amt. _ VIS. 7 WATER TRANS. _

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.12</td>
<td>36.18</td>
<td>24.22</td>
<td>4.60</td>
</tr>
<tr>
<td>10</td>
<td>25.14</td>
<td>36.18</td>
<td>24.21</td>
<td>4.45</td>
</tr>
<tr>
<td>20</td>
<td>24.95</td>
<td>36.17</td>
<td>24.26</td>
<td>4.53</td>
</tr>
<tr>
<td>50</td>
<td>23.00</td>
<td>36.48</td>
<td>25.07</td>
<td>4.67</td>
</tr>
<tr>
<td>100</td>
<td>21.71</td>
<td>36.59</td>
<td>25.53</td>
<td>4.74</td>
</tr>
<tr>
<td>200</td>
<td>19.67</td>
<td>36.64</td>
<td>26.12</td>
<td>4.16</td>
</tr>
<tr>
<td>300</td>
<td>18.38</td>
<td>36.55</td>
<td>26.38</td>
<td>4.74</td>
</tr>
<tr>
<td>400</td>
<td>17.84</td>
<td>36.47</td>
<td>26.45</td>
<td>4.67</td>
</tr>
<tr>
<td>500</td>
<td>16.95</td>
<td>36.38</td>
<td>26.60</td>
<td>4.09</td>
</tr>
<tr>
<td>600</td>
<td>15.72</td>
<td>36.15</td>
<td>26.71</td>
<td>3.87</td>
</tr>
<tr>
<td>700</td>
<td>13.71</td>
<td>35.82</td>
<td>26.90</td>
<td>3.47</td>
</tr>
<tr>
<td>800</td>
<td>11.98</td>
<td>35.52</td>
<td>27.01</td>
<td>3.07</td>
</tr>
<tr>
<td>1000</td>
<td>7.80</td>
<td>35.16</td>
<td>27.45</td>
<td>3.65</td>
</tr>
<tr>
<td>1200</td>
<td>5.48</td>
<td>35.03</td>
<td>27.66</td>
<td>4.96</td>
</tr>
<tr>
<td>1500</td>
<td>4.32</td>
<td>35.02</td>
<td>27.79</td>
<td>5.62</td>
</tr>
<tr>
<td>2000</td>
<td>3.79</td>
<td>35.05</td>
<td>27.87</td>
<td>5.91</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td><0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.2</td>
<td>4.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
<td>0.0</td>
<td>4.0</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>300</td>
<td>0.4</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>0.3</td>
<td>1.0*</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>500</td>
<td>0.7</td>
<td>0.4</td>
<td>4.0</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>600</td>
<td>1.4</td>
<td>0.4</td>
<td>8.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>0.9</td>
<td>8.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>800</td>
<td>1.3</td>
<td>1.2</td>
<td>7.5</td>
<td>3.1</td>
<td>0.3</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.7</td>
<td>21.0</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>1.2</td>
<td>14.5</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
<td>1.1</td>
<td>16.5</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>1.0</td>
<td>11.0</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* Value questionable
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O₂ (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.12</td>
<td>36.18</td>
<td>24.22</td>
<td>4.60</td>
</tr>
<tr>
<td>10</td>
<td>25.14</td>
<td>36.18</td>
<td>24.21</td>
<td>4.45</td>
</tr>
<tr>
<td>20</td>
<td>24.95</td>
<td>36.17</td>
<td>24.26</td>
<td>4.53</td>
</tr>
<tr>
<td>30</td>
<td>24.20</td>
<td>36.29</td>
<td>24.58</td>
<td>4.58</td>
</tr>
<tr>
<td>50</td>
<td>23.00</td>
<td>36.48</td>
<td>25.07</td>
<td>4.67</td>
</tr>
<tr>
<td>75</td>
<td>22.33</td>
<td>36.54</td>
<td>25.31</td>
<td>4.71</td>
</tr>
<tr>
<td>100</td>
<td>21.71</td>
<td>36.59</td>
<td>25.53</td>
<td>4.74</td>
</tr>
<tr>
<td>150</td>
<td>20.60</td>
<td>36.63</td>
<td>25.86</td>
<td>4.44</td>
</tr>
<tr>
<td>200</td>
<td>19.67</td>
<td>36.64</td>
<td>26.12</td>
<td>4.16</td>
</tr>
<tr>
<td>250</td>
<td>18.93</td>
<td>36.59</td>
<td>26.27</td>
<td>4.42</td>
</tr>
<tr>
<td>300</td>
<td>18.38</td>
<td>36.55</td>
<td>26.38</td>
<td>4.74</td>
</tr>
<tr>
<td>400</td>
<td>17.84</td>
<td>36.47</td>
<td>26.45</td>
<td>4.67</td>
</tr>
<tr>
<td>500</td>
<td>16.95</td>
<td>36.38</td>
<td>26.60</td>
<td>4.09</td>
</tr>
<tr>
<td>600</td>
<td>15.72</td>
<td>36.15</td>
<td>26.71</td>
<td>3.87</td>
</tr>
<tr>
<td>800</td>
<td>11.98</td>
<td>35.52</td>
<td>27.01</td>
<td>3.07</td>
</tr>
<tr>
<td>1000</td>
<td>7.80</td>
<td>35.16</td>
<td>27.45</td>
<td>3.55</td>
</tr>
<tr>
<td>1200</td>
<td>5.48</td>
<td>35.03</td>
<td>27.66</td>
<td>4.96</td>
</tr>
<tr>
<td>1500</td>
<td>4.32</td>
<td>35.02</td>
<td>27.79</td>
<td>5.62</td>
</tr>
<tr>
<td>2000</td>
<td>3.79</td>
<td>35.05</td>
<td>27.87</td>
<td>5.91</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSAE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
<td>0.2</td>
<td>< 0.1</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.2</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.1</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
<td>0.0</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>75</td>
<td>0.1</td>
<td>0.0</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>250</td>
<td>0.3</td>
<td>< 0.1</td>
<td>5.5</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>0.4</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
</tr>
<tr>
<td>400</td>
<td>0.6</td>
<td>0.3</td>
<td>6.5</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>0.7</td>
<td>0.4</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>600</td>
<td>1.4</td>
<td>0.4</td>
<td>8.5</td>
<td>0.2</td>
</tr>
<tr>
<td>700</td>
<td>1.4</td>
<td>0.9</td>
<td>8.0</td>
<td>1.7</td>
</tr>
<tr>
<td>800</td>
<td>1.3</td>
<td>1.2</td>
<td>7.5</td>
<td>3.1</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.7</td>
<td>21.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>1.2</td>
<td>14.5</td>
<td>4.0</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
<td>1.1</td>
<td>16.5</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>1.0</td>
<td>11.0</td>
<td>-</td>
</tr>
</tbody>
</table>
STATION Special 3

DATE May 13, 1953 LAT. 32°00'N. LONG. 76°00'W. TIME 22
DEEPHT 2743 WIND 3, 05 BAR. 17 AIR TEMP: dry 25.0°C, wet 23.2°C
HUMIDITY 91% WEATHER 02 CLOUDS: type _, amt. 0 SEA: dir. _, amt. 1
SWELL: dir. _, amt. _ VIS. 6 WATER TRANS. _

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26.16</td>
<td>36.22</td>
<td>23.92</td>
<td>4.48</td>
</tr>
<tr>
<td>10</td>
<td>25.53</td>
<td>36.20</td>
<td>24.11</td>
<td>4.57</td>
</tr>
<tr>
<td>19</td>
<td>25.41</td>
<td>36.21</td>
<td>24.15</td>
<td>4.57</td>
</tr>
<tr>
<td>48</td>
<td>22.60</td>
<td>36.44</td>
<td>25.16</td>
<td>4.82</td>
</tr>
<tr>
<td>96</td>
<td>21.37</td>
<td>36.51</td>
<td>25.56</td>
<td>4.79</td>
</tr>
<tr>
<td>194</td>
<td>19.94</td>
<td>36.65</td>
<td>26.05</td>
<td>4.53</td>
</tr>
<tr>
<td>293</td>
<td>18.94</td>
<td>36.62</td>
<td>26.29</td>
<td>4.53</td>
</tr>
<tr>
<td>393</td>
<td>18.16</td>
<td>36.55</td>
<td>26.44</td>
<td>4.59</td>
</tr>
<tr>
<td>400</td>
<td>17.96</td>
<td>36.51</td>
<td>26.46</td>
<td>4.50</td>
</tr>
<tr>
<td>589</td>
<td>17.38</td>
<td>36.40</td>
<td>26.51</td>
<td>4.09</td>
</tr>
<tr>
<td>687</td>
<td>15.97</td>
<td>36.20</td>
<td>26.69</td>
<td>3.73</td>
</tr>
<tr>
<td>786</td>
<td>13.93</td>
<td>35.86</td>
<td>26.88</td>
<td>3.66</td>
</tr>
<tr>
<td>983</td>
<td>8.91</td>
<td>35.26</td>
<td>27.36</td>
<td>3.62</td>
</tr>
<tr>
<td>1178</td>
<td>5.69</td>
<td>35.05</td>
<td>27.65</td>
<td>4.68</td>
</tr>
<tr>
<td>1475</td>
<td>4.29</td>
<td>35.03</td>
<td>27.80</td>
<td>5.59</td>
</tr>
<tr>
<td>1973</td>
<td>3.69</td>
<td>34.97</td>
<td>27.82</td>
<td>5.85</td>
</tr>
</tbody>
</table>

253
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOCOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>2.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>19</td>
<td>1.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>48</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>96</td>
<td>0.1</td>
<td>0.0</td>
<td>1.5</td>
<td>1.5</td>
<td>0.9</td>
</tr>
<tr>
<td>194</td>
<td>0.1</td>
<td><0.1</td>
<td>1.0</td>
<td>3.4</td>
<td>0.6</td>
</tr>
<tr>
<td>293</td>
<td>0.1</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>393</td>
<td>-</td>
<td>0.5</td>
<td>3.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>490</td>
<td>2.0</td>
<td>0.2</td>
<td>3.0</td>
<td>2.1</td>
<td>0.2</td>
</tr>
<tr>
<td>589</td>
<td>-</td>
<td>0.6</td>
<td>2.0</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>687</td>
<td>-</td>
<td>0.9</td>
<td>6.5</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>786</td>
<td>-</td>
<td>1.0</td>
<td>8.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>983</td>
<td>-</td>
<td>1.6</td>
<td>6.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1176</td>
<td>-</td>
<td>1.6</td>
<td>11.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>1475</td>
<td>-</td>
<td>1.0</td>
<td>7.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>1973</td>
<td>-</td>
<td>1.1</td>
<td>15.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>Ωt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.16</td>
<td>36.22</td>
<td>23.92</td>
<td>4.48</td>
</tr>
<tr>
<td>10</td>
<td>25.53</td>
<td>36.20</td>
<td>24.11</td>
<td>4.57</td>
</tr>
<tr>
<td>20</td>
<td>25.29</td>
<td>36.22</td>
<td>24.19</td>
<td>4.57</td>
</tr>
<tr>
<td>30</td>
<td>24.16</td>
<td>36.31</td>
<td>24.60</td>
<td>4.67</td>
</tr>
<tr>
<td>50</td>
<td>22.54</td>
<td>36.44</td>
<td>25.18</td>
<td>4.32</td>
</tr>
<tr>
<td>75</td>
<td>21.87</td>
<td>36.48</td>
<td>25.40</td>
<td>4.81</td>
</tr>
<tr>
<td>100</td>
<td>21.30</td>
<td>36.52</td>
<td>25.59</td>
<td>4.77</td>
</tr>
<tr>
<td>150</td>
<td>20.53</td>
<td>36.61</td>
<td>25.87</td>
<td>4.63</td>
</tr>
<tr>
<td>200</td>
<td>19.87</td>
<td>36.65</td>
<td>26.07</td>
<td>4.53</td>
</tr>
<tr>
<td>250</td>
<td>19.35</td>
<td>36.64</td>
<td>26.20</td>
<td>4.53</td>
</tr>
<tr>
<td>300</td>
<td>18.87</td>
<td>36.61</td>
<td>26.30</td>
<td>4.53</td>
</tr>
<tr>
<td>400</td>
<td>18.10</td>
<td>36.55</td>
<td>26.45</td>
<td>4.58</td>
</tr>
<tr>
<td>500</td>
<td>17.92</td>
<td>36.50</td>
<td>26.46</td>
<td>4.47</td>
</tr>
<tr>
<td>600</td>
<td>17.25</td>
<td>36.38</td>
<td>26.53</td>
<td>4.05</td>
</tr>
<tr>
<td>800</td>
<td>13.51</td>
<td>35.80</td>
<td>26.93</td>
<td>3.66</td>
</tr>
<tr>
<td>1000</td>
<td>8.56</td>
<td>35.24</td>
<td>27.40</td>
<td>3.65</td>
</tr>
<tr>
<td>1200</td>
<td>5.56</td>
<td>35.05</td>
<td>27.67</td>
<td>4.77</td>
</tr>
<tr>
<td>1500</td>
<td>4.21</td>
<td>35.03</td>
<td>27.81</td>
<td>5.62</td>
</tr>
</tbody>
</table>
STATION Special 3 (cont'd)

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>Arabinose (mg/l)</th>
<th>Tyrosine (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>2.5</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>1.2</td>
<td>0.0</td>
<td>0.5</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>1.1</td>
<td>0.0</td>
<td>0.5</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>50</td>
<td>0.9</td>
<td>0.0</td>
<td>1.0</td>
<td>1.3</td>
<td>0.5</td>
</tr>
<tr>
<td>75</td>
<td>0.4</td>
<td>0.0</td>
<td>1.5</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
<td>0.0</td>
<td>1.5</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>150</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>2.5</td>
<td>0.7</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>3.4</td>
<td>0.6</td>
</tr>
<tr>
<td>250</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>3.1</td>
<td>0.3</td>
</tr>
<tr>
<td>300</td>
<td>0.2</td>
<td>0.1</td>
<td>1.5</td>
<td>2.9</td>
<td><0.1</td>
</tr>
<tr>
<td>400</td>
<td>1.1</td>
<td>0.5</td>
<td>3.5</td>
<td>2.5</td>
<td>0.6</td>
</tr>
<tr>
<td>500</td>
<td>2.0</td>
<td>0.2</td>
<td>3.0</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>0.6</td>
<td>2.5</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>0.9</td>
<td>7.0</td>
<td>4.0</td>
<td><0.1</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>1.0</td>
<td>8.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.6</td>
<td>6.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>1.6</td>
<td>11.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
<td>1.0</td>
<td>8.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>1.1</td>
<td>15.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
DATE: May 14, 1953 LAT. 31°00' N. LONG. 77°00' W. TIME 09
DEPTH 283\text{m} WIND 2, 36 BAR. 17 AIR TEMP: dry 23.9\degree C, wet 22.8\degree C
HUMIDITY 91\% WEATHER 02 CLOUDS: type 0, amt. 1 SEA: dir.-, amt.-
SWELL: dir.-, amt.- VIS.: 7 WATER TRANS.-

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (\degree C)</th>
<th>S (%)</th>
<th>\sigma_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.94</td>
<td>36.17</td>
<td>24.26</td>
<td>4.53</td>
</tr>
<tr>
<td>10</td>
<td>24.93</td>
<td>36.19</td>
<td>24.28</td>
<td>4.64</td>
</tr>
<tr>
<td>20</td>
<td>24.65</td>
<td>36.22</td>
<td>24.39</td>
<td>4.46</td>
</tr>
<tr>
<td>50</td>
<td>23.22</td>
<td>36.42</td>
<td>24.97</td>
<td>4.75</td>
</tr>
<tr>
<td>100</td>
<td>20.34</td>
<td>36.58</td>
<td>25.89</td>
<td>4.82</td>
</tr>
<tr>
<td>200</td>
<td>19.05</td>
<td>36.65</td>
<td>26.29</td>
<td>4.24</td>
</tr>
<tr>
<td>300</td>
<td>18.18</td>
<td>36.54</td>
<td>26.42</td>
<td>4.46</td>
</tr>
<tr>
<td>400</td>
<td>17.72</td>
<td>36.46</td>
<td>26.48</td>
<td>4.46</td>
</tr>
<tr>
<td>500</td>
<td>16.53</td>
<td>36.27</td>
<td>26.62</td>
<td>3.87</td>
</tr>
<tr>
<td>600</td>
<td>15.00</td>
<td>36.06</td>
<td>26.81</td>
<td>3.73</td>
</tr>
<tr>
<td>700</td>
<td>13.28</td>
<td>35.75</td>
<td>26.93</td>
<td>3.40</td>
</tr>
<tr>
<td>800</td>
<td>10.60</td>
<td>35.41</td>
<td>27.19</td>
<td>3.29</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>35.08</td>
<td>-</td>
<td>4.31</td>
</tr>
<tr>
<td>1200</td>
<td>4.68</td>
<td>35.05</td>
<td>27.77</td>
<td>5.34</td>
</tr>
<tr>
<td>1500</td>
<td>4.04</td>
<td>34.97*</td>
<td>27.78</td>
<td>5.77</td>
</tr>
<tr>
<td>2000</td>
<td>3.59</td>
<td>35.00</td>
<td>27.85</td>
<td>5.85</td>
</tr>
</tbody>
</table>

* Value questionable
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>12.2</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>50</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>4.7</td>
<td>0.5</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.2</td>
<td>2.0</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>300</td>
<td>0.3</td>
<td>0.2</td>
<td>3.5</td>
<td>4.5</td>
<td>0.7</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>0.2</td>
<td>3.0</td>
<td>2.5</td>
<td>0.3</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>0.5</td>
<td>3.5</td>
<td>3.2</td>
<td>0.7</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>0.8</td>
<td>2.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>1.3</td>
<td>1.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>1.5</td>
<td>9.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.6</td>
<td>8.0</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>1.3</td>
<td>12.0</td>
<td>5.1</td>
<td>0.9</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
<td>1.5</td>
<td>8.5</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
</tr>
</tbody>
</table>
INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.94</td>
<td>36.17</td>
<td>24.26</td>
<td>4.53</td>
</tr>
<tr>
<td>10</td>
<td>24.93</td>
<td>36.19</td>
<td>24.28</td>
<td>4.64</td>
</tr>
<tr>
<td>20</td>
<td>24.65</td>
<td>36.22</td>
<td>24.39</td>
<td>4.46</td>
</tr>
<tr>
<td>30</td>
<td>24.20</td>
<td>36.30</td>
<td>24.59</td>
<td>4.55</td>
</tr>
<tr>
<td>50</td>
<td>23.22</td>
<td>36.42</td>
<td>24.97</td>
<td>4.75</td>
</tr>
<tr>
<td>75</td>
<td>21.59</td>
<td>36.51</td>
<td>25.50</td>
<td>4.80</td>
</tr>
<tr>
<td>100</td>
<td>20.34</td>
<td>36.58</td>
<td>25.89</td>
<td>4.82</td>
</tr>
<tr>
<td>150</td>
<td>19.64</td>
<td>36.64</td>
<td>26.13</td>
<td>4.48</td>
</tr>
<tr>
<td>200</td>
<td>19.05</td>
<td>36.65</td>
<td>26.29</td>
<td>4.24</td>
</tr>
<tr>
<td>250</td>
<td>18.56</td>
<td>36.59</td>
<td>26.37</td>
<td>4.37</td>
</tr>
<tr>
<td>300</td>
<td>18.18</td>
<td>36.54</td>
<td>26.42</td>
<td>4.46</td>
</tr>
<tr>
<td>400</td>
<td>17.72</td>
<td>36.46</td>
<td>26.48</td>
<td>4.46</td>
</tr>
<tr>
<td>500</td>
<td>16.53</td>
<td>36.27</td>
<td>26.62</td>
<td>3.87</td>
</tr>
<tr>
<td>600</td>
<td>15.00</td>
<td>36.06</td>
<td>26.81</td>
<td>3.73</td>
</tr>
<tr>
<td>800</td>
<td>10.60</td>
<td>35.41</td>
<td>27.19</td>
<td>3.29</td>
</tr>
<tr>
<td>1000</td>
<td>6.92</td>
<td>35.08</td>
<td>27.51</td>
<td>4.31</td>
</tr>
<tr>
<td>1200</td>
<td>4.68</td>
<td>35.05</td>
<td>27.77</td>
<td>5.34</td>
</tr>
<tr>
<td>1500</td>
<td>4.04</td>
<td>35.02</td>
<td>27.82</td>
<td>5.77</td>
</tr>
<tr>
<td>2000</td>
<td>3.59</td>
<td>35.00</td>
<td>27.85</td>
<td>5.85</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>TOTAL P (µg at/l)</td>
<td>PO₄-P (µg at/l)</td>
<td>NO₃-NO₂ (µg at/l)</td>
<td>ARABINOSE (mg/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>12.2</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>9.7</td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>0.0</td>
<td>2.0</td>
<td>7.2</td>
</tr>
<tr>
<td>50</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>4.7</td>
</tr>
<tr>
<td>75</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>4.3</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
<td>0.0</td>
<td>1.0</td>
<td>3.8</td>
</tr>
<tr>
<td>150</td>
<td>0.1</td>
<td>0.1</td>
<td>1.5</td>
<td>2.8</td>
</tr>
<tr>
<td>200</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>250</td>
<td>0.3</td>
<td>0.2</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>300</td>
<td>0.3</td>
<td>0.2</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>400</td>
<td>-</td>
<td>0.2</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>0.5</td>
<td>3.5</td>
<td>3.2</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>0.8</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>1.3</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>1.5</td>
<td>9.0</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.6</td>
<td>8.0</td>
<td>-</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>1.3</td>
<td>12.0</td>
<td>5.1</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
<td>1.5</td>
<td>8.5</td>
<td>-</td>
</tr>
<tr>
<td>2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DEPTH (m)</td>
<td>T (°C)</td>
<td>S (%)</td>
<td>σ_t</td>
<td>O2 (ml/l)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>22.50*</td>
<td>36.35</td>
<td>25.12</td>
<td>4.70</td>
</tr>
<tr>
<td>10</td>
<td>22.47</td>
<td>36.31</td>
<td>25.10</td>
<td>4.68</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>36.31</td>
<td>-</td>
<td>4.74</td>
</tr>
<tr>
<td>47</td>
<td>22.47</td>
<td>36.32</td>
<td>25.11</td>
<td>4.74</td>
</tr>
<tr>
<td>95</td>
<td>20.98</td>
<td>36.33</td>
<td>25.53</td>
<td>4.74</td>
</tr>
<tr>
<td>143</td>
<td>20.50</td>
<td>36.64</td>
<td>25.90</td>
<td>4.40</td>
</tr>
<tr>
<td>191</td>
<td>22.85*</td>
<td>36.56*</td>
<td>25.18</td>
<td>4.78</td>
</tr>
<tr>
<td>290</td>
<td>18.54</td>
<td>36.53</td>
<td>26.32</td>
<td>4.27</td>
</tr>
<tr>
<td>386</td>
<td>18.02</td>
<td>36.46</td>
<td>26.40</td>
<td>4.58</td>
</tr>
<tr>
<td>585</td>
<td>15.93</td>
<td>36.13</td>
<td>26.65</td>
<td>3.95</td>
</tr>
</tbody>
</table>

** From BT
* Value questionable

** INTERPOLATED AND CALCULATED **

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>22.50</td>
<td>36.35</td>
<td>25.12</td>
<td>4.70</td>
</tr>
<tr>
<td>10</td>
<td>22.47</td>
<td>36.31</td>
<td>25.10</td>
<td>4.68</td>
</tr>
<tr>
<td>20</td>
<td>22.47</td>
<td>36.31</td>
<td>25.10</td>
<td>4.74</td>
</tr>
<tr>
<td>30</td>
<td>22.47</td>
<td>36.31</td>
<td>25.10</td>
<td>4.74</td>
</tr>
<tr>
<td>50</td>
<td>22.35</td>
<td>36.32</td>
<td>25.14</td>
<td>4.74</td>
</tr>
<tr>
<td>75</td>
<td>21.48</td>
<td>36.33</td>
<td>25.39</td>
<td>4.74</td>
</tr>
<tr>
<td>100</td>
<td>20.80</td>
<td>36.34</td>
<td>25.59</td>
<td>4.72</td>
</tr>
<tr>
<td>150</td>
<td>20.40</td>
<td>36.63</td>
<td>25.92</td>
<td>4.44</td>
</tr>
<tr>
<td>200</td>
<td>19.77</td>
<td>36.61</td>
<td>26.07</td>
<td>4.76</td>
</tr>
<tr>
<td>250</td>
<td>19.05</td>
<td>35.56</td>
<td>26.22</td>
<td>4.46</td>
</tr>
<tr>
<td>300</td>
<td>18.50</td>
<td>36.53</td>
<td>26.34</td>
<td>4.30</td>
</tr>
<tr>
<td>400</td>
<td>17.92</td>
<td>36.44</td>
<td>26.41</td>
<td>4.55</td>
</tr>
<tr>
<td>500</td>
<td>16.99</td>
<td>36.30</td>
<td>26.53</td>
<td>4.24</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>0.2</td>
<td><0.5</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>1.5</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>19</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>47</td>
<td>1.3</td>
<td>0.2</td>
<td>1.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>95</td>
<td>1.6</td>
<td>0.3</td>
<td>0.5</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>143</td>
<td>1.8</td>
<td>0.2</td>
<td>3.0</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>191</td>
<td>1.1</td>
<td>0.2</td>
<td>0.5</td>
<td>4.9</td>
<td>0.3</td>
</tr>
<tr>
<td>290</td>
<td>0.2</td>
<td>0.2</td>
<td>3.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>386</td>
<td>0.4</td>
<td>0.2</td>
<td>2.5</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>585</td>
<td>-</td>
<td>0.7</td>
<td>10.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.3</td>
<td>0.2</td>
<td><0.5</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.1</td>
<td>1.5</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.1</td>
<td>1.0</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.8</td>
<td>0.1</td>
<td>1.0</td>
<td>2.3</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>1.3</td>
<td>0.2</td>
<td>1.0</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>75</td>
<td>1.5</td>
<td>0.3</td>
<td>0.5</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>1.6</td>
<td>0.3</td>
<td>0.5</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>150</td>
<td>1.8</td>
<td>0.2</td>
<td>3.0</td>
<td>3.4</td>
<td>0.4</td>
</tr>
<tr>
<td>200</td>
<td>1.1</td>
<td>0.2</td>
<td>0.5</td>
<td>4.9</td>
<td>0.3</td>
</tr>
<tr>
<td>250</td>
<td>0.6</td>
<td>0.2</td>
<td>0.5</td>
<td>4.9</td>
<td>0.3</td>
</tr>
</tbody>
</table>
DATE April 18, 1953 LAT. 29°00' N. LONG. 76°59' W. TIME 11
DEPTH 1072 WIND 5, 16 BAR. 21 AIR TEMP: dry 21.7°C, wet 15.0°C
HUMIDITY 48% WEATHER 03 CLOUDS: type 8, amt. 6 SEA: dir. 18, amt. 2
SWELL: dir. 09, amt. 1 VIS. 7 WATER TRANS.

STATION Special 6

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.40**</td>
<td>36.14</td>
<td>24.40</td>
<td>4.62</td>
</tr>
<tr>
<td>10</td>
<td>24.48</td>
<td>36.17</td>
<td>24.40</td>
<td>4.58</td>
</tr>
<tr>
<td>20</td>
<td>24.50</td>
<td>36.17</td>
<td>24.40</td>
<td>4.56</td>
</tr>
<tr>
<td>49</td>
<td>22.86</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>98</td>
<td>21.62</td>
<td>36.57</td>
<td>25.54</td>
<td>4.62</td>
</tr>
<tr>
<td>149</td>
<td>20.07</td>
<td>36.60</td>
<td>25.98</td>
<td>4.74</td>
</tr>
<tr>
<td>197</td>
<td>29.03*</td>
<td>36.61*</td>
<td>23.28</td>
<td>4.34</td>
</tr>
<tr>
<td>225</td>
<td>19.12</td>
<td>36.60</td>
<td>26.23</td>
<td>4.31</td>
</tr>
<tr>
<td>302</td>
<td>20.90*</td>
<td>36.49*</td>
<td>25.67</td>
<td>4.38</td>
</tr>
<tr>
<td>378</td>
<td>17.79</td>
<td>36.45</td>
<td>26.45</td>
<td>4.46</td>
</tr>
<tr>
<td>454</td>
<td>17.28</td>
<td>36.36</td>
<td>26.51</td>
<td>3.91</td>
</tr>
<tr>
<td>531</td>
<td>16.27</td>
<td>36.22</td>
<td>26.64</td>
<td>3.95</td>
</tr>
<tr>
<td>765</td>
<td>11.15</td>
<td>35.42</td>
<td>27.09</td>
<td>3.20</td>
</tr>
</tbody>
</table>

* Value questionable
** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σt</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.40</td>
<td>36.14</td>
<td>24.40</td>
<td>4.62</td>
</tr>
<tr>
<td>10</td>
<td>24.48</td>
<td>36.17</td>
<td>24.40</td>
<td>4.58</td>
</tr>
<tr>
<td>20</td>
<td>24.50</td>
<td>36.17</td>
<td>24.40</td>
<td>4.56</td>
</tr>
<tr>
<td>30</td>
<td>23.86</td>
<td>36.25</td>
<td>24.65</td>
<td>4.56</td>
</tr>
<tr>
<td>50</td>
<td>22.84</td>
<td>36.37</td>
<td>25.04</td>
<td>4.57</td>
</tr>
<tr>
<td>75</td>
<td>22.23</td>
<td>36.50</td>
<td>25.31</td>
<td>4.58</td>
</tr>
<tr>
<td>100</td>
<td>21.34</td>
<td>36.57</td>
<td>25.61</td>
<td>4.62</td>
</tr>
<tr>
<td>150</td>
<td>20.05</td>
<td>36.60</td>
<td>25.99</td>
<td>4.74</td>
</tr>
<tr>
<td>200</td>
<td>19.44</td>
<td>36.61</td>
<td>26.15</td>
<td>4.33</td>
</tr>
<tr>
<td>250</td>
<td>18.90</td>
<td>36.56</td>
<td>26.26</td>
<td>4.33</td>
</tr>
<tr>
<td>300</td>
<td>18.43</td>
<td>36.52</td>
<td>26.35</td>
<td>4.38</td>
</tr>
<tr>
<td>400</td>
<td>17.69</td>
<td>36.43</td>
<td>26.46</td>
<td>4.34</td>
</tr>
<tr>
<td>500</td>
<td>16.72</td>
<td>36.28</td>
<td>26.58</td>
<td>3.93</td>
</tr>
<tr>
<td>600</td>
<td>15.08</td>
<td>36.04</td>
<td>26.77</td>
<td>3.80</td>
</tr>
</tbody>
</table>

263
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>1.9</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.6</td>
<td>0.5</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>98</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
<td>1.6</td>
<td><0.1</td>
</tr>
<tr>
<td>149</td>
<td>2.4</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>197</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>225</td>
<td>-</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>302</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>378</td>
<td>1.5</td>
<td>0.2</td>
<td>3.5</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>454</td>
<td>1.3</td>
<td>0.5</td>
<td>9.0</td>
<td>-</td>
<td>2.3</td>
</tr>
<tr>
<td>531</td>
<td>1.0</td>
<td>0.4</td>
<td>9.0</td>
<td>0.0</td>
<td>1.6</td>
</tr>
<tr>
<td>765</td>
<td>1.4</td>
<td>1.4</td>
<td>20.0</td>
<td>-</td>
<td>0.9</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.1</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
<td>3.0</td>
<td>1.9</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>0.6</td>
<td>0.5</td>
<td>2.8</td>
<td>1.7</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.6</td>
<td>0.5</td>
<td>2.7</td>
<td>1.5</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>2.4</td>
<td>1.1</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.4</td>
<td>1.0</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>100</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>1.6</td>
<td><0.1</td>
</tr>
<tr>
<td>150</td>
<td>2.4</td>
<td><0.1</td>
<td>1.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.2</td>
<td>1.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>0.2</td>
<td>2.0</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>0.2</td>
<td>3.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>400</td>
<td>1.4</td>
<td>0.3</td>
<td>5.0</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>500</td>
<td>1.1</td>
<td>0.4</td>
<td>9.0</td>
<td>0.1</td>
<td>1.9</td>
</tr>
<tr>
<td>600</td>
<td>1.1</td>
<td>0.7</td>
<td>12.0</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>700</td>
<td>1.3</td>
<td>1.1</td>
<td>17.0</td>
<td>-</td>
<td>1.1</td>
</tr>
</tbody>
</table>
STATION Special 7

DATE April 18, 1953 LAT. 28°00' N. LONG. 77°00' W. TIME 19

DEPTH 1097 WIND 16 BAR. 21 AIR TEMP: dry 23.3°C, wet 18.3°C

HUMIDITY 61% WEATHER 02 CLOUDS: type _,amt. 0 SEA: dir. 16, amt. 2

SWELL: dir. _, amt. _ VIS. 8 WATER TRANS._

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.30**</td>
<td>36.73</td>
<td>25.18</td>
<td>4.74</td>
</tr>
<tr>
<td>10</td>
<td>23.49</td>
<td>36.72</td>
<td>25.11</td>
<td>4.74</td>
</tr>
<tr>
<td>20</td>
<td>23.35</td>
<td>36.73</td>
<td>25.16</td>
<td>4.74</td>
</tr>
<tr>
<td>49</td>
<td>22.38</td>
<td>36.66</td>
<td>25.39</td>
<td>4.58</td>
</tr>
<tr>
<td>98</td>
<td>20.94</td>
<td>36.56</td>
<td>25.72</td>
<td>4.66</td>
</tr>
<tr>
<td>148</td>
<td>19.64</td>
<td>36.60</td>
<td>26.09</td>
<td>4.34</td>
</tr>
<tr>
<td>197</td>
<td>18.81</td>
<td>36.55</td>
<td>26.27</td>
<td>4.34</td>
</tr>
<tr>
<td>241</td>
<td>18.41</td>
<td>36.49</td>
<td>26.33</td>
<td>4.42</td>
</tr>
<tr>
<td>409</td>
<td>17.39</td>
<td>36.38</td>
<td>26.50</td>
<td>4.23</td>
</tr>
<tr>
<td>492</td>
<td>15.81</td>
<td>36.15</td>
<td>26.69</td>
<td>3.95</td>
</tr>
<tr>
<td>661</td>
<td>13.02</td>
<td>35.70</td>
<td>26.95</td>
<td>3.18</td>
</tr>
<tr>
<td>745</td>
<td>11.06</td>
<td>35.43</td>
<td>27.12</td>
<td>3.16</td>
</tr>
<tr>
<td>831</td>
<td>9.08</td>
<td>35.25</td>
<td>27.32</td>
<td>3.16</td>
</tr>
</tbody>
</table>

** From BT

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.30</td>
<td>36.73</td>
<td>25.18</td>
<td>4.74</td>
</tr>
<tr>
<td>10</td>
<td>23.49</td>
<td>36.72</td>
<td>25.11</td>
<td>4.74</td>
</tr>
<tr>
<td>20</td>
<td>23.35</td>
<td>36.73</td>
<td>25.16</td>
<td>4.74</td>
</tr>
<tr>
<td>30</td>
<td>23.01</td>
<td>36.70</td>
<td>25.24</td>
<td>4.68</td>
</tr>
<tr>
<td>50</td>
<td>22.35</td>
<td>36.66</td>
<td>25.40</td>
<td>4.58</td>
</tr>
<tr>
<td>75</td>
<td>21.60</td>
<td>36.59</td>
<td>25.56</td>
<td>4.62</td>
</tr>
<tr>
<td>100</td>
<td>20.88</td>
<td>36.56</td>
<td>25.73</td>
<td>4.65</td>
</tr>
<tr>
<td>150</td>
<td>19.60</td>
<td>36.60</td>
<td>26.11</td>
<td>4.34</td>
</tr>
<tr>
<td>200</td>
<td>18.78</td>
<td>36.55</td>
<td>26.28</td>
<td>4.34</td>
</tr>
<tr>
<td>250</td>
<td>18.37</td>
<td>36.48</td>
<td>26.33</td>
<td>4.41</td>
</tr>
<tr>
<td>300</td>
<td>18.05</td>
<td>36.45</td>
<td>26.39</td>
<td>4.37</td>
</tr>
<tr>
<td>400</td>
<td>17.52</td>
<td>36.40</td>
<td>26.48</td>
<td>4.25</td>
</tr>
<tr>
<td>500</td>
<td>15.71</td>
<td>36.13</td>
<td>26.70</td>
<td>3.92</td>
</tr>
<tr>
<td>600</td>
<td>14.20</td>
<td>35.88</td>
<td>26.84</td>
<td>3.37</td>
</tr>
<tr>
<td>800</td>
<td>9.79</td>
<td>35.30</td>
<td>27.24</td>
<td>3.16</td>
</tr>
</tbody>
</table>
Observed

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.3</td>
<td>5.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.2</td>
<td>3.5</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>49</td>
<td>-</td>
<td>5.8*</td>
<td>0.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>98</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>148</td>
<td>1.5</td>
<td>0.4</td>
<td>9.5</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>197</td>
<td>1.3</td>
<td>0.1</td>
<td>1.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>241</td>
<td>1.5</td>
<td>0.2</td>
<td>3.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>409</td>
<td>1.5</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>492</td>
<td>1.4</td>
<td>0.5</td>
<td>4.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>661</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>745</td>
<td>-</td>
<td>1.1</td>
<td>4.5</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>831</td>
<td>2.3</td>
<td>0.1*</td>
<td>11.0</td>
<td>-</td>
<td>0.4</td>
</tr>
</tbody>
</table>

* Value questionable

Interpolated

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO$_4$-P (µg at/l)</th>
<th>NO$_3$-NO$_2$ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7</td>
<td>0.3</td>
<td>5.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.2</td>
<td>3.5</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
<td>-</td>
<td>2.5</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>50</td>
<td>0.4</td>
<td>-</td>
<td>0.5</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>75</td>
<td>0.4</td>
<td>-</td>
<td>0.5</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>100</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>150</td>
<td>1.5</td>
<td>0.4</td>
<td>9.5</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>200</td>
<td>1.3</td>
<td>0.1</td>
<td>1.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>250</td>
<td>1.5</td>
<td>0.2</td>
<td>3.0</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>300</td>
<td>1.5</td>
<td>0.2</td>
<td>3.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>400</td>
<td>1.5</td>
<td>0.3</td>
<td>4.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>500</td>
<td>1.4</td>
<td>0.5</td>
<td>4.5</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>600</td>
<td>1.7</td>
<td>0.9</td>
<td>4.5</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>700</td>
<td>2.0</td>
<td>1.1</td>
<td>4.5</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>800</td>
<td>2.3</td>
<td>-</td>
<td>8.5</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>
STATION Special 8

DATE April 19, 1953 LAT. 27°58'N. LONG. 78°00'W. TIME 03

DEPHT 1051 WIND 0, 16 BAR. 16 AIR TEMP: dry 23.3°C, wet 20.6°C

HUMIDITY 78% WEATHER 02 CLOUDS: type , amt. 0 SEA: dir. 16 , amt. 3

SWELL: dir. , amt. VIS. 8 WATER TRANS.

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.10**</td>
<td>36.63</td>
<td>25.16</td>
<td>4.74</td>
</tr>
<tr>
<td>10</td>
<td>22.91</td>
<td>36.70</td>
<td>25.27</td>
<td>4.74</td>
</tr>
<tr>
<td>20</td>
<td>22.92</td>
<td>36.66</td>
<td>25.23</td>
<td>4.74</td>
</tr>
<tr>
<td>49</td>
<td>22.83</td>
<td>36.75</td>
<td>25.33</td>
<td>4.74</td>
</tr>
<tr>
<td>98</td>
<td>21.94</td>
<td>36.67</td>
<td>25.52</td>
<td>4.84</td>
</tr>
<tr>
<td>147</td>
<td>21.47</td>
<td>36.67</td>
<td>25.69</td>
<td>4.42</td>
</tr>
<tr>
<td>196</td>
<td>19.40</td>
<td>36.65</td>
<td>26.20</td>
<td>4.31</td>
</tr>
<tr>
<td>293</td>
<td>18.14</td>
<td>36.50</td>
<td>26.40</td>
<td>4.31</td>
</tr>
<tr>
<td>490</td>
<td>15.79</td>
<td>36.17</td>
<td>26.71</td>
<td>3.95</td>
</tr>
<tr>
<td>589</td>
<td>14.04</td>
<td>35.82</td>
<td>26.83</td>
<td>3.71</td>
</tr>
<tr>
<td>788</td>
<td>8.47</td>
<td>35.16</td>
<td>27.35</td>
<td>3.28</td>
</tr>
<tr>
<td>887</td>
<td>6.73</td>
<td>35.04</td>
<td>27.51</td>
<td>3.95</td>
</tr>
<tr>
<td>986</td>
<td>4.77</td>
<td>35.07</td>
<td>27.78</td>
<td>4.46</td>
</tr>
</tbody>
</table>

** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>(\sigma_t)</th>
<th>(O_2) (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.10</td>
<td>36.63</td>
<td>25.16</td>
<td>4.74</td>
</tr>
<tr>
<td>10</td>
<td>22.91</td>
<td>36.70</td>
<td>25.27</td>
<td>4.74</td>
</tr>
<tr>
<td>20</td>
<td>22.92</td>
<td>36.66</td>
<td>25.23</td>
<td>4.74</td>
</tr>
<tr>
<td>30</td>
<td>22.90</td>
<td>36.70</td>
<td>25.27</td>
<td>4.74</td>
</tr>
<tr>
<td>50</td>
<td>22.81</td>
<td>36.75</td>
<td>25.33</td>
<td>4.74</td>
</tr>
<tr>
<td>75</td>
<td>22.31</td>
<td>36.70</td>
<td>25.44</td>
<td>4.80</td>
</tr>
<tr>
<td>100</td>
<td>21.92</td>
<td>36.67</td>
<td>25.53</td>
<td>4.83</td>
</tr>
<tr>
<td>150</td>
<td>21.32</td>
<td>36.67</td>
<td>25.69</td>
<td>4.40</td>
</tr>
<tr>
<td>200</td>
<td>19.35</td>
<td>36.64</td>
<td>26.20</td>
<td>4.31</td>
</tr>
<tr>
<td>250</td>
<td>18.69</td>
<td>36.57</td>
<td>26.32</td>
<td>4.31</td>
</tr>
<tr>
<td>300</td>
<td>18.08</td>
<td>36.50</td>
<td>26.42</td>
<td>4.30</td>
</tr>
<tr>
<td>400</td>
<td>17.05</td>
<td>36.38</td>
<td>26.58</td>
<td>4.15</td>
</tr>
<tr>
<td>500</td>
<td>15.64</td>
<td>36.13</td>
<td>26.72</td>
<td>3.92</td>
</tr>
<tr>
<td>600</td>
<td>13.66</td>
<td>35.77</td>
<td>26.87</td>
<td>3.68</td>
</tr>
<tr>
<td>800</td>
<td>8.27</td>
<td>35.14</td>
<td>27.36</td>
<td>3.30</td>
</tr>
</tbody>
</table>
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>49</td>
<td>0.3</td>
<td>0.2</td>
<td>-</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>98</td>
<td>0.4</td>
<td>0.4</td>
<td>1.5</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>147</td>
<td>-</td>
<td>0.7</td>
<td>6.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>196</td>
<td>1.2</td>
<td>0.1</td>
<td>2.5</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>293</td>
<td>0.5</td>
<td>0.4</td>
<td>3.0</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>490</td>
<td>0.6</td>
<td>0.4</td>
<td>2.5</td>
<td>2.3</td>
<td>0.8</td>
</tr>
<tr>
<td>589</td>
<td>-</td>
<td>1.0</td>
<td>5.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>788</td>
<td>-</td>
<td>1.4</td>
<td>6.0</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>887</td>
<td>-</td>
<td>1.7</td>
<td>20.5</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>986</td>
<td>-</td>
<td>1.5</td>
<td>4.0</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (µg at/l)</th>
<th>PO₄-P (µg at/l)</th>
<th>NO₃-NO₂ (µg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>0.0</td>
<td>0.5</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>75</td>
<td>0.4</td>
<td>0.3</td>
<td>1.5</td>
<td><0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>100</td>
<td>0.4</td>
<td>0.4</td>
<td>1.5</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>150</td>
<td>0.7</td>
<td>0.7</td>
<td>6.5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>200</td>
<td>1.2</td>
<td>0.1</td>
<td>2.5</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>250</td>
<td>0.8</td>
<td>0.3</td>
<td>2.5</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>300</td>
<td>0.5</td>
<td>0.4</td>
<td>3.0</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>400</td>
<td>0.6</td>
<td>0.4</td>
<td>2.5</td>
<td>1.8</td>
<td>0.8</td>
</tr>
<tr>
<td>500</td>
<td>0.6</td>
<td>0.4</td>
<td>2.5</td>
<td>2.3</td>
<td>0.8</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>1.0</td>
<td>5.5</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>1.2</td>
<td>6.0</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>1.4</td>
<td>8.0</td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>1.5</td>
<td>4.0</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>
STATION Special 9

DATE April 24, 1953 **LAT.** 28°00' N. **LONG.** 79°01' W. **TIME** 04 **DEPTH** 732 **WIND** 14, 09 **BAR.** 17 **AIR TEMP:** dry 21.7°C, wet 17.8°C **HUMIDITY:** 68% **WEATHER:** 02 **CLOUDS:** type-, amt. 2 **SEA:** dir. 09, amt. 1 **SWELL:** dir. --, amt. -- **VIS.** 8 **WATER TRANS.**

OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.80*</td>
<td>36.42</td>
<td>24.80</td>
<td>4.57</td>
</tr>
<tr>
<td>10</td>
<td>23.59</td>
<td>36.42</td>
<td>24.86</td>
<td>4.61</td>
</tr>
<tr>
<td>20</td>
<td>23.23</td>
<td>36.45</td>
<td>24.99</td>
<td>4.74</td>
</tr>
<tr>
<td>49</td>
<td>23.05</td>
<td>36.69</td>
<td>25.22</td>
<td>4.66</td>
</tr>
<tr>
<td>98</td>
<td>22.62</td>
<td>36.73</td>
<td>25.37</td>
<td>4.76</td>
</tr>
<tr>
<td>147</td>
<td>21.19</td>
<td>36.64*</td>
<td>25.71</td>
<td>4.74</td>
</tr>
<tr>
<td>196</td>
<td>19.57</td>
<td>36.68</td>
<td>26.17</td>
<td>4.42</td>
</tr>
<tr>
<td>395</td>
<td>17.34</td>
<td>36.49</td>
<td>26.62</td>
<td>4.07</td>
</tr>
<tr>
<td>493</td>
<td>15.48</td>
<td>36.14</td>
<td>26.76</td>
<td>3.87</td>
</tr>
<tr>
<td>692</td>
<td>10.59</td>
<td>35.39</td>
<td>27.17</td>
<td>3.04</td>
</tr>
</tbody>
</table>

* Value questionable
** From BT

INTERPOLATED AND CALCULATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>T (°C)</th>
<th>S (%)</th>
<th>σ_t</th>
<th>O_2 (ml/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.80</td>
<td>36.42</td>
<td>24.80</td>
<td>4.57</td>
</tr>
<tr>
<td>10</td>
<td>23.59</td>
<td>36.42</td>
<td>24.86</td>
<td>4.61</td>
</tr>
<tr>
<td>20</td>
<td>23.23</td>
<td>36.45</td>
<td>24.99</td>
<td>4.74</td>
</tr>
<tr>
<td>30</td>
<td>23.17</td>
<td>36.55</td>
<td>25.08</td>
<td>4.72</td>
</tr>
<tr>
<td>50</td>
<td>23.05</td>
<td>36.69</td>
<td>25.22</td>
<td>4.66</td>
</tr>
<tr>
<td>75</td>
<td>22.95</td>
<td>36.73</td>
<td>25.39</td>
<td>4.76</td>
</tr>
<tr>
<td>100</td>
<td>22.57</td>
<td>36.73</td>
<td>25.80</td>
<td>4.71</td>
</tr>
<tr>
<td>150</td>
<td>21.08</td>
<td>36.82</td>
<td>26.18</td>
<td>4.41</td>
</tr>
<tr>
<td>200</td>
<td>19.55</td>
<td>36.68</td>
<td>26.25</td>
<td>4.33</td>
</tr>
<tr>
<td>250</td>
<td>19.17</td>
<td>36.64</td>
<td>26.33</td>
<td>4.24</td>
</tr>
<tr>
<td>300</td>
<td>18.66</td>
<td>36.58</td>
<td>26.54</td>
<td>4.05</td>
</tr>
<tr>
<td>400</td>
<td>17.25</td>
<td>36.39</td>
<td>26.78</td>
<td>3.85</td>
</tr>
<tr>
<td>500</td>
<td>15.33</td>
<td>36.12</td>
<td>27.00</td>
<td>3.45</td>
</tr>
<tr>
<td>600</td>
<td>13.04</td>
<td>35.77</td>
<td>27.00</td>
<td></td>
</tr>
</tbody>
</table>

269
OBSERVED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.3</td>
<td>0.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>49</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>98</td>
<td>-</td>
<td>0.5</td>
<td>3.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>147</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>196</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>395</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>< 0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>493</td>
<td>2.1</td>
<td>0.8</td>
<td>5.5</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>692</td>
<td>-</td>
<td>1.5</td>
<td>5.5</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

INTERPOLATED

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>TOTAL P (μg at/l)</th>
<th>PO₄-P (μg at/l)</th>
<th>NO₃-NO₂ (μg at/l)</th>
<th>ARABINOSE (mg/l)</th>
<th>TYROSINE (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>0.3</td>
<td>0.0</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.6</td>
<td>0.1</td>
</tr>
<tr>
<td>50</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.9</td>
<td>0.3</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.3</td>
<td>2.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>0.5</td>
<td>3.0</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>0.3</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>-</td>
<td>1.1</td>
</tr>
<tr>
<td>250</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>300</td>
<td>0.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>400</td>
<td>1.5</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>< 0.1</td>
</tr>
<tr>
<td>500</td>
<td>2.1</td>
<td>0.8</td>
<td>5.5</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>1.2</td>
<td>5.5</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>1.5</td>
<td>5.5</td>
<td>-</td>
<td>0.3</td>
</tr>
</tbody>
</table>

270