773

NOAA Technical Report NMFS SSRF-773

Food Habits and Trophic Relationships of a Community of Fishes on the Outer Continental Shelf

George R. Sedberry

September 1983

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

NOAA TECHNICAL REPORTS

National Marine Fisheries Service, Special Scientific Report-Fisheries

The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, no understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic tisheries regulations, surveillance of foreign lishing off toned. States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS associations of the resources and policies is regulations, surveillance of foreign lishing off toned. States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS associations the toning industry through marketing service and economic analysis programs, and mortgage insurance and vessel constructions about solution. It collectes and policies or various phases of the industry. The serve construction structure reports on scientific investigations that document long-term.

The Special Scientific Report - Eisteric series was established in 1949. The series carries reports on scientific investigations that document long-term continuing programs of NNLS or intensive scientific reports on studies of restricted scope. The reports may deal with applied fishery problems. The series is also used us a medium for the publication of bibliographies of a specialized scientific nature.

NOV V fachine if Report NMES Circulars are available free in limited numbers to governmental agencies, both Federal and State. They are also available free in limited numbers to governmental agencies, both Federal and State. They are also available free in limited numbers to governmental agencies, both Federal and State. They are also available free in limited numbers to governmental agencies, both Federal and State. They are also available free in limited numbers to governmental agencies, both Federal and State. They are also available free in limited numbers to governmental agencies, both Federal and true States States States and Active States and Atmospheric Administration, U.S. Department of Commerce, 11400 Rescales (no. 1), Reck allo (MD 20852). Receives States are states and Atmospheric Administration, U.S. Department of Commerce, 11400 Rescales (no. 1), States and Atmospheric Administration, U.S. Department of Commerce, 11400 Rescales (no. 1), Reck allo (MD 20852). Receives States are states and Atmospheric Administration (ND 20852). Receives States are states and Atmospheric Administration (ND 20852). Receives States are states and Atmospheric Administration (ND 20852). Receives States are states are states and Atmospheric Administration (ND 20852). Receives a state and Atmospheric Administration

(9) The Rest of Marcolary process of a case to Second Ray Harden, Markel Markel and Second residences in the Conference of the Rest of The Workshowski, International Conference on Conference on the Rest of The Workshow Second International Conference on Conference

(1) A set of the se

Second and the second se

The second seco

(1 + 1) = (1 + 1) + (1 +

(a) Solition - Articular Agencial Konstantinovicki and shark and the Agencian and Agencial Agencial Agencial Agencial

(a) A set of the set of the state of the state of production of state of a set of the set of the

(i) it is a provide the second method of the first poly By Will study the poly where and March 200 meeting. A type (Multiles)

(0) The first device antice activities and the second s

(*) A first the exact process such of Parities can and smark should show a standard the second standard structure in the second standard structure in the region. 1990; "6: By Roy J. We are the second structure in the second structure is second structure in the second

31 provide the provide the set of the set of the castern inspecal Parelle in the castern inspecal Parelle in the set of the set o

(1) In the second distance of the public of the public of the Point State of A the Point State of A the public of the public

739 Bottom water temperature trends in the Middle Atlantic Bight during spring and automin. 1964. 76 By Clarence W. Davis. December 1979, iii +13 p., 10 figs., 9(tables)

(40) Food of Ittleen northwest Atlantic gadiform fishes. By Richard W. Langton and Ray F. Bowman. February 1980. iv - 23 p. 3 figs., 11 tables.

741 Distribution of gammanidean Amphipoda (Crustacea) in the Middle Atlantic Bight region: By John J. Dickmson, Roland L. Wigley, Richard D. Brodeur, and Sasan Brown Eleger: October 1980; v1 = 46 p. 26 figs., 52 tables.

742 Water structure at Ocean Weather Station V. northwestern Pacific Ocean, 1965 T. By D. M. Husby and G. R. Seckel. October 1980, 18 figs., 4 tables.

743 — Sverage density index for walleye pollock. *Theragra chalcogramma*, in the Bering Sea. By Loh Lee Low and Ikuo Ikeda: November 1980, in +11 p., 3 figs., 9 tables

744 Junas, oceanography and nieteorology of the Pacific, an annotated bibliography. 1950;78, by Paul N. Sund. March 1981, iii +123 p.

⁷⁴⁵ Dorsal mantle length total weight relationships of squids *Loligo pealei* and *Ille edhecebrosis* from the Atlantic coast of the United States, by Anne M. T. Lange and Karen E. Johnson. March 1981, iii + 17 p., 5 figs., 6 tables.

346 Distribution of gammaridean Amphipoda (Crustacea) on Georges Bank, by John J. Dickinson and Roland E. Wigley June 1981, iii +25 p., 16 figs., 1 table.

747 – Movement, growth, and mortality of American lobsters, *Homarus americanus*, tagged along the coast of Maine, by Jay S. Krouse, September 1981, iii+12 p = 10 figs = 8 tables

748 Annotated bibliography of the conch genus Strombus (Gastropoda, Strombidae) in the western Atlantic Ocean, by George H. Darcy, September 1981, iii +16 p.

249 Food of eight northwest Atlantic pleuronectiform fishes, by Richard W, Langton and Ray E. Bowman. September 1981, iii + 16 p. 1 fig., 8 tables.

750 World literature to fish hybrids with an analysis by family, species, and hybrid. Supplement I, by Frank J. Schwartz. November 1981, iii +507 p.

751 The barge Ocean 250 gasoline spill, by Carolyn A. Griswold (editor), November 1981, is + 30 p. 28 figs., 17 tables.

752 Movements of tagged summer flounder, *Paralichthys dentatus*, off southern New England, by F.E. Lux and F.E. Nichy. December 1981, iii +16 p., 13 figs., 3 tables.

753 Factors influencing ocean catches of salmon, Oncorhynchus spp., off Washington and Vancouver Island, by R. A. Low, Jr. and S. B. Mathews, January 1982, 13 + 12 p., 6 figs., 7 tables.

NOAA Technical Report NMFS SSRF-773

Food Habits and Trophic Relationships of a Community of Fishes on the Outer Continental Shelf

George R. Sedberry

September 1983

U.S. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary National Oceanic and Atmospheric Administration John V. Byrne, Administrator National Marine Fisheries Service William G. Gordon, Assistant Administrator for Fisheries The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

CONTENTS

Introduction	
Methods	i
Results	2
Food habits analysis	
Raja erinacea	
I ophius americanus	
Urophycis chuss	
Urophycis regia.	
Merluccius bilinearis	
- Macrozoarces americanus	
Stenotomus chrysops	
Citharichthys arctifrons	
Paralichthys oblongus	4
Overlap in diet	4
Discussion	
Diversity and seasonality of prey availability	
Predator size and feeding strategy	
Overlap in diet	
Acknowledgments	
Literature cited	

Figures

1.	Location of sample areas B and E	10
2.	Index of relative importance of higher taxonomic groups of food in the diet of Raja erinacea, by seasonal cruise	11
3.	Index of relative importance of higher taxonomic groups of food for size intervals of Raja erinacea	12
4.	Relationship between size of Raja erinacea and volume of food consumed, mean prey volume, and prey number per	-
	stomach	12
5.	Index of relative importance of higher taxonomic groups of food in the diet of Lophius americanus, by seasonal cruise	13
6.	Index of relative importance of higher taxonomic groups of food for size intervals of Lophius americanus	14
7.	Relationship between size of Lophius americanus and volume of food consumed, mean prey volume, and prey num-	
	ber per stomach	14
8.	Index of relative importance of higher taxonomic groups of food in the diet of Urophycis chuss, by seasonal cruise.	15
	Index of relative importance of higher taxonomic groups of food for size intervals of Urophycis chuss	
	Relationship between size of Urophycis chuss and volume of food consumed, mean prey volume, and prey number	
	per stomach	
11.	Index of relative importance of higher taxonomic groups of food in the diet of Urophycis regia, by seasonal cruise.	
	Index of relative importance of higher taxonomic groups of food for size intervals of Urophycis regia	
	Relationship between size of Urophycis regia and volume of food consumed, mean prey volume, and prey number	
		18
14.	Index of relative importance of higher taxonomic groups of food in the diet of Merluccius bilinearis, by seasonal	
	cruise	10
15.	Index of relative importance of higher taxonomic groups of food for size intervals of Merluccius bilinearis	20
	Relationship between size of Merluccius bilinearis and volume of food consumed, mean prey volume, and prey num-	
		20
17.	Index of relative importance of higher taxonomic groups of food in the diet of Macrozoarces americanus, by seasonal	
	cruise	21
18.	Index of relative importance of higher taxonomic groups of food for size intervals of Macrozoarces americanus	22
	Relationship between size of Macrozoarces americanus and volume of food consumed, mean prey volume, and prey	
	number per stomach	22
20.	Index of relative importance of higher taxonomic groups of food in the diet of Stenotomus chrysops in the fall	23
	Index of relative importance of higher taxonomic groups of food for size intervals of Stenotomus chrysops	
22	Relationship between size of Stenotomus chrysops and volume of food consumed, mean prey volume, and prey num	
	ber per stomach	23
23	Index of relative importance of higher taxonomic groups of food in the diet of Citharichthys arctifrons, by seasonal	
	chuise	24
24	Index of relative importance of higher taxonomic groups of food for size intervals of Citharichthys arctifrens	25
	Relationship between size of Citharichthys arctifrons and volume of food consumed, mean previolume, and previo	
	number per stomach	25

Index of relative importance of higher taxonomic groups of food in the diet of Paralichthys oblongus, by seasonal	
cruise	26
Index of relative importance of higher taxonomic groups of food for size intervals of Paralichthys oblongus	27
Relationship between size of Paralichthys oblongus and volume of food consumed, mean prey volume, and prey	
number per stomach	27
Dendrograms depicting diet similarity among dominant predators, within each season	28
Dendrogram depicting diet similarity among predators, by season.	29
Dendrogram depicting diet similarity among size groups of predators in the fall	30
Dendrogram depicting diet similarity among size groups of predators in winter	31
Dendrogram depicting diet similarity among size groups of predators in spring	32
Dendrogram depicting diet similarity among size groups of predators in summer	33
	cruise . Index of relative importance of higher taxonomic groups of food for size intervals of <i>Paralichthys oblongus</i> . Relationship between size of <i>Paralichthys oblongus</i> and volume of food consumed, mean prey volume, and prey number per stomach . Dendrograms depicting diet similarity among dominant predators, within each season . Dendrogram depicting diet similarity among predators, by season. Dendrogram depicting diet similarity among size groups of predators in the fall. Dendrogram depicting diet similarity among size groups of predators in winter . Dendrogram depicting diet similarity among size groups of predators in spring .

Tables

1.	Fishes selected for food habits analysis, and percentage of the total catch by number and weight comprised by each species, for each cruise	34
2.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Raja erinacea stomachs, by cruise	35
3.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Lophius americanus stomachs, by cruise	38
4.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Urophycis chuss stomachs, by cruise	39
5.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Urophycis regia stomachs, by cruise	13
6.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Merluccius bilinearis stomachs, by cruise	15
7.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Macrozoarces americanus stomachs, by cruise	17
8.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Stenotomus chrysops stomachs from fall samples	18
9.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Citharichthys arctifrons stomachs, by cruise	;3
0.	Percent frequency occurrence, percent number, percent volume, and index of relative importance of food items in	
	Paralichthys oblongus stomachs, by cruise	55

Food Habits and Trophic Relationships of a Community of Fishes on the Outer Continental Shelf¹

GEORGE R. SEDBERRY²

ABSTRACT

The demersal fish community of the Outer Continental Shelf in the Middle Atlantic Bight consists of resident species (Lophius americanus, Citharichthys arctifrons, Paralichthys oblongus), seasonal species with boreal affinities (Raja erinacea, Urophycis chuss, Merluccius bilinearis, Macrozoarces americanus), and seasonal species with warm-temperate affinities (Urophycis regia, Stenotomus chrysops). Although most dominant demersal fishes of the Outer Continental Shelf feed primarily on dense, stable macrobenthic invertebrate communities, some feed on fishes, cephalopods, and planktonic invertebrates. In addition to seasonal changes in prey species preference, food habits change considerably with fish size. Most predator species share many prey species. Overlap in diet among predators varies seasonally, with overlap relationships changing as species and size-class composition of the predators changes. Intraspecific diet overlap between size classes is low, but higher interspecific overlap occurs between species of similar size. Dietary overlap is lowest in the spring, when planktonic and nektonic organisms are consumed by most size classes of dominant predators. Although many important prey species are consumed by several predators, some are selectively consumed by only a few predators, so that there is never complete dietary overlap between two species.

INTRODUCTION

Studies of the food habits of fishes are essential to a complete understanding of the functional role of fishes in aquatic ecosystems. Research in this field has resulted in an abundance of papers dealing with the food habits of individual species, but fewer studies have related food habits to community structure, including patterns of competition, resource partitioning, or prey selectivity. Some experimental and field studies have focused on resource partitioning, including food subdivision in closely related species (McEachran et al. 1976; Werner and Hall 1976; Chao and Musick 1977; Ross 1977; Langton and Bowman 1980). Fewer studies have dealt with the feeding ecology of entire marine fish communities (Tyler 1972; Gatz 1979). Study of diet overlap is essential to understanding competitive coexistence and species diversity (Pyke et al. 1977) and hence community structure.

The continental shelf areas of the Middle Atlantic Bight have been a focus of benthic biological research in recent years (Boesch 1972; Pratt 1973; Steimle and Stone 1973; Pearce et al. 1976), and distribution and abundance of fishes have also been examined (Tyler 1971; Musick 1974; McEachran and Musick 1975; Clark and Brown 1977; Musick and Mercer 1977; Musick et al. 1979). The fish fauna on the continental shelf of the Middle Atlantic Bight consists of a highly migratory component of boreal and warmtemperate species and a small resident component (Tyler 1971; Musick et al. 1979). Stomach contents of some of the dominant species on the Middle Atlantic Outer Continental Shelf have been reported in faunal and taxonomic works and in life history studies (Bigelow and Welsh 1925; Nichols and Breder 1927; Olsen and Merriman 1946; Bigelow and Schroeder 1953; Fitz and Daiber 1963; Richards et al. 1963; Barans 1969), and some food habits studies have been done (Jensen and Fritz 1960; Sikora et al. 1972; Vinogradov 1972; McEachran et al. 1976; Langton and Bowman 1980, 1981).

The purposes of this report are to describe the food habits of dominant demersal fishes on the Middle Atlantic Outer Continental Shelf, to describe diet overlap patterns, and to relate these patterns to predator size and seasonality and to seasonal prey abundance.

METHODS

Two areas were selected for intensive fish sampling: Area B (approximately 735 km²) off Atlantic City, N.J.; and Area E (approximately 540 km²) off Delaware Bay (Fig. 1). These areas were chosen for the great habitat variety of their complex topography. The bottom of both areas is characterized by a series of ridges, swales, scarps, and flats which support different benthic invertebrate assemblages (Boesch 1978), and an attempt was made to sample each bottom type. Both study areas were divided into 11 strata, based mainly on depth data taken from U.S. Geological Survey charts and also on available data on the distribution of bottom sediments and previous sampling of macrobenthos.

Sampling for fishes consisted of tows of 15-min duration (at about 6.5 km/h) with a lined, semiballoon otter trawl having a 13.7 m (45 ft) headrope and the following stretch-mesh dimensions: 4.45 cm in the wings, 3.81 cm in the body, 3.96 cm in the cod end, and 1.27 cm in the cod end liner. Six stations, three day and three night, were randomly selected in each stratum for each cruise. Samples were collected seasonally on four cruises, utilizing the RV *Cape Henlopen* (fall 1976, spring and summer 1977) and the RV *James M. Gilliss* (winter 1977).

All fishes captured were identified, measured to the nearest millimeter, and weighed. Standard length (SL) was taken on all dominant species with the exception of *Raja erinacea* (disc width = DW) and *Macrozoarces americanus* (total length = TL). Each fish was dissected and its stomach excised if not conspicuously empty.

¹VIMS Contribution Number 1090 and South Carolina Marine Resources Center Contribution Number 142.

²Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, Va; present address: South Carolina Marine Resources Research Institute, P.O. Box 12559, Charleston, SC 29412.

On large catches of some dominant species, random subsamples (at least 30 specimens) were dissected. Each stomach was labeled, individually wrapped in cheesecloth, and fixed in 10% seawater Formalin.

After proper fixation, stomachs were soaked in water and transferred to either 40% isopropanol or 70% ethanol. For analysis, each stomach was cut open and its contents sorted by taxon and counted. Fragments such as crustacean parts, polychaete setae, or fish bones were counted as one animal, unless abundance could be estimated by counting pairs of eyes (crustaceans), otoliths (fishes), or other parts.

Volume displacement of food items was measured by using either a graduated cylinder (Windell 1971) or a calibrated vial and buret (McEachran et al. 1976). Displacement of small species was estimated by using a 0.1 cm² grid (Windell 1971).

Since methods of food habits analysis are variously biased (Hynes 1950; Pinkas et al. 1971; Windell 1971), the relative contribution of different food items to the total diet was determined using three methods: 1) The number of stomachs in which a food item occurred was expressed as a percentage of the total number of stomachs of a series containing food (percent frequency of occurrence); 2) the number of individuals of each type of food was expressed as a percentage of the total number of a series (percent numerical abundance); 3) the volume displacement of food items was expressed as a percentage of the total volume of food from all stomachs examined of a series (percent volume displacement).

From these three measurements an index of relative importance, IRI (Pinkas et al. 1971), was calculated for each prey species and each higher taxon as follows:

$$IRI = (N + V) F$$

where: IRI = index of relative importance.

N = numerical percentage.

V = volumetric percentage, and

F = frequency of occurrence percentage.

This index has been useful in evaluating the relative importance of different food items found in fish stomachs (Pinkas et al. 1971; McEachran et al. 1976; Sedberry and Musick 1978). The IRI was used in the present study to describe the food habits of each species and to determine seasonal and predator size differences in the relative importance of food items.

Overlap in diet among dominant predators was measured using cluster analysis. Stomachs of predators were treated as collections and were subjected to normal cluster analysis on the basis of prey similarity, using percent standardized numerical abundance (Clifford and Stephenson 1975), because sample sizes were unequal. Flexible sorting (Lance and Williams 1967; Clifford and Stephenson 1975), with $\beta = -0.25$, was used, based on resemblance measured by the Bray-Curtis similarity index (Bray and Curtis 1957), expressed as follows:

$$S_{jk} = 1 - \frac{\sum_{i \in [X_{ji} - X_{ki}]}}{\sum_{i \in [X_{ji} + X_{ki}]}}$$

where S_{jk} is the similarity in diet between the predator species *j* and *k*; X_{ji} is the abundance of the *i*th prey species for predator *j*; and X_{ki} is the abundance of the *i*th prey species for predator *k*.

RESULTS

Food Habits Analysis

Over 12,500 individual fish were dissected in the field for stomach analysis. A total of 6,087 stomachs representing the nine dominant species was examined in the laboratory. Initially, only seven species were to be examined: *Raja erinacea* Mitchill, *Lophius americanus* Valenciennes, *Urophycis chuss* (Walbaum), *Merluccius bilinearis* (Mitchill), *Stenotomus chrysops* (Linnaeus), *Citharichthys arctifrons* Goode, and *Paralichthys oblongus* (Mitchill). *Urophycis regia* (Walbaum) and *Marcrozoarces americanus* (Schneider) were added to this list because they were dominant species in the catches in summer 1977 (Table 1).

Raja erinacea.—The little skate was abundant in the study area at all times of the year (see Table 1), feeding mainly on amphipods, decapods, cumaceans, and polychaetes (Fig. 2, Table 2). Pelecypods, fishes, and isopods were also consumed. The relative importance of these major taxa of food remained fairly constant seasonally, although juvenile fishes were somewhat more important and cumaceans less important in fall samples. Juvenile fishes were also important in the diet of *R. erinacea* in the summer. Although the relative importance of the major taxa was nearly constant seasonally, the species composition of these taxa in the diet changed somewhat seasonally (Table 2).

The food habits of *Raja erinacea* varied greatly with size (Fig. 3). Smaller skates fed more on amphipods and cumaceans, whereas larger skates fed more on decapods and polychaetes. The smallest skates (1–100 mm DW) fed on numerous small food items (Fig. 4), and fed on these in increasing numbers up to 200 mm DW. At about 200 mm DW, *R. erinacea* showed the most pronounced change in food habits and feeding strategies, switching to fewer, larger food items (primarily decapods).

Lophius americanus.—The goosefish, though not as abundant as many other fishes on the outer shelf, was common and composed a considerable portion of the biomass of fishes in the study areas because of its large size (Table 1). Goosefish fed mainly on fishes and to a lesser extent on benthic invertebrates during all seasons (Fig. 5, Table 3). Decapods and cephalopods were less important as food, and polychaetes, amphipods, asteroids, and chaetognaths were only occasionally found in stomachs. Fishes were the most important food for all sizes of *L. americanus* (Fig. 6), although larger fish were eaten by larger *L. americanus* (Fig. 7).

Urophycis chuss.—Although red hake were abundant during this study, size composition of the population varied seasonally. Juveniles predominated in fall (\bar{x} SL = 49 mm) and summer (\bar{x} SL = 147 mm), but were rare in winter and spring, when larger fish moved into the area (\bar{x} SL = 251 and 238 mm, respectively). This was reflected in the much smaller contribution of this species to the biomass of fishes during the fall and summer (Table 1).

Red hake fed primarily on amphipods, which were important as food at all times of the year, especially in fall. During this season they made up most of the diet (Fig. 8, Table 4). Decapods and polychaetes were also dominant prey taxa, and copepods were important in fall and winter. Chaetognaths, absent from the diet in fall and winter, were commonly consumed during the spring and summer. Much seasonal variation was observed in the diet at the species level within these higher taxa (Table 4), particularly within the Amphipoda.

Small red hake ate amphipods (mainly planktonic hyperiids) and copepods (Fig. 9), whereas decapods and polychaetes were important dietary items for larger *U. chuss*. Chaetognaths were ingested by all size classes. Red hake fed on increasing numbers of increasingly larger prey items up to a length of about 300-350 mm SL (Fig. 10), where the feeding strategy of *U. chuss* changed, with fewer prey items of much larger size being consumed.

Urophycis regia.—Spotted hake were common in the study area in fall but were more abundant in summer. They were rare in the colder months, and only two were captured in winter.

Decapod crustaceans were the most important food for spotted hake based on seasons for which adequate data were available (Fig. 11, Table 5). Fishes and amphipods were next in importance in fall and summer, and the relative importance of these and other taxa of food was similar during these seasons. The relative importance of these taxa was different in spring samples, but this may reflect the small sample size.

Spotted hake fed on increasing numbers of decapods with increasing size of the fish (Fig. 12). Numbers of fishes consumed by *U. regia* decreased in relative abundance: however, the percent volume increased, indicating that larger *U. regia* fed on larger fishes. Amphipods decreased numerically in larger fish, and cephalopods, while remaining constant in relative abundance, became volumetrically important in the largest *U. regia*. Spotted hake demonstrated a distinct change in feeding strategy at about 250 mm SL (Fig. 13). The size of individual prey items increased by an order of magnitude, and fewer were consumed. Merfunctions bilinearris —Silver hake were abundant in the study area at all times of the year but less so in spring. Juvenile fish (<100 mm SL) dominated the catches in fall and summer. Food habits of this species varied greatly with season (Fig. 14. Table 6). Amphipods were the primary food in fall, winter, and summer food heatively unimportant in fall and spring, and were relatively unimportant in fall and spring, and were also quite important in fall. Decapods were third in importance in winter and summer and were also quite important in fall. Decapods and amphipods were third in fall. and spring and were also quite important in winter, but were absent in the diet in fall, were infrequent in winter, but were the most important prey taxon in spring. They were also consumed in summer.

The food habits of *M. bilineuris* changed with size (Fig. 15). Amphipods were relatively numerous in all size classes except the largest, but they steadily decreased in relative volume in larger fish. Fishes and cephalopods were numerically dominant in larger fishes and made up the bulk of food in larger silver hakes. Decrapods had the highest IRI in small and medium-sized fish (101–200 mm SL) and chaetognaths were important for medium-sized fish.

Silver hake fed on small food items up to a fish length of about 350 mm SL (Fig. 16). Average prey size increased at 351-400 mm SL, and continued a sharp increase in size up to the largest fish sampled. Average number of prey per stomach fluctuated, but reached a maximum at fish lengths of 251-300 mm SL. Macrocontress americanus.—The ocean pout varied greatly in its relative abundance, but at times made up a significant portion of the catch (Table 1). Abundances were low in fall (23 individuals), winter (46 individuals), and spring (84 individuals). In summer, however, juvenile ocean pout were common (397 individuals).

Ocean pout fed mainly on amphipods and decapods (Fig. 17, Table 7), which made up a large proportion of the diet at all seasons

of the year except fall when all stomachs were empty. Polychaetes were important in the diet in winter and spring but were rarely consumed in summer. Cumaceans and pelecypods were eaten in small amounts during most seasons, and echinoids were important in winter.

Smaller ocean pour consumed more amphipods than decapods, and amphipods made up a large volume of the food eaten (Fig. 18). Larger ocean pour fed more heavily on decapods, which made up the greatest volume of food for larger fish. Although the total volume of food consumed did increase regularly from small to large fish, the mean volume of each prey item fluctuated, as did the number of prey consumed (Fig. 19).

Of the 23 ocean pout captured on the fall cruise, none had food in their stomachs. Often and Merruman (1946) also noted a high percentage (36-75%) of empty stomachs among their fall samples. They suggested that this may indicate a tendency to stop feeding either during spawning or movement into rocky winter habitats. Servicements chrystops.—Scup were abundant in the study area in the fall, with only a few individuals taken on other cruises (Table 1). Food habits analysis was limited to fall samples.

Scup fed mainly on amphipods and polychaetes, and polychaetes made up the largest volume of food (Fig. 20, Table 8). Decapods, copepods, gastropods, and cumaceans were of lesser importance. Numerous other taxa were infrequently consumed (Table 8).

The food habits of scup changed with increasing fish size (Fig. 21). Amphipods decreased in relative abundance in larger fish, and grammandeans replaced byperideans in the dier of larger fish, and grammandeans replaced byperideans in the dier of larger scup, polychaetes, especially the larger species (e.g., *C. byfundibuliforminy*), increased in abundance and became the most important food in the larges fish. Copepods were mainly consumed by small scup, and decapods were slightly important for all size classes. The smallest scup are large numbers of small prey, mainly amphipods and loopepods (Eig. 22), but scup of 101–150 mm SL and hever vertain education food and larger than 150 mm SL and larger scup again fed on food on increasing numbers of food items, thus increasing the total volume of food consumed.

Cithhartichthys arctificous. — The Gulf Stream flounder was abundant at all times of the year, especially summer (Table 1). Amphipods and polychaetes were the most important prey taxa consumed by this species during all seasons: however, polychaetes exceeded amphipods in relative importance in the spring and were second during other seasons (Fig. 23, Table 9). Several other groups were consumed seasonally. Larvaceans and cumaceans were important in the dilet in spring. Fishes were very important in summer, and copepods and ostracods were of minor importante in the fall.

Amphipods had the highest IRI in all size classes of *C. arcaijtoris* (Fig. 24). Polychaetes increased in importance in the diet of larger tish, and made up the greatest volume of prev in the largest size class. Copepods were important for smaller fish, whereas larger fish consumed more cumaceans. Small fishes were consumed by intermediate sized *C. arcaijtons*.

Gulf Stream flounder demonstrated a more gradual change in feeding habits with size (Fig. 25). Average stomach volume, the mean prey number per stomach, and mean volume per prey item increased almost linearly with increasing fish length. In Gulf Stream flounder there was no sudden decrease in the number of prey per stomach with a corresponding large increase in average prey size. Small food items (i.e., amphipods) remain the most important food for all size classes of *C. arctifrons*. **Paralichthys oblongus.**—Fourspot flounder were common in the study area on all cruises (Table 1). Decapods were the most important prey at all times of the year (Fig. 26, Table 10). Amphipods were very important in winter and spring, but fishes apparently replaced amphipods in the diet in fall and summer. This seasonal shift from amphipods to fishes reflected the seasonal abundance of small fishes in the study area and also seasonal differences in the size composition of the predator population. Fourspot flounder captured in winter and spring were slightly smaller (\bar{x} SL = 196 and 180 mm, respectively) than those taken in fall and summer (\bar{x} SL = 214 and 221 mm, respectively) and fed more on smaller prey items such as amphipods. Cephalopods were frequently consumed in the fall.

Amphipods were the most abundant food for smaller fourspot flounder, although decapods contributed most to the volume of food for all size classes (Fig. 27). Amphipods steadily decreased in relative abundance in larger fishes, when decapods became the most abundant food. Fishes, polychaetes, and cephalopods contributed more to the diet of larger *P. oblongus*.

Mean prey number per stomach remained relatively constant for all size classes of *P. oblongus* (Fig. 28). However, as larger fish switched to larger prey items, mean total volume of stomach contents increased.

Overlap in Diet

Overlap in Jiet varied seasonally with changes in species and size composition of the predator community (Fig. 29). Merluccius bilinearis and U. chuss showed the greatest similarity in diet in fall (Fig. 29A), when smaller individuals (\bar{x} SL = 127 and 51 mm, respectively) dominated in the study area and fed mainly on small planktonic crustaceans such as Parathemisto gaudichaudi and Centropages typicus. Stenotomus chrysops also fed heavily on these two species and was classified with this group. Raja erinacea and C. arctifrons, both of which fed heavily on Unciola irrorata, Byblis serrata, and Ampelisca vadorum, were grouped together. Paralichthys oblongus and U, regia were more similar to each other in their diets than to other fishes in fall. Decapods and fish were the two most important food taxa for these species in fall, and amphipods were also important for both species. Lophius americanus, being primarily piscivorous, had little similarity in diet to other species but was classified with P. oblongus and U. regia which also ate tish.

In winter, predator groups changed for several reasons (Fig. 29B) First, S. chrysops was absent from the study area, and M. americanus became common and was included in the classification Also larger U. chuss (\bar{x} SL = 250 mm) and M. bilinearis (\bar{x} SL 282 mm) were present. Unciola irrorata and Erichthonius indiricornis were the most abundant food items for P. oblongus, M. americanus, R. erinacea, C. arctifrons, and U. chuss, and all of these species formed a group with high similarity. The one U. regia captured had eaten fish and was classified with L. americanus. Merluccius bilinearis, which fed mainly on hyperiids, copepods, Dichelopandalus leptocerus, and chaetognaths, differed in its diet from all other species. However, since M. bilinearis consumed tish, it was joined to this latter group at a lower level of similarity. The larger M. bilinearis present in the winter fed on different prey than smaller M. bilinearis and cooccurring larger U. chuss. Although M. bilinearis and U. chuss had similar diets in fall as juveniles, their adult diets were quite dissimilar in winter, when large U chuss ate more benthic prey and M. bilinearis continued to feed on planktonic species. Also in winter, P. oblongus fed on more amphipods than decapods and fishes, and was grouped with other amphipod feeders.

In spring (Fig. 29C), as in winter, the corophiid amphipods U. irrorata and E. rubricornis were the most important food for several predators, and the classification was similar to winter, although similarity values between predators were lower. Paralichthys oblongus and R. erinacea fed heavily on U. irrorata, E. rubricornis, and B. serrata and showed the highest similarity of any predator pair. Urophycis chuss, C. arctifrons, and M. americanus also fed heavily on U. irrorata and E. rubricornis. They were included in this group, although they also fed heavily on other species. Lophius americanus, U. regia, and M. bilinearis, though somewhat dissimilar in diet, were more dissimilar to other predators and formed a separate group because all three species consumed fishes.

In summer, C. arctifrons and M. americanus displayed the greatest similarity in diet, when C. arctifrons again fed heavily on amphipods and E. rubricornis and U. irrorata were the most abundant species consumed by both predators (Fig. 29D). Raja erinacea and U. chuss again fed heavily on both these species during summer and were included in this group, but R. erinacea also fed heavily on ampeliscid amphipods, whereas U. chuss consumed many Sagitta elegans and P. gaudichaudi. Parathemisto gaudichaudi and D. leptocerus were the most abundant species consumed by M. bilinearis and U. regia, both of which also fed on fishes. Paralichthys oblongus switched to a fish and decapod diet in summer and was classified with L. americanus since both fed heavily on fish, primarily M. bilinearis. Dichelopandalus leptocerus was consumed by both species, so they were joined to M. bilinearis and U. regia.

A classification of predators from all seasons indicated two major groups of similar feeders (Fig. 30). One group (Group I, Fig. 30) fed mainly on benthic amphipods, primarily U. irrorata, E. rubricornis, B. serrata, and A. vadorum, and brachyuran decapods (primarily C. irroratus). A second major group (Group II, Fig. 30) fed mainly on hyperiids, copepods, fishes, and caridean decapods (primarily D. leptocerus). While some fishes consistently fed similarly during all seasons (e.g., R. erinacea), several predators belonged to both groups, switching at various seasons. Thus U. chuss fed mainly on hyperiids and copepods in the fall at which time it was classified in Group II; during other seasons red hake were included in Group I. Urophycis regia also fed differently in the fall from other seasons and was classified in Group I in the fall. Paralichthys oblongus fed preferentially on small fish in summer and fall, the period of their greatest abundance, but fed more on amphipods in winter and spring.

Although the food habits of some species appeared to change seasonally, this phenomenon may be attributed to seasonal changes in size-class composition of the predators in the study area. The food habits of most predators changed dramatically with size. Thus, diet overlap between species could be greater than that between different-sized fishes of the same species. To resolve such differences, each size class within a species was treated as an entity in the normal classification for each season (Figs. 31–34).

In fall, four major groups appeared in the classification (Fig. 31). The first (Group I, Fig. 31) was composed of small-to-medium skates, medium spotted hake, large fourspot flounder, small red hake, and medium-to-large scup. These fishes fed mainly on corophiid and ampeliscid amphipods and caridean decapods. Group II consisted mainly of piscivores, such as *L. americanus* and large *M. bilinearis*, and other fishes which had prey in common. Group III consisted of large fishes having *C. irroratus* as their most abundant

food item. Finally, Group IV consisted of small U. chuss and S. chrysops and small-to-medium M. bilinearis, all of which fed heavily on hyperiid amphipods while consuming copepods and caridean decapods as well.

Small R. erinacea overlapped incompletely with other amphipod consumers, especially medium U. chuss, small U. regia, and large P. oblongus (Group I, Fig. 31). Medium-to-large R. erinacea also showed a very high similarity in diet to these three species (Group III, Fig. 31), but their prey (mainly C. irroratus) were quite different at this size. Thus, interspecific diet overlap, rather than intraspecific, was greater for these species. Small S. chrysops were very similar in diet to small U. chuss and M. bilinearis (Group IV), but were different from larger S. chrysops, which shared food items with medium U. chuss and C. arctifrons. Other examples of higher interspecific vs. intraspecific diet overlap were also evident (Fig. 31).

In winter, three major groups of similar feeders were classified (Fig. 32). Group I was composed of those fishes (Subgroup I-A) such as L. americanus and large M. bilinearis which fed largely on fishes (primarily U. chuss) and a few carideans (D. leptocerus); and those fishes (Subgroup I-B) which fed on hyperiids and carideans as well as fishes. As in fall, small M. bilinearis and U. chuss had similar diets and constituted a group (Group II) with high similarity. Group III (Fig. 32) was comprised of five species in several size classes; all fed primarily on corophiid amphipods (U. irrorata and E. rubricornis). Two subgroups were present: Subgroup III-A was comprised of small P. oblongus, R. erinacea, C. arctifrons, and large M. americanus, all of which had E. rubricornis as the most abundant food item. Subgroup III-B consisted of larger P. oblongus, U. chuss, C. arctifrons, R. erinacea, and small-tomedium M. americanus. With the exception of the largest H. oblonga, all size-classes of these species fed primarily on U. irrorata (the second most important food for large H. oblonga). Erichthonius rubricornis was the second most abundant food for most of these entities. Further subgroups (1 and 2) were distinguished by a secondary preference for other amphipods or alternatively for decapods. A multispecies group of large fishes which fed mainly on C. irroratus was absent in winter.

In winter, as in fall, different size classes within a species of predator were classified in different groups. Small R. erinacea fed mainly on E. rubricornis and overlapped with M. americanus, small P. oblongus, and small C. arctifrons. Medium R. erinacea fed mainly on U. irrorata, E. rubricornis, D. sculpta, and B. serrata, overlapping with large U. chuss, M. americanus, and again with larger P. oblongus. The largest class of skates also fed heavily on U. irrorata. Again, as in the fall, small U. chuss overlapped in diet most closely with small M. bilinearis. However, larger U. chuss fed more on gammarideans and decapods and were classified with similar feeders (Subgroup III-B). Large and medium M. bilinearis fed on fishes and were grouped with other piscivores, but small individuals fed on items similar to those taken by small U. chuss. All M. americanus fed primarily on gammarideans and were included in Group III. Small C. arctifrons and H. oblonga were similar in diet (Subgroup III-A), and larger individuals of these species were grouped with other gammaridean feeders (Subgroup III-B).

In spring (Fig. 33), the classification of predator entities resulted in several small groups, each characterized by high intragroup diet similarity. These groups were in turn joined together at lower levels of similarity. An additional large multispecies group consisted of several loosely joined entities (Group I). This group consisted mainly of piscivores such as *L. americanus*, large *U. chuss*, and small *U. regia*. These last two species also ate *C. irroratus*, in addition to fishes, and were joined with other decapod consumers (M. *americanus*, large U. *regia*, and large H. *oblonga*). The largest sizes of M. *bilinearis* consumed cephalopods (I. *illecebrosus*) and fishes (C. *arctifrons*) and were included in this rather dissimilar group.

The smaller, more similar groupings present in spring (e.g., Group II) were monospecific in many cases, indicating more specialization in the diet within each species, and less interspecific overlap in food in the spring. Thus, small and medium M. bilinearis (Group II) consumed predominantly S. elegans and were grouped together. Larvaceans were the most abundant prey for all sizes of C. arctifrons, and all sizes of this predator clustered together. Most size-classes of M. americanus clustered with small R. erinacea. Both species fed mainly on E. rubricornis and U. irrorata. All sizes of U. chuss (except the two largest individuals) were included in a single group of high similarity in spring. In fall and winter, small U. chuss fed quite differently from large ones and were classified separately with smaller individuals of other species, such as C. arctifrons, S. chrysops, and M. bilinearis. In spring, however, all U. chuss except the two largest individuals (451 and 500 mm SL) formed a distinct group. This group of U. chuss was joined with another group consisting of larger P. oblongus and R. erinacea, for which U. irrorata was the most abundant prey but which also fed heavily on decapods.

In summer (Fig. 34) interspecific overlap in diet again increased. A rather large group (Group I, Fig. 34) included the many species which consumed fishes during the summer and those species that fed primarily on planktonic invertebrates. Small *U. chuss* and *M. bilinearis* fed similarly, as in fall and winter, and were grouped together (Subgroup I-A, Fig. 34). They had consumed primarily *S. elegans*, *P. gaudichaudi*, and some gammarideans. A single small goosefish which had consumed chaetognaths (*S. elegans*) was included. The remainder of Group I consisted of those entities which had eaten fishes. Group II consisted of fishes for which *C. irroratus* was the most abundant food, followed by amphipods, other decapods, and fishes. This group consisted of large predators of decapods, such as *M. americanus*, *R. erinacea*, *P. oblengus*, and *U. regia*.

Group III consisted of amphipod eaters. *Erichthonius rubricornis* and *U. irrorata* were the two most abundant prey for all fishes in Subgroup III-A, and these two amphipods were also abundant in the diets of other Group III fishes. Other amphipods were also taken by Group III fishes.

In summer, as in most other seasons, different sizes of most predator species were included in different feeding groups. Thus, small R. erinacea clustered with other amphipod feeders, and large skates were included with larger individuals of other species which fed on decapods (primarily brachyurans such as C. irroratus). Large U. regia and P. oblongus fed on brachyuran decapods, whereas smaller individuals of both species fed more on fishes and caridean decapods. As in all other seasons except spring, small M. bilinearis and U. chuss were grouped together. However, larger M. bilinearis (151-400 mm SL) were included in a single assemblage which fed more on carideans and fishes. Urophycis chuss was associated with three separate groups. The smallest (1-100 mm SL) red hake fed on S. elegans and P. gaudichaudi and were associated with Group I-A. Intermediate-sized fish (101-300 mm SL) fed on gammarideans (U. irrorata and E. rubricornis), decapods, and S. elegans, and belonged to Group III. Large red hake (>300 mm SL) fed primarily on fishes (C. arctifrons) and C. irroratus. Macrozoarces americanus was associated with two groups: Small ocean pout fed mainly on amphipods (E. rubricornis, U. irrorata, and A. vadorum), and

larger fish fed mainly on *C. irroratus. Lophius americanus* was primarily piscivorous and all sizes were included in Group I. *Citharichthys arctifrons* fed mainly on corophiid amphipods, and all sizes were included in Group III.

DISCUSSION

Comparison of present results with previous studies indicates that although fishes select a certain type of prey, depending on their size and habitat, the prey species consumed is dependent upon prey availability and prey community structure. Generally, the important higher prey taxa, e.g., polychaetes, amphipods, decapods, etc., are important in the diet of shelf fishes throughout their range, but the species consumed reflect availability of these prey items. Raja erinacea fed mainly on amphipods and decapods in the waters around Long Island (Smith 1950; Richards et al. 1963), a finding duplicated by the present study. The amphipod Leptocheirus pinguis was the most abundant species in the diet in Long Island waters, and Smith (1950) reported that this amphipod was a dominant species in the benthos. Although locally common in muddler habitats on the outer shelf, L. pinguis is seldom abundant in the present study area (Boesch 1978) and was not abundant in the diet of the little skate. McEachran et al. (1976) found no significant differences in the higher taxonomic composition of the diet of R. erinacea from four areas, including the Middle Atlantic Bight, Georges Bank, the Gulf of Maine, and the Nova Scotian shelf. However, species composition of the most important prey changed from north to south, probably reflecting changes in the benthic fauna. Previous reports of stomach contents of the other dominant species from other localities show similar results (Hildebrand and Schroeder 1927; Olsen and Merriman 1946; Bigelow and Schroeder 1953; Jensen and Fritz 1960; Richards 1963; Barans 1969; Sikora et al. 1972; Vinogradov 1972; Langton and Bowman 1980, 1981).

Diversity and Seasonality of Prey Availability

The diets of several outer shelf fishes were quite diverse. *Raja* crinacea fed on at least 107 species, *U. chuss* fed on about 130 species, *S. chrysops* fed on 106 species, and *C. arctifrons* fed on about 70 prey species. Other predators were more specialized in diet, such as *U. regia* (45 species of prey), *M. bilinearis* (51 species), *M. americanus* (39 species), and *P. oblongus* (34 species). *Lophius* americanus was the most specialized predator, feeding on only 24 prey species, mostly fishes.

Although many species of prey were consumed by the fish community, only a few species predominated in the diet of each predator. Most species important in the diet of any one predator were also important for other predators as well. These species include the amphipods *Ampelisca vadorum*, *Byblis serrata*, *Erichthonius rubricornis*, and *Unciola irrorata*. Other important prey species were *Cancer irroratus*, *Crangon septemspinosa*, *Dichelopandalus leptocerus*, and *Diastylis bispinosa*.

Predation can be an important factor controlling the structure of benthic communities (Virnstein 1977, 1979; Peterson 1979). Selective predation on prolific prey species keeps the population levels of these species low, allowing more species to coexist in the same habitat (Dayton and Hessler 1972). The heavy predation mortality exerted through selective predation by demersal shelf fishes on ampeliscid and, especially, corophild amphipods may keep populations of these prolific species from completely dominating the benthic community, thus contributing to the high diversity (Boesch et al. 1977; Boesch 1978) in macrobenthic communities on the outer shelf.

In addition to those prey species that were important for many predators, some prey species were important to only a few predators. These included such species as *Ensis directus* (preyed on mainly by *R. erinacea*), *Clymenura* sp. A (prey for *C. arctifrons*), *Chone infundibuliformis* (prey for *S. chrysops* and *C. arctifrons*), *Ampelisca agassizi* (preyed on mainly by *S. chrysops*), fishes (fed on by *L. americanus* and seasonally important for *U. regia*, *H. oblonga*, and *M. bilinearis*), and cephalopods (important for *U. regia*, *M. bilinearis*, and *H. oblonga*).

Many prey species, mostly planktonic invertebrates, were only seasonally important in the diet of some predators. These included the copepods Centropages typicus and Paracalanus spp., hyperiid amphipods, decapod larvae, chaetognaths, larvaceans, and juvenile fishes. Seasonally important benthic invertebrates included Diastylis sculpta, Cirolana polita, Trichophoxus epistomus, Monoculodes edwardsi, Dichelopandalus leptocerus, and Crangon septemspinosa. However, most benthic food items were equally important in the diet of the predators during all seasons, reflecting the temporal persistence (Boesch 1978) of populations of macrobenthos on the shelf. The seasonal importance of planktonic prey in the diet is related to two factors. The first is the size class composition of the predators. Smaller red and silver hake present in the fall and summer consumed more copepods and hyperiids. Secondly, seasonal importance of pelagic food items is related to abundance of these taxa in the nearbottom plankton community. Chaetognaths were probably concentrated near the bottom in winter and spring, when they were important food for many demersal fishes. Larval stages of decapods were also seasonally important; this is related to the seasonal abundance of these stages in the plankton (Grant 1977).

Seasonal prey switching (Murdoch et al. 1975; Love and Ebeling 1978) was evident for some predators. For example, S. elegans was rare in the diet of large silver hake present in the study area in winter. In spring, however, S. elegans was the most abundant prey species consumed by silver hake. This probably represents an opportunistic switching in silver hake as chaetognaths become abundant in the nearbottom plankton. This switching was independent of predator size, i.e., larger silver hake present in winter and spring switched from a diet dominated by amphipods in the winter to a diet dominated by chaetognaths in the spring. Other predators switched seasonally between benthic and planktonic prey. Urophycis chuss demonstrated a similar switching to chaetognaths, and C. arctifrons switched to planktonic larvaceans in the spring. Love and Ebeling (1978) noted that fishes they studied switched to a more planktonic diet in winter and spring, when plankton volumes were high in their study area or when other food may have been relatively scarce. There were similar increases in plankton in spring in the Middle Atlantic Bight. Increased feeding on S. elegans in spring is related to an appearance of boreal zooplankton, which were abundant following the severe winter of 1977 (Grant 1979, 1980³). As concluded by Love and Ebeling (1978), seasonal switching in prey selectivity, in this case to different prey typesi.e., benthic to pelagic-probably reflects an increased relative abundance or availability of these prey species. Since benthic populations remain relatively constant (Boesch et al. 1977; Boesch 1978), this is probably due to an increase in nearbottom zooplankton, especially chaetognaths and larvaceans. Increased importance

³G. C. Grant, Acting Assistant Director, Virginia Institute of Marine Science, Gloucester Pt., VA 23062, pers. commun. 20 April 1980.

of decapod larvae in the diet of many fishes (*R. erinacea*, *U. chuss*, *M. bilinearis*, *M. americanus*) in the summer may also reflect this phenomenon.

Predator Size and Feeding Strategy

The food habits of dominant shelf fishes changed considerably with size, as noted in other fishes (Tyler 1972; Ross 1978; Werner 1979). For most predators this change was a switch to different, larger, prey taxa. Many predators (*R. erinacea*, *U. chuss*, *U. regia*, and *M. bilinearis*) fed on increasing numbers of similarly sized, small food items, up to a certain length. At this point, there was a rapid increase in mean prey size for larger predators, with a concomitant decrease in the number of prey consumed. Total volume of food increased with increasing fish length. Ross (1978) noted a similar progression in food habits with increasing size and suggested this strategy should maximize energy intake at the onset of reproduction, a time of increased energy demand.

Schoener (1971) predicted, from optimal foraging models, that food size should decrease with decreasing predator size, and should do so asymptotically. Numerous examples demonstrate the trend of his prediction, but evidence for an asymptote has been sparse, and one study indicated it did not occur (Schoener 1971). Most shelf fishes studied (Figs. 4, 7, 10, 13, 16, 25, 28) demonstrate this phenomenon, but there are exceptions. *Macrozoarces americanus* (Fig. 19) fed heavily on small food items throughout the size-range examined, with larger fish retaining small prey in the diet, while broadening their feeding to include larger prey items. *Stenotomus chrysops* underwent a marked change in prey-size preference between 100 and 150 mm standard length (Fig. 22), but then prey size remained relatively constant. There is no asymptote at the lower end of the length range for *S. chrysops*.

Larger predators should take a greater size range of food, and food diversity (i.e., number of prey types or species) should be greater in large animals, unless available small prey are sufficiently more diverse (Schoener 1971). In those predators for which benthic prey dominated (all except *L. americanus* and *M. bilinearis*), such a relationship is evident for prey types. Although amphipods, the dominant prey for smaller predators, decrease in abundance, they remain relatively common in the diet of large fish even as other larger prey items are added. However, large prey items include the much less diverse decapods and larger polychaetes. The high diversity of available small prey (amphipods, isopods, cumaceans) result in smaller fishes having a more diverse diet at the species level.

Overlap in Diet

Most predator species were selective on the macrobenthos, particularly on corophiid and ampeliscid amphipods and decapods. These crustaceans were important food for these predators, resulting in considerable overlap in diet.

Cluster analysis of predator species and size-classes based on prey similarity indicates that intraspecific and interspecific dietoverlap relationships change considerably with season and with fish size. Although there was considerable interspecific overlap in diet, there is evidence for intraspecific food-resource partitioning. Small fishes overlapped in diet intraspecifically as well as with small fishes of other species. The larger fishes of these species also exhibited interspecific dietary overlap, but fed quite differently from the juveniles. These differences in diet overlap with size were correlated with changes in feeding strategy with increased fish length. For example, in fall (Fig. 31), all *R. erinacea* ranging between 51 and 250 mm DW fed similarly and were grouped together within a larger group of similar feeders. However, skates larger than 250 mm DW fed differently and were grouped together with other large decapod feeders. *Raja erinacea* demonstrated a marked change in food habits at 250 mm DW (Fig. 4) where this shift in food-overlap relationships occurred. The other species that grouped with *R. erinacea* also demonstrated a parallel change in feeding strategy with increased size. Thus, although intraspecific changes in diet with increased size may prevent intraspecific overlap in diet, considerable interspecific overlap relationships changed seasonally, it is apparent that intraspecific differences in feeding are as important as interspecific differences in structuring the predator community.

Several reasons may account for the considerable amount of interspecific overlap in diet exhibited by shelf fishes. Optimal foraging theory predicts that as food becomes scarce, predators will take a wide variety of food and similar predators occupying the same habitat will converge in diet (Pyke et al. 1977). Alternatively, some authors have hypothesized that as food density lowers, coexisting predators will specialize on different prey and food overlap will decrease. Considerable food overlap would only be expected if food were abundant (Jones 1978). Some field studies support this latter hypothesis, although this may be due to a lack of measurement of actual resource availability. Thus, Keast (1965) and Zaret and Rand (1971) found that fishes specialized in diet and that interspecific overlap was at a minimum during the food-impoverished season. Maximum food overlap occurred when food levels were high [see also Ross (1977) and Townsend and Hildrew (1979)]. Tyler (1972) reported little overlap in the diets of northern marine demersal fishes and concluded that food limitation led to specialization and food-resource partitioning. The present results indicate that shelf fishes are selective in their feeding, but that considerable interspecific overlap occurs in diet. The question remains whether this overlap is due to a food shortage (Pianka 1976; Pyke et al. 1977) or a food abundance (Zaret and Rand 1971; Ross 1977; Jones 1978). Boesch et al. (1977) and Boesch (1978) reported that density and abundance of macrobenthos on the outer shelf were generally high and persistent year-round. Walsh et al. (1978) reported an increase in plankton productivity in the early spring and suggested most of this productivity was transferred to the bottom. This could lead to a superabundance of food near and on the bottom in the spring. It is noteworthy that food overlap among shelf fishes was lowest in spring, and that some of this was due to normally benthic predators (e.g., U. chuss and C. arctifrons) switching to planktonic prey. It appears that minimal overlap in diet of shelf fishes in the present study is associated with a superabundance of prey in the spring, supporting the hypothesis of optimal foraging (Pianka 1976; Pyke et al. 1977).

The question also remains to be answered as to whether there is competition for food among shelf fishes. Although there was much interspecific diet overlap among shelf fishes, overlap need not necessarily lead to competition unless resources are in short supply (Pianka 1976). Extensive niche overlap may actually be correlated with reduced competition (Pianka 1974, 1976; Jones 1978). Most shelf fishes exhibited extensive overlap in habitat and food, but it is not known if these resources are in short supply. Predator exclusion experiments on the outer shelf indicate that the macrobenthic community is, in part, predator controlled (Boesch 1978) and that populations of certain species, including those important as prey to fishes (e.g., corophild amphipods), may be kept below carrying capacity by fish predation. Whether this predation pressure keeps potential prey in short supply is unknown.

Seasonal intrusions of abundant predators could also result in food resource limitation and competition. Tyler (1972) reported that seasonally abundant species did not, as a group, feed on a unique set of prey species. In the present study *S. chrysops*, a seasonal species, was similar in diet to *U. chuss* and *M. bilinearis*. Ocean pout were only abundant seasonally (in summer), but fed on common prey species shared with other predators. Apparently seasonal intrusions of abundant predators do not affect food availability on the Middle Atlantic Shelf.

Overlap in diet between closely related species is generally lower than that for unrelated species, suggesting food resource partitioning among closely related species. Thus the congeners *U. chuss* and *U. regia* show a low similarity in prey species and prey size (Fig. 29). Seasonally, the bothids *Citharichthys arctifrons* and *Hippoglossina oblonga* were also quite dissimilar in diet. Still, no predator monopolized any trophic resource. This apparent food resource partitioning among closely related species may be due, not to present limited food resources, but to environmental factors and predator community structure during the evolutionary history of these species.

Although predators demonstrated considerable diet overlap, each predator had a diverse diet and fed selectively on some prey items that were not as important in the diets of other predators. Perhaps each predator has a food refuge in these prey species if competition for food becomes intense. Due to overexploitation by fishing vessels, populations of fishes on the outer shelf may be below carrying capacity (Edwards 1976; Clark and Brown 1977; Edwards and Bowman 1979), allowing several dominant species to coexist on similar food resources. At higher population levels, food resources may become a limiting factor and the high level of diet overlap could lead to competition. With reduced fishing pressure due to extended jurisdiction by the United States, fish populations on the outer shelf may increase, and food competition may become intense.

ACKNOWLEDGMENTS

I thank John A. Musick, my major advisor, for providing assistance during this study and for his review of the manuscript; C. A. Barans, G. C. Grant, and C. A. Wenner for their criticism and review of the manuscript: and the able assistance, in the field and in the laboratory, of many Virginia Institute of Marine Science employees and graduate students. I especially thank R. K. Carpenter, J. A. Colvocoresses, E. J. Foell, N. P. Heil, R. W. Middleton, W. G. Raschi, and J. van Montfrans for their assistance on cruises; M. A. Bowen (amphipods), E. L. Wenner and J. van Montfrans (decapods), G. Gaston (polychaetes), G. C. Grant (copepods and chaetognaths), and P. O. Smyth (decapod larvae) for help in identifying prey organisms; and W. P. Blystone for the computer programs used in data analysis. This work was supported through funds provided by the Bureau of Land Management, contract AA550-CT6-62, and the Virginia Institute of Marine Science.

LITERATURE CITED

BARANS, C. A.

1969. Distribution, growth and behavior of the spotted hake in Chesapeake Bight, M.A. Thesis, College of William and Mary, Williamsburg, Va., 53 p. BIGELOW, H. B., and W. C. SCHROEDER.

1953. Fishes of the Gulf of Maine. U.S. Dep. Inter., Fish Wildl. Serv., Fish. Bull. 53, 577 p.

BIGELOW, H. B., and W. W. WELSH.

1925. Fishes of the Gulf of Maine. Bull. U.S. Bur. Fish. 40 (Part 1), 567 p.

BOESCH, D. F.

1972. Species diversity of marine macrobenthos in the Virginia area. Chesapeake Sci. 13:206-211.

1978. Benthic ecological studies: macrobenthos. In Middle Atlantic Outer Continental Shelf Environmental Studies: Chemical and Biological Benchmark Studies, Vol. II, p. 6-1 to 6-198. Va. Inst. Mar. Sci., Gloucester Point.

BOESCH, D. E. J. N. KRAEUTER, and D. K. SERAFY.

1977. Distribution and structure of communities of macrobenthos on the Outer Continental Shelf of the Middle Atlantic Bight: 1975-1976 investigations. Va. Inst. Mar. Sci., Spec. Rep. Appl. Mar. Sci. Ocean Eng. 175, 111 p. BRAY, J. R., and J. T. CURTIS.

1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325–349.

CHAO, L. N., and J. A. MUSICK.

1977. Life history, leeding habits, and functional morphology of juvenile sciaenid lishes in the York River estuary, Virginia, Fish, Bull., U.S. 75:657–702.

CLARK, S. H., and B. E. BROWN.

1977 Changes in biomass of finfishes and squids from the Gulf of Maine to Cape Hatteras. 1963–74, as determined from research vessel survey data. Fish Bull, U.S. 75.1, 21.

CLIFFORD, H. 1. and W. STEPHENSON.

1975 An introduction to numerical classification. Acad. Press. N.Y., 229 p. DAY TON, P.K., and R. R. HESSLER.

1972 Role of biological disturbance in maintaining diversity in the deep sea – Deep Sea Res. 19/199/208

EDWARDS, R. L.

1976 Middle Atlantic fisheries. Recent changes in populations and outlook. Am. Soc. Limitol. Oceanogr. Spec. Symp. 2 302-311.

FDWARDS R. L. and R. E. BOWMAN

1979 Food consumed by continental shell fishes In R H. Stroud and H. Clepper (editors). Predator-prey systems in lisheries management, p. 387–406. Sport-Fish Inst. Wash. D C.

HIZ, F. S., Jr., and F.C. DAIBER

1963 An introduction to the biology of Raia celantaria Bose 1802 and Raja crimacea Mitchill 1825 as they occur in Delaware Bay, Bull. Bingham Occanogr. Collect. Yale Univ. 18(3):69–96.

GALZ, A. J. Ji

1979 Ecological morphology of freshwater stream fishes. Tulane Stud. Zool Bot 21(2):93-124

GRANEG. C

1977 Zooplankton-neuston In Chemical and biological benchmark studies on the Middle Atlantic continental shell., Vol. II, p. 4-1 to 4-13. Va. Inst. Mar. Sci., Gloucester Point.

1979 Middle Atlantic Bight Zooplankton: second year results and a discussion of the two-year BLM-VIMS survey. Va. Inst. Mar. Sci., Spec. Sci. Rep. Appl. Sci. Ocean Eng. 192, 236 p.

HILDEBRAND, S. F., and W. C. SCHROEDER.

1928 Fishes of Chesapeake Bay. Bull. U.S. Bur. Fish. 43:1-366.

HYNES, H. B. N.

1950. The lood of fresh-water sticklebacks (*Gasterosteus aculeatus* and *Psyostcus pungitus*), with a review of the methods used in studies of the food of fishes. J. Anim. Ecol. 19:36–58.

JENSEN, A. C., and R. L. FRITZ.

1960. Observations on the stomach contents of silver hake. Trans. Am. Fish. Soc. 89:239-240.

JONES, R.

1978. Competition and co-existence with particular reference to gadoid fish species. Rapp. P.-V. Réun, Cons. Int. Explor. Mer 172:292-300.

KEAST. A.

1965. Resource subdivision amongst cohabiting fish species in a bay. Lake Opinicon, Ontario. In Proc. Eighth Conf. on Great Lakes Res., Great Lakes Res. Div., Univ. Mich., Publ. 13, p. 106–132.

LANCE, G. N., and W. T. WILLIAMS.

1967. A general theory of classificatory sorting strategies. 1. Hierarchical systems. Comput. J. 9:373-380.

LANGTON, R. W., and R. E. BOWMAN.

1980. Food of fifteen Northwest Atlantic gadiform fishes. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-740, 23 p.

1981. Food of eight Northwest Atlantic pleuronectiform fishes. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-749, 16 p.

LOVE, M. S., and A. W. EBELING.

1978. Food and habitat of three switch-feeding fishes in the kelp forests off Santa Barbara, California. Fish. Bull., U.S. 76:257-271. McEACHRAN, J. D., D. F. BOESCH, and J. A. MUSICK.

1976. Food division within two sympatric species-pairs of skates (Pisces: Rajidae). Mar. Biol. (Berl.) 35:301-317.

McEACHRAN, J. D., and J. A. MUSICK.

- 1975. Distribution and relative abundance of seven species of skates (Pisces: Rajidae) which occur between Nova Scotia and Cape Hatteras. Fish. Bull., U.S. 73: 110-136.
- MURDOCH, W. W., S. AVERY, and M. E. B. SMYTH.
- 1975. Switching in predatory fish. Ecology 56:1094-1105.

MUSICK, J. A.

- 1974. Seasonal distribution of sibling hakes. *Urophycis chuss* and *U. tenuis* (Pisces: Gadidae) in New England. Fish. Bull., U.S. 72:481-495.
- MUSICK, J. A., J. A. COLVOCORESSES, and E. J. FOELL.
- 1979. Historical community structure analysis of finfishes. I: Chesapeake Bight. Va. Inst. Mar. Sci., Spec. Rep. Appl. Sci. Ocean Eng. 198:1-44. MUSICK, J. A., and L. P. MERCER.

1977. Seasonal distribution of black sea bass, Centropristis striata, in the

mid-Atlantic Bight, with comments on the ecology and fisheries of the species. Trans. Am. Fish. Soc. 106:12-25.

- NICHOLS, J. T., and C. M. BREDER, Jr.
 - 1927. The marine fishes of New York and southern New England. Zoologica (N.Y.) 9(1), 192 p.

OLSEN, Y. H., and D. MERRIMAN.

- 1946. Studies on the marine resources of southern New England. IV. The biology and economic importance of the ocean pout, *Macrozoarces americanus* (Bloch and Schneider). Bull. Bingham Oceanogr. Collect., Yale Univ. 9(4):1-184.
- PEARCE, J. B., J. V. CARACCIOLO, M. B. HALSEY, and L. H. ROGERS.

1976. Temporal and spatial distribution of benthic macroinvertebrates in the New York Bight. Am. Soc. Limnol. Oceanogr. Spec. Symp. 2:394–403. PETERSON, C. H.

1979 The importance of predation and competition in organizing the intertidal epifaunal communities of Barnegat Inlet. New Jersey. Oecologia (Berl.) 39:1-24.

PIANKA, E. R.

- 1974. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. 71:2141-2145.
- 1976. Competition and niche theory. In R. M. May (editor). Theoretical ecology: principles and applications. p. 114-141. W. B. Saunders Co., Phila.
- PINKAS, L., M. S. OLIPHANT, and I. L. K. IVERSON.
- 1971. Food habits of albacore, bluefin tuna, and bonito in California waters. Calif. Dep. Fish Game, Fish Bull, 152, 105 p.

PRATT, S. D.

1973. Benthic fauna. In Coastal offshore environmental inventory, Cape Hatteras to Nantucket Shoals, p. 5-1 to 5-70. Mar. Publ. Ser. Univ. R.1. 2.
NKE C. H., H. B. DULLIAM and E. J. CHARNOV.

PYKE, G. H., H. R. PULLIAM, and E. L. CHARNOV.

1977. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52:137–154.

RICHARDS, S. W.

1963. The demersal fish population of Long Island Sound. Bull. Bingham Oceangr. Collect., Yale Univ. 18(2), 101 p.

RICHARDS, S. W., D. MERRIMAN, and L. H. CALHOUN.

1963. Studies on the marine resources of southern New England. IX. The biology of the little skate, *Raja erinacea* Mitchill. Bull. Bingham Oceanogr. Collect., Yale Univ. 18(3):5-67. ROSS, S. T.

1977. Patterns of resource partitioning in searobins (Pisces: Triglidae). Copeia 1977:561-571.

1978. Trophic ontogeny of the leopard searobin, *Prionotus scitulus* (Pisces: Triglidae). Fish. Bull., U.S. 76:225-234.

SCHOENER, T. W.

1971. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2:369-404.

SEDBERRY, G.R., and J. A. MUSICK. 1978. Feeding strategies of some demersal fishes of the continental slope and rise off the mid-Atlantic coast of the USA. Mar. Biol. (Berl.) 44:357–375.

SIKORA, W. B., R. W. HEARD, and M. D. DAHLBERG. 1972. The occurrence and food habits of two species of hake, *Urophycis regius* and *U. floridanus* in Georgia estuaries. Trans. Am. Fish. Soc. 101:513-525.

SMITH, F. E.

1950. The benthos of Block Island Sound. I. The invertebrates, their quantities and their relations to the fishes. Ph.D. Thesis, Yale Univ., New Haven, 213 p.

STEIMLE, F. W., and R. B. STONE.

1973. Abundance and distribution of inshore benthic fauna off southwestern Long Island, New York. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-673, 50 p.

TOWNSEND, C. R., and A. G. HILDREW.

1979. Foraging strategies and co-existence in a seasonal environment. Oceologia (Berl.) 38:231-234.

TYLER, A. V.

- 1971. Periodic and resident components in communities of Atlantic fishes, J. Fish. Res. Board Can. 28:935-946.
- 1972. Food resource division among northern marine demersal fishes. J. Fish. Res. Board Can. 29:997-1003.

VINOGRADOV, V. I.

1972. Studies of the food habits of silver and red hake in the northwest Atlantic area, 1965-67. Int. Comm. Northwest Atl. Fish. Res. Bull. 9:41-50.

VIRNSTEIN, R. W.

1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58:1199-1217.

- 1979. Predation on estuarine infauna: Response patterns of component species. Estuaries 2:69-86.
- WALSH, J. J., T. E. WHITLEDGE, F. W. BARVENIK, C. D. WIRICK, and S. O. HOWE.

1978. Wind events and food chain dynamics within the New York Bight. Limnol. Oceanogr. 23:659-683.

WERNER, E. E

1979. Niche partitioning by food size in fish communities. In R. H. Stroud and H. Clepper (editors), Predator-prey systems in fisheries management, p. 311-322. Sport Fish. Inst., Wash., D.C.

WERNER, E. E., and D. J. HALL.

1976. Niche shifts in sunfishes: experimental evidence and significance. Science (Wash., D.C.) 191:404–406.

WINDELL, J. T.

1971. Food analysis and rate of digestion. In W. E. Ricker (editor), Methods for assessment of fish production in fresh waters, p. 215–266. IBP (Int. Biol. Programme) Handb. 3.

ZARET, T. M., and A. S. RAND.

1971. Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology 52:336-342.

Figure 1.—Location of sample areas B and E.

Raja erinacea

Figure 2.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food in the diet of *Raja erinacea*, by seasonal cruise.

Figure 3.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food for size intervals (mm) of *Raja erinacea*.

Figure 4.—Relationship between size of *Raja erinacea* and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

Lophius americanus

Figure 5.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food in the diet of *Lophius americanus*, by seasonal cruise.

Figure 6.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food and size intervals (mm) of *Lophius americanus*.

Figure 7.—Relationship between size of *Lophius americanus* and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

Urophycis chuss

Figure 8.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food in the diet of *Urophycis chuss*, by seasonal cruise.

Figure 9.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of feod for size intervals (mm) of *Urophycis chuss*.

Figure 10.—Relationship between size of *Urophycis chuss* and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

Urophycis regia

Figure 11.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food in the diet of *Urophycis regia*, by seasonal cruise.

Figure 12.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food for size intervals (mm) of Urophycis regia.

Figure 13.—Relationship between size of *Urophycis regia* and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

Merluccius bilinearis

Figure 14.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food in the diet of *Merluccius bilinearis*, by seasonal cruise.

Figure 15.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food for size intervals (mm) of *Merluccius bilinearis*.

Figure 16.—Relationship between size of *Merluccius bilinearis* and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

Macrozoarces americanus

SPRING 1977

100-

90

80

70

60 50

10-

0

10-

20 30.

50

60

70

% VOLUME 40 88%

% NUMBER 40 30-20

IRI 8546

1728

2263

0

74

11

Ε

36%

A B C D E

F

С

44%

В

36%

% FREQUENCY

Figure 18.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food for size intervals (mm) of *Macrozoarces americanus*.

Figure 19.—Relationship between size of *Macrozoarces americanus* and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

Figure 20 (upper left).—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food in the diet of *Stenotomus chrysops* in the fall.

Figure 21 (lower left).—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food for size intervals (mm) of *Stenotomus chrysops*.

Figure 22 (upper right).—Relationship between size of Stenotomus chrysops and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

IRI

<1

Figure 23.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food in the diet of *Citharichthys arctifrons*, by seasonal cruise.

Figure 24.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food for size intervals (mm) of *Citharichthys arctifrons*.

Figure 25.—Relationship between size of *Citharichthys arctifrons* and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

Paralichtnys obiongus

Figure 26.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food in the diet of *Paralichthys oblongus*, by seasonal cruise.

Figure 27.—Percent frequency occurrence, percent number, percent volume displacement, and index of relative importance (IRI) of higher taxonomic groups of food for size intervals (mm) of *Paralichthys oblongus*.

Figure 28.—Relationship between size of *Paralichthys oblongus* and volume of food consumed (broken line), mean prey volume (solid line), and prey number per stomach (dashed line).

(C) SPRING

(D) SUMMER

Figure 29.—Dendrograms depicting diet similarity (Bray-Curtis similarity index) among dominant predators, within each season.

Similarity

Figure 30.—Dendrogram depicting diet similarity (Bray-Curtis similarity index) among predators, by season. Roman numerals indicate groups referred to in the text.

Figure 31.—Dendrogram depicting diet similarity (Bray-Curtis similarity index) among size groups of predators in the fall. Roman numerals indicate groups referred to in the text.

Figure 32.—Dendrogram depicting diet similarity (Bray-Curtis similarity index) among size groups of predators in winter. Roman numerals, letters and arabic numbers indicate groups and subgroups referred to in the text.

Figure 33.—Dendrogram depicting diet similarity (Bray-Curtis similarity index) among size groups of predators in spring. Roman numerals indicate groups referred to in the text.

Figure 34.—Dendrogram depicting diet similarity (Bray-Curtis similarity index) among size groups of predators in summer. Roman numerals and letters indicate groups and subgroups referred to in the text.

Table 1.--Fishes selected for food habits analysis, and percentage of the total catch by number (N) and weight (W) comprised by each species, for each cruise.

	Fall	1976	Winte	r 1977	Sprin	g 1977	Summe	er 1977
Species	N	W	N	W	N	W	N	W
Rajidae								
Raja erinacea	6.7	21.2	13.4	14.7	24.2	28.6	5.2	15.6
Lophiidae								
Lophius americanus	1.5	18.3	2.8	11.5	3.3	12.7	1.2	10.5
Gadidae								
Urophycis chuss	25.0	0.3	39.8	33.4	36.6	33.6	17.3	15.4
Urophycis regia	1.2	1.4	0.1	0.1	0.6	0.9	7.2	12.0
Merluccius bilinearis	16.7	5.1	22.8	25.3	10.2	14.1	27.0	32.1
Zoarcidae								
Macrozoarces americanus	0.5	0.4	1.8	().9	5.3	3.8	8.2	2.7
Sparidae								
Stenotomus chrysops	26.7	25.9	0.1	0.1	0.4	0.2	0.0	0.0
Bothidae								
Citharichthys arctifrons	11.7	().1	7.9	0.1	7.1	0.3	26.9	1.8
Paralichthys oblongus	5.2	7.1	5.0	2.8	9.2	4.2	1.9	5.3
TOTAL	95.2	79.8	93.7	88.9	96.9	98.4	94.9	95.4

.

Taxon			1976				r 1977			Spring	3 1977			Summer	1977	
Food Item	F	N	V	IRI	F	N	V	IRI	F	N	v	IRI	F	N	V	IRI
Cnidaria																
Hydrozoa																2
Eudendrium spp.	-	-	-	-	.35	.01	.00	∠1	-	-	-	-	-	-	-	-
													-			
Anthozoa																
Unidentified	-	-	-	-	-	-		-	1.13	.03	.36	∠1	-	-	-	-
Annelida																
Polychaeta Aphrodita hastata	3.67	.12	1.63	6	2 00	07	1 00	,	1 10			-				1
Harmothoe extenuata	.41	.12	.25	ø ∡1	2.08	.07	1.90	4 <1	1.13	.03	.52	1	-	-	-	-
Sthenelais limicola	3.67	.17	.17	1	7.29	.48	.03 1.28	13	10.94 17.36	.38	.22 1.89	7	7.05	.30	.13	3
Phyllodocidae	-				-	- 40	-	-	.35	.01	.01	44 ∠ 1	4.41	.15	.26	2
Nereidae	.41	.01	.00	∠1	-	-	-	-		.01	.01	-1	.00	.03	.02	∡1
Nereis	.41	.01	.00	<1	_	-	-	-	. 38	.01	.00	<1	4.41	.18	.20	- 2
N. grayi	.41	.01	.00	<1	-	-	_	-	-	-	-	-	-	.10	-	2
Nephtyidae	-	-	-	-	-	-	-	-	1,13	.03	.15	∠1	-	2	-	-
Aglaophamus circinata	4.10	.11	.86	4	1.73	.04	.72	1	.75	.02	.03	<1	1.32	.04	.08	∠1
Nephtys	-	-	-	-	-	-	-	-	.75	.02	.23	<1	-	-	-	-
N. bucera	-	-	-	-	-	-	-	-	.38	.01	.04	<1	-	-	-	-
N. incisa	.41	.01	.83	<1	-	-	-	-	-	-	-	-	-	-	-	
Glycera spp.	2.86	.08	.24	1	2.78	.06	.10	∠1	.75	.02	.05	<1	.88	.03	.08	∠1
G. dibranchiata	6.53	.20	.81	7	-	-	-	-	12.08	.31	1.30	19	3.08	.09	.56	2
Godiada norvegica	.41	.03	.69	<1	11.46	.31	2.29	30	-	-	-	-	-	-	-	-
G. brunnea	-	-	-		. 35	.01	.26	<1	-		-			-	-	
Scalibregma inflatum	.41	.01	.01	∠ 1	.69	.02	.01	<1 ≼1	6.42	.14	.25	3	3.96	.11	.14	1
Ophelia denticulata	1.22	.03	.23	∠1	.69	.02	.04	<1	.38	.01	.08	<1 <1	- 0.1			- 10
Ophelina spp.	4.08	·75 .02	.51	5 ∠ 1	.35	.01	.02	41	.75	.04 .01	.04	<1	8.81 5.73	.76	.61	12 2
Maldanidae	.81 .41	.02	.02	<1	.35	.03	.02	<1 <1	.38	.01	.01	Z 1	.88	.03	.04	·<1
<u>Clymenella</u> <u>torquata</u> Euclymene collaris	.41	.01	.02	4 1		-	.02	-	.50	-	-	-	.00	-	.04	
Clymenura sp. A	8.57	.24	.58	7	8.67	.22	.96	10	10.19	.23	.67	9	1,32	.04	.05	41
Spionidae	.41	.01	.03	<1	-	-	-	-	.75	.02	.02	<1	.44	.01	.00	4 1
Spiophanes bombyx	-	-	-	-	-	-	-		-	-	-	-	.44	.01	.00	<1
Onuphis pallidula	-	-	-	-	-	-	-	-	.38	.01	.01	<1	=	-	-	-
Marphysa spp.	-	-	-	-	-	-	-	-	.75	.02	.01	<1	.44	.01	.03	41
Lumbrineris fragilis	2.45	.07	.76	2	1.39	.03	.22	<1	1.51	.03	.12	<1	.44	.01	.07	<1
Ampharete arctica	1.22	.03	.02	∠1	7.98	.23	.37	5	3.77	.10	.15	1	1.32	.04	.01	<1
Pherusa affinis	2.04	.11	.56	1	2.08	.08	.28	1	1,51	.08	.42	1		-	-	-
Sabellidae	1.22	.06	.94	1	-	-	-	-	-	-	-	-	.88	.03	. 39	<1
Chone infundibuliformis	4.90	.20	.77	5	3.47	.08	.16	1	3.02	.07	.18	1	.44	.01	.00	<1
Filograma implexa	.41	.01	.50	< 1	1/ 00		1 00	-	-	-,-	-	-	- 10		-	- /
Unidentified	29.80	.97	3.83 14.28	143 963	14.93 42.31	.37 2.08	1.26	24 515	20.38 61.51	.47 2.73	.60 7.03	22 600	10.13	.31	.30	6 225
Total Polychaeta	54.69	3.32	14.20	903	42.31	2.00	10.07	515	61.51	2.75	7.03	800	40.53	2.34	3.20	225
Mollusca																
Scaphopoda																
Unidentified	.41	.01	.00	∠1	-	-	-	-	-	-	-	-	-	-	-	-
Gastropoda																
Unidentified	.41	.01	.08	∠1	. 35	.01	.00	$<^1$	-	-	-	-	-	-	-	-
- 1																
Pelecypoda	10 / -	00	2 10	24	00.10	- 1	10.00	0.01	07 17	()	10 (1	262	2.00	10	60	~
<u>Ensis</u> <u>directus</u> Unidentified	10.61	.29 .37	3.10	36 108	20.48	.51	10.30	221 ∠1	27.17	.63	12.61	360 ∠1	3.08	.10	.62	2
Total Pelecypoda	13.47 24.08	. 37	7.61 10.71	274	20.83	.52	10.49	229	27.55	.64	12.62	365	3.08	.10	.62	- 2
Iotal lelecypoua	24,00	.07	10.71	2/4	20.03	2	10.47	4 L J	41.22	.04	12.02	202	5.00	. 10	.02	-
Cephalopoda																
Loligo pealei	.41	.01	1.25	1		-	-	-	-	-	r -	-	-	-	-	-
Rossia tenera	.82	.02	.01	<1	-	-	-	-	. 38	.01	.00	∠1	.44	.01	.20	-1
Octopus vulgaris	-	-	-	-	-	-	-	-	-	-	-	-	.88	.03	.08	4
Unidentified	÷	-	-	-	-	-	-	-	.38	.01	.00	<1	-	-	-	-
Total Cephalopoda	1.22	.03	1.26	2	-	-	-	-	.75	.02	^ .00	41	1.32	.04	.28	۲1
			22 5 5						20 27							-
Total Mollusca	25.71	.72	12.06	329	21.18	.53	10.49	233	28.30	.66	12.62	376	4.41	.14	.90	5

Table 2 .-- Percent frequency occurrence (F), percent number (N), percent volume (V) and index of relative importance (IRI) of food items in Raja erinacea stomachs, by cruise.

1.4.

Table 2.--Continued.

axon		Fall	1976			Winte	er 1977			Sprin	g 1977			Summe	r 1977	
Food Item	F	Ň	V	IRI	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI
rustacea																
Copepoda																
Calanus finmarchicus	-	-	-	_	-	-	-	-	1.51	.04	.00	∠1	3.08	.10	.00	41
Paracalanus spp.	-	-	-	-	1.39	.08	.00	∠1	-	_	-	-	-	-	-	-
Centropages typicus		-	-	-	1.73	.05	.00	41	-	-	-	-	.44	.01	.00	∠1
Candacia armata		-	-	-	-	-	-	-	-	-		-	13.22	.47	.01	6
Metridia lucens	-	-	-	-	.35	.01	.00	<1	1.51	.03	.00	∠1	.44	.01	.00	~1
Caligus spp.	-	-	-	-	-	-	-	-	3 	-	-	-	.44	.01	.00	4
Unidentified	.41	.01	.00	<1	.69	.02	.00	<1	.75	.02	.00	<1	-	-	-	-
Total Copepoda	.41	.01	.00	∠1	3.82	.16	.00	1	3.40	.09	.00	<1	15.42	.60	.01	7
Stomatopoda																
Unidentified	-	-	-	-	-	-	-	-	-	-		-	1.32	.04	.05	41
													1.54	.04	.05	~
Mysidacea																
Heteromysis formosa	.41	.01	.00	<u>1</u>	.69	.02	.00	<1	.75	.02	.01	<1	.88	.03	.01	<1
Erythrops erythropthalma		-	-	·	-		~	-	. 75	.02	.00	<1	.88	.03	.00	4
Total Mysidacea	.41	.01	.00	∠1	.69	.02	.00	~ 1	1.50	.03	.02	<1	1.76	.05	.01	<1
Cumacea Eudorella spp.	-	_	-	-	.35	.01	.00	4	2,26	.05	.00	4 1	1.1	.01	00	-1
E. hispida	-	-	-	-	.69	.02	.00	4	1.13	.03	.00	<1	.44	.01	.00	_⊲
Diastylis spp.	2.45	.17	.02	41	3.13	.26	.02	1	.38	.01	.00	44	.44	.01	.00	- <1
D. sculpta	.41	.01	.00	41	33.68	4.26	.53	161	60.75	8.65	1.21	594	42.73	6.97	.60	323
D. bispinosa	22.04	1.84	.36	49	35.76	4.10	1.00	182	42.26	4.29	.56	205	48.46	5.39	.00	296
D. polita	-	-	-	-	-	-	-	-	. 38	.01	.00	41	-	-	-	-
Nannastacidae	-	-	-	-	. 35	.01	.00	<1	-	-	-	-	-	-	-	-
Petalosarsia declivis	-	-	-	-	1.39	.05	.00	<1	1.51	.07	.00	<1	2.64	.08	.00	<1
Unidentified	6.53	. 32	.04	2 78	2.43 54.86	.06	.01	<1 567					.44	.01	1.31	<1
Total Cumacea	28.16	2.34	.43	78	54.86	8.77	1.56	567	70.94	13.09	1.77	1055	6.3.44	12.47	1.31	874
Isopoda																
Chirodotea spp.	.41	.01	.00	<u></u>	.35	.01	.00	∠1	.38	.02	.00	<1	.44	.03	.00	< 1
C. tuftsi	2.04	.07	.01	<1	.35	.01	.00	<1	1.38	.01	.00	<1	.88	.04	.01	<1
C. arenicola	-	-	-	-	-	-	-	-	1.51	.07	.02	4	.44	.01	.00	<1
Edotea triloba	.41	.01	.00	∠1	2.43	.05	.01	<1	12.83	.54	.09	8	.88	.04	.01	<1
Cirolana spp.	-	-	() () No	-	-	•	-	-		-		-	-	-	-	-
C. polita	18.78	1.10	1.27	44	13.19	.36	.93	17	11.32	.59	1.38	22	3.08	.10	.22	1
Janira alta	Ξ	•	-	-	-	-	-	-	. 38	.01	.00	ন	.44	.01	.00	<1
Unidentified	.41	.01	.00	<1	.69	.02	.02	∠1		1 0/		-	-	-	-	
Total Isopoda	20.40	1.20	1.28	51	15.97	.44	.97	23	24.91	1.24	1.51	68	6.17	.21	.24	3
Amphipoda																
Ampelisca spp.	4.08	.32	.02	1	1.39	.05	.01	41	.75	.02	.00	1	.44	.01	.00	41
A. vadorum	38.78	9.46	1.74	436	22.92	1.20	. 34	34	22.26	.94	.26	34	42.29	9.31	1.53	458
A. macrocephala	.41	.02	.01	∠1	.69	.02	.01	<1	. 38	.01	.00	4	-	-	-	-
A. agassizi	2.86	.10	.03	<1	1.73	.04	.01	<1	3.40	.13	.01	∠1	5.73	. 19	.03	1
Byblis serrata	62.45	49.82	9.32	3694	57.64	9.43	2.64	696	67.55	11.26	3.04	966	69.16	19.49	4.06	1629
Leptocheirus pinguis	8.57	.67	.33	9	18.05	2,05	1.17	58	14.34	.85	.45	19	8.81	. 37	.16	5
Argissa hamatipes	-	-	-	-	4.17	. 16	.02	1	.75	.02	.00	41	2.20	.06	.00	<1
Corophium spp.	.41	.01	.00	41	. 35	.01	.00	41	-	-	-	-	-	-	-	-
Erichthonius rubricornis	26.53	1.84	.18	53	66.67	17.64	1.89	1302	74.34	28.30	3.69	2379	71.37	14.98	1.14	1152
Unciola spp.		-		-	-	-		-		-	-	-	.44	.01	.00	1
U. irrorata	51.43	8.06	1.50	491	87.15	50.65	15.86	5797	87.92	33.91	9.28	3798	77.09	15.51	3.24	1446
Pseudunicola obliquua		- 01	- 00		-	-	-	-	. 38	.01	.00	<1	1.70			-1
Siphonoectes smithianus	.41	.01	.00	∠1 ∡1	1.39	.04	.02	<1	38	.02	.02	<1	1.76	.08	.01	<1 <1
Melita dentata	.41	.01	.03	4	.69	.04	.02	<1	2.64	.02	.02	4	.44 3.96	.14	.00	1
<u>Casco bigelowi</u> Jerbarnia sp. A	1.22	.05			. 35	.02	.00	<1	1.13	.10	101	<1 <1	3.90	.14	- 00	
Protohaustorius wigleyi	1.63	.05	.01	4 1	3.47	.10	.00	<1	1.89	.12	.01	41	2.64	.08	.00	<1
	-	-	-		.35	.01	.00	2	-	-	-	-	.88	.03	.00	21
Photis spp.	-	-	-	-	-	-	-	<u>~</u>	. 38	.01	.00	4 1	.44	.01	.00	<1
Photis spp.				-	-	-	-	-	3.02	.09	.01	Z 1	-	-	-	-
<u>Photis</u> spp. Photis dentata	-	-														-1
<u>Photis</u> spp. <u>Photis dentata</u> Protomedia fasciata	4,49		.06	<1	2.78	.06	.06	<1	3,02	.08	.09	∠1	1.32	.04	.01	Z 1
Photis spp. Photis dentata Protomedia fasciata Hippomedan serratus Anonyx sarsi	- 4.49 1.22	- .15 .03	.06	<1 <1	2.78	.06	.06	۲۱ حا	3.02 2.64	.08	.09	<1 1	1.32	.04	.01	_<1
Photis spp. Photis dentata Protomedia fasciata Hippomedan serratus Anonyx satsi		.15		<1 <1 4	2.78 .35 .35								1.32	.04 - -	.01 - -	-
<u>Photis</u> spp. <u>Photis dentata</u> <u>Protomedia fasciata</u> <u>Hippomedan serratus</u>	1.22	.15	.02	<1	. 35	.01	.02	41	2.64		.17		-	.04 - - -	.01 - -	-
Photis spp. Photis dentata Protomedia fasciata Hippomedan serratus Anonyx sarsi A. lilljeborgi	1.22	.15 .03 .01	.02	<1 4	.35	.01 .01	.02 .01	41	2.64		.17 -		-	.04 - - - - 9.08	.01 - - - 1,19	

 \sim

.

Table 2 .-- Continued.

Taxon	P	Fall N	1976 V	IRI	F	Winte	r 1977 V	IRI	7	Sprin N	ng 1977 V	IRI	P	Summe	er 1977 V	IRI
Food Item	.82	.02	.00	<1 <1					. 38	.01	.00	∠1			-	
Synchelidium americanum Phoxocephalus holbolli	.62	.01	.00	~1	1.04	.02	.00	<1	2.64	.06	.01	<1	4.85	.20	.02	. Tr
Trichophoxus epistomus	21.63	2.20	. 32	55	4.86	.12	.02	1	7.92	.23	.05	2	6.17	.19	.03	
Harpinia propinqua	1.22	.03	.00	<1	-	-	-	-	. 38	.01	.00	<1	.44	.01	.00	4
Stenopleustis inermis	.82	.02	.00	<1	2.78	.06	.00	<1	6.79	.25	.01	2	11.01	. 38	.00	
Hyperiidae	1.63	.05	.01	<1		-	-	-		-	-					•.
Parathemisto gaudichaudi	6.12	.20	.02	1	1.39	.03	.00	<1 <1	.75	.02	.00	<u>حا</u>	29.07	1.54	.12	46
Caprellidae	-	.02	.00	- <1	.35 15.63	.01	.00	15	16 08		21		7 05	- 20	- 07	,
Aeginine longicornis	.82 16.33	.94	.24	19	2.43	.07	.03	<1	16.98 3.02	.75	:01	16 41	7.05 .88	.30	:87	<1
Unidentified	77.14	74.20	13.83	6791	93.06	82.79	22.52	9800	93.96	77.45	17.35	8908	91.63	72.02	11.70	/ 767
Total Amphipoda	//. 14	74.20	13.05	0/91	23.00	02177										
Euphausiacea Euphausiidae	-	-	-	-	-	-	-	-	-	-	-	-	.44	.01	.00	41
Decapoda																
Leptochela bermudensis	1.22	.03	.02	4	-	- 05	- 24	- 1	4.53	.10	.02	- 1	1.32	.05 .74		23
Dichelopandalus leptocerus	6.94	.28	1.78	14 ∠1	1.73	.05	.24		4.55		.02	- 1	.44	.01		
Crangonidae Crangon septemspinosa	28.98	1.27	2.09	97	12.15	.82	.54	17	7.17	.21	.28	4	44.05	3.06		< 21
Munida iris		-	-	-	.35	.01	.04	<1	-	-	-	-	-	-	-	-
Axius serrata	.82	.02	. 36	∠1	-	-	-	-	-	-	-	-	-	-	-	-
Pagurus spp.	.41	.01	.01	∠1	.69	.02	.06	∠1	-		-		1.32	.04	.01	<
P. arcuatus	.41	.01	.03	∠1	-	-	-		.38	.01	.10	<1	-,,		•	-
P. acadianus	. . .	-	-	-	1.39	.03	.14	<1	.38	.01	.02	<1	.44	.01		
Albunea spp. megalopae	-	-	-	-	-	-	-	-	-	-	-	-	.44 .88	.03		2
Calappidae spp. megalopae	-	-	-	-	-	-	-	-	-	-	-	-	.44	.01	.00	~
Callinectes spp. zoea Cancer spp.	8.16	.59	. 36	- 8	2.08	.05	.09	41	.38	.02	.01	<1	-	-	-	
C. borealis	11.02	.50	1.31	20	3.13	.10	.58	2	3.02	.11	1.49	5	3.96	.20	5.88	24
C. irroratus	72.65	13.29	45.57	4284	42.71	3.86	49.77	2290	43.77	4.12	57.28	2688	53.30	7.05		380
Unidentified	11.43	1.05	1.68	31	1.04	.02	.07	∠1	- 		-	-	.44	.01		<
Total Decapoda	83.08	17.18	53.21	5918	50.69	4.95	51.54	2864	50.19	4.57	59.21	3201	74.01	11.24	73.46	626
Unidentified Crustacea Total Crustacea	9.80 99.59	.36 95,30	.84 69.59	12 16421	3.13 100.00	.09 97.22	.05 76.63	1 17386	1.51 100.00	.03 96.52	.00 79.85	∠1 17636	1.32 100.00	.04 96.69	.01 86.79	< 1834
Nemertea Phascolion strombi	-		-	-	. 35	.01	.00	<1	-	-	-	-	-	-	-	-
Ectoprocta Unidentified	-	-	-	-	. 35	.01	.00	<1	-	-		-	-			×.
Echino dermata																
Echinoidea		Vale i ce	112-127					0.00								
Echinarachnius parma	.82	.02	.00	د ا	. 35	.01	.01	4	-	-	-	-	-	-	•	
Asteroidea Unidentified	.41	.01	.00	<1	<u>-</u>	_	· •	-	-	-	-	-		-		-
Total Echinodermata	1.22	.03	.01	<1	. 35	.01	.01	L1	-	-	-	-	-	-	-	-
Chaetognatha																
Sagitta elegana	-	-	-	-	-	-	-	-	. 75	.02	.00	<1	-	-	-	-
Chordata																
Fisces																
Teleostei	11.02	. 36	1.65	22	2.78	.06	1.57	5	.75	. 02	.01	<1	10.57	. 31	1.02	1
Crophycis chuss	4.08	. 18	.43	3	1.39	.03	. 84	1	-	-	-	-	2.20	.06	7.12	1
Merluccius bilinearis Lepophidium cervinum	.41	.01	.04	<1	. 35	.01	.21	∡ 1	-	•	-	-	1.32	.08	.20	<
Lepophidium cervinum	.41	.02	1.83	1	. 69	.02	.13	<1	.38	.02	. 12	<1	•	•	•	•
Liperie inquilinue	-	-	-	-	-	-	•	-	. 38	.01	.00	< 1	.88	.02		<
Amadytes spp.				-	. 69	. 02	. 04	<1	. 38	.01	.02	< 1		- 14	•	•
<u>Citharichthys</u> arctifrons Limanda ferrugines	1.22	.05	.08 -	<1	-		-	-	-	-	-		3.52	. 16	.25	1
Tobal Pisces	16.3	. 62	4.08	79	5,90	.13	2.80	17	1.89	.05	.15	- د ا	22.91	. 19 . 83		2 2
e									,	,	,	. .				
foral member of stonache examined		2-9				290				272				233		
Examined atomacies with to d		243				235				265				227		

Table 3Percent frequency occurrence (F), percent number (N), percent volume (V) and	index of relative importance (IRI) of food items in Lophius americanus stomachs, by cruise.
Table 5. Telebal Industry	

Taxon		Fall	1976			Winter	r 1977			Sprin	g 1977			Summe	r 1977	
Food Item	F	N	V	IRI	F	N	<u>v</u>	IRI	F	N	V	IRI	F	N	V	IRI
inelida																
Polychaeta			10-01		_		_		6.25	5.00	.41	34			112	80
Aphrodita hastata	-	2 7 0		-	-	-	-	-	0.25	5.00	• 4 1	74		.	-	~
lusca																
ephalopoda																
Loligo pealeii	4.54	3.45	.69	19	-	-	-	-	-	-	-	-	7.32	3.33	11.47	10
Rossia tenera	-	1. 	-	-	3.23	2.63	. 19	9	-	-	-	-	2.44	1.11	.02	
unidentified	-	1. 	÷	-	.		×	-	-	-	-	-	2.44	1.11	2.39	
otal Cephalopoda	4.54	3.45	.69	19	3.23	2.63	.19	9	-	-	(-)	-	12.20	5.56	13.89	23
stacea																
mphipoda																
Byblis serrata	4.54	3.45	.00	16	-	-	-	-	-	-	-	-	-	-	-	-
capoda	0.00	6 00	0.1	65	6.45	5.26	.16	35	10-	1.2			17.07	16.67	.36	29
Dichelopandalus leptocerus	9.09	6.90	.22	60	0.45	5.20	. 10	33	-	-	-	-	2.44	1.11	.02	
Crangon septemspinosa	-	-	-	-	-	-	-	-	6.25	5.00	1,63	41	2.44	-	02	-
Cancer borealis	-	-	-	-	-	-	-	-	0.25	5.00	1.05	41	4.88	2.22	.05	- 1
C. irroratus	9.09	6.90	.22	- 65	6.45	5.26	.16	35	6.25	5.00	1.63	41	19.51	20.00	.05	39
otal Decapoda	9.09	0.90	. 22	05	0.45	5.20	.10	55	0.25	5.00	1.05	41	19.51	20.00	.45	39
Inodermata																
steroidea																
Asterias vulgaris	-	-	-	-	-	-	-	-	6.25	5.00	.08	32	7.32	3.33	.28	2
Astropecten americanus	-	-	-	-	-	-	-	-	-	-	-	-	2.44	1.11	.12	
otal Asteroidea	-	-	-	-	-	-		-	6.25	5.00	.08	32	9.76	4.44	.40	4
etognatha																
Sagitta elegans	-	*	-	-	-	-	-	-	-		-	-	2.44	3.33	.00	
1																
eisces																
Squalus acanthias	-	<u>_</u>	-	-	6.45	5.26	.97	40	-	-	-	-	_	-	-	-
Raja spp.	-	-	-	-	3.23	2.63	.23	9	_	-	-	_	_	-	-	-
Teleostei	27.27	20.69	10.69	856	35.48	28.95	40.20	2454	25.00	20.00	12,96	824	29.27	15.55	25.46	120
Lophius americanus	-	-	-	-	-	-	-	-	6.25	5.00	.24	33	-	-	-	-
Urophycis chuss	27.27	24.14	6.20	827	48.39	50.00	54.75	5068	43.75	35.00	33.21	2984	24.39	11.11	25.36	89
U. regius	-	•	-	-	-	-	-	-	-	-	-	-	2.44	1.11	8.37	
Merluccius bilinearis	4.54	3.45	.24	17	-	-	-	-	6.25	5.00	26.89	199	7.32	18.89	. 65	14
Lepophidium cervinum	13.64	10.34	8.33	255	3.23	2.63	2.03	15	6.25	5.00	1.63	41	12.19	5.55	5.68	1
Liparis inquilinus	-	-	-	-	-	-	-	-	-	-	-	-	4.88	2.22	.02	1
Stenotomus chrysops	9.09	10.34	70.76	737	-	-	-	-	6.25	5.00	4.89	62	-	-	-	-
Scombridae	-	-	-	-	-	-	-	-	6.25	5.00	17.93	143	-	-	-	-
Citharichthys arctifrons	4.54	13.79	.19	64	-	-	-	-	6.25	5.00	.12	32	17.07	10.00	4.20	24
Pseudopleuronectes americanus	-	-	-	-	-	-	-	-	-	-	-	-	2.44	1.11	13.15	
Limanda ferruginea	-	•		-	-		-	-	-	-	-	-	2.44	1.11	2.39	
Total Pisces	90.91	86.21	99.08	16845	100.00	92.11	99.65	19176	93.75	85.00	97.88	17145	85.3\$	66.67	85.28	1297
tal number of stomachs examined		37				40				18				45		
camined stomachs with food:		22				31				16				41		

.

Table 4 .-- Percent frequency occurrence (F), percent number (N), percent volume (V) and index of relative importance (IRI) of food items in <u>Urophycis chuss</u> stomachs, by cruise.

Taxon		Fall	1976			Winter	r 1977			Spring	g 1977			Summer	1977	
Food Item	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI	F	V	N	IR
W1																
Plant <u>Sargassum</u> spp.	-	_	-	-	-	-	-	-	_	-	_	-	. 38	.02	.01	<]
Poacea	-	-	-	-	. 32	.01	.16	<1	-	-	-	-	-	-	-	_
Cnidaria																
Hydrozoa Unidentified	-	-	_	-		_	-		1.04	.03	.00	<1	_		_	
Anthozoa	-		-	-					1.04	.05	.00	-1				177
Unidentified	-	-	-	-	. 32	.01	.05	<1	.26	.01	.00	<1	-	-	-	-
Rhynchocoela																
Anopla																
Carinomella lactea	-	-	-	-	. 32	.01	.08	<1	-	-	-	-	-	-	-	-
Annelida																
Polychaeta																
Aphrodita hastata	-	-	-	-	2.22	.07	2.55	6	8.33	.27	3.84	34	-	-	-	-
Harmothoe spp. H. extenuata	-	-	-	-	.32 3.49	.01	.07	<1 1	3.13	.11	.05	<1	1.53	.08	.04	<
Sthenalais limicola	-	-	-	-	1.90	.06	. 27	ì	4.17	.14	.12	1	2.30	.11	.28	
Phyllodoce spp.	Ξ.	-	-	-	.32	.01	.02	<1	.26	.01	.00	<1	-	-	-	-
P. mucosa	-	-	-	-	. 32	.01	.00	<1	-	-	-	-	-	-	-	-
Syllis spp.	-	-	-	-	-	-	-	-	. 52	.02	.00	<1	-	-	-	-
Nereis spp.	-	-	-	-	-	-	-	-	.52	.02	.00	<1	-	-	-	_
<u>N. gravi</u> Nephtyidae	-	-	-	-		-	-	-	. 26	.01	.01	<1	1.53	.08	.08	<
Aglaophamus circinata		_	-	-		-	-	_	1.82	.05	.03	<1	-	-		_
Glycera dibranchiata	-	-	-	-	-	-	-	-	. 52	.02	.01	<1	-	-	-	-
Goniada spp.	-	-	-	-	-	-	-	-	.26	.01	.00	<1	-	-	-	-
G. brunnea	-	-	-	-	. 32	.01	.04	<1	-	-	-	-	-	-	-	-
Scalibregma inflatum	-	-	-	-	-	-	-	-	. 26	.01	.01	<1		-	-	-
<u>Ophelina</u> spp. Maldanidae	-	-	-	-	-	-	-	-	1.0/	- 02	.02	- <1	1.53	. 08	.05	<
Euclymene collaris	-	-	-	-	_	-	-		1.04	.03	.02	<1	1.91	. 12	.07	<
Clymenura sp. A	.43	.08	.73	<1	7.30	.24	.74	7	5.47	.18	.18	2	4.20	.23	. 35	
Praxillura longissima	-	_	-	-	-	-	-	_	. 26	.01	.02	<1	-	-	-	-
Spionidae	-	-	-	-	. 32	.01	.00	<1	.26	.01	.00	<1	-	-	-	-
Spiophanes bombyx	-	-	-	-	-	-	-	-	.26	.01	.00	<1	-	-	-	-
Onuphis pallidula	_	-	-	-	-	-	-	-	2.34	.11	.05	<1	-	-	22	- <
Marphysa spp. M. sanguinea /		-	-	-	1.27	.04	.50 1.06	1	-	-	-	-	. 38	.02	- 22	_
M. bellii	-	- '	-	-	.63	. 02	.04	<1	-	-	-	-	-	-	-	-
Lumbrineris spp.	.43	.08	.00	<1	-	_	-	-	-	-	-	-	-	-	-	-
L. fragilis	-	-	-	-	6.35	.23	2.81	19	3.65	.13	.22	1	1.91	. 09	.66	
L. cruzensis	=	-	-	-	.63	.03	.02	<1	-	-	-	-	. 38	.02	.01	<
L. impatiens	-	-	-	-	-	.01	.03	- <1		.01	-	- <1	.76	.04	.01	<
L. albidentata Lumbrinerides spp.	-	-	-	-	. 32	.01	.03	<1	.26	- 01	- 00	-	-	-	-	-
Arabella iricolor	-	-	_	-	. 32	.07	1.10	<1	. 52	.05	.13	<1	-	-	-	-
Driloneris longa	-	-	-	-	-	-	-	-	. 26	.02	.02	<1	-	-	-	-
D. magna	-	-	-	-	.63	. 02	.19	<1	-	2 - 2	-	-	. 38	.02	.04	<
Cirratulidae	-	-	-	-	. 32	.01	.01	<1	1.82	.05	.10	<1	. 38	.02	.07	<.
Tharyx spp.	-	-	-	-	.32	.01	.04	<1		-	-	-		-	-	-
T. acuta Ampharete arctica	-		-	-	8.25	.06	.22	<1 12	1.30	.05	.03	<1	-	_	_	-
Terebellidae spp.	-	-	-	-	-	-		-	.26	.01	.03	<1	-	-	-	-
Nicolea venustula	-	-	-	-	. 32	.01	.02	<1	-	-	-	-	-	-	-	-
Terebellides stroemi	-	-	-	-	. 32	.01	.04	<1	-	-	-	-	-	-	-	-
Pherusa affinis	-	-	-	-	.95	.03	.13	<1	2.86	.10	.31	1	1.15	.10	. 27	<
Chone infundibuliformis	6.44	- 1.18	3.28	- 29	4.13 17.78	.23	.25 2.68	2 60	5.21 16.67	.19	.33	3 17	1.91 8.78	.10 .48	.30	1
Unidentified Total Polychaeta	7.30	1.18	4.01	39	41.27	2.68	13.90	684	41.93	2.17	5.96	341	24.43	1.58	3.20	11
Mollusca																
Gastropoda																
Lunatia heros	-	-	-	-	_	-	-	-	. 26	.01	1.99	1	-	-	-	-
Mitrella spp.	-	-	-	-	.95	.03	.01	<1	.26	.01	.00	<1	-	-	-	-
Pyramidellidae Odostomia spp.	-	-	-	-	.95	.03	.01	<1	-	-	-	-	-	-	-	-
	-	-		-	. 32	.01	.00	<1	-	-	-	-	-	-	-	-
Unidentified	_	-	-	-	.63	.02	.00	<1	_		-	-	<u> </u>	-	-	-

Table 4.-Continued.

Taxon		Fal	1 1976			Vinte	r 1977	· — • ·····		Spring	1977			Summer	r 1977	
Food Item	F	N	v	IRI	F	N	v	IRI	F	N	V	IRI	P	H	V	IRI
Palaeurada																
Pelecypoda Placopecten magellanicus	-	-	-	-	1.90	.07	2.88	6	3.65	.15	16.83	62	1.15	.06	8.97	10
Astarte spp.		-	-	-	. 32	.01	.00	<1	. 26	.01	.00	1	-	-	-	
A. undata	-	-	-	-	.159	.05	.16	<1	. 26	.01	.00	1	-	-	-	-
<u>Cyclocardia</u> <u>borealis</u> Ensis directus	-	-	-	-	.95 6.98	.04	.13	<1 5	.26	.01	.00	1	.76	.04	.00	<1 <1
Unidentified	. 86	.16	2.48	2	4.76	.21	1.21	7	1.04	.03	.95	1	. 38	.02	.75	<1
Total Pelecypoda	.86	.16	2.48	2	13.97	.67	4.88	78	8.07	. 29	18.02	148	2.67	.13	9.97	27
Cephalopoda																
Rossia spp.	-	-	-	-	-	-	-	-	1.56	.05	.01	<1	-	-	-	
Illex illecebrosus	-	-	-	-	-	-	-	-	1.82	.05	4.70	9	-	-	-	-
Unidentified Total Cephalopoda	-	-	-	-	. 32	.01	.04 .04	<1 <1	1.30	.04	.45	1 23	-	-	-	-
iccui ocphatepoud							.04	-1	4.43	.15	5.15	23	-	-	-	-
Unidentified Mollusca	.43	.08	.07	<1	.63	.02	.01	< 1		-	-	-	-	-	-	-
Total Mollusca	1.29	. 24	2.55	4	16.82	.80	4.94	97	12.50	.45	25.17	324	2.67	.13	9.97	27
Arthropoda																
Ostracoda									24							
Unidentified	-	-	-	-	-	-		-	. 26	.01	.00	<1	-	-	-	-
Copepoda												2				4
<u>Calanus finmarchicus</u> Rhincalanus nasutus	-	-	-	-	. 32	.01	.00	- <1	4.43	.19	.00	_1	1.53	.08	.00	<1
Nannocalanus minor	. 43	.24	.00	<1		01	-	-	_	-	-	-		÷	-	-
Paracalanus spp.	-	-	-	-	10.48	15.67	. 27	167	3.65	.16	.00	1	.76	. 08	.00	<1
Pseudocalanus spp.	.43	.08	.00	<1	. 32	.03	.00	<1	-	-	-	-	-	-	-	-
Temora longico nis	-	-	-	-	2.54	.18	.00	< 1	. 26	. 02	.00	<1	. 38	.02	.00	<1
<u>Centropages typicus</u> Candacia armata	9.01	24.49	. 88	229	9.21	. "3	.01	7	. 78	.05	.00	1	2.29	. 56	.02	1
Metridia lucens	.43	.08	.00	<1	_	_	-	-	-	-	-	-	4.20 4.58	.27	.01 .01	1
Euchaeta marina	-	-	-	-	-	-	-	-	-	-	-	-	. 38	.02	.00	<1
Harpacticoida	-	-	-	-	-	-	-	-	. 26	.01	.00	<1	-	-	-	-
Microsetella norvegica	-		-	-	.63	.02	.00	< 1	-		-	÷.	-	-	-	-
Caligus spp. Unidentified	1.72	. 39	00	1	10.48	15.65	. 28	167	.26	.01	.00	<1 1	1.91	-,,	-	- <1
Total Copepoda	11.16	25.28	.88	292	20.32	32.30	. 57	668	9.38	. 50	.00	5	14.12	.11	.00 .05	28
Stomatopoda																
Unidentified (larvae)	-	-	-	-	-	-	-	-	. 26	. 01	.00	<1	. 38	. 02	. 00	<1
Mysidacea																
Heteromysis formosa	-	-	-	-	.63	. 02	.01	<1	. 52	.02	.00	<1	1.14	.06	. 02	<1
Cumacea																
Eudorella spp.	-	-	-	-	-	-	-	_	. 78	.02	.00	<1	-	-	-	-
<u>F. hispida</u>	-	-	-	-	1.27	.06	.01	<1	2.34	.08	.00	<1 5	-	-	-	-
<u>Petalosarsia</u> <u>declivis</u> <u>Diastylis</u> spp.	-	-	-	2	.95	.03	.00	- <1	1.56	.07	.02	<1	-	- 2 -	-	-
D. scupta	-	-	-		2.22	. 09	.01	<1	10.94	.67	.04	8	2.67	.17	.02	1
D. bispinosa	-	-	-	-	4.44	. 20	.05	1	13.28	. 66	. 04	9	12.60	1.52	. 37	24
Unidentified	.43	.08	.07	<1	1.27	.08	.01	<1	1.04	.03	.00	<1		-	-	-
Total Cumacea	.43	.08	.07	<1	9.52	.47	. 09	5	28.13	2.25	.10	66	13.36	1.69	.40	28
Tanaidacea																
Tanaissus lilljeborgi	-	-	-	-	. 32	. 01	.00	<1	. 26	.01	.00	<1	-	-	-	-
Isopoda					22		.00		. 52	.02	.00	<1	-	_	-	_
Chiridotea spp.	-	-	-	-	. 32	.02	.00	<1 <1	. 32	.02	.00	<1	-		-	_
<u>C. tuftsi</u> C. arenicola	_	_	_	-	. 32	.01	.00	<1	.26	.01	.00	<1	-	-	-	-
Edotea triloba		-	-	_	. 32	.02	.00	<1	1.30	.05	.00	<1	2.29	.13	.04	<1
Ptilanthura tricarina	-	-	-	-	.63	.02	.00	<1	. 26	.01	.00	<1	1.53	. 31	.04	1
Cirolana spp.	-	-	-	-	. 32		.01	<1 10	.26	.01 1.33	.00 1.51	<1 47	10.31	.67	1.11	18
<u>C. polita</u> Janira alta	_	-	_	-	6.67	.37	1.11 .00	<1	16.67	.02	.00	<1	.38	.02	.00	<1
Unidentified	-	-	-	-	.95		.09	<1	.52	.02	.00	<1	-	-	-	-
Total Isopoda	-	-	-	-	9.52	.53	1.24	17	20.05	1.46		60	13.36	1.13	1.19	31
Amphipoda																
Ampelisca spp.	.86	.16	.00	<1	2.22	.16	.02	<1	-	-	-	-	-	-	-	-
A. vadorum	3.43		. 58	4	16.82	1.39	. 29	28	9.11	. 39	.04	4	10.69	1.08	.31	15
A. macrocephala	-	-	-	-	-	-	-	-	-	-	-	-	. 38	.02	.00	<1

Table 4, -- Continued.

Food Item <u>A. agassizi</u> <u>Byblis serrata</u> Ampithoidae Aoridae Leptocheirus pinguis	.43 7.30	N .08 2.84	.07	1RI <1	<u>F</u> 5.08	<u>N</u> 1.88	V . 30	<u>IRI</u> 11	F 4.69	<u>N</u> . 44	<u>v</u> . 02	1R1 2	<u>F</u> 5.73	. 37	<u> </u>	
Byb <u>lis serrata</u> Ampithoidae Aoridae						1.88	. 30	11	4.69	. 44	. 02	2	\$ 73	2.2		
<u>Byblis serrata</u> Ampithoidae Aoridae		2 84	0.05										2		.13	
Ampithoidae Aoridae		2.04	2.85	42	10.79	.41	.14	6	15.63	. 97	.10	17	20.61	2.50	. 67	
Aoridae	-	+	-	-	.	1994 - 1997 - 19	-	-	. 26	. 01	.00	× 1	-	-	-	
Cantochairus aincuis	-	-	-	-	-	-	-	-	. 26	. 01	.01	< 1	-	-	-	
ceptocherrus pragars	.43	.08	. 22	<1	6.67	.29	. 36	4	4.43	.14	.05	1	1.91	.: 3	.13	
Argissa hamatipes	-	-	-	-	2.86	.14	.04	1	1.30	. 04	. 00	· 1	-	-	-	
Brichthonius rubricornis	14.16	5.45	1.82	103	70.48	16.69	3.82	1446	67.97	13.58	.97	985	452	16.11	2.08	
Unciola spp.	. 86	. 24	.07	<1	-	-		-	-	-		-	-	-	-	
U. irrorata	27.90	16.74	12.48	815	77.78	33.93	13.56	3694	85.16	31.19	5.28	ر310	46. 16	39.54	12.85	
U. serrata (?)	.43	.08	.07	<1	-	-	-	-	-	-	-	-	-	-	-	
Pseudunciola obliquua	1 20	.24	.00	<1	-	- 02	- 00	-	. 26	.01	.00 .00	· 1 · 1	. 74	.04	.00	
Siphonoecetes smithianus Rhachotropis oculata	1.29	. 24	.00	<1	.95	.03	.00	<1	. 26	01	- 00		. / 6	.04	. 00	
Gammaridae	.45	.00		-	.95	.04	.01	<1	-	-	-	-	-		-	
Melita dentata	.86	.16	.15	<1	13.33	. 82	.62	19	9.38	.45	.08	5	2.67	.13	.06	
Maera danae	-		-	-	.95	.02	.02	<1	. 26	.02	.01	· 1	-	-	-	
Casco bigelowi	_	-	-	-		-	-	_	1.56	.05	.02	< i	2.29	.13	.12	
Jerbarnia sp. A		-	-	-	.63	.05	.01	<1	-	-	-	-	. 38	.02	.00	
Protohaustorius wigleyi	-	_	-	-	-	-	-	-	. 26	.01	.00	<1		-	-	
Photis spp.	-		-	-	. 32	.01	.00	< 1	.78	.02	.00	-1	-	-		
P. dentata	-	-	-	-	2.86	.23	.02	1	4.43	.18	.01	ĩ	1.14	.06	.00	
P. macrocoxa	-	-	-	-	-	-	-	-	. 52	.02	.00	- î	. 38	n.:	. 00	
Lysianassidae	-	-	-	-	-	-	-	-	. 26	. 01	.00	- 1	-		-	
Orchomenella pinguis	-	-	-	-	-	<u>.</u>	-	-	. 52	.02	.00	· 1	-	-	-	
Hippomedon serratus	-	-	-	-	.95	.03	.02	<1	11.20	.45	.16	7	2.29	.13	. 04	
Anonyx lilljeborgi	-	-	-	-	. 32	.02	.02	< 1	-	-	-		. 38	.02	.01	
A. sarsi	-	-			-	-	-	-	1.30	.05	.06	× 1	. 74.	. 1)4	.01	
Monoculodes edwardsi	.43	.08	.00	<1	2.86	.14	.04	1	2.34	.07	.01	· 1	22.14	2.77	. 61	
Phoxocephalus holbolli	-	(#	-	(R	6.03	.28	.05	2	22.14	1.72	. 11	40	9.92	.67	.05	
Trichophoxus epistomus	1.29	.24	.07	<1	15.87	1.24	. 30	24	8.07	. 35	.04	3	9.5.	. 64	. 17	
Harpinia propinqua	-	-	-	-	2.54	.10	.02	<1	. 52	. 02	.00	≥ ĭ	. 38	. 0.2	.00	
Stenopleustes gracilis	-	-	-	-	. 32	.01	.00	<1	1.30	.07	.00	8 1	. 38	.02	. 011	
S. inermis	-	-	-	-	-		-	-	1.30	.04	.00	8.1	1.1.	. ()6	. (11)	
Dulichia porrecta	-		~	-	.95	.03	.00	<1	-	-	-	-	-	-	12	
Stenothoidae	-	-	-	-	-	-	-	-,	.78	.02	.00	s 1	-		-	
Hyperiidae	19.74	6.24	3.36	189	.95	.03	.01	< 1	.26	.01	.00	- 1	-	-	-	
Parathemisto gaudichaudi	46.78	34.44	20.95	2591	. 32	.01	.00	<1	. 26	.01	.00	- 1	35.88	4,73	. • *	
Aeginina longicornis	1.29	. 32	.29	1	8.25	.51	. 21	6	20.83	1.23	.22	30	4.58	- 505	. 11	
Unidentified	6.44	1.50	1.17	17	22.54	.92	. 62	35	4.17	.16	.00	1	1.91	.17	- F- 2	
otal Amphipoda	91.85	69.67	44.23	10461	91.11	59.46	20.53	7288	93.49	51.73	7.21	5510	88.11	69. • 3	15,46	
uphausiacea																
Euphausiidae /	-	-	-	-	. 32	.01	.01	< 1	-	-	-	1	-	-	-	
ecapoda																
Eualus pusiolus	-	-	, ()	-	-	-	-		.26	.01	.00	-1	. 18	192	, 204	
Dichelopandalus leptocerus	.43	.08	1.31	1	2.86	. 30	5.26	16	4.17	. 16	.83	4	24.15	1. 11	11 v ov	
Carngon septemspinosa	2.15	.55	4.31	10	4.76	.20	.68	4	8.07	. 32	. 33	5	н.7н	. 1	1.10	
Axius serrata	-	-	-	-	1.27	.04	.92	1	.52	.02	.03	8 1	_	-		
Munida iris	-	-	-	-	5.40	.28	1.88	12	1.04	.04	.13	< 1	. 18	$\sim 10^{2}$	0	
Pagurus spp.	-	-	-	-	.63	.03	. 38	<1	. 52	.02	.03	~ 1	. 28	100	S^{d-2}	
P. acadianus	-	-	-	-	.63	. 02	.24	< 1	1.30	.04	.86	1	-	-	2	
P. arcuatus	.	-	-	-	.63	. 02	.16	<1	_	-	-	-		~		
Calappidae megalopae	-	-	-	-	-	-	-		-	-	-		. 29	. d.	3	
Cancer spp.		-	-	-	1.59	.05	.56	1	. 52	.02	.01	1	1.03	. 1. 1		
C. borealis C. irroratus	86		29.42	- 26	8.25	.48	14.91	127	7.29	. 44	5.99	47	14 A A A A A A A A A A A A A A A A A A A	. 18		
C. <u>irroratus</u> Unidentified	.86	.55	29.42	26	21.59	1.47	28.54	648	43.75	3.45	38.84	1850	31.65		- si [-	
otal Decapoda	4,72	1.50	.29	174	3.49 34.60	.16 3.05	2.65	10 2049	. 26	.01	.00 47.06		. 14. 1. H. 1. S			
nyaste no teste teste es sectore			37.33	1/4	54,00	5.05	56.18	2049	53.13	4.51	47.00	2731	99 - C 3	· · ·	£ 2 4 5	
nidentified Crustacea	2.15	. 39	2.41	6	4.76	.16	. 32	2	1.04	.04	.01	· 1	. 71	· "4		
tal Crustacea	95.71	96.92	82.92	1/212	96.82	96.01	78.95	16940	98.70	60.52	55.91	114 91	43.01	5 1. ·	1.1. 154	i,
secta Unidentified	-	-	-	÷	_	-	-	-	.26	.01	.00	- 1	-	-		
mertea																
Amer Lea			_	_												
Phascolion strombi	-	-	2000			-	-	-	26	01	00	. 1	1000			
Phascolion strombi	-					-	-	-	. 26	.01	.00	- 1	~	141	12	

Table 4. -- Continued.

Food Item F Echinodermata Asteria Asterias vulgaris - Echinoidea - Echinarachnius parma -4 Holothuroidea - Stereoderma unisemita - Havelockia scabra -	<u> </u>	- <u>1976</u> . 58	- 1	F . 32 4.13	.01	.04	IRI	<u>I</u>	Spring N	<u>v</u>	IAI	<u> </u>	M	1977 V	181
Asteroidea Asterias vulgaris Echinoidea Echinarachnius parma Holothuroidea Stereoderma unisemita	- 3.08 -	- . 58	- 1			. 04	-1	-	-	-					
Asterias vulgaris - Echinoldea	- 3.08 -	- . 58	- 1			. 04	-1	-	-						
Echinoldea .4 Echinarachnius parma .4 Holothuroidea . Stereoderma unisemita -	- 3.08 - -	. 58	- 1			, 04	< 1	-	-	-					
Echinarachnius parma .4 Holothuroidea Stereoderma unisemita -	3.08 - -	. 58	- 1	4.13							-	-	-	-	-
Holothuroidea Stereoderma unisemita -	1.08 - -	. 5 H	- 1	4.13											
Stereoderma unisemita -	-	-			.13	.12	1	•	•	-	-	-	-	-	-
	-	-													
Havelockia scabra -	-		-	-			-	. 26	. 01	. 02	- 1	-	-	-	•
				. 95	.03	. 65	1	-	-		-	-	-	-	-
Total Echinodermata .4	1 .08	. 58	1	5.08	.18	.81	5	. 26	.01	. 02	-1	-	-	-	-
Chaetognatha															
Sagitta elegans -	-	-	-	-		-1		42.19	14.4.	1.71	1696	29. 19	16.13	2.03	534
Chordata															
Larvacea															
Unidentified -			-		÷		~	-	14	•	-	. 38	.13	.01	< 1
Pisces															
Raja erínacea	· · ·					•		- 24	.01	. 16	1		-	-	-
Teleostei 1.29		. אא	1	1.27	. "	'M	1	1. 19	. 11	5.M7	20	6.11	. 31	1.01	8
trophycis chuss .59		1.46	1			. 11	1	2. 14	-01	1.60	4	1.91	. 10	. 57	
Merluccius bilinearis -	-			. 6.1	. 02		1		- 91	. 91	1	. 76	.15	. 90	1
Lepophidium cervinum	· .···	. 73	1	1.21	.19	. 61	1	, 7 N	.04	. 20	- 1	. 38	. 02	.07	-1
Liparis inquilinus -	-	-		•			· ·	2	. 02	. 00	- 1	-	-	-	-
Ammodytes pp	-	12 1	-	- 1.1	1.00	101	1	. 52	. 92	.02	· 1		•		
Citharichthys arctifrens		6.56	1	. 1.	. 1	. 14	1	1.42	.05	1.35	3	1.05	. 31	15.54	48
Total Pisces 6.0	1	a' 11	65		. 2	1.1	•	H. H.	. 11	9.22	H .	11.81	. 88	18.09	224
Aves -			-	·			-	. 26	03	. 90	1	-	-	-	-
(unidentified feathers)															
Total number of stomachs examined:	14				¥.								284		
Examined stomachs with lood:									-14				262		
Examined Scondens with Lond.									,				101		

Taxon		Fall	1976			Winte	er 1977			Spri	ing 1977			Summ	er 1977	
Food Item	F	N	V	IRI	F	N	v	IRI	F	N	V	IRI	F	N	V	IRI
Annelida																
Polychaeta																,
Harmothoe extenuata								_	-	-			.67	17	02	
Sthen ^e lais limicola	-		-	-		-			-		-	1	.67	.17 .17	.03	4
		-		~ ,	-	-	-	-		-	-				.19	~ 1
Nephtyidae	2.38	.28	.07	1	-	-	-	-	-	-	-	-	-	-	-	-
Aglaophamus circinata	2.38			1	-	-	-	-	-	-	-	-	-	-		-
Onuphis pallidula	-	-				-	-	-	-	-	-	-	2.01	.51	.06	1
Eunicidae		-	-	-	-	-	-	-	-	-	-	-	1.34	. 34	1.50	2
Unidentified	2.38	.28	.00	1	-	-	-	-	-	-	-	-	2.68	.68	.07	2
Total Polychaeta	7.14	.85	. 14	7	-	-	-	-	-	-	-	-	6.71	1.88	1.85	25
Mollusca																
Pelecypoda																
Placopecten magellanicus	2.38	.28	7.15	18	-	-	-	-	16.67	7.14	2.73	164	2,01	.51	5.39	12
Ensis directus	-	-	-	-	-	-	-	-	-	-	-	7 — 0	.67	.17	.03	<1
Unidentified	-	-	-	-		-	-	-	-	-	-	-	2.68	.68	5.42	16
Total Pelecypoda	2.38	. 28	7.15	18	-	-	-	- 1 9	16.67	7.14	2.73	165	-	-	-	-
Cephalopoda																
Illex illecebrosus	-	-	-	-	-	-	-	-	16.67	7.14	46.36	892	-	-	-	-
Rossia tenera	7.14	.85	.95	13	-	-	-	_	-	-	-	-	5.37	1.37	3.30	25
Unidentified	-	-	-		-	-	-	-	-	-	-	_	.67	.17	.06	<1
Total Cephalopoda	7.14	.85	.95	13	_	_	_	_	16.67	7.14	46.36	892	6.04	1.54	3.36	30
nd vola observal - mod to - doar observations - konditional -					-			-					6. P			
Total Mollusca	9.52	1.14	8.11	88		-	•	-	33.33	14.29	49.09	2112	8.05	2.22	8.78	89
Crustacea																
Copepoda																
Calanus finmarchicus	-	-	-	-	-		-	-	-	-	-	-	1.34	.34	.00	<1
Centropages typicus	2.38	.57	.00	1	-	-	-	-	-	-	-	-	-		-	-
Candacia armata	2.38	.28	.00	1	-	-	-	-	-	-	-	-	.67	.17	.00	<1
Unidentified	-	-	-	-	-	-	-	-	-	-	-	-	2.01	.68	.00	1
Total Copepoda	2.38	.85	.00	2	-	-	-	-	-	-	-	-	4.03	1.20	.00	5
Stomatopoda																
Unidentified	-	-	-	-	-	-	-	-	-	-	-	-	.67	.17	.03	<1
Cumecea																
Eudorella spp.	-	-	_	-	-	-		-	-	-	-	-	1.34	.34	.00	<1
Isopoda Cirolana polita	1.70	r -	1 (7							A.S. 100-7						
	4.76	.57	1.67	11	-	-	-	-	16.67	7.14	.05	120	7.38	2.39	.46	21
Janira alta		-		-	-	-	-	-	-	-	-	-	.67	.17	.01	<1
Total Isopoda	4.76	.57	1.67	11	-	-	-		16.67	7.14	.05	120	8.05	2.56	.47	24
Amphipoda																
Ampelisca spp.													.67			

Table 5 .-- Percent frequency occurrence (F), percent number (N), percent volume (V) and index of relative importance (IRI) of food items in Urophycis regia stomachs, by cruise.

.

a)

	Table	5Continued.
--	-------	-------------

Taxon		Fal	1 1976			W	inter 19	77		Sp	oring 197	7		Su	nmer 1973	7
Food Item	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI
A. vadorum	2.38	1.42	.12	4	-	-	-	-	-	-	-	-	4.03	1.20	.03	5
A. agassizi	4.76	.85	.07	4	-	-	-	-	-	-	-	-	3.36	1.37	.01	5
Bybis serrata	14.29	1.70	.00	24	-	=	-	-	-	-	-	-	.67	.17	.00	<1
Leptocheirus pinguis	2.38	.28	.24	1	-	-	-	-	-	-	-	-			-	
Erichthonius rubricornis	14.29	1.99	.02	29	-	-	-	-		-	-	-	4.03	1.37	.01	6
Unciola irrorata	59.52	20.45	1.50	1307	-	-	-	-		-	-	-	14.76	9.74	.26	148
Rhachotropis oculata	2.38	.57	.00	1	-	-	-	-	-		-	-	.67	.17	.02	-
Melita dentata		-	-	-	-	-	-	-		-	-	-	1.34	. 34	.02	-1
Protohaustorius wigleyi	-	-	-	-	-	_	-	-	16.67	7.14	.14	121	1.34	.34	.01	-1
<u>Hippomedan</u> <u>serratus</u> <u>Anonyx sarsi</u>	2.38	.28	.12	1	-	-	_	-	-	-	-	-	1.34	.34	.00	-1
Monoculodes edwardsi	-	-	-		-	-	-	-	-	-	-	-	2.68	.85	.01	2
Phoxocephalus holbolli	-	-	-	-	-	-	-	-	-	-	-	-	2.01	.51	.00	1
Trichophoxus epistomus	2.38	.28	.00	1	-	-	-	-	-	-	-	-	8.05	2.56	.06	21
Parathemisto gaudichaudi	14.29	1.70	.10	26	-	-	-	-	-	-	-	-	18.12	12.31	.22	227
Aeginina longicornis	2.38	.28	.02	1	-	-	-	-	-	-	2 — 2	-	-	-	-	-
Total Amphipoda	78.57	29.83	2.19	2516	-) _	-	-	16.67	7.14	.14	121	46.31	31.45	.62	1485
Euphausiacea													(3			
<u>Thysanoessa</u> inermis	-	-	-	-	-	-	-	•	-	-	-	-	.67	.17	.00	~1
Decapoda	10.05	5 /0	12.57	342					_		040		44.67	27.01	14.05	1846
Dichelopandalus leptocerus	19.05	5.40 32.10	25.54	4940	-	-	•	-	16.67	14.29	.55	247	3.36	1.03	.23	1040
Crangon septemspinosa	85.71 9.52	1.42	.33	4940	-	-	-	-	10.07	14.23	-	247	2.68	.68	1.63	6
Munida iris	2.38	.57	.12	2	-	-	-	-	-	-	-	-	-	-	-	- 0
<u>Cancer</u> spp. <u>C. borealis</u>	7.14	3.41	5.96	67	_	-	-	-	16.67	14.29	4.91	320	1.34	.34	.13	1
C. irroratus	26.19	8.24	13.71	575	-	-	-	-	83.33	35.71	19.63	4612	24.16	7.52	39,56	1137
Unidentified	2.38	.28	.00	1	-	-	-	-	-	-	-	-	.67	.17	.06	دا
Total Decapoda	95.24	51.42	58.23	10443	-	-	-	-	83.33	64.29	25.09	7448	67.11	36.75	55.66	6202
Unidentified Crustacea	-	-	-	-		-	-	÷	-	-	-	-	.67	.17	.01	~ 1
Total Crustacea	95.24	82.67	62.09	13787	3 - 0	-	-	-	83.33	78.57	25.28	8654	86.58	72.82	56.79	11222
Sipuncula															~~	
Phascolion strombi	-	-	-	-	-	. 	-	-	2003		-	-	.67	.17	.00	1
Chaetognatha	10												.67	6.32	.06	4
<u>Sagitta elegans</u>		-	-	-	-	-	-		-	-		-	.07	0.32	.00	7
Chordata																
Pisces																
Teleostei	2.38	.28	.02	1	100	100	100	20000	16.67	7.14	25.63	546	22.15	5.64	4.21	218
<u>Etrumeus</u> teres		-			-	-	-	-	-	-	-	-	.67	.17	5.01	3
Urophycis chuss	7.14	.85	3.93	34	-	-	-	-	-	-	-	-	3.36	.85	9.68	35
<u>Merluccius bilinearis</u> Lepophidium cervinum	2.38 14.29	.28 1.99	1.91 5.72	5 110	· • • • •	-	-	-	-	-	-	-	6.04 .67	4.27 .17	5.33 .06	58 ≮1
Liparis inquilinus	14.29	1.99	5.12	-	-	-	-	-	-	-	-	-	.67	.17	.06	<1
Citharichthys arctifrons	50.00	11.93	18.07	1500	-	-	-	-	-	-	-	-	16.11	5.30	7.85	212
Total Pisces	61.90	15.34	29.66	2786	100	100	100	20000	16.67	7.14	.26	546	47.65	16.58	32.51	2339
Number of stomachs examined:		45				2				7				180		
Examined stomachs with food:		42				1				6				180 149		

-

Table 6 .-- Percent frequency occurrence (F), percent number (N), percent volume (V) and index of relative importance (IRI) of food items in Merluccius bilinearis stomache, by cruise.

		Fall	1976			Winter	1977			Sprin	1977			Summe	r 1977	
Taxon Food Item	F	N	V V	IRI	F	N	v	IRI	F	N	V	IRI	F	N	V	IRI
Tood Item										1.000 00	1 189 Baber					
Cnidaria																
Hydrozoa Unidentified		'	-	-	.50	.02	.00	<1	-	-	-	-	-	-	-	-
Unidentified	-		-		.50	102		-								
Annelida																
Polychaeta																
Harmothoe extenuata	-	-	-	-	-	5	-	-	-	-	-	-	.30		.02	<1 <1
<u>Nereis</u> spp. Nephtyidae	-		-	-	-		-	-		-	-	-	.30		.02	-1
Aglaophamus circinata	-	-	-	-	.50	.05	.00	<1	-	-	-	-	-	-	-	
Ophelina spp.	-	-	-	-	-	-	-	-	-	-	-	-	.30		.00	, <1
Clymenella torquata	-	-	-	-	¥	-	-	-	-	-	-	-	.30		.04	<1
Unidentified	-	-	-	-	-	.05	.00	<1		-	-	-	.30		.04	<1 1
Total Polychaeta		-	-	-	.30	.05	.00	-1	-	-		27	2.11	30	.21	-
Mollusca																
Cephalopoda																
Loliginidae	3.28	.31	29.45	98	.50	.02	3.40	2		-		-		-		
Loligo pealei	3.69	.40	28.21	106	-	-	-	1.	2.08	.10	8.46	18 ⊲1	.30	.05	16.10	5
<u>Rossia</u> spp. R. <u>tenera</u>	.82	.06	.40	<1	.50	.02	.15	<1	4.17	.30	.41	3	.90	.16	3.78	- 4
Illex illecebrosus	-	-	-	-	-	-	-	-	25.00	1.40	80.72	2053	-	-	-	- 7
Unidentified	1.64	.12	.99	2	-	-	-	-	2.08	.10	1.69	4	.30		.12	~1
Total Cephalopoda	9.02	.89	59.06	541	1.00	.05	3.55	4	35.42	2.10	91.29	3308	1.51	27	20.01	31
Arthropoda																
Copepoda																
Calanus finmarchicus	-	-	-	-	1.00	.05	.00	<1	Ξ.	-	-	-	.90	.33	.01	<1
Paracalanus spp.		Ξ.		-	5.97	9.01	.02	54	-	-	-	-	-	-	-	-
Rhincalanus nasutus	2.05	.22	.00	∠1 1	-	-	-		-	-	-	-			-	-
<u>Nannocalanus</u> <u>minor</u> <u>Centropages</u> <u>typicus</u>	2.46 18.03	.34 14.90	.00	269	1.49	.68	.00	- 1	-	-	-	-	.30	.05	.00	-<1
Candacia armata	-	-	-	-	-	-	-	-		-	-	-	2.41		.00	1
Metridia lucens	.82	.12	.00	<1	-	-	-	-	-	-	-	-	. 60		.00	<1
Caligus spp.	-	-	-	-	-	-	-	-	-	-	-	-	.30		.00	~1
Unidentified	4.10 20.49	.71	.00	3 334	1.00 7.46	.05 9.78	.00	<1 73	(-	-	-	-	.60		.00	<1 6
Total Copepoda	20.49	16.29	.02	334	7.40	9.70	.02	/3	-	-	-	-	5.12	1.10	.02	0
Cumacea																
Eudorella spp.	-	-	-	-	-	-	-	-		-	-	-	.90		.01	~1
E. emarginata	-	-	-	-	1.00	-	.00	- ∡1	-	-	-	-	.30		.00	<1 <1
<u>E. hispida</u> Diastylis spp.	-	-		-	1.99	.03	.00	<1	-	-	-	-	.00	21	01	-
D. sculpta	-	-	-	-	14,43	1.28	.07	19	2.08	.10	.00	<1	3.0	.66	.01	2
D. bispinosa	2.46	.28	.03	1	1,00	.07	.00	<1	-	-	-	-	12.65	6.43	. 32	85
Unidentified	2.05	. 19	.01	<1	.50	.02	.00	<1	-		-	-	.60		.00	<1
Total Cumacea	4.51	.46	.04	2	18.91	1.65	.08	33	2.08	.10	.00	<1	17.47	7.75	.34	141
Isopoda																
Unidentified	.41	.03	:00		-	-	5	2	=	=	:	=	=	=	=	=
<u>Cirolana polita</u> Total Isopoda	.82	.03	.04	1												
Iotal Isopoda	.02	.00	.04	1	-	-	-	-	-	-	-	-	-	-	-	-
Amphipoda																
Ampelisca spp.	.82	.06	.00	~ 1	-	-	-	-	_	-	-		-			
A. vadorum	19.67	2.34	.32	52	2.49	.15	.70	2	-	-	-	-	4.5	2 1.59	.11	- 8
A. macrocephala	.41	.03	.01	<1	.50	.02	.00	<1	-	-	-	-				-
A. agassizi	1.64	.22	.02	≤1	.50	.02	.00	∠1		-	-	-	5.4		.14	16
Byblis serrata	12.70	3.21	.44	46	1.49	.10	.01	<1	2.08	.10	.00	<1	20.4	3 14.90	1.23	330
<u>Argissa hamatipes</u> <u>Erichthonius rubricornis</u>	.82	- 06	.00	-	4.48	. 34	.02	2	-	-	-	-	-		-	- ,
Unciola irrorata	.82 .41	.06 .06	.00	~1 ≪1	4.48	. 36	.05	- 2	-	-	-	-	4.8			6 1
Haustoriidae	-	-	-	-	-	-	-		-	-	-	-	.3			 ≼1
Photis dentata	-	-	-	-	-	=	-	-	-	-	-	-	.3			<1
Orchomenella minuta	-				-	-	-	-	-	-	-	-	. 34	.05	.00	<1
<u>O. pinguis</u> Hippomedon serratus	-	-	-	-	-	1 00		-	-	-	-		. 3		.00	<1
Anonyx sarsi	-	-	-	-	7.46	1.09	.24	10 1	2.08	. 30	.01	1	.0	5 .11 -	.04	<1
Monoculodes spp.	-	-	-	-	.50	.02	.00	~ 1	-	-	-	-	-	-	-	-
M. edwardsi	-	-	-	-	4.98	.31	.02	2	-	-	-	-	5.7		.04	- 9
Harpinia propinqua	.41	.03	.00	∠1	-	•	-	-	-	-	1	-	-		-	-

Table 6.--Continued.

F - - 2.05 74.59 - .41 - .41 5.74 2.87 - -	N 2.09 69.42 .19 77.72 .06 .06 1.54 .28	. 1976 	1RI - 23 4784 - 41 6477 - 41 - 41 - 54	F - - - - - - - - - - - - - - - - - - -	N .73 70.43 .02 .19 74.40 1.84 2.35 4.19	v - - - - - - - - - - - - - - - - - - -	IRI - - - 3902 <1 1 5424 1 2 - 6	F	N 	 	IRI	F 1.81 5.12 .30 - - - - .30 .30	N .93 2.31 .05 .22.43 	v .02 .08 .00 - .75 - 2.46	IRI 2 12 -1 1138 - 3583 - - - - - - - - - - - - - - - - - - -
- 9.84 61.89 - 2.05 74.59 - .41 - .41 5.74 2.87 - -	69.42 .19 77.72 .06 .06 1.54	7.87 .03 9.12 .00 .00 7.81	4784 - ~1 6477 - ~1 - ~1 -	1.99 52.24 .50 2.99 67.66 .50 .50	70.43 .02 .19 74.40	.10 4.27 .00 .03 5.76 .91 1.06	2 3902 <1 1 5424	- - 14.58 -	 10.82 _	- - .07	-	5.12 .30 49.10 - 70.18	2.31 .05 22.43 - 48.60	.08 .00 .75 2.46 .01	12 <1 1138
- 9.84 61.89 - 2.05 74.59 - .41 - .41 5.74 2.87 - -	69.42 .19 77.72 .06 .06 1.54	7.87 .03 9.12 .00 .00 7.81	4784 - ~1 6477 - ~1 - ~1 -	1.99 52.24 .50 2.99 67.66 .50 .50	70.43 .02 .19 74.40	.10 4.27 .00 .03 5.76 .91 1.06	2 3902 <1 1 5424	- - 14.58 -	 10.82 _	- - .07	-	.30 49.10 - 70.18 - .30	.05 22.43 - 48.60 - .05	.08 .00 .75 2.46 .01	<1 1138 3583
61.89 2.05 74.59 .41 .41 5.74 2.87 -	69.42 .19 77.72 .06 .06 1.54	7.87 .03 9.12 .00 .00 7.81	4784 - ~1 6477 - ~1 - ~1 -	1.99 52.24 .50 2.99 67.66 .50 .50 - 1.00	70.43 .02 .19 74.40	4.27 .00 .03 5.76 .91 1.06	2 3902 <1 5424 1 2	- - 14.58 -	 10.82 _	- - .07	-	49.10 - 70.18 - .30	22.43 	.75 - 2.46 -	1138 - 3583 - - -
61.89 2.05 74.59 .41 .41 5.74 2.87 -	69.42 .19 77.72 .06 .06 1.54	7.87 .03 9.12 .00 .00 7.81	4784 - ~1 6477 - ~1 - ~1 -	52.24 .50 2.99 67.66 .50 .50 -	70.43 .02 .19 74.40	4.27 .00 .03 5.76 .91 1.06	3902 <1 5424 1 5424	- - 14.58 -	 10.82 _	- - .07	-	49.10 - 70.18 - .30	- 48.60 - .05	- 2.46 - .01	3583
2.05 74.59 .41 .41 5.74 2.87	.19 77.72 .06 .06 1.54	.03 9.12 .00 .00 7.81	<1 6477 - <1 - <1	.50 2.99 67.66 .50 .50 1.00	.02 .19 74.40 1.84 2.35	.00 .03 5.76 .91 1.06	<1 1 5424 1 2	- - 14.58 -	 10.82 _	- - .07	-	- 70.1830	- 48.60 - .05	- 2.46 - .01	3583
74.59 .41 .41 5.74 2.87 -	77.72 .06 .06 1.54	.03 9.12 .00 .00 7.81	<1 6477 - <1 - <1	2.99 67.66 .50 .50	.19 74.40 1.84 2.35	.03 5.76 .91 1.06	1 5424 1 2	14.58	.=	- .07 -	- 159 - -	- . 30	- - . 05	2.46 - .01	3583 -
74.59 .41 .41 5.74 2.87 -	77.72 .06 .06 1.54	9.12 .00 .00 7.81	6477 - <1 - <1	67.66 .50 .50 .50	1.84 2.35	.91 .06	1 2	14.58	.=	.07	- - - -	- . 30	- - . 05	- - .01	- - ~1
.41 .41 5.74 2.87 -	.06	.00 .00 7.81	- ~1 ~1	.50 .50 1.00	1.84	.91	1 2	-	.=	-		- . 30	- - . 05	- - .01	- - ~1
.41 .41 5.74 2.87 -	.06	.00 7.81	- <1	.50 1.00	2.35	1.06	2	-	-	-	-			- .01	
.41 .41 5.74 2.87 -	.06	.00 7.81	- <1	.50 1.00	2.35	1.06	2	-	-	-	-			- .01	
.41 5.74 2.87 -	.06	.00 7.81	- <1	1.00	-	-	-	-	-	-	-				
.41 5.74 2.87 -	1.54	.00			4.19	1.97	6	-	÷		-				
5.74 2.87 -	1.54	7.81		22 40											
2.87	-	-	54	22 40											
2.87	-	-	31	< 1. OD	2.88	11.66	347	6.25	.50	.17	4	28.92	18.14	19.10	1077
-	.28	20	-	1.49	.10	.03	<1	-	-	-	-	.30	.05	.00	<1
-	-	.30	2	25.87	1.94	2.74	121	-	-	-	-	13.25	4.12	2.35	86
-		-	-	-	-	-	-	-	-	-	-	.30	.05	.00	<1
	-	-	-	-	-	-	2	3 4		-	-				~ 1
	-	-	-	-	÷	-	-	-	•	-	-				~1
5.74	1.30		7	-		-	-	-	•	-	-				<1
-			÷ .					1 	1 .	-	-	-	-	-	-
								-	-	- 17	- ,	25 54	-		-
15.57	3.33	8.20	180	43.78	4.99	14.81	80/	0.25	.50	.17	4	55.54	22.54	21,40	1304
2.87	. 31	.06	1	3.48	. 17	.05	1	-	-	-	-		-	-	-
78.69	98.24	17.48	9106	87.06	95.18	22.69	10762	18.75	11.42	.24	219	85.84	80.04	24.29	8956
-	-	-	• .	.50	.02	. 14	<1	2.08	.10	.05	<1	-	-	-	-
				-	- 00		-	2.09	- 10	-	-	-		-	-
.41	.03	.06	~1	.50	.02	. 14	<1	2.08	.10	.03	~1	-	-	-	-
-	-	-	•	1.99	.10	.77	2	4.17	.20	. 34	2	-	-	-	-
.41	.03	.06	<1	2.49	.12	.90	3	6.25	. 30	. 39	4	-	-	-	-
-	-	-	•	2.99	2.40	.15	8	50.00	85.57	1.62	4360	16.27	11.60	.33	194
2.05	.15	2.61	6	19.40	.94	13.03	271	4.17	.20	.11	1	13.55	2.64	10.42	177
-	-	-	-	1.49	.07	14.29	21	-	-	-	-	-	-	-	-
.82	.06	19.10	16	1.00	. 05	30.82	31	-		-	-	. 30	.05	2.21	1
3.28								-		-	-				93
								-	-	-	-				98
-	-	-	-				-								22
	-	-	-	-	-	-	-								- 9
				- 37 ค1	2 18	72 71	2831								2026
2.43		23.40	~~ /	57.81		12.11	2031	10.42		0.40	-	31,13		33.17	2020
	244				201				48				332		
	5.74 2.46 15.57 2.87 78.69 - .41 .41 .41 - .41 - .41 - .41	5.74 1.30 2.46 .22 15.57 3.33 2.87 .31 78.69 98.24 .41 .03 .41 .03 .43 .04 .43 .04 .44 .04 .44 .04 .44 .04 .45 .25 .25 .15 .23 .09 .22 .25 .25 .23 .25	5.74 1.30 .00 2.46 .22 .08 15.57 3.33 8.20 2.87 .31 .06 78.69 98.24 17.48 .41 .03 .06 .41 .03 .06 .06 .06 .06 .06 .06 .06 .06 .06 .06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Taxon Food Item	F	Fa: N	11 1976 V	IRI	F	Wint	ter 1977 V	IRI	F	Sprin	v 1977	IRI	F	Sur N	<u>mmer 1977</u> V	7 IRI
Annelida														* '	<u>``</u>	
Polychaeta																_
Aphrodita hastata	-	-	•		25.00	- - - 11	1 57	- 67	4.00	.33	47.44	191	-	- 31	-	í,
Harmothoe extenuata Pholoe minuta	-	-	-	-		1.11	1,57	- "	28.00	1.11	.33	_40	4.55	.31 .04	.85	5 ~1
Scalibregma inflatum	-	-	-	-			-	-	4.00	.11	.05	- 1	-	-	-	
Maldanidae	5 	-	-	-	4.17	.11	. 27	2	- 00	- 11	-		.65	.04	.04	<1
<u>Clymenura</u> sp. A Lumbrineris fragilis	-	-	-	-	4.17	.11	.05	- 1	4.00	.11	.02	_ 1	.65	.04	.04	∠1
Ampharete arctica	500 . 	2	-	-	16.67	1.22	1.41	44	-	-	-	-	-	-	-	~ Ę
Flabelligeridae sp. A	-	-	-	-		-	-	-	4.00	.22	.19	2	-	-	-	-
Brada spp.	-	-	•	-	4.17	1.11	.27	6	-	-	-	-	-	-	-	, -
Euchone spp. Chone infundibuliformis	-	-	-	2	8.33	.88	.22	- 9	12.00	1.11	.40	- 18	3.25	52	.19	- 2
Unidentified	-	-	-	-	8.33	.22	.16	3		-	-	-	4.55	.31	.19	4
Total Polychaeta	-	-	•	-	54.17	4.76	3.95	472	44.00	2.99	48.43	2263	13.64	1.27	1.78	41
Mollusca																
Pelecypoda																
Placopecten magellanicus	-	-	H	-		-	-	-	-	-	-	-	2.60	.22	8.57	23
Cyclocardia borealis	-	-	-	-	- 17	-,,			-	-	-	-	.65	.22	.19	<1
<u>Ensis directus</u> Total Pelecypoda	-	-	-	-	4.17 4.17	.11	1.08	5 5	-	-	-	-	1.30	.13	.23	<1 37
Ibrat rerecypous				-	4.17		1.00	,	-		-	-	3.90	.57	8.99	37
Crustacea																
Copepoda Condecia armata																
Candacia armata	-	-	-	-	-	-	-	-	-	-	-	-	.65	.04	.00	<1
Cumacea																
Eudorella hispida	-	-	-	-			-	-	4.00	.11	.00	1	-	-	-	-
<u>Diastylis sculpta</u> D. bispinosa	-	-	-	5	12,50	.44	.00	6	32.00	1.33	.07	45	3.25	.26	.08	1
Total Cumacea	-	-	-	-	4.17 16.67	.22	.05	1 12	12.00 36.00	.55 1.99	.00	7 74	3.25 6.49	.39	.15	2
		(fore)	5 A A						20.00	1.77	.0,	/4	0.42	.0.	.23	6
Isopoda																
Janira alta	-	-	-	-	-	-	-	-	-	-	-	-	.65	.04	.00	<1
Amphipoda																· .
Ampelisca spp.	-	-	-	-	-	-	-	÷	-	-	-	-	.65	.26	.12	ব
A. vadorum	-	-	~	-	4.17	.11	.00	1	16.00	1.22	.14	22	11 69	3 40	1 00	
A. agassizi		-	-	-	-	-	-		4.00	.88	.14	22	11.69	2.40	1.08	. 4
Byblis serrata Leptocheirus pinguis		-	-	-	4.17	,11	.05	1	4.00	.11	.00	<1	1.95	.13	.04	<1
Leptocheirus pinguis Erichthonius rubricornis	-	-	2	-	70 83	12 69	<	-	4.00	.11	.12	1	.65	.04	.04	<1
Unciola irrorata	-	-	-	-	70.83 100.00	43.69 44.91	6.11 22.84	3528 6775	84.00 72.00	71.90 13.50	5.79	6526	72.08	63.74	13.20	5546
Melita dentata	-	-	-	-	-	-	-	6775	8.00	.22	1.85	1105 2	63.64	21.25	12.54	2150
Photis dentata	-	-	-	-	-	-	-	-	8.00	.44	.02	4	.65	.04	.00	- <1
<u>Monoculodes</u> <u>edwardsi</u> <u>Phoxocephalus</u> holbolli	-	-	-	-	- 17	- ,,	-	٠,	-	-	-		.65	.04	.00	<1
Stenopleustes inermis	-	-	-	-	4.17	.11	.00	- 1	4.00 8.00	.11	.00	3	.65	.04	.00	<1
Parathemisto gaudichaudi	-	-	-	-	-	-	1	-	8.00		.00	-	1.30	.09	.00	- <1
Aeginina longicornis	-	-	-	-	4.17	.11	.05	1	8.00	.22	.02	- 2	2,60	.17	.00	<1 <1
Total Amphipoda	-	-	-	-	100.00	89.05	29.06	11811	88.00	89.05	8.06	8546	83.77	88.22	27.06	<1 9656
Decapoda														12 mar		
Crangon septemspinosa	-	-	-	-		-	-	-	-	-	-	-	65	04	20	
Calappidae spp. megalopae	-	-	-	-	-	-	-	-	-	-	-	-	.65	.04	. 39	-1 ⊲
Cancer spp. C. borealis			-	-	,	-	-		-	-	-		.65	.04	.12	<1
C. irroratus	-	-	-	-	4.17 41.67	.11 3.98	1.08	5 2567	4.00	.33	1.07	6	4.55	.31	6.10	29
Total Decapoda	-	-	-	-	41.67	3.98	57.63 58.71	2567 2617	36.00 36.00	5.20	41.39	1677	44.16	8.64	54.92	2806
				2			20.74	2017	30.00	3.33	42.46	1728	47.40	9.08	61.52	3347
Total Crustacea	-	-	-	-	100.00	93.81	87.93	18163	100,00	96,57	50.59	14716	96.10	98.04	88.81	17957
Echinodermata										24	i Dun	2 m	9699 P.Constanting	and the second		*****
Echinoidea																
Echinarachnius parma	-	-	-	-	20.83	1.33	7.14	176	. 8.00	.33	.95	10	1.30	.09	.23	<1
Ophiuroidea							N Distance	2254000-					1100			~•
Amphioplus macilentus	-	-	-	_	-		~ 5	14.500	(00	• •		-				
St. A. Witchied R. Statistics	197-170	1776	-	-	-	-	-	-	4.00	.11	.02	1	-	-	-	
Total Echinodermata	-	-	-	-	20.83	1.33	7.14	176	8.00	.44	.97	11	-	-		-
Chordata								-	States of services	18. A. A.	•••		2.00 2	-	-	-
Pisces																
Teleostei		e i.	-	-	-	-	-	_	-	_	~~~~			~		
							~	.	-	-	-	-	.65	.04	. 19	<1
and a second																
Number of stomachs examined; Examined stomachs with food;		7				27 24				31 25				359		

Taxon				
Food Item	F	N	<u>v</u>	IRI
Cnidaria				
Anthozoa				
Unidentified	1.51	.19	.18	1
Nematoda				
Unidentified	.75	.04	.00	<1
Annelida				
Polychaeta				
Aphrodita spp.	. 38	.01	.43	<1
A. hastata	. 75	.04	.64	1
Harmothoe extenuata	. 38	.01	.01	<1
Sthenelais limicola	2.64	.10	.77	2
Phyllodocidae	. 38	.01	.01	<1
Paranaitis speciosa	.75	.02	.02	<1
Phyllodoce spp.	1.51	.25	.27	1
P. mucosa	. 38	.01	.03	<1
F. groenlandica	12.83	1.19	1.08	29
<u>Eulalia bilineata</u>	.75	.02	.09	<1
<u>Syllis</u> sp.	. 38	.01	.01	<1
Nereis gravi	3.02	.12	.14	1
<u>N. zonata</u> <u>N. riisei</u>	. 38	.01	.04	<1
	.38	.01	.04	<1
Nephtyidae	.38	.01	.01	<1
Aglaophamus circinata	8.30	.45	3.01	29
Glycera spp.	1.13	.04	.59	1
<u>G. dibranchiata</u> <u>G. robusta</u>	6.79	.21	4.85	34
G. robusta	.38	.01	.26	<1
Goniada norvegica	.75	.04	.61	<1
Scalibregma inflatum	4.91	.15	1.31	7
Ophelina spp.	4.15	.25	.85	5
Maldanidae	1.51	.07	.19	<1
Clymenella torquata	1.13	.06	.13	<1
Euclymene collaris	6.04	.46	.28	4
Clymenura sp. A	12.83	.76	1.89	34
Aricidea neosuecia	1.89	.07	.04	<1
<u>Spio</u> spp.	.75	.02	.07	<1
Cnuphis pallidula	3.77	1.32	2.37	14
Marphysa spp.	2.26	.10	1.61	4
Marphysa bellii	. 38	.01	.01	1
Lumbrineridae	. 38	.01	.01	<1
Lumbrineris spp.	13.20	.78	.92	21
L. fragilis	3.02	.10	.48	2
L. inpatiens	1.13	.04	.03	<1

Table 8.--Percent frequency occurrence (F), percent number (N), percent volume (V) and index of relative importance (IRI) of food items in <u>Stenotomus</u> chrysops from fall samples.

Table 8 .-- Continued.

. . .

Taxon				
Food Item	F	N	v	трт
Food Item	<u> </u>	N	V	IRI
L. albidentata	2.64	.17	.32	1
Ninoe nigripes	2.26	.08	.52	2
Drilonereis spp.	3.02	.00	.17	1
	.38	.01	.03	<1
D. longa	3.02	.13	.03	2
D. magna	.75	.07	.09	
Cirratulidae	1.51	.07	.09	<1
Tharyx spp.	7.92		.49	<1
T. acutus	.38	.87		11
Oweniidae		.01	.02	<1
Melinna cristata	1.13	.04	.15	<1
Ampharete arctica	6.41	.32	.52	5
Terebellidae	.75	.02	.30	<1
Pista maculata	.38	.01	.69	<1
Nicolea venustula	15.85	2.43	2.27	74
Terebellides stroemi	3.77	.19	.43	2
Pherusa affinis	2.26	.08	.84	2
P. plumosa	.75	.02	.26	<1
Sabellidae	1.51	.06	1.43	2
Potamilla reniformis	1.89	.06	.20	<1
Chone infundibuliformes	22.64	5.28	13.48	425
Unidentified	37.36	1.65	14.11	589
Total Polychaeta	75.09	18.43	60.41	5920
Mollusca				
Scaphopoda				
Unidentified	.38	.01	.04	<1
Unidentified	.50	.01	•••	1
Gastropoda				
Mitrella spp.	6.42	1.00	.69	11
Nassarius trivittatus	.38	.01	.00	<1
Pleurobranchaea tarda	6.42	.40	1.35	11
Unidentified	1.51	.05	.10	<1
Total Gastropoda	11.70	1.46	2.14	42
Pelecypoda				_
Placopecten magellanicus	.38	.01	.74	<1
Unidentified	.38	.01	.09	<1
Total Pelecypoda	.75	.02	.82	1
Cephalopoda				
Unidentified	.75	.02	.10	<1
Total Mollusca	13.21	1.52	3.10	61
TO CAL HOLLADOA		2 • 5 M		
Crustacea				
Copepoda				
Eucalanus spp.	.38	.01	.00	1

, . . .

Table 8.--Continued.

Taxon				
Food Item	F	Ν	v	IRI
	k	N	V	INI
Nannocalanus minor	.75	.02	.01	<1
Temora longicornis	.38	.01	.00	<1
Centropages typicus	15.85	8.25	.41	137
Xanthocalanus spp.	.38	.01	.00	<1
Unidentified	.38	.02	.00	<1
Total Copepoda	16.23	8.32	.42	142
lotal copepoda	10.25	0.52	.42	142
Cumacea				
Eudorella hispida	.38	.01	.00	<1
Diastylis spp.	1.89	.14	.17	1
D. sculpta	.38	.01	.01	<1
D. bispinosa	4.91	.31	.34	
Unidentified	3.40	. 20	.24	3 2
Total Cumacea	10.19	.68	.76	15
Iotal Gumacea	10.17	.00	•70	15
Tanaidacea				
Tanaissus lilljeborgi	. 38	.01	.00	<1
Tallaissus TITIJebolgi	. 50	.01	.00	~1
Isopoda				
Edotea acuta	.38	.01	.04	<1
E. triloba	.38	.02	.04	<1
	4.53	.26	.04	2
Ptilanthura tricarina	1.51	.05	.08	<1
Cirolana polita	6.79	.34	.23	5
Total Isopoda	0.79	• 54	.42	J
Amphipoda				
Amphipoda	.75	.02	.04	<1
Ampeliscidae	5.66	.44	.21	4
Ampelisca spp.	20.00	1.88	.21	55
<u>A</u> . <u>vadorum</u>	25.28		1.63	147
A. agassizi		4.17	.50	29
<u>Byblis serrata</u>	18.49	1.07		
Aoridae	.38	.01	.00	<1
Leptocheirus pinguis	3.40	.12	.09	1
Argissa hamatipes	1.51	.05	.02	<1
Corophium spp.	.75	.04	.04	<1
C. crassicorne	.38	.02	.01	<1
Erichthonius spp.	.75	.08	.03	<1
E. rubricornis	61.13	25.81	5.44	1910
Unciola irrorata	44.53	6.48	3.68	452
Siphonoecetes smithianus	3.02	.10	.05	<1
Rachotropis inflata	.38	.01	.01	<1
Gammarus spp.	. 38	.01	.01	<1
Melita dentata	1.89	.14	.05	<1
<u>Casco</u> bigelowi	.75	.02	.13	<1
<u>Protohaustorius</u> wigleyi	. 38	.01	.00	<1
Photis spp.	.75	.02	.01	<1

Table 8.--Continued.

• 2

Taxon				
Food Item	F	N	v	IRI
<u>P. dentata</u>	1.51	.07	.03	<1
P. macrocoxa	.38	.01	.00	<1
Podoceropsis nitida	.75	.02	.02	<1
Anonyx sarsi	.38	.01	.02	<1
Melphidippidae	.38	.01	.03	<1
Monoculodes spp.	.38	.01	.01	<1
M. edwardsi	.75	.02	.03	<1
Phoxocephalidae	.38	.01	.00	<1
Phoxocephalus holbolli	21.51	1.39	.49	41
Trichophoxus epistomus	4.15	.19	.05	1
Harpinia propinqua	5.28	. 39	.41	4
H. truncata	.38	.02	.01	<1
Stenopleustes gracilis	.38	.01	.00	<1
S. inermis	3.40	.13	.01	<1
Hyperiidae	.75	.05	.01	<1
Parathemisto gaudichaudi	9.81	24.72	.94	252
Caprellidae	.38	.01	.02	<1
Aeginina longicornis	7.17	.31	.37	5
Unidentified	11.32	.69	.28	11
Total Amphipoda	79.62	68.63	15.53	6701
Iotal Amphipoda	19.02	00.05	10.00	0/01
Euphausiacea				
Euphausiidae	.38	.01	.00	<1
Euphadsridae	• 50	.01	.00	
Decapoda				
Dichelopandalus leptocerus	2.64	.13	3.05	8
Crangon septemspinosa	.75	.02	.35	<1
Axius serrata	.75	.02	.03	<1
Pagurus spp.	.75	.02	1.04	1
Cancer spp.	3.02	.12	.74	3
C. borealis	2.26	.08	.48	1
C. irroratus	10.19	.42	5.53	61
Unidentified	1.89	.06	.57	1
Total Decapoda	20.38	.88	11.79	258
Iotal Decapoda	20.50	.00	11.72	290
Unidentified Crustacea	7.92	.38	4.70	40
Total Crustacea	86.79	79.27	33.61	9797
Iotal Grustacea	00.79	,,,,,,,	55.01	
Priapulida				
Priapulus caudata	.75	.02	.53	<1
TTTAPUTUS Caudata	.,,,	.02		
Ectoprocta				
Unidentified	.38	.01	.00	<1
JALUGALILIEU				-
Echinodermata				
Asteroidea				
Asterias vulgaris	. 38	.01	.01	<1

Table 8.--Continued.

Taxon Food Item	F	N	v	IRI
Unidentified	.38	.02	.00	<1
Total Asteroidea	.75	.04	.01	<1
Echinoidea				
Echinarachnius parma	4.53	.15	.52	3
Ophiuroidea	1 1 2	0.0	2.2	-1
Amphioplus macilentus	1.13 2.64	.08	.22 .08	<1
<u>Axiognathus squamata</u> Unidentified		.11 .01		<1
Total Ophiuroidea	.38 4.15	.01	.00 .29	<1 2
Total Echinodermata	9.06			
lotal Echinodermata	9.06	. 39	.82	11
Chordata				
Ascideacea				
Unidentified	.38	.01	.05	<1
				-
Pisces		0.5	- /	-
Teleostei	1.51	.05	.74	1
Urophycis chuss	.75	.02	.56	<1
Gobiidae spp. larvae	.38	.04	.00	<1
Total Pisces	2.64	.11	1.30	4
Total number of stomachs examined:		563		
Number of examined stomachs with food:		265		

े **ेल्-छ**

Taxon		Fa	11 1976			Wint	er 1977			Spri	ng 1977			Sum	mer 1977	
Food Item	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI
Annelida																
Polychaeta																
Harmothoe extenuata	1.28	.28	. 39	1	-	-	-	-	10.68	.76	1.26	22	2.17	.40	1.36	4
Sthenelais limicola	-	•	-	-	2.16	.44	2.93	7	9.71	.71	8.03	85	5.79	1.03	5.96	40
Phyllodoce spp.	-	-	-	-	-	-	-	-	-	-	-	-	.72	.11	.09	<1
Nephytidae Aglaophamus circinata	-	-	-	-	1.44	.29	2.13	- 3	.97 10.68	.05	.19 5.13	1 63	.36	.06	.45	~1
Opheliidae	-	-	-	-	-	. 23	-		-	./0	5.15	- 03	2.89 .36	.46	3.25	11
Ophelia denticulata	-	-	-	-	-	-	-	-	-	-	-	-	.36	.06	.09	1
Ophelina spp.	-	-	-	-	-	-	-	-	-	-	-	-	.36	.06	.00	<1
Maldanidae	1.28	.28	.77	1	.72	.15	.27	<1	4.85	.25	1.06	6	2.53	.40	1.08	4
Clymenella torquata	-	-	-	-		-			.97	.05	.00	4	-	-	-	-
Clymenura sp. A Paraonidae	6.41	1.42	13.51	96	5.75	1.76	10.67	72	21.36	1.58	8.03	205	6.86	1.49	4.25	39
Spionidae	-	÷.	-	-	1.44	.29	.00	<1	1.94	.25	.68 .19	2 1	-		-	
Spiophanes bombyx	-	-	-	-		-	-	- 1	1.94	.20	.58	2	1.08	.06 .17	.90	<1 <1
Onuphis pallidula	-	-	-	-	1.44	.73	2.40	5	6.79	.76	3.68	30	.72	.11	.18	<1
Lumbrineris spp.	-	-	-	-	.72	.15	.27	<1	.97	.05	.00	<1	.36	.06	.09	<1
L. fragilis	-	-	-	-	-	-	-	-	2.91	.15	1.55	5	.36	.06	.45	<1
L. cruzensis L. impatiens	-	-	-	-	4.32	.88	1.33	10	2,91	.15	.48	2	1.80	.29	.45	1
Drilonereis spp.	-	-	-	-	1.44	.29	.53	1 <1	-	-	-	-	.72	.11	.09	<1
Ampharete arctica	-	-	-	-	8.63	2.20	6.13	72	13.59	.76	1.84	35	.36 1.80	.06	.00	<1 3
Pherusa affinis	-	-	-	-	-	-	-		-	- ''	-	- 33	.36	.06	1.36	<1
Sabellidae	-	-	-	<u>-</u>	.72	.15	.27	<1	(- (-	-	-	-	-	-	- 11
Euchone spp.	-	-		-		-	-	-	.97	.05	.10	<1	-	-	-	-
Chone infundibuliformis		-	-	-	3.60	2.20	2.40	17	38.83	5.65	9.67	595	9.02	2.46	2.17	42
Unidentified Total Polychaeta	8.97 15.38	1.99	3.86 18.53	53 346	22.30	4.84	10.67	346	10,68	.56	3.38	42	13.00	2.29	3.79	79
iotai roiychaeta	13.30	3.90	10.00	340	46.76	14.54	40.00	2550	80.58	12.92	45.84	4735	42.96	10.14	26.29	1565
Mollusca																
Gastropoda																
Unidentified		-		-	.72	.15	.00	≺1	-	-	-	-	-	-	-	-
Palaavaada																
Pelecypoda Unidentified															10100	
onedentifica		-	-	-	-	-	-	-	-	-	-	-	.36	.06	.00	<1
Crustacea																
Ostracoda																
Unidentified	5.13	1.99	.00	10	-	-	-	-	-	-	-	-	.36	.06	.00	<1
Copepoda																
Calanus finmarchicus		-	(52)						• • • •				-	2000.0		
Paracalanus spp.	1.28	.28	.00	ેત	.72	.15	.00	<1	3.88	.36	.10	2	2.17	.57	.09	1
Centropages typicus	2.56	.85	.00	2	2.88	.73	.00	2	-		-		-		-	-
Candacia armata	-	-	-	-	-	-	-		-	-	-	-	5.41	.97	.00	- 5
Metridia lucens	-	-	-	-	-	-	-	-	-		-	-	.36	.06	.00	<1
Harpacticoid	2.56	1.14	.00	3	-	-	-	-	-	-	-	-	-	-	-	
Unidentified Total Copepoda	6.41 12.82	2.56	.00	16	.72	.15	.00	~1	-	-	-	-	.72	.17	.00	<1
Total Copepoda	12.02	4.03	.00	62	4.32	1.03	.00	4	3.88	. 36	.10	2	8.66	1.78	.09	16
Cumacea																
Eudorella spp.	-	-	-	-	-	-	-	-	.97	.05	.00	<1	.36	.06	.00	<1
E. hispida	-	-	-	-	1.44	.29	.00	1	.97	.05	.00	~1	-	-	-	-
Diastylis spp. D. sculpta		-	-	-	1.49	.44	.00	1	.97	.05	.00	<1		-	-	i n
D. bispinosa	-	-	-	-	5.04 3.60	1.03	1.33	12	16.50	1.22	1.45	44	2.89	.57	.36	3
Petalosarsia declivis	-	-	-	-	3.60	1.03	.53	6 8	24.27	1.83	1.84	89 <1	2.89	.46	.36	2
Unidentified	1.28	.28	.39	1	1.44	.29	.00	1	-	-	-	~1	.36	.06	.00	<1
Total Cumacea	1.78	.28	. 39	ī	15.11	4.55	2.67	109	39.81	3.26	3.29	260	6.50	1.15	.72	- 12
Tanaidacea																
Tanaissus lilljeborgia	1.28	.28	.00	1					07	05						
	1,20	.20	.00	T	-	-	-	-	.97	.05	.00	1	-	-	-	-
Isopoda																
Edotea triloba	-	-	-	-	-	-	-	-	-		-	-	1.44	.23	.36	1
Janira alta	-	-	-	-	-	-	-	-	.97	.05	.00	1	2.53	.46	.36	2
Total Isopoda	-	-	-	-	-	-	-	-	.97	.05	.00	1	3.97	.69	.72	6

Tawar		Fall	1976	- C	50 mm		er 1977				ng 1977				er 1977	
Taxon Food Item	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI
Amphipoda Ampelisca spp.	2.56	.85	.39	3	1.44	.29	.00	~ 1	.97	. 05	.00	<1	.72	.11	.00	<1
A. macrocephala	-		÷	-	-			-	11 66		- 07	- 19	.36	.06	.45	▲1 485
A. vadorum	14.10	7.95	3.86	167	12.23	4.70 1.03	4.27	110 10	11.65 2.91	.66	.87	18 1	30.69 1.08	8.76	7.05	485
A. agassizi	3.85	1.14	1.16	9	4.32 7.19	2.94	3.20	44	13.59	1.17	2.32	47	15.88	4.81	6.05	172
Byblis serrata	32.05	17.90	26.25	1415	/.19	2.94	-	-	.97	.05	.00	<1	-	-	-	
Leptocheirus pinguis	-	-	-	-	-	-	-	-	.97	.05	. 19	<1	-	-	-	-
Argissa hamatipes	1.28	.28	.00	<1	-	-	-	-	-	-	-	-	. 	-	-	
<u>Erichthonius</u> spp. <u>E. rubricornis</u>	21.79	7.39	1.93	203	48.20	25.70	18.93	2151	42.72	8.24	8.32	707	61.37	35.22	11.02	2838
Unciola irrorata	58.97	35.79	30.89	3932	56.11	34.95	27.73	3517	58.25	10.58	11.51	1287	63.18	23.42	17.80	2604
Siphonoecetes smithianus	1.28	.28	. 39	1	-	-	-	÷.	-	-	-	-	-	-	-	-
Melita dentata	1.28	.28	. 39	1	=	-	-	-	3.88	.20	.10	1	2.89	.57	.54	3
Casco bigelowi	-	-	-	-	1.44	.29	.27	1	.97	.05	.10	<1	.72	.11	.18	<1
Jerbarnia spp.	-	-	-	-	-	- 16	-	- ~1	.97	.05	.00	-1	-	-	-	-
Photis spp.	-	-	- 20	- ,	.72	.15	.00	~1	5.82	.46	.19	- 4	1.44	.29	.09	- 1
P. dentata	1.28	.28	. 39	1	1.44	.73	.00	í	1.94	.15	.00	-1	-	-	-	- `
P. macrocoxa	-			-	1.44		-	-	-	-	-	-	.36	.06	.09	<1
Podoceropsis nitida	-		-	-	-	-	-	-	.97	.05	.10	~ 1	-	-	-	-
Orchomonella pinguis Monoculodes spp.	-	-	_	-	.72	.44	.00	∠1	-	-	-		-	-	-	
M. edwardsi	-	-	-	-	.72	.15	.27	<1	-	-	-	-	10.83	2.29	2.08	47
Phoxocephalus holbolli	1.28	.28	. 39	1	2.16	.44	.00	1	1.94	.10	.10	~ 1	2.17	. 34	.00	1
Trichophoxus epistomus	6.41	1.70	. 39	13	2.16	.44	.00	1	4.85	.25	. 39	3	2.17	.34	.09	1
Stenopleustes gracilis	-	-	-	H	-	•	-	-	2.91	.20	.00	1	-		-	
S. inermis	-	-	-	-	8.63	3.08	.00	27	15.53	1.93	.29	35	.72	.11	.00	1
Stenothoidae	1.28	.28	.00	<u>~1</u>			-	-	-	-	-	-	-	-	-	-
Hyperiidae	8.97	1.99	.77	25	.72	.15	.00	<1	1.94	.10	.00	- -1	14.08	2.92	1.99	- 69
Parathemisto gaudichaudi	10.26	3.13	1.93	52	-	-	-	-	.97	.05	.00	<1 <1	14.00	2.52	1.33	
Aeginina longicornis	29.49	6.82	9.65	486	9.35	3.08	.80	36	1.94	.10	.00	<1	2,89	.46	.00	1
Unidentified Total Amphipoda	84.62	86.36	78.76	13972	85.61	79.74	57.33	11735	80.58	24.72	24.66	3979	96.03	80.07	47,52	12252
	04.02	00.00														
Decapoda											_		.72	.11	.27	د1
Leptochela bermudensis	-		-	•	-	-	-	-	2.91	.15	.48	2	3.97	.63	.90	6
Dichelopandalus leptoceras	-			-	-		-	-	-		-		2.89	.51	1.72	6
Crangon septemspinosa Cancer spp.			-	-	-	-	-	-	-	-	-	-	.72	.11	.09	<1
C. borealis	-	-	-	-	-	()	-	-	-	-	-	-	.36	.11	.18	<1
C. irroratus	-	-	-	-	-	-	-	-	-	-	-	-	1.44	.23	.45	1
Unidentified	1.28	.28	. 39	1	-	-	-	-	-	-	-	-	.36	.06	.09	<1
Total Decapoda	1.28	.28	.39	1	-	-	-	-	2.91	.15	.48	2	9.75	1.78	3.70	53
melofficiality and a strategic and																
Unidentified Crustacea	6.41	1.42	1.54	19	-	-	-		-	-		-	.72	.11	.09	<1
Total Crustacea	93.59	95.45	81.08	16522	86.33	85.32	60.00	12545	86.41	28.59	28.63	4943	97.11	85.62	52.85	13447
Sipuncula							_	_	.97	.05	.00	<1				
Phascolion strombi	-	-	-	-	-	-	-	-	. 57	.05	.00	•1	-	-	-	-
Echinodermata																
Ophiuroidea																
Axiognathus squamata	-	-	-	-	-	-	-	-	-	-	-	-	.36	.06	.09	<1
Internet offense																
Chaetognatha																
Sagitta elegans	-	-	-	-	1. 	-	-	-	.97	.05	.10	~1	1.44	.23	.00	~1
Chordata																
Larvacea									29.13	58.39	25,44	2442				
Unidentified	-	-		-	-	-	-	-	29.15	30.39	23.44	2442	-	-	•	-
Рівсев																
Teleostei spp.	2.56	.57	. 39	2	-	-	-	-	-	-	-	-	17.33	2.81	12.92	272
Merluccius bilinearis	-		-		-	-	-	-	-	-	-	-	4.69	.92	7.05	37
Ammodytes spp.	_	-	-	-	-	-	-		-	-	-	-	.36	.06	.45	<1
Citharichthys arctifrons	-	-	-	-	-	-	-	-	-	-	-	-	.72	.11	.36	<1
	2.56	.57	. 39	2	_	-	-	-	-	-	-	-	23.10	3.89	20,78	570
	2.30				-											
Tetal.Pisces	2.50			-	-											
	2.30	195 78	.52	-	_	189 139				110 103				315 277		

Taxon		Fall	1976			Winte	r 1977			Spring	g 1977			Summe	r 1977	
Food Item	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI
Cnidaria																
Hydrozoa																
Eudendrium spp.	.77	.17	.08	<1	-	-	-	-	-	_	_	-	-	-	-	_'
Unidentified		-	-		-	_	_	_	.94	.10	.00	<1	-	_	-	-
onidentified									.,,			4 1		_		-
Annelida																
Polychaeta																
Harmothoe extenuata	-	-	-	-	1.11	.18	.11	<1	.94	.10	.02	<1	1.33	.29	.04	<1
Sthenelais limicola	-	-	-	-	2.22	.35	.80	3	4.72	.52	.68	6	2.67	.57	.09	2
Maldanidae	-	-	-	-		-	-	- 2	.94	.10	.28	<1	1.33	.29	.04	~1
<u>Clymenura</u> sp. A	-	-	-	-	1.11	.18	.92	1	1.89	.21	.22	1	-	-	-	-
Spionidae	-	-	-	-	1,11	.18	.05	1	-	-	-	-	=	-	-	-
Ampharete arctica	-	-	-	-	1.11	.18	. 11	~1	-	-	-	-	-	-	-	-
Chone infundibuliformis	-	-	-	-	5.55	.88	1.95	16	6.60	.93	2.04	20	1.33	.29	.16	1
Unidentified	-	-	-	-	4.44	.70	.14	4	.94	.10	.02	∠1	2.67	.57	.17	2
Total Polychaeta	-	-	-	-	15.56	2.65	4.08	105	14.15	1.96	3.26	74	6.67	2.01	.51	17
Mollusca																
Pelecypoda																
Placopecten magellanicus	.77	.17	.01	∠1	-	-	-	-	-	-	-	-	-	-	-	-
Cyclocardia borealis	.77	.17	.01	<1	1.11	.18	.11	<1	-	-	-	-	-	-	-	_
Ensis directus	.77	.17	.08	∠1	-	-	-	-	.94	,10	.02	<1	-	-	-	
Unidentified	2.31	.68	.21	2	-	-	-	-	-	_	-	-	-	-	_	-
Total Pelecypoda	4.62	1.19	.31	7	1.11	.18	.11	<1	.94	.10	.02	~1	-	-	-	-
Cephalopoda																5
Loliginidae	2.31	.51	9.91	24	-	_	-	-	1.89	.31	4.07	8	1.33	.29	1.31	
Loligo pealei	3.08	.85	18.49	60	_	-	-	-	-		4.07	0	-	.29	1.51	2
Rossia spp.	3.85	.85	.62	6	5.55	.88	2,11	17	1.89	.21	.09	- 1	1.33	.29	.00	- 1
R. tenera	2.31	.51	1.66	5	1.11	.35	.00	<1	.94	.10	2.22	2	1.33	.29	1.64	<1 3
Unidentified	3.85	1.02	.60	6	-		.00	-	. 34	- 10	-	2	1.33	. 29	1.04	3
Total Cephalopoda	15.38	3.74	31.28	539	o.67	1.23	2.11	22	_		- 2	-	4.00	.86	2.95	- 15
2 170271 E MARIE					0.07				_	-		-	4.00	.00	2.95	15
Unidentified Mollusce	5.38	1.70	. 32	11	-	-	-	-	4.72	.62	6.38	33	-	-	-	-
Total Mollusca	22.31	6.62	31.90	859	7.78	1.41	2.23	28	5.66	.73	6.40	40	4.00	.86	2.95	15
Crustacea																
Copepoda																
Centropages typicus		-	-	-	1.11	.35	.00	<1	-	-	-	-	122	2	-	-
Candacia armata	-	-	-	-		-	-	-	_		_		2.67	.57	.00	2
Total Copepoda	3 - 6	-	-	-	1.11	.35	.00	<1		-	-		2.67	.57	.00	2
						100	100						2.07		.00	2
Stomatopoda																
Unidentified	-	-	-	-	-	-	-	-	.94	.10	.09	<1	-	-	-	-
Mysidacea																
Neomysis americana	-	-	-	-	-	-	-	-	.94	.10	.02	~ 1	-	_	-	_
						1995	250	11.472	• 74	.10	.02	-1		-	-	1. The second
Cumacea																
Diastylis sculpta	-	-	-	-		Ξ.	·_	-	.94	.10	.00	~1	122			
									• • • •	.10	.00	-1	-	-	-	-

Table 10.--Percent frequency occurrence (F), percent number (N), percent volume (V) and index of relative importance (IRI) of food items in Paralichthys oblongus stomachs, by cruise.

Table 10.--Continued.

Taxon Food Item	Fall 1976				Winter 1977				Spring 1977				Summer 1977			
	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI	F	N	V	IRI
Amphipoda																
Ampelisca spp.	.77	.17	.00	~ 1	-	-	-	-	=	•	-	-	•	-	-	-
A. vadorum	.77	.17	.00	≤1	-	-	-	-	-	-	-	-	-	-	-	-
A. agassizi	.77	.17	.01	<1	-	-	-	-	.94	.10	.00	~ 1	-	-	-	-
Byblis serrata	6.15	3.40	. 19	22	5,55	2.29	. 39	15	18.87	7.48	2.53	189	-	-	-	-
Leptocheirus pinguis	-	-	-	-	-		-	-	. 94	.10	.09	∠ 1	-		-	-
Erichthonius rubricornis	2.31	.68	.01	2	38.89	21.69	1.74	911	24.53	9.24	1.33	259	1.33	.29	.00	4
Unciola irrorata	10.77	3.23	.19	37	53.33	42.33	5.55	2554	51.89	50.57	11.25	3208	6.67	2.58	.10	1
Trichophoxus epistomus	1.54	. 34	.01	1	-	-	-	-)	•	-	-	•	-	-	
Hyperiidae	2.31	.68	.01	2	-	-	-	-	-	•	-	-			-	-
Parathemisto gaudichaudi	2.31	1.02	.02	2	1.11	.70	. 02	1	.94	.10	.00	<1	4.00	1.15	.00	
Unidentified	1.54	. 34	.01	1	1.11	.18	.00	~ 1	•	-						-
Total Amphipoda	18.46	10.19	.44	196	61.11	67.20	7.71	4578	66.04	67.60	15.21	5469	12.00	4.01	.10	4
Decapoda										20.200 004.00	100000 0320.02	100 CM # 1210			10441 1 10220 av	
Dichelopandalus leptocerus	7.69	4.75	8.18	99	7.78	1.59	6.72	65	38.68	16.51	14.51	1200	25.33	10.31	3.71	35
Crangonidae	-	-	-	-	-	-	-		.94	.10	.02	<1	-	-	-	-
Crangon septemspinosa	11.54	3.56	2.34	68	12.22	3.53	4.89	103	25.47	5.50	6.62	309	22.67	8.60	2.22	24
Scyllabus spp.	-	-	-	-	-	-	-	-	.94	.10	.46	1	-	-	-	-
Munida iris	-	-	-	-	7.78	2.12	4.93	55	.94	.10	.46	1	-	-	-	-
Cancer spp.	10.00	5.09	1.82	69	2.22	.53	. 44	2	1.89	.21	. 31	1	1 	-	-	-
C. borealis	3.85	1.02	.47	6	3.33	1.23	6.54	26	.94	. 10	.09	<1	-	-	-	-
C. irroratus	61.54	42.61	31.70	4573	44.44	16.05	49.91	2931	28.30	5.92	39.13	1275	46.67	20.34	68.71	415
Collodes robustus	-	-	-	-	1.11	.18	.11	<1	-	-	-		-	-	-	-
Unidentified	25.38	12.73	6.09	478	-	-	-	-	.94	. 10	. 09	1		-	-	-
Total Decapoda	80.00	69.78	50.60	9630	65.56	25.22	73.54	6475	73.58	28.66	61.70	6649	78.67	39.26	74.63	895
Unidentified Crustacea	2.31	.68	. 35	2	3.33	.53	. 76	4	-	-	-	-	-	-	-	-
Total Crustacea	86 .92	80.65	51.39	11477	93.33	93.30	82.01	16362	95.28	96.57	77.02	16541	81.33	43.84	74 73	964
Echinodermata																
Echinoidea															÷	
Echinarachnius parma	6.92	1.53	. 34	13	-	-	-	-	•	-	•	-	1.33	. 29	.04	<
Chordata																
Pisces												1.411			-	
Teleostei spp.	22.31	5.26.	8.28	302	10.00	1.59	4.54	61	1.89	.21	3.70	7	24.00	8.60	3.35	28
Urophycis chuss	9.23	3.56	6.04	89	1,11	.18	1.84	2	1.89	.21	8.88	17	1.33	.29	.08	4
Merluccius bilinearis	5.38	1.36	1.37	15	3.33	.53	3.67	14	. 94	.10	. 56	1	40.00	44.13	18.34	249
Citharichthys arctifrons	3.85	.85	.60	6	2.22	. 35	1.63	4	.94	.10	. 19	<1	-	-	-	-
Total Pisces	40.00	11.04	16.29	1093	15.56	2.65	11.68	223	5.66	. 62	13.32	79	62.67	53.01	21.77	468
Total number of stomachs examined		169				101				125 106				75 75		
Examined stomachs with food;		130				90										

NOAA TECHNICAL REPORTS NMFS Circular and Special Scientific Report—Fisheries

Guidelines for Contributors

CONTENTS OF MANUSCRIPT

First page. Give the title (as concise as possible) of the paper and the author's name, and footnote the author's affiliation, mailing address, and ZIP code.

Contents. Contains the text headings and abbreviated figure legends and table headings. Dots should follow each entry and page numbers should be omitted.

Abstract. Not to exceed one double-spaced page. Footnotes and literature citations do not belong in the abstract.

Text. See also Form of the Manuscript below. Follow the U.S. Government Printing Office Style Manual, 1973 edition. Fish names, follow the American Fisheries Society Special Publication No. 12, A List of Common and Scientific Names of Fishes from the United States and Canada, fourth edition, 1980. Use short, brief, informative headings in place of "Materials and Methods."

Text footnotes. Type on a separate sheet from the text. For unpublished or some processed material, give author, year, title of manuscript, number of pages, and where it is filed—agency and its location.

Personal communications. Cite name in text and footnote. Cite in footnote: John J. Jones, Fishery Biologist, Scripps Institution of Oceanography, La Jolla, CA 92037, pers. commun. 21 May 1977.

Figures. Should be self-explanatory, not requiring reference to the text. All figures should be cited consecutively in the text and their placement, where first mentioned, indicated in the left-hand margin of the manuscript page. Photographs and line drawings should be of "professional" quality —clear and balanced, and can be reduced to 42 picas for page width or to 20 picas for a single-column width, but no more than 57 picas high. Photographs and line drawings should be printed on glossy paper—sharply focused, good contrast. Label each figure. DO NOT SEND original figures to the Scientific Editor; NMFS Scientific Publications Office will request these if they are needed.

Tables. Each table should start on a separate page and should be self-explanatory, not requiring reference to the text. Headings should be short but amply descriptive. Use only horizontal rules. Number table footnotes consecutively across the page from left to right in Arabic numerals; and to avoid confusion with powers, place them to the *left* of the numerals. If the original tables are typed in our format and are clean and legible, these tables will be reproduced as they are. In the text all tables should be cited consecutively and their placement, where first mentioned, indicated in the left-hand margin of the manuscript page.

Acknowledgments. Place at the end of text. Give credit only to those who gave exceptional contributions and *not* to those whose contributions are part of their normal duties. Literature cited. In text as: Smith and Jones (1977) or (Smith and Jones 1977); if more than one author, list according to years (e.g., Smith 1936; Jones et al. 1975; Doe 1977). All papers referred to in the text should be listed alphabetically by the senior author's surname under the heading "Literature Cited"; only the author's surname and initials are required in the author line. The author is responsible for the accuracy of the literature citations. Abbreviations of names of periodicals and serials should conform to *Biological Abstracts List of Serials with Title Abbreviations*. Format, see recent SSRF or Circular.

Abbreviations and symbols. Common ones, such as mm, m, g, ml, mg, °C (for Celsius), %, $\%_{00}$, etc., should be used. Abbreviate units of measures only when used with numerals; periods are rarely used in these abbreviations. But periods are used in et al., vs., e.g., i.e., Wash. (WA is used only with ZIP code), etc. Abbreviations are acceptable in tables and figures where there is lack of space.

Measurements. Should be given in metric units. Other equivalent units may be given in parentheses.

FORM OF THE MANUSCRIPT

Original of the manuscript should be typed double-spaced on white bond paper. Triple space above headings. Send good duplicated copies of manuscript rather than carbon copies. The sequence of the material should be:

FIRST PAGE CONTENTS ABSTRACT TENT LITERATURE CITED TENT FOOTNOTES APPENDIX TABLES (provide headings, including "Table" and Arabic numeral, e.g., Table 1.--, Table 2.--, etc.) LIST OF FIGURE LEGENDS (entire legend, including "Figure" and Arabic numeral, e.g., Figure 1.--, Figure 2.--, etc.) FIGURES

ADDITIONAL INFORMATION

Send ribbon copy and two duplicated copies of the manuscript to:

Dr. Carl J. Sindermann, Scientific Editor Northeast Fisheries Center Sandy Hook Laboratory National Marine Fisheries Service, NOAA Highlands, NJ 07732

Copies. Fifty copies will be supplied to the senior author and 100 to his organization free of charge.