PILCHARD EGGS AND LARVAE AND OTHER FISH LARVAE, PACIFIC COAST - 1950 Marine Biological Laboratory LIBRARY NOV22 1952 WOODS HOLE, MASS. SPECIAL SCIENTIFIC REPORT: FISHERIES No. 80 # PILCHARD EGGS AND LARVAE AND OTHER FISH LARVAE, PACIFIC COAST - 1950 Marine Biological Laboratory LIBRARY NOV22 1952 WOODS HOLE, MASS. SPECIAL SCIENTIFIC REPORT: FISHERIES No. 80 The series embodies results of investigations, usually of restricted scope, intended to aid or direct management or utilization practices and as guides for administrative or legislative action. It is issued in limited quantities for the official use of Federal, State or cooperating agencies and in processed form for economy and to avoid delay in publication. ## PILCHARD EGGS AND LARVAE AND OTHER FISH LARVAE, PACIFIC COAST, 1950 By Elbert H. Ahlstrom This report contains records of the quantitative sampling of fish eggs and larvae off the west coast of North America during 1950. The area included is roughly that lying between the Columbia River and Punto Abreojos, Lower California, and extending 350 to 400 miles off shore. The species included are the pilchard or sardine (Sardinops caerulea), northern anchovy (Engraulis mordax), jack mackerel (Trachurus symmetricus), hake (Merluccius productus). and rockfish (Sebastodes spp.). In the tables, pilchard larvae are enumerated by size categories, and pilchard eggs by age (in days) since spawning. Northern anchovy larvae are also enumerated by size categories. Tabulations are given of the numbers of jack mackerel, hake, and rockfish, three of the most abundant species in the collections. In addition, haul data are given for all collections taken during cruises 11 through 18, February through September, 1950. Descriptions of the eggs and larvae of the jack mackerel and hake are being prepared for early publication. The purpose of this report is to put these data on record. Analyses of the data will be presented in subsequent publications. The investigation of the distribution and abundance of pilchard eggs and larvae is one of the major lines of research being pursued by the South Pacific Fishery Investigations of the U. S. Fish and Wildlife Service under the California Cooperative Sardine Research Program. This program is sponsored by the Marine Research Committee and is being carried out in conjunction with the Scripps Institution of Oceanography of the University of California, the California Department of Fish and Game, the California Academy of Sciences, and the Hopkins Marine Station of Stanford University. It is a pleasure to acknowledge the wholehearted cooperation of the Scripps Institution of Oceanography, both in the collection of data at sea and in its processing ashore. The whole staff of the Scuth Pacific Fishery Investigations of the Fish and Wildlife Service contributed to this investigation, with the majority of the workers devoting their full time to it. When it is pointed out that about 50 persons participated in each cruise, either in the collection of material or in the operation of the vessels, and that nearly half this number of persons worked with the material ashore, it will be evident why it is impracticable to include individual acknowledgments. ^{1/} The collections were designed primarily to yield information on pilchard. Information on the other species is partially an incidental, although not unexpected byproduct. Figure 1. Station plan, showing location of all stations occupied during the 1950 survey of the distribution and abundance of pilchard eggs and larvae. #### AREA COVERED The area covered during the survey is shown in figure 1. Not all of the 167 stations shown were occupied monthly; as can be seen from the following tabulation, only 93 to 140 stations were occupied on a given cruise. Text table 1. Stations scheduled and occupied on cruises 11 through 18. | | Month | Numbe $oldsymbol{r}$ scheduled | Number occupied | Percent occupied | |-----------|-----------|--------------------------------|-----------------|------------------| | Cruise 11 | February | 118 | 111/4 | 97 | | Cruise 12 | March | 130 | 111 | 85 | | Cruise 13 | April | 130 | 125 | 96 | | Cruise 14 | May | 130 | 129 | 99 | | Cruise 15 | June | 140 | 106 | 76 | | Cruise 16 | July | 140 | 140 | 100 | | Cruise 17 | August | 93 | 93 | 100 | | Cruise 18 | September | 109 | 108 | 99 | | Total | | 990 | 926 | | The number of stations scheduled for each cruise is shown in text table 1. A simplified tabulation giving the station lines scheduled for each cruise and the vessel assigned to work each line is given in text table 2. Most stations were occupied six to eight times during the season, but stations on the northernmost line were occupied only once (cruise 17) and on the next adjacent line only twice (cruises 17 and 18). Three vessels participated in each of the monthly cruises. The Crest, operated by the Scripps Institution of Oceanography, and the Black Douglas, operated by the U. S. Fish and Wildlife Service, took part in all of the eight cruises, while the third participating vessel was either the Horizon or the Paolina T., operated by Scripps. Three of the vessels successfully occupied 97 percent or more of the stations assigned to them. ### METHODS OF SAMPLING Fish eggs and larvae were collected by plankton nets that measure 1.0 meter in diameter at the mouth by about 5 meters in over-all length. The nets were constructed of No. 30xxx grit gauze, a rugged grade of Swiss silk bolting cloth. A sketch of the type of net employed has been given in a previous report (Ahlstrom 1948, fig. 4). The plankton hauls were taken obliquely from about 70 meters deep to the surface at a vessel speed of about 1-1/2 to 2 knots. In taking a haul, the net was lowered on 100 meters of wire (1/4-inch cable) at the rate of about 50 meters a minute, then retrieved at the rate of 5 meters a minute. The actual depth reached by the net varied somewhat from haul to haul, depending upon the speed of the ship and the state of the sea. As most of the vessels used for taking plankton hauls could not be slowed down sufficiently when the sea was fairly calm, it was necessary to start and stop the engine frequently during a haul in order to approximate the desired towing speed. A film trace of the actual path of the net during hauls has been obtained for the tows made on at least one vessel per cruise, by using a microplankton sampler in conjunction with the regular net. The microplankton sampler is fastened about 2 to 4 meters below the regular plankton net. The sampler is equipped with a calibrated bellows and a rotator. A continuous record of the depth of the sampler in the water and the amount of water strained by it during a haul is obtained as a stylus scratch on clear 35-mm. acetate film, the amount of water strained, being recorded on the horizontal axis, the depth of the net on the vertical. From these traces we have verified that the depth of the net at any instant during a haul can be approximated by multiplying the amount of wire cut by the cosine of the angle of stray of the towing wire from the vertical (see fig. 2). Figure 2. Comparison of the path of a 1.0 -meter plankton net during an oblique haul upward (as determined from the cosine of the angles of stray of the towing wire) with the path of a microplankton sampler (M.P.S.) attached 2.5 meters below the 1.0-meter net, as determined from a film trace made by a pressure bellows. Text table 2. Station lines scheduled to be occupied on cruises 11 through 18, February-September 1950. | | | | | | Cruise | | | | | |----------|-----|----|------|------|--------|-----|-----|------|-----| | | | 11 | 12 . | 13 . | 14 | .15 | -16 | 17. | 18 | | - | | | | | | | | 70 | | | Line 2 | | - | - | _ | - | - | _ | В | _ | | Line 3 | | - | - | _ | - | - | - | В | В | | Line l | 40 | - | В | В | В | В | В | В | В | | Line 5 | 50 | В | В | В | В | В | В | В | В | | Line 6 | 6C | В | В | В | В | В | В | C | В | | Line ' | | С | В | В | В | В | В | С | В | | Line & | | B | С | H | H | С | С | С | _ | | Line (| | С | C | Н | H | С | С | P | - | | Line 8 | | C | С | H | H | С | C | P | 0.3 | | Line 9 | | C | C | H | H | C | С | С | C | | Line 9 | 93 | C | С | H | H | C | C | - | - | | Line 9 | 97 | С | C | H | Н | С | С | 5.00 | - | | Line I | 100 | H | H | С | C | P | P | - | P | | Line I | 110 | H | H | С | C | P | P | tea | P | | Line I | 120 | H | H | С | С | P | P | | P | | Line : | | H | Н | С | С | P | P | _ | P | | Line : | | Н | H | С | С | P | P | _ | P | | Line : | | H | H | C | С | P | P | - | P | Throughout the report, vessels used on survey cruises are designated by the following letters: B - Black Douglas; C - Crest; H - Horizon; P - Paolina T. #### MEASUREMENT OF VOLUME OF WATER STRAINED DURING PLANKTON HAULS A measure of the volume of water strained during a haul was derived from current meter readings. An Atlas-type current meter was fastened in the center of the mouth of each net. Seven current meters were used during cruises ll through 18. Two were lost at sea during this period, current meter No. 6 on cruise 12, and current meter No. 5 on cruise 13. The current meters were calibrated before and after each cruise on which they were used. In calibrating, the current meters were towed over a measured distance at different speeds. Performance graphs were constructed in which the length of the column of water strained per revolution of the current meters (meters/rev) was plotted as the dependent variable against the rate of towing (revolutions per second). Since these performance tests were made both before and after each cruise, the graphs applicable to a given cruise were a combination of two calibration trials. A table is given of the performance of the current meters at two selected speeds (text table 3). Some of the current meters were quite consistent in their performance over a long period of use. In this category were current meters Nos. 5, 6, and 31. Other meters changed
their performance gradually, becoming less free-running with continued use (current meter No. 81). The abrupt change in performance of current meter No. 32 on Horizon cruisella was due to an accidental change in the pitch of the blades of the current meter's impeller. For any given haul, the appropriate calibration graph was used to determine the performance of the current meter (length of the column of water strained per revolution) at the speed at which the haul was taken (average rev/sec). The volume of water strained during a haul was determined by multiplying the number of revolutions registered by the current meter during a haul by this value, and then taking the cross-sectional area of the mouth of the net (in square meters) into account. For the very few hauls lacking reliable current meter readings, an approximate value was obtained which represented the average performance of the current meter at the rate of speed at which the particular hauls were made. Such values in table I are enclosed by parentheses. #### STANDARDIZATION OF THE HAULS For comparability with past data, the same method of standardizing hauls has been employed as that described in a previous report (Ahlstrom 1948). This standard adjusts the number of eggs or larvae in a haul to the number in 10 cubic meters of water strained per meter of depth fished by the net. If the vertical distribution of the eggs or larvae has been encompassed, this value is equivalent to the number under 10 square meters of sea surface. The reader is referred to the above-cited paper for details. #### SEPARATION OF FISH EGGS AND LARVAE FROM PLANKTON SAMPLES Fish eggs and larvae were separated from the other constituents of the plankton hauls by examining the material under a low-power microscope. For the majority of hauls (647 samples, representing about 70 percent of the hauls) the complete samples were examined. Owing to the large volume of plankton taken in some hauls, it was necessary to fraction these into aliquot portions. A few samples were divided into as many as 16 aliquots (6.25 percent each), but most fractioned samples were divided into 2, 4, or 8 aliquot portions. For all aiquots smaller than 50 percent, two portions of each sample were sorted. A tabulation follows of the number of samples from each cruise that were fractioned and the percent of each that was sorted. Text table 3. Current meter performance data for two selected speeds (cruises 11 through 18). (Based on the average of two calibrations, one made before, the other after the cruise indicated.) | Current meter | Cruise on | Meter | rs/rev at | |---------------|--------------------------------------|------------------------|------------------------| | | which used | 2.0 rev/sec l/ | 3.5 rev/sec <u>l</u> / | | No. 5 | B-11
B-12
Lost at sea on cruis | 0.252
0.253
e 13 | 0.243
0.239 | | No. 6 | C-ll
Lost at sea on cruis | 0.250
e 12 | 0.250 | | No. 31 | P-11 | 0.233 | 0.218 | | | C-13 | 0.234 | 0.220 | | | C-14 | 0.239 | 0.229 | | | C-15 | 0.246 | 0.232 | | | C-16 | 0.243 | 0.232 | | | C-17 | 0.231 | 0.235 | | No. 32 | H-11 | 0.261 | 0.250 | | | H-12 | 0.258 | 0.245 | | | H-13 | 0.256 | 0.245 | | | H-14 | 0.253/0.287 | 0.242/0.273 | | | P-15 | 0.295 | 0.281 | | | P-16 | 0.302 | 0.290 | | | P-17 | 0.302 | 0.298 | | No. 81 | B-14 | 0.258 | 0.252 | | | B-15 | 0.270 | 0.260 | | | B-16 | 0.281 | 0.274 | | | C-18 | 0.290 | 0.280 | | Nc. 82 | B=17 | 0.276 | 0.270 | | No. 87 | P18 | 0.353 | 0.352 | I/ The average rev/sec registered by the current meters during most hauls lie between these two values. Text table 4. Number of samples from each cruise, by proportion of sample sorted | | Fractioned sa
aliquot po | Total | | | | |--|-----------------------------|------------------------------|----------------------------------|----------------------------------|--| | | 12.5 percent of sample | 44 | 50 percent of sample | samples
sorted | samples
examined | | Cruise 11
Cruise 12
Cruise 13
Cruise 14
Cruise 15
Cruise 16 | 3
2
-
1
- | 8
7
17
12
-
4 | 15
28
42
34
20
41 | 88
74
66
82
86
95 | 114
111
125
129
106
140 | | Cruise 17
Cruise 18
Total | <u>-</u> 7 | 2
2
52 | 18
22
220 | 72
84
647 | 93
108
926 | #### LITERATURE CITED ### Ahlstrom, Elbert H. - 1943. Studies on the Pacific pilchard or sardine (Sardinops caerulea) 4. Influence of temperature on the rate of development of pilchard eggs in nature. U. S. Fish and Wildlife Service, Spec. Sci. Report No. 23, 26 pp. - 1948. A record of pilchard eggs and larvae collected during surveys made in 1939 to 1941. U. S. Fish and Wildlife Service, Spec. Sci. Report No. 54, 76 pp. Marr, John C., and Elbert H. Ahlstrom 1948. Observations on the horizontal distribution and the numbers of eggs and larvae of the northern anchovy (Engraulis mordax) off California in 1940 and 1941. U. S. Fish and Wildlife Service, Spec. Sci. Report No. 56, 13 pp. Sette, Oscar E., and Elbert H. Ahlstrom 1948. Estimations of abundance of the eggs of the Pacific pilchard (Sardinops caerulea) off southern California during 1940 and 1941. Sears Found. Journ. Mar., Res. vol. VII, No. 3, pp. 511-542. #### GUIDE TO TABLES Table I.—Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950. Station: The letter preceding the station number is used to designate the vessel from which the collections were made. The four participating vessels are designated as follows: B - Black Douglas: C - Crest: H - Horizon: P - Paolina T. Station numbers are made up of 4 to 6 figures separated into two groups by a dot. The figures before the dot represent the number of the line on which the station occurs, the figures following the dot represent the position of the station on the line. Station lines are numbered from north to south, stations on lines from inshore to offshore. Refer to figure 1, the station chart for 1950, showing all stations occupied during cruises 11 through 18. Position - N. lat., W. long.: The positions given represent the best estimate of the position of occupancy of each station. Date: Month given in Roman numerals, the day of the month in Arabic; thus VIII-5 is August 5. Hour: The time indicated is approximately that of the mid-depth of the haul as the net was being brought obliquely upward. The hours are given on a 24-hour basis; thus 1930 is equivalent to 7:30 p.m. Duration of Haul: Given in minutes to the nearest quarter minute. Depth (Meters): Depth of the stratum fished, in meters. Vol. of Water Strained: In cubic meters (see preceding text). Estimates given in parentheses were not based on current-meter readings. S. Factor: Standardized haul factor (for explanation, refer to Ahlstrom 1948). Table II .-- Record of Pilchard Eggs, 1950. Number of Normal Eggs: Number of normally developing pilchard eggs. Total number of Eggs: Includes all pilchard eggs taken in a sample, whether normal or abnormal. Pilchard eggs were classified as abnormal when the embryos were stunted and misshapen in appearance. It is not known whether such abnormalities are caused by a diseased condition of the eggs or by mechanical injury during collection. Pilchard eggs are separated into the several days of spawning represented in each sample (see Ahlstrom 1943). The age categories are designated as follows: A = eggs spawned within 24 hours of collection; B = eggs spawned within 24 to 48 hours of collection; C = eggs spawned within 48 to 72 hours of collection; D = eggs spawned within 72 to 96 hours of collection; Unclass. (Unclassified eggs) = refers to deteriorating eggs that could not be classified with certainty; n = total number of pilchard eggs in a standardized haul. Average n's Average number of eggs in a standardized haul per day of spawning represented. Because of incomplete age categories, resulting from collection being made while spawning or hatching was actively taking place, not all age categories were used in determining n', but only those followed by an asterisk (for a discussion of this problem, refer to Sette and Ahlstrom, 1948). Table III .-- Record of Pilchard Larvae, 1950 Midodine of size classes: The larvae are grouped into size classes which have the following midpoints and ranges: | Midpoint (in mm.) | Range
(in mm.) | • | Midpoint (in mm.) | Range (<u>in mm.</u>) | |-------------------|-------------------|---|-------------------|--------------------------------| | 3.25 | 2.25 - 4.25 | | 12.75 | 12.26 = 13.25 | | 1.3 | 4.26 - 5.25 | | 13.75
14.75 | 13.26 - 14.25
14.26 - 15.25 | | 5.75 | 5.26 - 6.25 | | 15.75 | 15.26 = 16.25 | | 6.75 | 6.26 - 7.25 | | 1/6 / | 1/620 - 1002/ | | 7.75 | 7.26 - 8.25 | | 17.25 | 16.26 - 18.25 | | 8.75 | 8.26 - 9.25 | | 19.25 | 18.26 - 20.25 | | 9.75 | 9.26 -10.25 | | 21.25 | 20.26 - 22.25 | | 10.75 | 10.26 -11.25 | | 23.75 | 22.26 - 25.25 | | 11.75 | 11.26 -12.25 | | | | Table IV. Record of Anchovy Larvae, 1950 Same as above except for the first category: 3.0 mm. size class containing larvae from 1.76 to 4.25 mm. in length. In previous paper dealing with the numbers of anchovy eggs and larvae collected off southern California during 1940 and 1941 (Marr and Ahlstrom 1948), larvae were tabulated by numbers but not by size. Table V.--Record of the larvae of Jack Mackerel (Trachurus symmetricus), The standardized numbers of larvae are listed by station for the eight cruises, ll through 18, and a station total given in the next to the last column. The station average (last column) represents the average number of larvae per haul taken during the season at each station. A dash indicates that the station was not occupied on the cruise. Table VI --- Record of the Larvae of Hake (Merluccius productus), 1950 The comments concerning Table V are applicable to Table VI. Table VII .-- Record of
the larvae of Rockfish (Sebastodes spp.), 1950 Refer to the comments given above for Table V. The larvae of all species of rockfish taken in our collections are grouped together as Sebastodes spp. Table I Record of Oblique Hauls made with Flankton Fets during Cruises 12-18 in 1950 | | | - Seminated and community of the seminated seminat | | | en - commence à protection de manifest à l'éléctropropagage | | | | |------------------|------------------|--|----------------|----------------|---|--------------|----------------|--------------| | | Fosi | | | | Duration | Depth | Vol.of | S | | Station | | W. long. | Date | Hour | of Haul | Heters | Water | Factor | | 0 | (1 | | | | | | Strained | | | Cruise 11 | | 7.01.0.201 | TT - 6 | 7.07.0 | 00 05 | 0 (0 | 00 F 0 | Omb | | 3-50.55 | 39°301 | 12/10301 | II-16 | 1310 | 23.25 | 0-69 | 785.9 | .874 | | 50.60 | 39°20 1 | 12/10521 | II-16 | 1715 | 22.5 | 0-71 | 778,0 | .907 | | 50.70 | 390001 | 125°36.51 | II-16 | 2345 | 24.0 | 0-67 | 823.8 | ,816 | | 50.80 | 38°40! | 126°21! | II-17 | 0640 | 25.25 | 0-77 | 347.6 | .907 | | 50,90 | 380201 | 127°05' | II-17 | 1230 | 22.75 | 0-68 | 768.6 | .883 | | 50.100 | 38°00°
37°40° | 1270491 | II-17 | 1900 | 24.5 | 0-69 | 348.8 | ,808 | | 50,110 | 37°20' | 128°33 ¹
129°16.5 ¹ | II-18
II-18 | 0250 | 23.5 | 0-70 | 787.6 | .886 | | 50.120
50.130 | 370001 | 130.001 | II-18 | 0925 | 23.5
24.75 | 0-69
0-71 | 819.8
804.1 | .837
.883 | | 55.60 * | 38°28.51 | 124014 | II-16 | 04:00 | 24.25 | 0-73 | 733.6 | , 900 | | 60.60 | 37°37' | 123°37! | II-15 | 1230 | 23.0 | 0-67 | 81.9.7 | .820 | | 60.70 | 370171 | 124021 | II-15 | 0700 | 22.5 | 0-70 | 742.9 | 945 | | 60.80 | 36°571 | 1250041 | II-15 | 0025 | 23:75 | 0-71 | 666.0 | 1.060 | | 60,90 | 36°37; | 1250471 | II-14 | 1815 | 22.5 | 0-71 | 689.7 | 1.028 | | 60,100 | 360171 | 1.26°30' | 11-1/4 | 1145 | 22,25 | 0-73 | 705.2 | 1.037 | | 60.110 | 350571 | 1270121 | II-14 | 0550 | 23.75 | 0-70 | 782.5 | ,398 | | 60,120 | 35°371 | 127054.51 | II-13 | 2310 | 23.75 | 0-68 | 797.0 | .852 | | 60.130* | 350171 | 128°371 | II-13 | 1700 | 23.75 | 0-72 | 827.7 | .875 | | 61-55 | 37°371 | 123007.51 | II15 | 1715 | 12.25 | 0-67 | 434.6 | 1.546 | | 65.60 | 360451 | 123°001 | 1I-8 | 0350 | 24.25 | 0-68 | 851.1 | .793 | | 70.55 | 36°031 | 1220021 | II-8 | 1755 | 25,75 | 0-75 | 792.0 | .951 | | 75.60 | 35°01! | 1210461 | II-9 | 02:40 | 26,75 | 0-78 | 905.4 | .857 | | 80.55 | 340191 | 1200481 | II-9 | 1250 | 13.25 | 0-66 | 478.3 | 1.388 | | 80.60 | 340091 | 1210091 | II-9 | 1735 | 12.75 | 0-65 | 465.8 | 1,386 | | 80.70 | 33°49! | 121°51 ! | II-9 | 2355 | 14.0 | 0-63 | 535.7 | 1.182 | | 80.80 | 33°291 | 122°32' | II-10 | 0715 | 23.75 | 0-72 | 752.6 | .961 | | 80.90 | 33°091 | 123°13' | 11-10 | 1500 | 12.75 | 0-74 | 1:10.3 | 1.803 | | 80.100 | 320491 | 123°541 | II-11 | 0915 | 23.25 | 0-70 . | 776.9 | .906 | | 80,110 | 32°291 | 124°34.51 | II-11 | 1950 | 14.5 | 0-70 | 556.2 | 1.258 | | 80.120 | 320091 | 1.25°15.5 | II-5 | 0830 | 24.5 | 0-68 | 829.6 | .821 | | 80,130 | 310491 | 125°56' | II-5 | 0145 | 28.25 | 0-75 | 962.0 | . 780 | | 0.70 60 | arora t | 300003 | TT O | 01.7.0 | 00 0 | 0 50 | (22.0 | 3 0 5 0 | | 70.70 | 35°51 1 | 122021 | II-2 | 0410 | 23.0 | 0-70 | 670.8 | 1.050 | | 70.70 | 35°33'
35°12' | 123°061 | II-2 | 1155 | 22.5 | 0-70 | 695.3 | 1.013 | | 70.90 | 340531 | 1240301 | II-2 | 1630 | 24:75 | 0-70 | 694.6 | 1,015 | | 70.100 | 34032.51 | | II-2
II-3 | 2230 | 22.25 | 0-76 | 605.7 | 1,261 | | 70.110 | 24-2262 | 127,12 | | 0500
ple ob | 23.0 | 0-71 | 623.6 | 1,140 | | 70.120 | | | Not oc | | 19Titett | | | | | 70.120 | | | | cupied | | | | | | 83.55 | 33044.1 | 12002年1 | II-10 | 1105 | 12.0 | 0-66 | 377.5 | 1.754 | | 83.60 | 33°33' | 120045: | II-10 | 0350 | 12.5 | 0-64 | 415.0 | 1.552 | | 83.70 | 33°151 | 121°25' | II-10 | 0040 | 12.25 | 0-69 | 397.6 | 1.746 | | 83.80 | 320561 | 1220041 | II-9 | 1835 | 12.25 | 0-72 | 378.3 | 1.908 | | 83.90 | 32°38! | 1220411 | II-9 | 1250 | 12.5 | 0-71 | 379.3 | 1.869 | | 87.35 | 33°50° | 113°37.51 | | 1815 | 23.0 | 0-72 | 646.7 | 1.110 | | | | | | | - | | | | Table I (cont'd) Record of Oblique Hawls made with Plantton Mots during Cruises 11-13 in 1950 | | Posit | ion | | | Duration | Depth | Vol.of | S | |----------------|-----------|-----------|---------|-------|--------------|--------------|------------------------|--------| | Station | | W. long. | Date | Hour | of Haul | Meters | Water
Strained | Factor | | 53.54 | 38°58‡ | 1240001 | VIII-5 | | 12.25 | 0-67 | 467.4 | 1.433 | | 57.54 | 38°24. | 123°35' | VIII-5 | 0820 | 14.0 | 0-64 | 496.5 | J 279 | | -60.60 | 37°37 ! | 123°371 | VIII-9 | | 22.75 | 0-80 | 529.6 | 1.507 | | 60.70 | 37°17' | 124021 | VIII-10 | | 12.0 | 0-68 | 349.4 | 1.949 | | 60.80 | 36°57.51 | | VIII-10 | | 13.25 | 0-70 | 382.9 | 1.815 | | 60.90 | 360391 | 125047 | VIII-10 | | 12.25 | 0-70 | 351.9 | 1.995 | | 60.100 | 36°19° | 126°31' | VIII-10 | | 12.0 | 0-65 | 369.9 | 1.763 | | 60,110 | 35°581 | 127012.51 | | | 1.2.25 | 0-70 | 363.2 | 1.922 | | 60.120 | 35°391 | 127°551 | VIII-11 | | 12.25 | 0-70 | 374.9 | 1,859 | | 60.130 | 35°15.71 | 128°36,71 | | | 12.0 | 0-69 | 362.8 | 1.907 | | 61.55 | 37°35.71 | 1.23°09 | VIII-9 | | 22.25 | 0-70 | 620.0 | 1.126 | | 63.57 | 37°09" | 122058.41 | | | 22.75 | 0-70 | 642.5 | 1.088 | | 67.55 | 36°38.71 | 122°26' | VIII-9 | | 27.0 | 0-74 | 689,6 | 1.072 | | 70.55 | 35047.51 | | | | 12.5 | 0-70 | 359.2 | 1963 | | 70.60 | 350401 | 122°30' | VIII-13 | | 12.75 | 0-70 | 373.1 | 1.876 | | 70.70 | 35°231 | 123010' | VIII-13 | | 12.5 | 0-78 | 310,8 | 2.506 | | 70.80 | 35006.51 | | VIII-13 | | 13.5 | 0-76 | 374.6 | 2.037 | | 70.90 | 340491 | 124031.5 | | | 12.5 | 0-75 | 358.5 | 2.086 | | 70,100 | 340331 | 125°12' | VIII-12 | - | 12.5 | 0-73 | 356.6 | 2.058 | | 70.110 | 34019.51 | | VIII-12 | | 12.5 | 0-71 | 358.7 | 1.979 | | 70.120 | 33°57' | 126034 | VIII-12 | | 12.75 | 0-71 | 364.8 | 1.955 | | 70.130 | 33°35' | 127014.51 | | | 12.25 | 0-70 | 368.7 | 1.912 | | 73.51 | 35°29.51 | | VIII-14 | | 12.5 | 0-61 | 386.9 | 1.566 | | 77.55 | 34052.51 | 121008.5 | | | 12.0 | 0-70 | 339.2 | 2.076 | | 80.55 | 340191 | 120048 | VIII-14 | | 12.25 | 0-70 | 366,6 | 1.909 | | 80.60 | 340091 | 1210091 | VIII-14 | | 12.0 | 0-68 | 339.9 | 2.006 | | 80.70 | 330491 | 121047.5 | | | 12.5 | 0-71 | 324.5 | 2.197 | | 08.03 | 33°23.51 | | | | 12.25 | 0-72 | 339.2 | 2.114 | | 80.90 | 330091 | 123°05' | VIII-15 | | 12.25 | 0-70 | 355.1 | 1.977 | | 001.08 | 32043.51 | | VIII-15 | | 12.0 | 0-68 | 346.6 | 1.965 | | 80,110 | 320281 | 124023! | | | 12.5 | 0-71 | 368.3 | 1,928 | | 80.120 | 320071 | | VIII-16 | | 12.0 | 0-70 | 351.9 | 1.989 | | | 330241 | 125°41.5' | | | 12.25 | 0-69 | 354.8 | 1.936 | | 90.30 | | | | | 12.75 | 0-68 | 379.7 | 1.786 | | 90.37
90.45 | 330111 | 118023.51 | | | 12.0 | 0-70 | 362.4 | 1.937 | | 90,53 | | 118°56,3' | | | 12.5 | 0-73 | 358.0
352.6 | 2.045 | | 90.60 | 22021 81 | 119°59.3' | VIII-10 | TO(1) | 12.25 | 0-71
0-68 | | 2.014 | | 90.70 | 32°051 | | VIII-18 | | 12.0
12.5 | 0-00 | 367.6
379. 7 | 1.864 | | 90.80 | 31.0451 | 1210191 | | | 22.75 | 0-71 | 620,7 | 1.137 | | 90.90 | | 121°56.51 | | | 22.75 | 0-71 | 676.4 | 1.042 | | 90.100 | | 122°38! | | | 12,0 | 0-70 | 387.6 | 1.803 | | 90.110 | 300 50 81 | 123°18' | VIII-17 | 0305 | 12.5 | 0-65 | 384.9 | 1.686 | | 90.120 | 30°31. | 123°58.61 | | | 12.25 | 0-68 | 363.3 | 1.880 | Table I (contid) Record of Oblique Hauls made with Plankton Hets during Cruises 11-18 in 1950 | | i guaganista galen-damenta estronomento de concerno de de concerno da | Posi | High | - management of the second | mber seen - unaneers to a syn
s- n-mbersoners - (s- mbersoners | Duration |
Depth | Vol.or | S | |----
--|-----------|-----------|--|--|--------------|--------------|-------------------|--------| | | Station | | W. long. | Date | Hour | of Haul |
Meters | Water
Strained | Factor | | | 37.40 | 33°401 | 118°58' | II-7 | 2215 | 23.25 | 0-73 | 604.4 | 1.214 | | | 87.50 | 33°201 | 119°39! | 11-8 | 0405 | 12.0 | 0-35 | 336.8 | 1.042 | | | 87.60 | 330001 | 120°23' | 11-8 | 1035 | 12.5 | 0-70 | 343.0 | 2,055 | | | 87.70 | 320/101 | 121.05 | II-S | 1640 | 13.5 | 0-74 | 389.6 | 1.894 | | | 37.80 | 32°20 ! | 1210/421 | II-8 | 2225 | 12.5 | 0-68 | 394.1 | 1.728 | | | 87.90 | 320001 | 122024 | II-9 | 0515 | 12.5 | 0-76 | 338.7 | 2,244 | | | 90.30 | 33°24.51 | 117°55' | II-7 | 1205 | 23.0 | 0-68 | 690.2 | .985 | | | 90.37 | 33°131 | 118024 | II-7 | 0725 | 23.0 | 0-72 | 602.0 | 1.196 | | | 90.45 | 33°001 | 11.3°56 1 | II-7
II-6 | 0150 | 23.25 | 0-74
0-69 | 631.4
703.4 | 1.164 | | | 90.53 | 329301 | 119°55.51 | II-6 | 2105
1635 | 23.0
12.5 | 0-74 | 361.1 | 2.058 | | | 90.70 | 320061 | 1200381 | II-6 | 1100 | 12.5 | 0-70 | 351.0 | 2,000 | | | 90.80 | 310451 | 1210191 | II-6 | 0425 | 22.25 | 0-71 | 601.6 | 1.175 | | | 90.90 | 31.025! | 1220001 | 11-5 | 2220 | 23.0 | 0-72 | 574.3 | 1.254 | | | 90.100 | 31.0051 | 1220/101 | II-5 | 1545 | 22.5 | 0-68 | 620.7 | 1.104 | | | 90.130 | 300451 | 123°20' | II-5 | 0950 | 21.25 | 0-62 | 744.6 | .326 | | | 90.120 | 30024.51 | 1240001 | 11-5 | 0314 | 23.0 | 0-70 | 673.5 | 1.038 | | | 93.30 | 320501 | 117°31 1 | II-11 | 0440 | 12.0 | 0-68 | 372.9 | 1.837 | | | 93.40 | 32°281 | 118°12' | II-11 | 0930 | 13.0 | 0-70 | 388.8 | 1.813 | | | 93.50 | 320081 | 118°55' | II-11 | 1810 | 12.5 | 0-65 | 336.6 | 1.676 | | | 93.60 | | | | ccupie | | | | | | | 93.70 | 31.9301 | 1200141 | 11-12 | 0445 | | 0-76 | 362.0 | 2.113 | | | 93.80 | 31°07.51 | 120°55! | II-12 | 1235 | 12.5 | 0-73 | 335.6 | 2,166 | | | 93.90 | 300491 | 121°31' | II-12 | 1725 | 13.0 | 0-75 | 374.0 | 2,000 | | | 97.32 | 32011 | 11.7°17' | 11-14 | | 12.0 | 0-72 | 353.9 | 2.014 | | | 97.40 | 31°55¹ | 117°50' | 11-14 | 0645 | 13.0 | 0-73 | 365.6 | 2.002 | | | 97.50 | 31°35' | 118°30' | II-14 | 0035 | 13.0 | 0-66 | 393.8 | 1.673 | | | 97.60 | 31.0131 | 119011' | II-13 | 1810 | 12.5 | 0-61 | 416.9 | 1.458 | | | 97.70 | 300521 | 1190501 | II-13 | 1210 | 12.0 | 0-71 | 357.1 | 1.997 | | | 97.80
97.90 | 30°16' | 120°311 | II-13
II-12 | 0555
2340 | 12.5 | 0-76 | 340.3
336.8 | 2.245 | | | 77.70 | 50-10. | TUT.02.2. | 11-12 | 2540 | 12.5 | 0-70 | 500.0 | 1.812 | | Н. | -100.30 | 31.040.51 | 116046.51 | II-12 | 1530 | 21:0 | 0-59 | 331.2 | .670 | | | 100.40 | 31°21' | 117°27 | 11-12 | 0935 | 23.25 | 0-63 | 633.8 | .989 | | | 100.50 | 31.011 | 1180071 | II-12 | 0240 | 24.0 | 0-68 | 705.8 | . 959 | | | 100.60 | 300/121 | 118047.51 | II-11 | 2235 | 24.5 | 0-66 | 698.3 | .951 | | | 100.70 | 30°20.51 | 1190271 | II-11 | 1825 | 23.0 | 0-70 | 722.7 | .962 | | | 100.80 | 300011 | 1200071 | II-11 | 1315 | 24.25 | 0-73 | 630.2 | 1.165 | | | 100.90 | 29040.51 | 1200471 | II-11 | 0555 | 23.0 | 0-70 | 725.3 | .962 | | | 100,100 | 29°20.51 | 121°271 | II-10 | 2350 | 23.25 | 0-71 | 660.1 | 1.063 | | | 100,110 | 29000.51 | 1220071 | II-10 | 1.720 | 21.0 | 0-75 | 602.6 | 1.246 | | | 100,120 | 23040.51 | 1.220461 | II-10 | 1105 | 23.25 | 0-67 | 743.6 | .896 | | | 105.35 | 300391 | 116°33! | 1-31 | 0250 | 25.5 | 0-71 | 768.5 | .920 | | | 110.35 | 29046.51 | 1160001 | II-7 | 2145 | 214.5 | 0-30 | 508.1 | 1.569 | | | 110.40 | 29°36.51 | 116019.51 | 11-8 | 0140 | 23.25 | 0-65 | 792.5 | .820 | | | | | | | | | | | | Table I (cont'd) Record of Oblique Hauls made with Flankton Nets during Cruises 11-18 in 1950 | | Posi | tion | | | Duration | Depth | Vol.of | S | |----------|----------|------------|--------|-------|----------|--------|-------------------|--------| | Station | H. lat. | W. long. | Date | Eour | of Haul | Meters | Water
Strained | Factor | | 110.50 | 29°16.51 | 116°59; | II-8 | 0735 | 22.5 | 0-65 | 704.6 | ,918 | | 110.60 | 28056.51 | 117°39' | II-3 | 1350 | 23.25 | 0-78 | 648.2 | 1.197 | | 110.70 | 23035.51 | 1180181 | II-8 | 1.945 | 24.0 | 0-78 | 591.8 | 1.310 | | 110.80 | 28°16.51 | 118°57.51 | II-9 | 0215 | 24.25 | 0-70 | 737.5 | .948 | | 110.90 | 27°56.51 | 119°361 | II-9 | 0825 | 23.0 | 0-65 | 738.8 | .876 | | 110.100 | 27°36.51 | 120°15 | II-9 | 1410 | 23.25 | 0-67 | 726.5 | .924 | | 110.110 | 27°16.51 | 120054.51 | II-9 | 2055 | 23.0 | 0-72 | 670.1 | 1.073 | | 115,40 | 23°451 | 115046.51 | II-7 | 1.350 | 23.5 | 0-70 | 693.8 | 1.009 | | 120.35 | 23°031 | 1140541 | II-6 | 3.000 | 14.5 | 0-46 | 359.8 | 1.278 | | 120.45 | 270431 | 115°331 | II-6 | 0350 | 23.5 | 0-63 | 687.4 | .921 | | 120.50 | 27°331 | 115°52.51 | II-5 | 2300 | 23.0 | 0-69 | 620.9 | 1.110 | | 120,60 | 27°131 | 116031.51 | II-5 | 1715 | 24.5 | 0-64 | 810.5 | .791 | | 120.70 | 26052.51 | 1170101 | II-5 | 1040 | 23.0 | 0-74 | 644.0 | 1.151 | | 120.80 | 25°32.5! | 11701.8.51 | II-5 | 0435 | 23.0 | 0-64 | 772.7 | .824 | | 120.90 | 260131 | 118°27.51 | 11-5 | 0025 | 24.5 | 0-59 | 858.7 | ,684 | | 120.100 | 25°531 | 1190061 | II-L | 1605 | 23.5 | 0-63 | 826.8 | .760 | | 120.110 | 25°331 | 115044 | II-4 | 1015 | 22.25 | 0-61 | 803.5 | .759 | | 123.40 | 270181 | 114051.51 | II-1 | 0235 | 24:0 | 0-71 | 686.8 | 1.031 | | 123.50 | 260581 | 115030.51 | II-3. | 0705 | 23.0 | 0-72 | 631.2 | 1.144 | | 123.60 | 26038.51 | 1160091 | II-1 | 1225 | 23.25 | 0-63 | 725.7 | .871 | | 127.40 | 26043.51 | 114029.51 | II-2 | 0740 | 22.75 | 0-62 | 780.2 | .788 | | 127.50 | 26°23.51 | 115°08' | II-2 | 0115 | 23.25 | 0-71 | 525.1 | 1.350 | | 127.60 | 26003.51 | 115046.51 | II-1 | 1925 | 23.5 | 0-68 | 778.2 | .873 | | 130.35 | 260191 | 113048.51 | II-2 | 1400 | 27.0 | 0-55 | 996.5 | 555 | | 130.40 | 260091 | 114007.5 | II-2 | 1700 | 23.5 | 0-69 | 693.4 | 1,001 | | 130.50 | 250491 | 114048.51 | II-2 | 2245 | 23.0 | 0-70 | 700.8 | .996 | | 130.60 | 250291 | 115°241 | II-3 | 0500 | 23.5 | 0-62 | 810.1 | .771 | | 130.70 | 25008.51 | 1160021 | II-3 | 1105 | 23.25 | 0-76 | 589.5 | 1.298 | | 130,80 | 24048.51 | 116040: | II-3 | 1720 | 23.5 | 0-68 | 671.9 | 1.009 | | ruise 12 | | | | | | | | | | 40.45 | | | Mot qu | | ivo | | | | | 40.50 | 41.531 | 125°231 | III-13 | | 23.5 | 0-73 | 703.3 | 1.035 | | 40.60 | 11°03 | 1260091 | III-13 | | 12.75 | 0-68 | 422.5 | 1.605 | | +0.70 | 400421 | 1260551 | III-12 | 21.50 | 12.75 | 0-68 | 464.8 | 1.461 | | 40.80 | 40°231 | 1270401 | III-12 | | 12.25 | 0-69 | 419.1 | 1.653 | | +0,90 | 40°021 | 128°251 | III-12 | 1015 | 12.0 | 0-64 | 41.5.6 | 1.443 | | 40.100 | 390421 | 129°10 | III-12 | 0400 | 13.0 | 0-69 | 410.5 | 1.676 | | 0.110 | 39°231 | 129°551 | III-11 | 2150 | 24.25 | 0-67 | 810.7 | .830 | | +3.50 | 400481 | 1240571 | III-13 | | 23.25 | 0-73 | 750.0 | .969 | | +3.60 | 1:00281 | 1250431 | III-14 | | 23.0 | 0-73 | 732.9 | .991 | | 17.55 | 400071 | 1240551 | III-14 | | 14.0 | 0-63 | 505.0 | 1.343 | | 17.60 * | 390541 | 125°181 | III-14 | 11.05 | 23.0 | 0-73 | 810.0 | .904 | | 50.55 * | 39°301 | 1240301 | B-III | 1605 | 22.75 | 0-71 | 748.3 | .950 | | 50.60 | 39°20! | 1240521 | III-8 | 2220 | 23.75 | 0-71 | 748.0 | .953 | Table I (cont'd) Record of Oblique Hauls made with Plankton Dets during Cruises 11-18 in 1950 | | Posi | | n regularista selemente de sua | | Duration | Depth | Vol.of | S | |----------------|------------------|---|--------------------------------|--------------|--------------|--------------|-------------------|-------------------------------| | Station | I. lat. | W. long. | Date | Hour | of Haul | Meters | Water
Strained | Factor | | | | B. Arbbert Melligen broken für
spreig in begrennigsferen ubereit für eine | mbummu nambannaun apus brautan | | | | Sorathen | and the state of the state of | | 50.70 | 39°001 | 125°36.51 | III-9 | 0330 | 22.5 | 0-72 | 710.4 | 1.021 | | 50.80 | 380401 | 126021 | 111-9 | 1.335 | 12.75 | 0-63 | 416.0 | 1.647 | | 50.90 | 38°201 | 1270051 | III-9 | 21.55 | 14.0 | 0-70 | 430.2 | 1.634 | | 50.100 | 38°00¹ | 1270491 | III-10 | 0600 | 12.75 | 0-71 | 428.7 | 1.656 | | 50.110 | 370401 | 123°33' | III-10 | 1225 | 23.5 | 0-63 | 717.6 | . 946 | | 50.120 | 37°201 | 120016.51 | III-10 | 1935 | 23.0 | 0-74 | 627.2 | 1.172 | | 50.130 | 37°001 | 1300001 | III-11 | 0400 | 25.25 | 0-66 | 758.3 | .872 | | 55.60 | 33°28.5 | | III-8 | 0345 | 24.25 | 0-70 | 838.9 | .837 | | 60,60 | 37°371 | 123°371 | III-7 | 1045 | 13.25 | 0-57 | 403.8 | 1.667 | | 60.70 | 37°17' | 154051; | III-7 | 0400 | 23.25 | 0-67 | 673.9 | .996 | | 60.80 | 36°571 | 1250041 | III-6 | 1.945 | 23.25 | 0-72 | 715.1 | 1.003 | | 60.90 | 36°37! | 125047 | III-5 | 1245 | 23.75 | 0-66 | 729.6 | .902 | | 60.100 | 36°17! | 126°30' | III-6 | 04:35 | 22.25 | 0-75 | 654.2 | 1.145 | | 60.110 | 35°57! | 1270121 | III-5 | 2215 | 24.25 | 0-68 | 730.5 | .930 | | 60.120* | 35°371 | 1.27°54.51 | III-5 | 1.425 | 23.0 | 0-71 | 756.3 | . 939 | | 60.130 | 35°17' | 128°37' | III-5 | 0445 | 23.5 | 0-71 | 740.3 | . 945 | | 61.55 | 37°37' | 123°07.5' | III-7 | 1755 | 23.75 | 0-63 | 879,2 | .715 | | 65.60 | 36045 | 123°00' | III-l | 21/15 | 16.5 | 0-69 | 522.5 | 1.321 | | 70.55 | 36°031 | 122°02' | III-2 | 0830 | 15.0 | 0-65 | 1192.5 | 1.324 | | 70.60 | 35°53' | 122°23' | III-2 | 1410 | 24.0 | 0-68 | 833.6 | .810 | | 70.70 | 35°33! | 123006 | III-2 | 2125 | 25.0 | 0-69 | 784.0 | .375 | | 70,80 | 35°13' | 1230481 | III-3 | 0410 | 13.0 | 0-64 | 425.4 | 1.511 | | 70.90 | 340531 | 124030 | III-3 | 1045 | 14.25 | 0-70 | 461.1 | 1.514 | | 70.100 | 340331 | 125°12' | III-3 | 1710 | 23.0 | 0-69 | 782.9 | .879 | | 70.110 | 340131 | 125°541 | III-3 | 2350 | 24.5 | 0-68 | 795.4 | .852 | | 70,120 | 33°53! | 126°35.51 | III-4 | 0645 | 13.0 | 0-65 | 550.9 | 1.176 | | 70.130 | 33°33 ' | 127°16.51 | III-l | 1030 | 13.0 | 0-66 | 451.8 | 1.454 | | -80.55 | 34,0191 | 1200481 | III-2 | 1115 | 23.25 | 0-70 | 695.5 | 1.011 | | 30.60 | 340091 | 1210091 | III-A | 1525 | 22.25 | 0-73 | 626.4 | 1.3.67 | | 80.70 | 330481 | 1210501 | III-2 | 21.45 | 14:.25 | 0-74 | 420.8 | 1.756 | | 80.80 | 33°261 | 1220321 | I1I-3 | 04:20 | 13.5 | 0-69 | 414.3 | 1.670 | | 80.90 | 33003.51 | | III-3 | | uantitativ | | | , | | 80.100 | 320481 | 123°56! | III-3 | 1750 | 13.75 | 0-73 | 403.1 | 1.809 | | 80.110 | 32°291 | 1240341 | III-4 | 001:5 | 13.5 | 0-69 | 451.2 | 1.531 | | 80.120 | 32°10' | 1250131 | III-4 | 0740 | 23.0 | 0-69 | 716.7 | .957 | | 80.130 | 31.0491 | 125°561 | III-4 | 1555 | 23.5 | 0-70 | 715.5 | .974 | | 83.55 | | | Tot occ | | | | | | | 83.60 | | | Not occ | | | | | | | 83.70 | | | Not occ | | | | | | | -83,80 | 32°551 | 122°06' | III-10 | 1545 | 12.25 | 0-58 | 360.5 | 1.834 | | 83.90 | 320421 | 1220491 | III-10 | 0830 | 22.25 | 0-60 | 771.9 | .780 | | 87.35 | 33°501 | 118°38' | III-12 | 1600 | 22.5 | 0-65 | 756.2 | .854 | | | | | | | | | | | | 87.40
87.50 | 33°401
33°201 | 118°58! | III-12
III-13 | 2025
0140 | 13.0
07.0 | 0-64
0-36 | 456.5
228.4 | 1.391 | Table I (contid) Record of Oblique Hauls made with Plankton Lets during Oruises 11-18 in 1950 | | Posi | tion | The second secon | | Duration | Depth | Vol.of | S | |--|--|---|--|--|---|--|---|---| | Station | I. lat. | W. long. | Date | Hour | of Haul | ·Heters | Water
Strained | Factor | | 87.60
87.70
87.80
87.90 | 32°591 | 120°21' | III-13 No samp Mot occ Not occ | le tol | 12.75
en due to | 0-67
loss of | 438.9
gear | 1.531 | | 90.30
90.37
90.45
90.53
90.60
90.70 | 33°24.5'
33°11'
32°54.5'
32°38.5' | | III-16 III-16 III-16 III-16 III-16 Iot occ | 0220
0750
1340
1940
apied
apied | 13.25
12.75
11.75
13.0 | 0-71
0-69
0-67
0-75 | (394.3)
(385.4)
(377.4)
(352.1) | 1.791
1.790
1.765
2.127 | | 90.30
C-90.90
90.100
90.110*
90.120*
P-93.30
93.40
93.50
93.60
93.70
93.80
93.90
97.32
97.40
97.50
97.60
97.70
97.80
97.90 | 31°23'
31°05'
30°46'
30°25'
32°50'
32°30'
32°10'
31°42' | 122°07' 122°40' 123°21' 124°01' 117°31.5' 118°53.5' 119°15' | Mot occ III-6 III-5 III-5 III-17 III- | 0625
2255
1545
0755
0625
2335
1610
0835
upied
upied
upied
upied
upied
upied
upied
upied
upied
upied | 23.0
22.75
24.75
25.0
12.5
14.0
12.5 | 0-73
0-73
0-71
0-68
0-62
0-70
0-70
0-68 | 606.5
632.3
769.1
840.0
(433.6)
(380.5)
(420.2)
(392.9) | 1.210
1.153
.926
.808
1.423
1.832
1.656
1.721 | | H-100.30 100.40 100.50 100.60 100.70 100.80 100.90 100.100 100.120* 105.35 110.35 110.40 110.50 110.60 | 31°23°
31°04°
30°45° | 118°43'
119°26.8'
120°07.5'
120°47'
121°27'
122°07'
122°45'
116°33'
116°00' | | 1320 | 23.0
12.0
23.0
22.5
12.25
23.25
22.75
23.0
22.75
24.0
23.75
22.25
22.5
23.0
23.75 | 0-74
0-63
0-56
0-61
0-63
0-62
0-71
0-78
0-62
0-72
0-65
0-68
0-76
0-75 | 696.0
419.0
781.4
697.4
438.2
720.1
713.3
700.3
837.9
673.0
(818.1)
800.2
(702.3)
(723.0)
783.9 | 1.059
1.506
.723
.876
1.438
.862
.997
1.107
.734
1.067
.795
.856
1.085
1.037 | Table I (cont'd) Record of Oblique Hauls made with Planiton . ets during Cruises 11-18 in 1950 | | Posi | | | | Duration | Depth | Vol.of | S | |-------------------|----------|-----------|--------|-------|----------|---------------------------|----------------|---------------| | Station | E. lat. | W. long. | Date | Hour | of Haul | Heters | Water | Factor | | | | | | | | | Strained | | | 170 70 | 28°391 | 1180181 | III-10 | 1315 | 23.5 | 0-76 | 695.7 | 1.088 | | 110,70 | | 118057.51 | III-11 | 1020 | 23.0 | 0-72 | 724.4 | .990 | | 110.90 | | 119°36 | III-11 | 1550 | 22.5 | 0-61 | 844.9 | .724 | | 110.100 | 27°36.51 | 1200151 | III-11 | 2125 | 22,75 | 0-77 | 710.1 | 1.086 | | | 27016.51 | 120°551 | III-12 | 0450 | 22.75 | 0-68 | 833.3 | .810 | | 110.110 | 290121 | 115°391 | 111-12 | 1325 | 22.75 | 0-69 | 833.3 | .828 | | 113.35 | 280371 | 115°16' | III-9 | 0820 | 22.25 | 0-70 | 655.9 | 1,050 | | 117.35 | 28°031 | 114.54 | III-9 | 0445 | 19.0 | 0-56 | 515.7 | .906 | | 120.35 | 27040 | 115°32' | III-8 | 0610 | 25.5 | 0-60 | 863.5 | .791 | | 120.45* | 27031 | | III-8 | 0125 | | 0-56 | 932.7 | .599 | | 1.20.50 | | 115°52.6' | III-7 | 1900 | 23.25 | 0-63 | | | | 120.60 | 27014.21 | | | | 22.5 | | 840.7 | .752 | | 120.70 | 26054.51 | 117010 | III-7 | 1320 | 23.25 | 0-63 | 874.3 | .725 | | 120.80 | 26033.51 | | 111-7 | 0640 | 23.5 |
0-71 | 770.5 | ,921 | | 120.90 | 260141 | 118°27' | III-7 | 0020 | 22.25 | 0-72 | 722.4 | - 999 | | 120.100 | 25°531 | 119004 | III-6 | 1835 | 23.0 | 0-70 | 778.1 | . 905 | | 120.110* | 25°30.71 | | III-6 | 1.200 | 24.5 | 0-66 | 752.7 | .678 | | 123.40 | 270181 | 114051.5 | III-2 | 2145 | 25.25 | 0-80 | (808.9) | .988 | | 123.50 | 26055.51 | 115°30.71 | III-3 | 04.15 | 22.75 | 0-75 | 702.9 | 1.067 | | 123.60 | 26°301 | 116°16! | III-3 | 1050 | 23.25 | 0-72 | 776.7 | .924 | | 127.40 | 26043.51 | 114°30' | III-ly | 0515 | 23.0 | 0-71 | 779.1 | .906 | | 127.50 . | 26°231 | 115°08' | III-3 | 2310 | 23.5 | 0-79 | 6:10.3 | 1.240 | | 127.60 | 26°031 | 115046.31 | III-3 | 1655 | 22.75 | 0-77 | 723.2 | 1.063 | | 130.35 | 26010,41 | 113046-31 | III-4 | 1150 | 22.5 | 0-70 | 743.3 | .935 | | 130.40 | 260091 | 1140031 | III-4 | 1605 | 23.5 | 0-72 | 705.1 | • 944 | | 130.50 | 25°51.51 | | III-4 | 2045 | 23.0 | 0-72 | 716.5 | 1.011 | | 130,60 | 25°31' | 115°30' | III-5 | 0450 | 22.5 | 0-64 | 799.2 | .803 | | 130.70 | 25003.51 | | III-5 | 1115 | 23.0 | 0-72 | 614.3 | .890 | | 130.80 | 24049! | 1160401 | III-5 | 1740 | 22.75 | 0-70 | 700.5 | .914 | | O | | | | | | | | | | Oruise 13 -40.45. | 41°331 | 1250001 | IV-15 | 2045 | 14.0 | 0-68 | 521.0 | 1.309 | | - | | | IV-15 | | | 0-68 | 879.8 | | | 40.50 | 410231 | 125°23' | | 1625 | 23.5 | | | .775 | | 40.60 | 410031 | | IV-15 | 1045 | 22.75 | 0 - 70
0-69 | 779.2
464.8 | .897
1.480 | | 40.70 | 400421 | 126°55 | IV-15 | 0505 | 13.75 | | | | | 40.80 * | 40°23! | 1270401 | IV-14 | 2220 | 13.75 | 0-70 | 1,24.3 | 1.657 | | 40.90 | 400021 | 128°251 | IV-14 | 1455 | 23.0 | 0-68 | 786.9 | .870 | | 40.100 | 390421 | 1290101 | IV-14 | 0820 | 25.0 | 0-69 | 723.9 | .950 | | 40.110 | 390231 | 129°551 | IV-14 | 0335 | 13.75 | 0-68 | 445.5
482.0 | 1.515 | | 43.50 | 400481 | 1249571 | IV-16 | 1350 | 13.0 | 0-70 | | 1.452 | | 43.60 | 400231 | 1.250431 | IV-16 | 1025 | 24.0 | 0-70 | 826.4 | .351 | | 47.55 * | 400041 | 1240551 | IV-16 | 2140 | 13.25 | 0-73 | 419.0 | 1.733 | | 47.60 | 370541 | 1250181 | IV-16 | 1540 | 22.75 | 0-71 | 789.1 | .898 | | 50.55 | 390301 | 1240301 | IV-10 | 1415 | 23.75 | 0-68 | 918.7 | •735 | | 50.60 | 39°201 | 1240521 | IV-10 | 1855 | 23.75 | 0-70 | 841.7 | .828 | | 50.70 * | 39°001 | 125°36.5 | TA-TT | 0120 | 212.25 | 0-70 | 815.7 | .361 | Table I (cont'd) Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950 | | Posi | tion | | | Duration | Depth | Vol.of | S | |----------------|------------------|------------|----------------|--------------|--------------|--------------|-------------------|-------| | Station | M. lat. | W. long. | Date | Hour | or Haul | Meters | Water
Strained | Facto | | | | | | | | | C 01 C.411C.C. | | | 50.80 | 380401 | 126°211 | IV-11 | 1225 | 23.25 | 0-77 | 556.5 | 1.384 | | 50.90 | 38°201 | 127°05' | IV-11 | 1940 | 25.5 | 0-66 | 880.2 | .754 | | 50.100 | 38°00' | 1270491 | IV-12 | 0620 | 13.25 | 0-71 | 1,140.1 | 1.622 | | 50.110 | 370401 | 123°33' | IV-12 | 1135 | 14.75 | 0-66 | 536.8 | 1.224 | | 50.120 | 37°20! | 129°16.51 | IV-12 | 1.905 | 13.75 | 0-70 | 465.6 | 1.497 | | 50.130 | 37°001 | 130°00' | IV-13 | 0300 | 15.5 | 0-70 | 481.3 | 1.454 | | 55.60 | 38°28.51 | 15/10/1/1 | IV-10 | 0350 | 13.25 | 0-70 | 487.0 | 1.446 | | 60.60 | 37°35! | 123040 | IV-9 | 1120 | 13.0 | 0-70 | 469.2 | 1.503 | | 60.70 * | 37°17' | 124021 | IV-9 | 0440 | 23.75 | 0-70 | 718.5 | .973 | | 60.20 | 360571 | 1250041 | IV-8 | 2105 | 15.75 | 0-68 | 562.9 | 1.203 | | 60.90 | 36°37! | 125047 | IV-8 | 1420 | 22.75 | 0-68 | 883.6 | .771 | | 60.100 | 36°17' | 126°30' | IV-8 | 0900 | 23.25 | 0-69 | 1033.7 | .669 | | 60.110 | 35°571 | 1270121 | IV-7 | 2305 | 24.25 | | 820.3 | .798 | | 60.120 | 35°371 | 127°5!1,51 | IV-7 | 1625 | 23.75 | 0-69 | 895.2 | .771 | | 60.130 | 35°17' | 128°37' | IV-7 | 0840 | 23.25 | 069 | 815.1 | .851 | | 61.55 | 37°371 | 123007.5 | IV-9 | 1725 | 23.25 | 0-38 | 889.7 | .769 | | 65.60 | 360451 | 123°00' | IV-3 | 2220 | 21.0 | 0-58 | 741.2 | .778 | | 70.55 | 350041 | 122°03' | IV-4 | 0750 | 13.5 | 0-68 | 61.3.5 | 1.113 | | 70.60 | 35°531 | 122°23' | IV-4 | 1320 | 13.75 | 0-70 | 604.7 | 1.166 | | 70.70 | 35°331 | 123°061 | IV-4 | 2020 | 13.0 | 0-63 | 515.6 | 1.222 | | 70.30 | 35°13' | 1230431 | IV-5 | 0305 | 25.5 | 0-69 | 812.6 | .852 | | 70.90 | 340531 | 124030 | IV-5 | 3.005 | 12.25 | 0-63 | 515.7 | 1.214 | | 70.100 | 340331 | 1.25°12' | IV-5 | 1630 | 11.75 | 0-70 | 491.4 | 1.420 | | 70.110 | 340131 | 125°541 | IV-5 | 2300 | 23.25 | 0-63 | 908.2 | .691 | | 70.120 | 33°531 | 126°35.51 | IV-6 | 0630 | 23.25 | 0-71 | 803.7 | .885 | | 70.130 | 33°33¹ | 127°16.5 | IV-6 | 1225 | 23.0 | 0-69 | 843,3 | .819 | | 80.55 | 340271 | 120°50' | IV-4 | 0840 | 14.25 | 0-71 | 479.3 | 1.481 | | 30.60 | 340001 | 157.001 | IV-4 | 1300 | 12.25 | 0-72 | 434.0 | 1.664 | | 80.70 | 330491 | 121°51. | 工艺一样 | 1845 | 12.75 | 0-61 | 485.9 | 1.251 | | 08.08 | 33°301 | 1220371 | IV-5 | 0100 | 13.25 | 0-66 | 419.8 | 1.577 | | 30.90 | 33°091 | 123°13' | IV-5 | 0640 | 13.0 | 0-65 | 443.5 | 1.468 | | 80.100 | 320491 | 1230541 | IV-5 | 1305 | 11.5 | 0-59 | 1458.9 | 1.294 | | 80.110 | 32°291 | 124034.51 | | 1850 | 12.5 | 0-69 | 439.8 | 1.564 | | 80.120 | 32°031 | 125°16' | IV-6 | 0130 | 12.75 | 0-75 | 391.1 | 1.931 | | 80.130* | 31049.51 | | I7-6 | 1105 | 23.75 | 0-70 | 823.7 | .852 | | 83.55 | 330421 | 120°24! | IV-12 | 04:10 | 12.25 | 055 | 610.0 | .898 | | 83.60 | 33°341 | 1200451 | IV-11 | 2355 | 14.0 | 0-77 | 395.6 | 1.936 | | 83.70 | 33°13' | 121024 | IV-11 | 1730 | 13.25 | 0-71 | 475.1 | 1.497 | | 83.80 | 320561 | 1220051 | IV-11 | 1145 | 12.75 | 0-74 | 424.4 | 1.751 | | 83.90 | 320291 | 122046.51 | IV-11 | 0525 | 13.0 | 0-69 | 458.9 | 1.493 | | 87.35 | 33°501 | 118°371 | IY-9 | 1630 | 12.5 | 0-68 | 450.1 | 1.504 | | 87.40 | 33°401 | 118°531 | .IV-9 | 1845 | 15.0 | 0-71 | 487.9 | 1.447 | | 87.50 | 200771 | 2000001 | Not oc | | | | | | | 87.60
87.70 | 32°551
32°391 | 120°22' | IV-10
IV-10 | 0435
1035 | 12.5
13.5 | 0-81
0-89 | 377.4 | 2.138 | | | | | | | | | 291.8 | 3.040 | Table I (cont'd) Record of Oblique hauls made with Plankton Tets during Cruises 11-18 in 1950 | | Posi | tion | | | Duration | Depth | Vol.of | S | |---------|-----------|------------|---------|--------|----------|--------|--------------------|--------| | Station | N. lat. | W. long. | Date | Hour | of Haul | Meters | Wester
Strained | Factor | | 87.80 | 32°18.51 | 121041 | IV-1.0 | 1625 | 12.75 | 0-77 | 391.7 | 1.971 | | 87.90 | 31.054.51 | 1220221 | IV-10 | 2310 | 12,25 | 0-74 | 407.2 | 1.822 | | 90.30 | 330241 | 1170551 | IV-9 | 0935 | 13.0 | 0-67 | 445.3 | 1.500 | | 90.37 | 33°11' | 1180231 | IV-9 | 0450 | 13.0 | 0-71 | 450.5 | 1.544 | | 90.45 | 320541 | 1180561 | IV-8 | 2335 | 14.5 | 0-76 | 405.0 | 1.877 | | 90.53 | 32°361 | 119°281 | IV-8 | 1840 | 14.25 | 0-73 | 393.8 | 1.849 | | 90.60 | 32°261 | 1190561 | IV-8 | 1405 | 1.3.75 | 0-77 | 40427 | 1,890 | | 20.70 | 32°061 | 1200371 | IV-8 | 0740 | 24.5 | 0-68 | 1014.8 | .666 | | 90.80 | 31047! | 1210151 | S-VI | 0150 | 14.0 | 0-77 | 381.8 | 2.019 | | 90.90 | 31.0251 | 1210591 | IV-7 | 1940 | 22.5 | 0-74 | 733.2 | 1.009 | | 30.100 | 31.031 | 1220421 | IV-7 | 1355 | 23.0 | 0-77 | -730.8 | 1.052 | | 90.110 | 30°391 | 1230241 | IV-7 | 0555 | 22.0 | 0-63 | 869.0 | .725 | | 90.120 | 30°221 | 124.0021 | IV-6 | 2320 | 23.0 | 0-69 | 846.1 | .817 | | 93.30 | 32°51 1 | 1170321 | IV-12 | 1905 | 12.5 | 0-77 | 387.6 | 1.992 | | 93.40 | 32°30 t | 118°12.51 | IV-13 | 0045 | 13.5 | 0-71 | 449.3 | 1.567 | | 93.50 | 32°10 | 118°53.51 | IV-13 | 0720 | 14.0 | 0-83 | 330.8 | 2.512 | | 93,60 | 310501 | 1190341 | IV-13 | 1520 | 13.0 | 0-75 | 318.9 | 2.361 | | 93.70 | | | Mot occ | cupied | | | | | | 93.80 | | | Not occ | cupied | | | | | | 93.90 | | | Not occ | cupied | | | | | | 97.32 | 32°11.5° | 117°17' | IV-1.5 | 0855 | 12.25 | 0-63 | 439.0 | 1.433 | | 97.40 | 31°551 | 117°56' | IV-15 | 04/35 | 12.75 | 0-69 | 452.3 | 1.521 | | 97.50 | 31°37' | 118°30.51 | IV-15 | 00/10 | 12,5 | 0-71 | 420.7 | 1.692 | | 97.60. | | | Het occ | cupied | | | | | | 97.70 | 30°551 | 11.9050.51 | IV-14 | 1715 | 13.75 | 0-60 | 461.3 | 1.309 | | 97.80 | 30°30' | 1200341 | IV-14 | 1140 | 13.0 | 0-8/2 | 359.7 | 2.344 | | 97.90 | 30°13' | 121014 | IV-14 | 0600 | 13.5 | V-81 . | 345.5 | 2.356 | | -100.30 | 31040.81 | 1160471 | IV-17 | 0050 | 12.25 | 0-69 | 374.2 | 1.852 | | 100.40 | 31°20' | 117°27! | IV-16 | 1655 | 22.25 | 0-05 | 554.0 | 1.177 | | 100.50 | 30°591 | 113°08! | IV-J.6 | 1050 | 22.5 | 0-69 | 642.6 | 1.077 | | 100,60 | 30°40' | 118°501 | IV-16 | 0430 | 23.0 | 0-69 | 625.3 | 1.107 | | 100.70 | 30°19.51 | | IV-15 | 2215 | 22,25 | 0-67 | 652.1 | 1.029 | | 100.80 | 29057.21 | | IV-15 | 1010 | 23.25 | 0-71 | 708.6 | 1.002 | | 100.50 | 29°361 | 1200491 | IV-15 | 1020 | 22.5 | 0-70 | 703.2 | .991 | | 100,100 | 290171 | 121°291 | IV-15 | 0400 | 22.5 | 0-70 | 674.1 | 1.040 | | 100.110 | 28°57.51 | | | 2145 | 22.5 | 0-71 | 685.2 | 1.033 | | 100.120 | 28°39.51 | | | 1535 | 22.75 | 0-72: | 645.6 | 1.111 | | 105.35 | 30°39' | 116°32.7 | - | 2240 | 22.75 | 0-65 | 677.7 | .961 | | 110.35 | 29046.51 | | IV-11 | 1425 | 22.5 | 0-69 | 511.7 | 1.341 | | 110.40 | 29°36.51 | | IV-11 | 1815 | 22.5 | 0-69 | 666.8 | 1.029 | | 1.10.50 | 29°13.5 | | IV-12 | 0000 | 22.5 | 0-67 | 689.1 | .972 | | 110.60 | 28°501 | 1170401 | IV-12 | 0605 | 22.75 | 0-69 | 630.3 | 1.020 | | 110,70 | 28°361 | 113°18.51 | | 2250 | 22.75 | 0-70 | 704.7 | .990 | | 110.80 | 28°15.81 | 118057: | IV-13 | 0440 | 22.5 | 0-71 | 675.3 | 1.045 | Table I (cont'd) Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950 | | Posi | tion | | | Duration | Depth | Vol.of | S | |-----------|-----------|-----------|---------|-------|----------|--------------|----------|--------| | Station | N. lat. | W. long. | Date | Hour | of Haul | Meters | Water | Factor | | | | | | - | | | Strained | ~ ~~~ | | 110.90 | 28°001 | 119°35' | TT TO | 7000 | 20 5 | 0-67 | 661.0 | 7 000 | |
110.100 | 27°38.71 | 120°17.51 | IV-13 | 1035 | 22.5 | | | 1.020 | | | | | IV-13 | 1605 | 22.5 | 0-70 | 689.1 | 1.014 | | 110.110 | 270221 | 1200531 | IV-13 | 2155 | 22.5 | 0-70 | 685.6 | 1.018 | | 113.35 | 29912.5 | | IV-11 | 0820 | 22.5 | 0-73 | 614.7 | 1.188 | | 117.35 | 28036.81 | 115°16' | IV-11 | 0250 | 22.5 | 0-71 | 657.3 | 1.076 | | 120.35 | 28°03.81 | 114054.61 | IV-10 | 0830 | 11.75 | 0-72 | 362.1 | 1.988 | | 120.45 | 27039.51 | | IV-10 | 0020 | 22.75 | 0-71 | 665.4 | 1.073 | | 120.50 | 27°31' | 115°54' | IV-9 | 2035 | 22.5 | 0-69 | 685.6 | 1.011 | | 120.60 | 27°13.51 | | IV-9 | 1500 | 22.5 | 0-70 | 711.3 | .981 | | 120.70 | 26°51.5 | | IV-9 | 1025 | 22.5 | 0-71 | 684.5 | 1.036 | | 120.80 | | 117°51.2' | IV-9 | 0430 | 22.75 | 0-72 | 661.0 | 1.089 | | 120.90 | 26012.51 | 1180291 | IV-8 | 21.35 | 25.0 | 0-68 | 705.7 | .965 | | 120.300 | 25052.51 | 1190061 | S-VI | 1535 | 22.5 | 0-67 | 711.5 | ,938 | | 120.110* | 25°31 * | 1190461 | IV-8 | 1120 | 23.5 | 0-77. | 695.3 | 1.021 | | 123.40 | 2797.6.21 | 1.140511 | IV-5 | 0335 | 20.25 | 0-70 | 621.5 | 1.130 | | 123.50 | 270021 | 115°30' | IV-5 | 0915 | 22.5 | 0-70 | 670.1 | 1.040 | | 123.60 | 260381 | 116°09' | IV-5 | 1410 | 22.75 | 0-70 | 670.4 | 1.047 | | 127.40 | 260431 | 114029.51 | IV-6 | 0725 | 22.5 | 0-68 | 643.6 | 1.050 | | 127.50 | 26°21,31 | 115°11.5 | IV-6 | 0100 | 23.0 | 0-73 | 616.8 | 1.187 | | 127.60 | 260041 | 115046.81 | IV-5 | 2005 | 23.25 | 0-71 | 553.8 | 1,091 | | 130.35 | 260161 | 1130451 | IV-6 | 14:20 | 22.75 | 0-69 | 663.1 | 1.039 | | 130.40 | 260091 | 114007.31 | IV-6 | 1740 | 22.75 | 0-71 | 542.6 | 1.309 | | 130.50 | 250491 | 114046.51 | IV-6 | 2335 | | 0-68 | 681.0 | | | | 250291 | | | | 23.75 | | | .994 | | 130.60 | | 1150241 | IV-7 | 0770 | 22.5 | 0-68 | 696.0 | .973 | | 130.70 | 250121 | 116002.81 | IV-7 | 1125 | 23.0 | 0-69 | 693.1 | • 993 | | 130,80 * | 5401191 | 1160401 | IV-7 | 1755 | 24.75 | 0-69 | 700.0 | .983 | | Orwise 14 | | | | | | | | | | | 410331 | 1250001 | V-16 | 1820 | 13.5 | 0-69 | 401.2 | 1.730 | | 40.50 | 41.0231 | 125°231 | V-16 | 1135 | 13.75 | 0-63 | 516.6 | 1.218 | | 40.60 | 410031 | 1260091 | V-16 | 0410 | 13.5 | 0-71 | (377.8) | 1.871 | | 40.70 | 7i007i51 | 125°551 | V-15 | 2045 | | | (364.5) | 2.008 | | 40.80 | 400231 | | | 1245 | 14.0 | 0-73 | | 1.187 | | | 400021 | 1270401 | V-15 | | 24.5 | 0-72 | 609.9 | | | 40.90 | | 128°251 | V-15 | 0325 | | 0-71 | | .886 | | 40.100 | 390421 | | V-14 | 1730 | | 0-74 | | 1.246 | | 40.110 * | | | V-14 | | 25.0 | 0-70 | | .892 | | 43.50 | 7100万81 | | T-16 | 2315 | | 0-68 | | 1.416 | | 43.60 | 40°281 | 125°431 | V-17 | 0620 | 24.0 | 0-65 | 795.4 | .813 | | 47.55 | | | Not que | | | | | | | 47.60 | 390541 | 1250181 | V-17 | 1210 | 24.25 | 0-74 | 733.2 | 1.011 | | 50,55 | 39°301 | 12/19301 | V-10 | 2200 | 13.0 | 0- 58 | 438.9 | 1.326 | | 50.60 | 390201 | 1240521 | V-11 | 0310 | 24.5 | 0-75 | 575.1 | 1.297 | | 50.70 | 39000! | 125036.51 | V-71 | 1055 | 23.25 | 0-70 | 559.9 | 1.259 | | 50.80 | 3804:01 | 126°21' | V-11 | 1755 | 23.25 | | 983.3 | .550 | | | | | | | | | | | Table I (cont'd) Record of Oblique Hauls made with Floration Nets during Cruises 11-13 in 1950 | | | | Market and Transfer to | mercu magamumika sa sadi dibir sasa sa sa sa | | an - Company trans | | | |--|--|---|------------------------|--|--|--------------------
--|--------| | Control of the Contro | Posi | tion | | | Duration | Depth | Vol.of | S | | Station | W. lat. | W. long. | Pate | Hour | | | Water | Factor | | 10 0 C. 0 14 0 12 | 2,0 | | | | - 30 - 32 (A) 520 | | Strained | | | the second state of the second | anterior agranditivo della socializza della della coloranza de | angen-turkhillin. Vetrilar i essap di Arthurdus introtoria vagana | | | and the statement of th | | The Control of Co | | | 50.100 | 380001 | 1270451 | V-12 | 0725 | 13.75 | 0-69 | 289.5 | 2,383 | | 50.110 | 370401 | 1280331 | V-12 | 1415 | 14.0 | 0-69 | 204.3 | 3.373 | | 50,120 | 370201 | 129010.51 | | 2040 | 14.25 | 0-68 | 475.0 | 1.431 | | 50.130 | 370001 | 1300001 | V-13 | 0335 | 24.75 | 0-66 | 817.5 | .807 | | | | | V-10 | 0340 | 14.5 | 0-71 | 41.5.0 | | | 27600 | | | V-10
V-3 | 1905 | | 0-69 | (3)7.1) | 1.706 | | 50,60 | 370371 | 1230371 | V-3 | | 13.5 | | | 1.743 | | 60.70 | 370171 | 124021 | | 1055 | 24.5 | 0-69 | (719.4) | .961 | | 60,80 | 350571 | 1250041 | Y-8 | 0105 | 15.0 | 0-70 | 324.3 | 2.152 | | 60.90 | 360371 | 125047 | V-7 | 1630 | 15.25 | 0-66 | (490.6) | 1.343 | | 60.100 | 350181 | 1260301 | V-7 | 0540 | 30.5 | 0-65 | (992.5) | :659 | | 60.110 | 35°57! | 127012 | V-6 | 2050 | 13.25 | 0-61 | 504.3 | 1.044 | | 60.120 | 350371 | 1 10 00 | | 1220 | 24.0 | 0-73 | 666.7 | 1.092 | | 60.130 | 35°17! | 128°37' | V-6 | 0305 | 23.75 | 0-69 | 551.3 | 1.250 | | 61.55 | 370371 | 123007.51 | | 03.00 | 24.25 | 058 | 758.3 | .903 | | 65.60 | 36045! | 123°00' | 7-2 | 2230 | 13.5 | 0-70 | 446.3 | 1.573 | | 70.55 | 360031 | 1220021 | ₹-3 | 0455 | 13.5 | 0-68 | 453.0 | 1.512 | | 70,60 | 35°531 | 122°23! | ¥-3 | 0935 | 11.0 | 0-55 | 314.1 | 1.742 | | 70.70 | 35°331 | 123°061 | V-3 | 1625 | 13.0 | 0-66 | 436.9 | 1.506 | | 70.80 | 350131 | 1230481 | V-3 | 24,00 | 14.0 | 0-68 | 383.2 | 1.775 | | 70.90 | 340531 | 1240301 | 77-4 | 0705 | 13.25 | 0-67 | 467.0 | 1.426 | | 70.7.00 | 340331 | 1.25°121 | 7-4 | 1410 | 24.0 | 0-48 | 588.9 | 1,151 | | 70.110 | 3407.31 | 1250561 | 7-4 | 2040 | 23.5 | 0-70 | (672.4) | 1.043 | | 70.120 | 33°531 | 126035.51 | V-5 | 0345 | 24.0 | 0-68 | (732.8) | .923 | | 70.130 | 33°331 | 127016.51 | V-5 | 1000 | 23.25 | 0-70 | 761.7 | .916 | | | | | | | | | | | | I-80.55 | 340211 | 1200501 | T-3 | 0305 | 25.0 | 0-61 | 1021,2 | .599 | | 80,60 | 34:0101 | 1210101 | 7-3 | 1200 | 13.25 | 0-69 | 500.3 | 1.382 | | 30.70 | 330501 | 1210511 | V-3 | 1805 | 13.5 | 0-59 | 438.4 | 1.421 | | 80.80 | 33°281 | 1220321 | V-ly | 0020 | 13.25 | 0-66 | 548.0 | 1.210 | | 80.90 | 330091 | 1200131 | V-4 | 0640 | 13.0 | 0-59 | 432.9 | 1.230 | | 80.100 | 320491 | 1230541 | V-4 | 1305 | 12.5 | 0-61 | 487.3 | 1.254 | | 80.110 | 320201 | 124034.59 | | 1355 | 12.5 | 0-73 | 411.5 | 1.781 | | 80.120 | 320091 | 125015.51 | V-5 | 0135 | 13.0 | 0-85 | 339.8 | 2.496 | | 80.330 | 31°50' | 125°571 | V-5 | 0700 | 12.75 | 0-74 | 448.2 | 1.656 | | 83.55 | 3301141 | 120024.51 | | 0245 | 13.5 | 0-56 | 550.8 | 1.008 | | 83.60 | 330341 | 1200451 | V-11 | 2235 | 1.2.75 | 0-72 | 420.6 | 1.705 | | 83.70 | 33014.51 | | 7-11 | 1630 | 12.25 | 0-39 | 541.9 | .604 | | 83,80 | 320401 | 122.06 | V-11 | 0230 | 23.25 | 0-75 | 733.5 | 1.017 | | 83.90 | 32°331 | 1220471 | V-11 | 0355 | 23.0 | 0-70 | 784.8 | .896 | | 87.35 | 330501 | 113°37,51 | | 1105 | 12.0 | 0-73 | 454.0 | 1.604 | | 87.10 | 330401 | 118°58.51 | | 1700 | 12.25 | 0-46 | 618.6 | 3740 | | 87.50 | 330201 | 119039.51 | | 2120 | 11.5 | 0-64 | 463.0 | | | 87.60 | 330001 | | | | | | | 1.391 | | | | 120°21.51 | | 0255 | 13.0 | 0-73 | 1144.9 | 1.600 | | 87,70 | 320401 | | V-10 | 0825 | 13.5 | 0-56 | 475.9 | 1.385 | | 87.80 | 32°19.5' | 121043 | V-10 | 1520 | 23.0 | 0-65 | 838.6 | .779 | Table I (cont'd) Record of Oblique Houls made with Plankton Nets during Cruises 11-18 in 1950 | Station 87.90 | N. lat. | W. long. | ~ 1 | | | | | S | |----------------|------------------|--------------------|--------------|-----------------------|---------------|--------------|----------------------|--------| | 87.90 | | | Date | Hour | of Haul | Meters. | Water
Strained | Factor | | ~ 1 · 1 · 1 | 32°001 | 122°25' | V-10 | 2045 | 23.75 | 0-49 | 1060.3 | .1160 | | 90.30 | 33024.51 | 117°55' | V-8 | 1215 | 12.25 | 0-52 | 545.7 | .951 | | 90.37 | 33°11' | 113023.51 | V-3 | 0745 | 12.5 | 0-50 | 555.9 | .890 | | 90.45 | 32°561 | 118°57' | V-8 | 0205 | 13.25 | 0-66 | 488.6 | 1.353 | | 90.53 | 32°351 | 1190261 | V-7 | 201:5 | 12.75 | 0-63 | 442.7 | 1.432 | | 90.60 | 32°25' | 1190561 | V-7 | 1600 | 23.25 | 0-75 | 706.2 | 1.053 | | 90.70 | 32004.51 | 120°391 | V-7 | 0835 | 22.75 | 0-66 | 810.6 | .809 | | 90.30 | 31.0501 | 1210191 | V-7 | 0315 | 23.75 | 0-81 | 669.6 | 1.214 | | 90,90 | 31°271 | 121°59' | V-6 | 2010 | 23.25 | 0-72 | 742.2 | .971 | | 90.100 | 31004.51 | 1220401 | V-5 | 1310 | 23.0 | 0-53 | 945.1 | • 558 | | 90.110 | 300461 | 123°161 | V-6 | 0625 | 23.0 | 0-69 | 796.7 | .869 | | 90.120 | 30024.51 | 124001 | V-5 | 2305 | 20.75 | 0-73 | 745.1 | ,982 | | 93.30 | 32°501 | 117°31.5' | V-12 | 1735 | 23.75 | 0-57 | 926.1 | .611 | | 93,40 | 32.0301 | 118°12.5' | V-12 | 2305 | 12.0 | 0-58 | 447.5 | 1.298 | | 93.50 | 320071 | 118057 | V-13 | 0445 | 14.0 | 0-43 | 634,2 | .678 | | 93.60 | 370401 | 1190341 | V-13 | 1105 | 22.5 | 0-63 | 756 • 1.
876 • 4; | .915 | | 93.70 | 310281 | 1200161 | V-13 | 1710 | 23.0 | | 442.7 | 1.595 | | 93.80 | 31.00/1 | 120058.51 | V-13 | 2325 | 13.0 | 0-71
0-65 | 452.6 | 1.445 | | 93,90 | 300371 | 121°45'
137°17' | V-14 | 0540 | 12.0 | 0-71 | 457.0 | 1.545 | | 97.32 | 32°11.5' | 117051 | | 0030
1355 | 12.5 | 0-47 | 583.8 | .502 | | 97.40 | 31.361 | 1180321 | V-15
V-15 | 1235 | 12.75 | 0-61. | 481.7 | 1.250 | | 97.50
97.60 | 31°15.51 | 119°10.5 | V-15 | 0635 | 12.0 | 0-45 | 591.1 | .761 | | 97.70 | 300551 | 119.50.5 | V-15 | 0055 | 13.25 | 0-79 | 403.3 | 1.951 | | 97.80 | 300351 | 120°31' | V-14 | 1805 | 12.5 | 0-60 | 519.2 | 1.150 | | 97.90 | 30°07.51 | 121011 | V-14 | 1205 | 12.75 | 0-38 | 352.1 | 2.499 | | -1.00.30 | 310401 | 1160461 | V-15 | 1930 | 12.25 | 0-68 | 362.4 | 1.863 | | 100.40 | 31°27' | 117°21' | V-15 | 1405 | 23.25 | 0-71 | 575.7 | 1.233 | | 100.50 | 31°071 | 118°02' | V-15 | 0715 | 22.75 | 0-70 | 523.7 | 1.340 | | 100.60 | 300/151 | 1180441 | V-15 | 0135 | 23.5 | 0-71 | 623.3 | 1.145 | | 100.70 | 30°251 | 119°24' | V-14 | 2005 | 22.5 | 0-70 | 644.7 | 1.036 | | 100.80 | 30°051 | 1200041 | A-17 | 1420 | 23.25 | 0-71 | 634.8 | 1.120 | | 100.90 | 290431 | 1200431 | V-14 | 0350 | 22,75 | 0-72 | 501.5 | 1.222 | | 100.100 | 290231 | 121°25' | V-14 | 0300 | 23.25 | 0-73 | 567.9 | 1.237 | | 100.110 | 290041 | 122°02' | V-13 | 2135 | 22.75 | 0-72 | 646.9 | 1.110 | | 100.120 | 280441 | 122°381 | V-13 | 1535 | 23.5 | 0-72 | 658.1 | 1.099 | | 105.35 | 30°33' | 1160391 | V-2 | 2345 | 23.75 | 0-54 | 736.1 | .867 | | 110.35 | 290401 | 116°03' | V-11 | 0815 | 23.0 | 0-68 | 654.0 | 1.047 | | 110,40 | 290291 | 116°22' | V-11 | 1055 | 23.75 | 0-67 | 634.6 | .976 | | 110.50 | 290161 | 116°59' | V-11 | 1635 | 22.75 | 0-68 | 712.1 | .949 | | 110.60 | 280551 | 117040 | V-11 | 2215 | 23.5 | 0-68 | 683.5 | •995 | | 110.70 | 280331 | 1180241 | V-12 | 0355 | 22.75 | 0-70 | 691.7 | 1.015 | | 110.80 | 28°17'
27°55' | 118°55'
119°35' | V-12
V-12 | 0350
1 <i>5</i> 15 | 23.75
23.0 | 0-70
0-70 | 656.7
652.2 | 1.071 | Table I (contid) Record of Oblique Hauls made with Plantton Mets during Oruises 11-18 in 1950 | L | | | | erdaur | | generalist estadores estago de estador que destro e de agrega en acestrologo.
Compleyo e deployación de el estadores estadores estadores estadores estadores estadores estadores estadores e | | anno alla della compositorio e di constituto | | |---|---
--|---|---|--|---|--|--|---| | | Station | | tion long. | Date | Tour | Duration of Haul | Depth
Meters | Vol.of
Water
Strained | S
Factor | | | 110.100 110.110 113.35 117.35 120.35 120.45 120.50 120.60 120.70 120.80 120.90 120.100 120.110* 123.40 123.50 123.60 127.60 130.35 130.40 130.50 130.60 130.70 130.80 * | 27°381
27°221
29°111
28°371
28°031
27°201
27°201
27°201
26°461
26°461
26°571
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391
26°391 | 120°16'
120°55'
115°41'
115°16'
114°54'
115°32'
115°53'
117°07'
117°53'
118°32'
119°07.5'
119°39'
114°54.5'
115°31'
116°09.5'
114°33'
115°48'
115°48'
115°48'
115°48'
115°23'
116°10'
116°41' | V-12
V-13
V-11
V-10
V-9
V-9
V-9
V-8
V-8
V-4
V-4
V-4
V-4
V-5
V-5
V-6
V-6
V-6
V-6 | 2100
0230
0045
1915
1420
1105
0635
1500
1315
0850
0100
1502
0325
0510
1440
0855
2040
1535
0205
0820
1455
2345 |
23.5
22.75
22.75
22.5
23.0
19.25
23.5
23.0
22.75
23.5
23.0
23.75
23.5
23.0
22.75
23.5
23.0
23.75
23.5
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
23.75
25.75
25.75
25.75
25.75
25.75
25.75
25.75
25.75
25.75
25.75
25.75 | 0-72
0-72
0-72
0-71
0-66
0-75
0-73
0-73
0-73
0-73
0-73
0-73
0-73
0-73 | 657.0
643.8
580.2
722.3
363.0
580.5
678.7
725.3
729,5
688.1
524.8
719.5
691.7
696.1
696.1
696.4
556.3
690.5
678.5
773.6 | 1.096 1.112 1.227 .910 1.537 1.070 .961 1.093 .949 1.042 1.391 1.020 1.613 1.011 1.070 1.060 1.232 1.064 1.420 1.089 1.103 .993 .902 .937 | | | Cruise 15 40.45 40.50 40.60 40.70 40.80 40.90 40.100 40.110 43.50 47.55 47.60 50.55 50.60 50.70 50.80 50.90 50.100 | 39°30!
39°23!
39°23!
39°20!
39°00!
38°40!
38°20!
38°00! | 125°55¹ 127°40¹ 125°25¹ 129°10¹ 129°55¹ 124°52¹ 125°36°5¹ 126°21¹ 127°05¹ 127°49¹ | Not oc
VI-20
VI-20
VI-20
VI-19
VI-19 | 1825
1150
cupied
cupied
cupied
1605
2010
0220
0840 | 12.75
14.75
12.75
12.75
13.0
13.5
12.25
12.75
12.5
12.5 | 0-75
0-67
0-68
0-71
0-72
::
0-68
0-65
0-67
0-68
0-68 | 376.0
447.7
403.4
383.6
396.9
344.0
390.0
412.6
393.6
372.7
291.4 | 2.003
1.497
1.660
1.827
1.812
1.974
1.751
1.583
1.695
1.811
2.344 | Table I (cont'd) Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950 | | Posi | tion | | | Duration | Depth | Vol.of | S | |-------------------|----------------|-----------|--------|-------|----------------|--------|----------|--------| | Station | N. lat. | W. long. | Date | Hour | of Haul | Meters | Water | Factor | | | | | | | | | Strained | | | 50.110 | 37°401 | 128°331 | VI-18 | 0525 | 12.25 | 0-72 | 369.4 | 1.941 | | 50.120 | 370201 | 129016.51 | VI-18 | 1120 | 12.0 | 0-66 | 351.0 | 1.883 | | 50.130 | 370001 | 130°00' | VI-18 | 1700 | 12.25 | 0-71 | 301.5 | 2.361 | | 53.54 | 380581 | 1240001 | VI-16 | 1000 | 12.0 | 0-68 | 330.3 | 2.053 | | 53.64 | 380381 | 1240441 | VI-15 | 0010 | 12.75 | 0-72 | 325.1 | 2.227 | | 57.5 ¹ | 380241 | 123°35' | VI-15 | 0925 | 12.25 | 0-65 | 411.4 | 1.580 | | 57.64 | 380041 | 1240191 | VI-15 | 1530 | 16.75 | 0-71 | 444.1 | 1.608 | | 60.60 | 37°37' | 123°371 | V I-14 | 1625 | | | | 2.005 | | | | 124021 | | | 13.5 | 0-71 | 352.6 | | | 60.70 | 37°17' | | VI-14 | 0945 | 15.0 | 0-64 | 398.5 | 1.619 | | 60.80 | 36°57' | 125004 | VI-14 | 0215 | 13.0 | 0-72 | 358.7 | 2.016 | | 60.90 | 36037! | 1250471 | VI-13 | 1820 | 23.0 | 0-69 | 662.0 | 1.047 | | 60.100 | 36°17! | 126°30' | VI-13 | 1.040 | 23.75 | 0-70 | 713.0 | .985 | | 60.110 | 35°57! | 127°12' | VI-13 | 0330 | 14.0 | 0-72 | 380.1 | 1.889 | | 60.120 | 35°37! | 127054.5 | VI-12 | 2000 | 25.5 | 0-72 | 733.5 | .978 | | 60.130 | 35°17' | 128°37' | VI-12 | 1220 | 22.25 | 0-72 | 696.0 | 1.034 | | 61.55 | 37°37' | 123°07.51 | VI-14 | 2120 | 13.0 | 0-61 | 379.6 | 1.615 | | 63.57 | 37°091 | 122°58' | VI-5 | 1825 | 12.5 | 0-74 | 432.7 | 1.713 | | 63.67 | 360491 | 123041 | VI-6 | 0625 | 14.0 | 0-72 | 365.1 | 1.969 | | 67.55 | 360391 | 122°26' | VI-7 | 0825 | 13.25 | 0-73 | 385.6 | 1.885 | | 67.65 | 360191 | 1230091 | VI-6 | 1720 | 14.75 | 0-42 | 625.0 | .670 | | 70.55 | 36°031 | 1220021 | VI-9 | 0935 | 18.75 | 0-81 | 662.0 | 1.221 | | 70.60 | 350531 | 1220231 | VI-9 | 1.435 | 23.25 | 0-69 | 605.7 | 1.142 | | 70.70 | 350331 | 1230061 | VI-9 | 2100 | 26.5 | 0-66 | 542.5 | 1.226 | | 70.80 | 35°131 | 1230481 | VI-10 | 0430 | 24.0 | 0-68 | 382.2 | 1.771 | | 70.90 | 340531 | 1240301 | VI-10 | 1050 | 22.25 | 0-68 | 443.6 | 1.542 | | 70.100 | 34,0331 | 125°12' | AI-10. | 1805 | 14.25 | 0-77 | 342.7 | 2.247 | | 70.110 | 340131 | 125°541 | VI-11 | 0135 | 24.75 | 0-67 | 642.7 | 1.046 | | 70.110 | 33°531 | 126°35.51 | VI-11 | 0950 | | 0-70 | 585.5 | 1.196 | | | | | | | 23.0 | • | | 1.248 | | 70.130 | 33°33 ' | 127°15.51 | VI-11 | 1705 | 24.0 | 0-70 | 561.5 | 1.240 | | 73.51 | 35°351 | 121°20' | VI-8 | 0705 | 12.5 | 0-76 | 382.3 | 1.998 | | 73.61 | 35°151 | 122°03' | VI-8 | 1235 | 12.75 | 0-68 | 412.7 | 1.645 | | 77.55 | 340541 | 1210131 | VI-9 | 0010 | 13.75 | 0-67 | (425.2) | 1.578 | | 77.65 | 340341 | 1210551 | VI-8 | 1745 | 12.5 | 0-78 | 387.4 | 2.008 | | 30.55 | 340191 | 1200481 | VI-9 | 0510 | 13.0 | 0-75 | 417.1 | 1.803 | | 30.60 | 34,0091 | 1210091 | VI-9 | 0910 | 12.75 | 0-82 | 357.6 | 2.293 | | 30.70 | 330491 | 121°581 | VI-9 | 1450 | | 0-69 | 403.7 | | | 30.80 | 330311 | 122°331 | VI-9 | | 12.75
12.25 | 0-68 | | 1.709 | | | | | VI-10 | 1950 | _ | | 385.2 | 1.752 | | 30.90 | 330121 | 123°121 | | 0205 | 12.0 | 0-70 | 359.1 | 1.941 | | 30.100 | 320491 | 123°561 | VI-10 | 0755 | 11.75 | 0-69 | 363.5 | 1.901 | | 30.110 | 320291 | 1240341 | VI-10 | 1325 | 12.0 | 0-69 | 384.1 | 1.799 | | 30.120 | 320091 | 125°15' | VI-10 | 1930 | 12.0 | 0-67 | 380.9 | 1.756 | | 30.130 | 31 0491 | 125°56' | VI-11 | 0120 | 12.0 | 0-70 | 384.3 | 1.829 | | B3.55 | 33°41' | 120°25' | VI-16 | 0610 | 12.25 | 0-71 | 291.4 | 2.430 | | 33.60 | 330321 | 1200451 | VI-16 | 0225 | 12.25 | 0-68 | 267.2 | 2.552 | Table I (cont'd) Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950 | empelie hardpennier der einzelfehend mer beis g
(###) und der mer – dessendt mitte de | Pogi | tion | and a continue of the state | | Duration | Depth | Vol. of | S | |--|---------------------------|------------
---|--------------|----------|--------------|-------------------|----------------| | Station | | W. long. | Date | Hour | of Haul | Meters | Water
Strained | Factor | | 83.70 | 33°131 | 1210251 | VI-15 | 2115 | 12.5 | 0-72 | 334.8 | 1.874 | | 83.80 | 320541 | 1220071 | VI-15 | 1545 | 12.0 | 0-70 | 370.5 | 1.887 | | 83,90 | 320361 | 1220461 | VI-15 | 1100 | 12.25 | 0-72 | 375.5 | 1,920 | | 87.35 | 330491 | 118°37' | VI-13 | 2320 | 12.25 | 0-66 | 387.0 | 1.698 | | 87,40 | 330401 | 118°58' | VI-14 | 02/20 | 13.75 | 0-70 | 433.4 | 1.622 | | 86.50 | | | Not oc | | | | | - 0-4 | | 87.60 | 330001 | 120°21' | VI-14 | 1125 | 12.5 | 0-70 | 371.5 | 1.876 | | 37.70 | 320391 | 1210031 | VI-14 | 1720 | 12.5 | 0-74 | 391.8 | 1,889 | | 87.80 | 320201 | 1210431 | VI-14
VI-15 | 2310 | 12.5 | 0-71 | 378.6 | 1.870 | | 87 . 90
90. 30 | 32°01'
33°24' | 117°55' | VI-13 | 0620
1745 | 12.0 | 0-72 | 369.7 | 1.953 | | 90.37 | 33°11' | 11805/1 | VI-13 | 1235 | 12.25 | 0-57
0-71 | 436.6
375.6 | 1.308
1.875 | | 90.45 | 320561 | 118°58 | VI-13 | 0725 | 12.75 | 0-71 | 393.7 | 1,793 | | 90.53 | 32°40: | 119°301 | VI-13 | 0215 | 12.75 | 0-67 | 356.7 | 1,890 | | 90,60 | 320221 | 1200001 | VI-12 | 2105 | 12.25 | 0-71 | 351.8 | 2.030 | | 90.70 | 320001 | 120044 | VI-12 | 1610 | 13.0 | 0-74 | 337.0 | 1,902 | | 90.80 | 310391 | 121021 | VI-12 | 1030 | 12.25 | 0-74 | 407.8 | 1.817 | | 90.90 | 31°201 | 1220021 | VI-12 | 0555 | 12.5 | 0-74 | 407.5 | 1,821 | | 90.100 | 31.0021 | 182041: | VI-12 | 0005 | 12.25 | 0-73 | 388.5 | 1.887 | | 90,110 | 300431 | 123°21' | VI-11 | 1850 | 12.25 | 0-73 | 388.9 | 1.877 | | 90.120 | 3002/11 | 137605; | VI-11 | 1355 | 11.75 | 0-69 | 392.0 | 1.758 | | 93.30 | 320471 | 117°31! | VI-18 | 0355 | 12.25 | 0-68 | 402.2 | 1.691 | | 93.40 | 32°291 | 118013 | VI-18 | 0350 | 12.25 | 0-71 | 343.3 | 2.074 | | 93.50 | 32°10' | 11.8°53! | VI18 | 1420 | 12.5 | 0-71 | 400.5 | 1.770 | | 93.60 | 31.051 | 1190361 | VI-18 | 1930 | 12.5 | 0-34 | 313.4 | 2,687 | | 93.70 | 310321 | 1200161 | VI-19 | 0050 | 12.25 | 0-73 | 343.1 | 2.134 | | 93.80 | 31°13'
30° <i>5</i> 4' | 120°561 | VI-19
VI-19 | 061.0 | 12,25 | 0-74 | 356.3 | 2.091 | | 93.90
97.32 | 50054 | .12.10.30. | To tow | 1250 | 12.0 | 0-69 | 388,3 | 1.769 | | 97.40 | 31°56! | 13.7°521 | VI-20 | 2040 | 12.25 | 0-71 | 317.2 | 2.226 | | 97.50 | 31.31; | 118°281 | VI-20 | 1535 | 12.0 | 0-58 | 323.3 | 2.088 | | 97.60 | 310131 | 1190091 | VI-20 | 1225 | 12.25 | 0-69 | 339.2 | 2.046 | | 97.70 | 30051:1 | 119°501 | VI-20 | 0535 | 12.25 | 0-70 | 368.9 | 1.084 | | 97.30 | 300351 | 120°31' | VI-19 | 2345 | 12.5 | 0-70 | 371.9 | 1.885 | | 97.90 | 30.5191 | 1210121 | VI-19 | 1750 | 12.5 | 0-73 | 358.1 | 2.173 | | P-100.30 | 31.040.51 | 116046.51 | VI-23 | | 22.25 | 0-64 | 854.8 | •755 | | 100.40 | | | Not oc | | | | | | | 100.50 | | | Not oc | | | | | | | 100.60 | | | Not oc | | | | | | | 100.70 | | | Not oc | -6- | | | | , | | 100.80 | | | lot oc | | | | | | | 100.90 | | | Not oc | | | | | | | 100.110 | | | Not oc | | | | | | | TOOSTIO | | | 1,00 00 | cabrea | | | | | Table I (cont'd) Record of Oblique Hauls made with Plankton Wets during Cruises 11-18 in 1950 | Station | Posi | W. long. | Date | Hour | Duration of Haul | Depth
Meters | Vol. of
Water
Strained | S
Factor | |--|--|---|---|---|--|--|--|--| | 1.00.1.20
1.05.35
110.35
110.45
110.50
110.60
110.70
110.80 | 30°39°
29°46.5° | 116°33³
116°00¹ | VI-22
VI-22
Not oc
Not oc
Not oc | 1555
0655
ccupied
ccupied
ccupied
ccupied | | 0-60
0-69 | 493.4
619.8 | 1,214
1,115 | | 110.90
110.100
110.110
113.35
117.35
120.35
120.45
120.50
120.60 | 29°12°
28°37°
28°03°
27°43°
27°33°
27°13° | 115°39'
115°16'
114°54'
115°33'
115°52.5'
116°31.5' | Not of VI-22 VI-21 VI-21 VI-20 VI-20 Not of | ccupied
ccupied
0020
1820
1245
0700
1940
1035
ccupied | 22.5
24.5
21.75
21.25
19.25
22.0 | 0-67
0-69
0-68
0-62
0-59
0-62 | 645.9
484.0
442.6
601.5
597.2
700.1 | 1.044
1.434
1.525
1.037
.981
.890 | | 120.80
120.90
120.100
120.110
123.40A
123.40B
123.50
127.40
127.50
127.60
130.35
130.40
130.50
130.60
130.70
130.80 | 27°18!
27°18!
26°58!
26°38.5!
26°43.5!
26°23.5!
26°22!
26°09!
25°49! | 114°51.5'
114°51.5'
115°30.5'
116°09'
114°29.5'
115°46.5'
113°54'
114°07.5'
114°46: | Not of Not of VI-12 VI-19 VI-19 VI-18 VI-19 VI-14 VI-14 VI-14 VI-14 Not of Not of Not Not of Not Not of Not | ccupied
ccupied
ccupied
0920
2210
1515
0910
1830
0025
1025
1520
2325
ccupied
ccupied | 23.0
22.5
22.25
22.0
23.75
22.25
21.5
22.5
23.0
22.25 | 0-67
0-64
0-66
0-68
0-70
0-69
0-72
0-70
0-66
0-69 | 785.6
726.1
735.9
688.4
689.7
697.5
699.2
725.7
680.7
691.4 | .850
.879
.894
.983
1.019
.992
1.024
.963
.962 | | Cruise 16 B-40.45 40.50 40.60 40.70 40.80 40.90 40.100 40.110 | 110331
410231
410031
400421
400231
400021
390421
390421 | 125°00!
125°23!
126°09!
126°55!
127°40!
128°25!
129°10!
129°55! | VII-22
VII-22
VII-21
VII-21
VII-21
VII-20
VII-20 | 2 1300
2 0450
2 120
1315
0550
2 110 | 1.2.25
13.25
13.75
13.5
23.75
13.25
23.75
23.75 | 0-63
0-69
0-75
0-70
0-72
0-76
0-71
0-72 | 320.0
369.2
348.0
356.9
658.9
344.2
653.1
621.5 | 2.140
1.877
2.150
1.956
1.099
2.223
1.096
1.158 | Table I (cont'd) Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950 | provide agreement of agreements of the section of | Posi | tro, is a minus of malliman malay consideral. | The the decimalishment automore, she did SIMPHINE | Duration | Depth | Vol.of | S | | |---|---|--
--|-------------------------|--|--------|-------------------|----------------------------------| | Station | W. lat. | W. long. | Date | Hour | of Haul | Meters | Water
Strained | Factor | | | er egger-rollyny-magazinin delette i rolande terliferir | ngang ang ag ag pang nanangga pagkanga papaga 🍽 Marina ang ana d | e de Maria de La Caractería de La Caractería de La Caractería de Caractería de La Caractería de Cara | March of Sample - Labor | other committee for the Market property that the state of | | D01-5:111601 | annon take a reproductive to the | | 43.50 | 1400148 8 | 1240571 | VII-22 | 2405 | 13.5 | 0-70 | 293.7 | 2.370 | | 43.60 | 400581 | 125°43! | VII-23 | 0540 | 12.25 | 0-77 | 227.3. | 3.375 | | 47.55 | 14000148 | 1240551 | VII-23 | 1650 | 13.5 | 0-72 | 334.1 | 2.146 | | 47.60 | 390541 | 125°18' | VII-23 | 11.45 | 14.0 | 0-74 | 310.2 | 2.395 | | 50.55 | 390301 | 1240301 | VII-17 | 14:05 | 12.25 | 0-69 | 393-1 | 1.760 | | 50.60 | 39°201 | 1240521 | VII-17 | 2000 | 12.75 | 0-69 | 333.0 | 2.063 | | 50.70 | 39000! | 1.25036.51 | VII-18 | 0245 | 13.25 | 0-69. | 31:0.0 | 2.035 | | 50,80 | 3801101 | 126°21 ' | VII-18 | 1.000 | 13.5 | 0-66 | 350.5 | 1.703 | | 50.90 | 38°20' | 1270051 | VII-13 | 1625 | 14.75 | 0-68 | 397.9 | 1.699 | | 50.100 | 38°001 | 127049 | VII-18 | 2305 | 24.0 | 0-70 | 657.7 | 1.070 | | 50.110 | 370401 | 128°33' | VII-19 | 0605 | 23.75 | 0-67 | 742.9 | .900 | | 50.120 | 37°201 | 129016.51 | VII-19 | 1.235 | 23.25 | 0-70 | 668,8 | 1.047 | | 50.130 | 370001 | 130000 | VII-19 | 1825 | 23.0 | 0-69 | 726.6 | .952 | | 53.54 | 38°58! | 124000' | VII-17 | 0735 | 13.75 | 0-73 | 321.7 | 2.257 | | 53.64 | 380381 | 1540/141 | VII-16 | 21.00 | 13.5 | 0-71 | 392.5 | 1.819 | | 57.54 | 380241 | 123°35' | VII-16 | 01:55 | 23.75 | 0-72 | 581.7 | 1.236 | | 57.64 | 380041 | 1240191 | VII-ló | 1125 | 75.0 | 0-67 | 301.3 | 1.849 | | 60.60 | 37°37! | 123°37! | VII-15 | 1410 | 23.75 | 0-74 | 486.6 | 1.511 | | 60.70 | 370171 | 124021 | VII-15 | 0630 | 24.75 | 0-77 | 461.6 | 1.664 | | 60.80 | 36°571 | 1250041 | VII-14 | 1920 | 23.75 | 0-67 | 539.8 | 1.236 | | 60,90 | 36°371 | 125°471 | VII-14 | 0740 | 24.5 | 89-0 | 609.3 | 1.108 | | 60.100 | 36°17! | 126°30! | VII-13 | 21.55 | 24.25 | 0-68 | 658.9 | 1.024 | | 60,110 | 35°571 | 127°12' | VII-13 | 14:50 | 24.0 | 0-69 | 642.7 | 1.077 | | 60.120 | 35°371 | 1.270511.51 | VII-13 | 0535 | 22.5 | 0-68 | 700.8 | .969 | | 60.130 | 35°17! | 128°37' | VII-12 | 2125 | 24.0 | 0-67 | 710.3 | . 949 | | 61.55 | 37°37! | 123°07.5 | VII-15 | 2040 | 24.5 | 0-72 | 699.2 | 1.023 | | 63.57 | 370091 | 122°58' | VII-6 | 2110 | 24.75 | 0-68 | 832.0 | .814 | | 63.67 | 360491 | 123°41! | VII-7 | 0440 | 26.75 | 0-69 | 790.8. | .871 | | 67.55 | 360391 | 122°26' | VII-9 | 1305 | 23.75 | 0-69 | 519.8 | 1.333 | | 67.65 | 36°191 | 123°09! | VII-9 | 0600 | 24.5 | 0-72 | 537.1 | 1.348 | | 70,55 | 36°03! | 1220021 | VII-9 | 2010 | 24.0 | 0-72 | 572.6 | 1.263 | | 70.60 | 35°531 | 122°23' | VII-10 | | 24.0 | 0-70 | 522.1 | 1.345 | | 70.70 | 35°33° | 123°06' | VII-10 | 0820 | 24.0 | 0-70 | 591.2 | 1.182 | | 70.80 | 35°131 | 123°48; | OE-11V | 1540 | 24.0 | 0-72 | 545.8 | 1.325 | | 70.90 | 34.053 | 154030: | VII-10 | 2340 | 25.5 | 0-69 | 526.4 | 1.315 | | 70.100 | 34°33! | 1.25°12' | VII-11 | 0655 | 24.0 | 0-74 | 577-0 | 1.279 | | 70.110 | 340131 | 125°541 | VII-11 | 1.345 | 24.0 | 0-72 | 598.2 | 1.197 | | 70.120 | 33°531 | 126°35.5 | | 2005 | 23.5 | 0-72 | 563.4 | 1.274 | | 70.130 | 33°331 | 127°16.5' | VII-12 | 0225 | 23.5 | 0-73 | 667.2 | 1.091 | | 73.51 | 35°35.51 | 121°201 | VII-8 | 1030 | 12.0 | 0-71 | 363.7 | 1.949 | | 73.61 | | 122002.51 | | 1455 | 12.5 | 0-66 | 348.8 | 1.898 | | 77.55 | 340541 | 1210131 | VII-9 | 0105 | 12.75 | 0-66 | 233.4 | 2.807 | | 77,65 | 340341 | 121°54.81 | | 1955 | 12.25 | 0-71 | 348.2 | 2.036 | | 80.55 | 34018.51 | | VII-9 | 0555 | 12.75 | 0-70 | 402.9 | 1.60 | Table I (cont'd) Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950 | | | | | - | | | | | |---------|----------|------------|--------|-------|----------|----------------|----------|--------| | | Posi | tion | | | Duration | Depth | Vol.of | S | | Station | N. lat. | W. long. | Date | Hour | of Haul | Meters | Water | Factor | | | | | - | | | | Strained | | | | | | | | | | | | | 80.60 | 34008.61 | 121010: | VII-9 | 0855 | 12.0 | 0-67 | 361.4 | 1.832 | | 80.70 | 33°47 ' | 121°52.51 | | 1445 | 12.25 | 0-71 | 317.4 | 2,234 | | 80.80 | 33°29.51 | 122°32.51 | | 1930 | 12.25 | 0-72 | 364.6 | 1,980 | | 80.90 | 33°10' | 123°13.51 | | 0050 | 12.0 | 0-69 | 355.7 | 1.934 | | 80.100 | 32049.51 | | VII-10 | 0550 | 12.5 | 0-72 | 374.5 | 1.923 | | 80.110 | 32°29.51 | 124035.51 | VII-10 | 11.00 | 12.0 | 0-69 | 359.6 | 1.930 | | 80.120 | 32°11.5' | 125016 | VII-10 | 1605 | 12.25 | 0-70 | 375.9 | 1.862 | | 80.130 | 310491 | 125°561 | VII-10 | 2120 | 12.0 | 0-72 | 379.4 | 1.900 | | 83.55 | 33°451 | 120°261 | VII-16 | 0350 | 12.75 | 0-66 | 425.6 | 1.541 | | 83.60 | 33°381 | 120040.21 | VII-16 | 0040 | 12.75 | 0-65 | 356.9 | 1.842 | | 83.70 | 33°17.61 | 121°21' | VII-15 | 1945 | 10.25 | 0-65 | 388.3 | 1.679 | | 83.80 | 32°561 | 122005-81 | VII-15 | 1440 | 12.5 | 0~68 | 392.6 | 1.732 | | 83.90 | 32°35°51 | 1220471 | VII-15 | 0920 | 12.0 | 0-71 | 370.1 | 1.913 | | 86,50 | 33°26.51 | 1190/14.51 | V1I-14 | 0720 | 6.5 | 0-69 | 178.7 | 3.861 | | 87.35 | 33°501 | 118°37.5 | VII-13 | 2245 | 12.25 | 0-67 | 336.4 | 2.004 | | 87.40 | 33°41' | 1180591 | VII-14 | 0150 | 14.0 | 0-73 | 364.6 | 2,002 | | 87.60 | 33°01' | 120021.7 | VII-14 | 1155 | 12.25 | 0-71 | 300.9 | 2.373 | | 87.70 | 32.047.1 | 1210021 | VII-14 | 1650 | 12.25 | 0-67 | 400.7 | 1.669 | | 87.80 | 32°201 | 1210431 | VII-14 | 2200 | 13.25 | 0-73 | 330.6 | 1.908 | | 87.90 | 320011 | 122°23' | VII-15 | 0310 | 12.5 | 0-72 | 367.8 | 1.949 | | 90.30 | 330241 | 117°55' | VII-13 | 1705 | 13.0 | 0-61 | 338.3 | 1.576 | | 90.37 | 33°11' | 118°23.61 |
VII-13 | 1245 | 12.25 | 0-67 | 330.4 | 2.034 | | 90.45 | 32054 | 118°56! | VII-13 | 0820 | 12.75 | 0-69 | 330.1 | 2.090 | | 90.53 | 32°38.51 | 115.55, | VII-13 | 0310 | 12.75 | 0-70 | 344,8 | 2.024 | | 90.60 | 32024.51 | 119°56.51 | VII-12 | 2155 | 1.3.25 | 0-83 | 277.2 | 2.980 | | 90.70 | 32°06.51 | 120°39' | VII-12 | 1612 | 12.5 | 0-74 | 306.2 | 2,407 | | 90.80 | 31045.51 | 121°22' | VII-12 | 1040 | 22.25 | 0-74 | 531.7 | 1.392 | | 90.90 | 31°28' | 120000.51 | VII-12 | 0445 | 23.0 | 0-72 | 557.7 | 1.282 | | 90.100 | 31°05.31 | 122041 | VII-11 | 2315 | 22.5 | 0-69 | 683.9 | 1.013 | | 90.110 | 30045.51 | 123°26' | VII-11 | 1720 | 12.5 | 0-72 | 356.3 | 2.01.0 | | 90.120 | 32024,51 | 124004.51 | VII-11 | 1110 | 12.0 | 0-72 | 362.0 | 1.939 | | 93.30 | 32°51.5 | | VII-17 | 0900 | 12.5 | r0 - 58 | 405.7 | 1.676 | | 93.40 | 32°301 | 118°12.5 | | 1440 | 22.25 | 0-69 | 697.8 | .990 | | 93.50 | 32°10.5° | | VII-17 | 2050 | 22.5 | 0-67 | 680.7 | . 986 | | 93.60 | 31°51.51 | • | V_I-18 | 0930 | 22.25 | 0-68 | 686.5 | . 988 | | 93.70 | | 120°13.5 | | 1505 | 22.75 | 0-68 | 680.3 | .992 | | 93.80 | 31°11' | 1200541 | VII-18 | 2125 | 22.5 | 0-71 | 677.4 | 1.044 | | 93.90 | 30°50.51 | 121°351 | VII-19 | 0235 | 22.25 | 0-70 | 679.5 | 1.027 | | 97.32 | 32°131 | 117°17.5 | | 0040 | 23.75 | 0-70 | 694.3 | 1.010 | | 97.40 | 31°55.5' | 117°50' | VII-20 | 1940 | 22.75 | 0-73 | 686.5 | 1.059 | | 97.50 | | 118°26' | VII-20 | 1125 | 12,0 | 0-71 | 381.3 | 1.854 | | 97.60 | | 119011' | VII-20 | 0335 | 12.5 | 0-71 | 402.4 | 1.757 | | 97.70 | 30°551 | 119049.5 | | 2205 | 22,25 | 0-69 | 668.6 | 1.032 | | 97.80 | 30°36¹ | 120°31' | VII-19 | 1455 | 22.25 | 0-69 | 718.0 | .965 | | 97.90 | 30°1.5° | 121011 | VII-19 | 0840 | 22.75 | 0-69 | 713.6 | .961 | | | | | | | | | | | Table I (cont'd) Record of Oblique Hauls made with Plankton Hets during Cruises 11-18 in 1950 | | Position | | | | Duration | Depth | Vol. of | S | |----------|------------------|--------------------|------------------|--------------|--------------|--------------|-------------------|--------| | Station | II. lat. | W. Long. | Date | Hour | of Haul | Heters | Water
Strained | Factor | | P-100.30 | 31040.51 | 116046.51 | VII-20 | 0105 | 23.0 | 0-69 | 805.1 | .862 | | 100.40 | 31°221 | 117°32' | VII-19 | 1900 | 23.5 | 0-69 | 761.8 | . 903 | | 100.50 | 310051 | 1180141 | VII-19 | 1115 | 23.0 | 0-67 | 767.2 | .877 | | 100.60 | 200431 | 11.8°531 | VII-19 | 0555 | 22.5 | 0-70 | 732.0 | . 949 | | 100.70 | 30°21 | 119°32' | VII-19 | 0025 | 23.0 | 0-68 | 709.2 | .962 | | 100,80 | 30°001 | 1200091 | VII-18 | 1855 | 23.0 | 0-67 | 760.7 | .883 | | 100,90 | 290351 | 120047! | VII-18 | 1320 | 23.5 | 0-65 | 764.2 | .856 | | 100.100 | 290161 | 121°281 | VII-18 | 0805 | 23.0 | 0-68 | 753.5 | .898 | | 100-110 | 28057 | 1220091 | VII-18 | 0230 | 23.5 | 0-67 | 700.7 | .956 | | 100.120 | 280391 | 1220491 | VII-17 | 2050 | 22.5 | 0-66 | 315.8 | .815 | | 105.35 | 300091 | 116°33' | VII-7 | 0700 | 22.25 | 0-59 | 325.7 | .711 | | 110.35 | 29050 | 116002 | VII-15 | 0705 | 23.0 | 0-69 | 710.8 | .967 | | 110.40 | 290401 | 116°22' | VII-15 | 1035 | 23.0 | 0-70 | 734.5 | . 950 | | 110.50 | 290201 | 117000 | VII-15 | 1655 | 22.0 | 0-66 | 730.4 | .901 | | 110.60 | 28°591 | 117041 | VII-15 | 2250 | 23.0 | 0-70 | 758.4 | .919 | | 110.70 | 280391 | 118°20' | VII-16 | 0440 | 2.2.5 | 0-63 | 739.5 | .918 | | 110.80 | 230191 | 1180581 | VII-16 | 1035 | 23.0 | 0-68 | 768.3 | .888 | | 110.90 | 23°01 | 119034 | VII-16 | 1635 | 22.5 | 0-68 | 788.4 | .864 | | 110,100 | 270371 | 1200161 | VII-16 | 2250 | 23.0 | 0-70 | 731.3 | .963 | | 110,110 | 27016.51 | 120054.51 | | 0450 | 23.0 | 0-68 | 780.2 | .865 | | 113.35 | 290121 | 1150391 | VII-15 | 0010 | 23.0 | 0-67 | 809.5 | . 828 | | 117.35 | 280371 | 1150161 | VII-14 | 1735 | 22.0 | 0-71 | 711.0 | .997 | | 120.35 | 28°031
27°431 | 1140541 | VII-14
VII-14 | 1035 | 23.0 | 0-65 | 591.2 | 1.096 | | 120.45 | | 115°33! | | 01:35 | 23.0 | 0-70 | 719.0 | .972 | | 120.50 | 27°331
27°131 | 115°52.51 | | 0020 | 22.5 | 0-70
0-67 | (724.3)
776.8 | .964 | | 120,60 | 260541 | 116031.51 | VII-13 | 1735 | 24.0 | 0-69 | | .857 | | 120.70 | 260371 | 117°10! | VII-13 | 1105 | 23.0 | 0-68 | 745.3 | .930 | | 120.80 | 260191 | 117°50'
118°35' | VII-13 | 0350
2020 | 23.0 | 0-68 | 828,3 | .827 | | * | 260021 | 119.10, | VII-12 | 1.340 | 23.0 | 0-70 | 772,8 | | | 120,100 | 250451 | 1190431 | VII-12 | 0810 | 23,0 | 0-72 | 755。3
728。1 | .929 | | 123.40 | 27°161 | 1140491 | VII-8 | 1320 | 23.0
24.0 | 0-67 | 847.1 | | | 123.50 | 260581 | 115°32' | VII-8 | 1940 | 24.0 | 0-69 | 785.2 | .790 | | 123.50 | 26°361 | 116.06, | VII-9 | 0315 | 23.0 | 0-69 | 763:5 | .902 | | 127.40 | 26043.51 | 114029.51 | | 0015 | 24.0 | 0-69 | 744.0 | .923 | | 127.50 | 26.23.51 | | VII-9 | 1645 | 24.0 | 0-68 | 722.4 | .937 | | 127.60 | 25°551 | 1150421 | VII-9 | 0830 | 24.5 | 0-67 | 835.6 | ,798 | | 130.35 | 260171 | 113°55' | VII-10 | 0605 | 24.0 | 0-68 | 789.7 | .362 | | 130.40 | 260071 | 114011 | VII-10 | 0925 | 23.0 | 0-70 | 739.7 | .946 | | 130.50 | 250501 | 1140461 | VII-10 | 151.0 | 23.0 | 0-70 | 747.6 | .930 | | 130.60 | 250291 | 11502/4 | VII-10 | 2145 | 23.0 | 0-70 | 668,6 | 1.054 | | 130.70 | 250041 | 1160101 | VII-11 | 0430 | 23,0 | 0-64 | 795.2 | .809 | | 130.80 | 240471 | 1160481 | VII-11 | 1015 | 24.0 | 0-71 | 713.9 | .996 | Table I (cont'd) Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950 | Station | Position | | | | Duration | Depth | Vol.of | S | |--------------------|--------------------|----------------------|---------|-------|---------------|--------|-------------------|--------| | | N. let. | W. long. | Date | Hour | of Haul | Meters | Water
Strained | Facto: | | | | | | | | | | | | ruise 17
-20.10 | 46010.51 | 1240491 | VIII-18 | 2035 | 12.5 | 0-66 | 418.7 | 1.564 | | 20,20 | 45°50.51 | 125038.51 | VIII-18 | | 12.0 | 0-63 | 439.2 | 1.435 | | 20.30 | 45030.51 | 126°27.5 | VIII-18 | | 23.0 | 0-66 | 792.7 | .833 | | 20.40 | 45°10.5 | | | | 13.0 | 0-67 | 447.3 | 1.496 | | 20.50 | 44050.51 | 123°06' | VIII-17 | | 20.0 | 0-68 | 651.9 | 1.042 | | 20.60 | 44030.51 | 128°53.51 | • | _ | 3.2.5 | 0-65 | 434.1 | 1.506 | | 20.70 | 44010.51 | 129042.51 | | | 1.2.25 | 0-63 | 434.9 | 1.442 | | 20.80 | 43°50.51 | | VIII-17 | | 12.5 | 0-70 | 435.2 | 1.611 | | 20.90 | 43030.5 | | VIII-16 | | 12.75 | 0-67 | 434.5 | 1.544 | | 23.15 | 45025.51 | | VIII-19 | | 13.25 | 0-70 | 421.0 | 1.668 | | 27.20 | 71710 110 x | 1240451 | VIII-19 | | 12.75 | 0-68 | 467.0 | 1.450 | | 30.26 | 1,3054.51 | | VIII-13 | | 12.75 | 0-60 | 435.9 | 1.383 | | 30.30 | 43046.51 | | | | 1.2.25 | 0-56 | 378.5 | 1.477 | | 30.40 | 43026.51 | | VIII-13 | | 12.75 | 0-68 | 400.1 | 1.710 | | 30.50 | 43006.51 | 1.26°43.5' | | Gr Gr | 13.0 | 0-71 | 331.5 | 2.154 | | 30.60 | 42046.51 | 127030.51 | | | 15.0 | 0-63 | 541.9 | 1.170 | | 30.70 | 42026.51 | 123017 | VIII-15 | - | 13.5 | 0-68 | 479.4 | 1.425 | | 30.80 | 42006.51 | 129004 | VIII-15 | | 12.75 | 0-65 | 500.2 | 1.303 | | 30.90 | 410478 | 129°50' | VIII-15 | | 23.0 | 0-66 | 806.6 | .823 | | 30,100 | 41027 | 130°36! | VIII-15 | | 13.25 | 0-67 | 466.9 | 1.429 | | 33.32 | 43007.51 | | VIII-13 | | 13.5 | 0-69 | 337.9 | 2.033 | | 37.38 | 420201 | 124056.51 | VIII-12 | | 13.75 | 0-67 | 338.1 | 1.982 | | 40.45 | 410331 | 125°00' | VIII-12 | | 17.75 | 0-94 | 532.7 | 1.751 | | 40.50 | 410231 | 125°23' | VIII-12 | | 13.0 | 0-73 | 317.4 | 2.313 | | 40.60 | 410031 | 126.091 | VIII-12 | | 13.75 | 0-71 | 113.2 | 1.709 | | 40.70 | 400421 | 126°55' | VIII-11 | | 12.0 | 0-71 | 396.5 | 1.796 | | 40.80 | 40°231 | 1270401 | VIII-11 | | 12.5 | 0-73 | 399.0 | 1.329 | | 40.90 | 40021 | 1230251 | VIII-11 | | 12.5 | 0-66 | 410.8 | 1.607 | | 40.100 | 390421 | 129010 | V111-10 | | 23.75 | 0-70 | 774.7 | .907 | | 40.110 | 390231 | 129055 | VIII-10 | | 11.75 | 0-68 | 413.4 | 1.655 | | 40.120 | 390031 | 130°39¹ | VIII-10 | | 12.5 | 0-67 | 443.9 | 1.500 | | | 400481 | 1240571 | VIII-6 | 1950 | 12.75 | 0-68 | 246.9 | 2.742 | | 43.50
43.60 | 40°28 | 1250431 | | 0340 | 12.25 | 0-69 | 427.8 | 1.620 | | 47.55 | 400041 | 1240551 | VIII-6 | 1145 | 12.25 | 0-64 | 369.1 | 1.729 | | | 390541 | 125°18' | VIII-7 | 1020 | 12.25 | 0-70 | 361.8 | 1.946 | | 47.60 | | 1240301 | | 0135 | 13.5 | 0-73 | 406.9 | 1.787 | | 50.55 | 390301 | 1240521 | VIII-7 | 1655 | 12.0 | 0-69 | 419.4 | 1.650 | | 50.60 | 39°201 | 125036.5! | | 0020 | 13.25 | 0-67 | 435.7 | 1.533 | | 50.70 | | 125° 30.5' | | 0630 | 12.0 | 0-63 | 461.4 | 1.365 | | 50.80 | 380401 | 127°051 | VIII-8 | 1255 | 12.0 | 0-67 | 378.3 | 1.782 | | 50.90 | 380201 | | VIII-8 | 1840 | 12.5 | 0-66 | 407.6 | 1.619 | | 50.100 | 330001 | 1270491 | VIII-9 | 0120 | | 0-69 | 434.0 | 1.599 | | 50.110
50.120 | 37°40 1
37°20 1 | 128°33'
129°16.5' | | 0770 | 12.5
12.25 | 0-64 | 461.9 | 1,381 | | | | | | | | | | | Table I (cont'd) Record of Oblique Hauls made with Plankton Hets during Cruises 11-13 in 1950 | Station | Posi
M. lat. | tion
W. long. | Date | Hour | Duration of Haul | Depth
Meters | Vol.of
Water
Strained | S
Factor | |--|--|---
---|---|---|--|--
--| | P-70,80-1
70.80-2
70.80-3
83.60
83.70
87.60
87.70
86.50 | 35°12¹
35°12¹
35°12¹
33°34¹
33°14.5¹
33°00¹
32°39.5¹
33°28¹ | 123°47' 123°47' 123°47' 120°49' 121°26' 120°21.5' 121°02' 113°46' | VIII-9
VIII-10
VIII-12
VIII-12
VIII-13
VIII-12
VIII-13 | 2100
1520
0920
1535
0520
2230 | 26.25
26.0
25.5
22.0
25.0
23.5
24.25
24.75 | 0-147
0-146
0-139
0-64
0-72
0-67
0-69
0-70 | 711.5
737.7
735.3
629.7
709.9
732.8
774.7
602.8 | 2.061
1.974
1.896
1.021
1.010
.917
.892
1.166 | | Cruise 18 B-30.26 30.40 30.50 30.60 30.70 30.80 30.90 30.100 33.32 37.38 40.45 40.50 40.60 40.70 40.80 40.100 40.110 40.120 43.50 43.60 47.55 47.60 50.55 50.60 50.70 50.100 50.120 50.130 53.54 53.64 | 43°54°5'
43°46°5'
43°26°5'
43°06°5'
42°46°5' | 124°49.5'
125°08.5' | IX-19
IX-19
IX-19
IX-18
IX-18
IX-18
IX-17
IX-17
IX-17
IX-17
IX-19
IX-13
IX-14
IX-14
IX-14
IX-14
IX-15
IX-15
IX-15
IX-15
IX-15
IX-15
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-11
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12
IX-12 | 1315
0950
0315
1910
1255
0540
0500
1930
0455
1935
2325
0400
2030
0455
1750
0220
0525
1230
1230
0720
0210
0255
1255
0215
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
1255
0225
022 | 24.25
13.75
13.75
13.75
13.75
13.25
24.25
24.25
24.25
13.75
13.5
13.5
13.75
14.75
13.6
13.75
13.6
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.7 |
0-71
0-66
0-68
0-71
0-72
0-61
0-72
0-63
0-70
0-68
0-63
0-70
0-68
0-70
0-71
0-72
0-63
0-71
0-68
0-70
0-63
0-72
0-71
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-70
0-63
0-67
0-63
0-67
0-63
0-67
0-63
0-67
0-63
0-70
0-63
0-70
0-63
0-67
0-69
0-70
0-70
0-70
0-70
0-70
0-70
0-63
0-70
0-63
0-67
0-69
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70
0-70 | 675.7
466.1
432.6
439.6
455.6
799.6
455.6
799.6
455.6
734.6
799.3
371.0
722.7
3666.2
729.6
399.6
399.6
399.6
399.6
399.6
399.6
40.3
40.6
40.6
40.6
40.6
40.6
40.6
40.6
40.6 | 1.046 1.416 1.576 1.784 1.106 1.587 .766 .976 .930 1.483 1.500 1.757 1.673 1.702 2.131 1.844 .966 2.007 1.088 .969 1.789 1.702 1.958 1.861 2.978 1.060 1.093 1.155 1.049 1.220 1.587 1.677 | Table I (cont'd) Record of Oblique Hauls made with Plankton Nets during Cruises 11-18 in 1950 | | Posi | tion | and the second | - | Duration | Depth | Voleof | S | |---|--|--|---|---|--|--|---|---| | Station | N. lat. | W. long. | Date | Hour | of Haul | Meters | Water
Strained | Factor | | 57.54
57.64
60.60
60.70 | 38°241
38°041
37°371
37°171 | 123°35'
124°19'
123°37'
124°21' | IX-6
IX-7
IX-7
IX-7 | 0625
0125
0840
1505 | 14.0
12.5
13.25
12.75 | 0-73
0-67
0-69
0-72 | 419.3
413.7
405.4
355.8 | 1.739
1.613
1.712
2.032 | | 60.80
60.90
60.100
60.110
60.120
60.130
61.55 | 36°57'
36°37'
36°17'
35°57'
35°37'
35°17'
37°37' | 125°04'
125°47'
126°30'
127°12'
127°54.5'
128°37'
123°07.5' | IX-7
IX-8
IX-8
IX-9
IX-9
IX-5 | 2115
0435
1140
1820
0040
0735
1750 | 13.75
13.5
13.5
12.75
24.0
23.75
16.25 | 0-68
0-67
0-69
0-70
0-74
0-68
0-70 | 400.3
365.1
377.3
363.3
602.7
465.0
514.6 | 1.694
1.327
1.323
1.909
1.229
1.467
1.358 | | C-70,55 70.60 70.70 70.80 70.90 70.100 70.120 70.130 90.30 90.37 90.45 90.53 90.60 90.70 90.80 90.90 90.100 90.110 90.120 | 36°03.4' 35°53' 35°53' 35°16.5' 34°57.3' 34°20' 34°01' 33°33' 33°24 33°10.9' 32°56.8' 32°56.8' 32°30.6' 32°11' 31°48.7' 31°25' 31°04.5' 30°23.7' | 122°01.7' 122°23' 123°05.5' 123°43' 124°31' 125°13.5' 125°55.5' 126°37.8' 127°16.5' 117°54.8' 118°55,5' 119°29' 119°5/4.3' 120°36.2' 121°10' 122°40' 123°20' 124°01' | IX-7
IX-7
IX-8
IX-8
IX-8
IM-8
IX-10
IM-13
IX-18
IX-18
IX-18 | 2220 0155 0815 1530 2055 0220 0910 1330 1820 1955 1330 1025 0610 0220 2055 1510 0930 0330 2200 1610 | 14.0
14.5
13.25
12.5
13.0
12.75
12.5
22.75
22.75
23.0
23.25
23.25
23.0
22.5
22.75
22.75 | Hon qu
0-69
0-70
0-70
0-70
0-73
0-72
0-71
0-71
0-69
0-69
0-69
0-68
0-69
0-69
0-69 | antitative 442.3 409.0 358.5 -380.7 366.2 354.1 379.8 669.5 650.8 652.3 519.8 620.4 685.5 705.3 723.8 692.1 722.3 729.5 702.6 | | | P-100.30
100.40
100.50
100.60
100.70
100.80
100.90
100.100
100.110
105.35
110.35
110.40 | 30°391
29°46.51 | 116°46.5' 117°53' 118°31' 119°27' 120°09' 120°52' 121°37' 122°07' 115°33' 116°00' 116°19.5' | IX-21
IX-21
IX-21
IX-20
IX-20
IX-20
IX-19
IX-19
IX-17 | 2105
1525
1015
0350
1955
1320
0545
2140
1520
0215
2335
0320 | 23.5
23.25
23.75
23.75
23.75
23.25
24.0
23.5
23.75
22.25
23.75
23.25 | 0-67
0-66
0-67
0-67
0-69
0-67
0-68
0-68
0-60
0-64 | 820.4
806.5
(748.7)
652.3
740.1
642.8
729.6
713.2
776.3
824.3
808.7
760.5 | .812
.822
.898
1.072
.904
1.078
.922
1.001
.877
.724
.791
.846 | Table I (contid) Record of Oblique Fauls made with Plankton Nets during Cruises 11-18 in 1950 | | | | | er-turnment parame | March M. Martin, responsing continuing to the party statement. | | | | |--|----------|---|---|--------------------------------|--|--------|----------|--------| | @delpapinedia alfidieramiani siliti | Posi | tion | eredenment of the condition of the con- | the control of the second con- | Duration | Depth | Vol.of | S | | Station | H. lat. | W. long. | Date | Hour | of Haul. | Meters | Water | Factor | | distribution of the second second second | | a villantennette er ertirettermette to tenanssammen vengap, a | | | | | Strained | | | | | | | | | | | | | 110,50 | 29°19 | 1170023 | IX-17 | 0910 | 24.0 | 0-65 | J02.9 | - 806 | | 110.60 | 28°591 | 117041 | IX-17 | 1520 | 25.0 | 0-66 | 806.3 | .820 | | 110.70 | 28°361 | 1180181 | IX-17 | 2120 | 24.0 | 0-63 | 773.2 | .873 | | 110.80 | 28°201 | 1180581 | SI-KI | 0405 | 24.0 | 0-65 | 666,0 | . 996 | | 110.90 | 280011 | 11.90421 | SL-XI | 1010 | 23.75 | 0-67 | 772.6 | .863 | | 110.100 | 270401 | 1200181 | IX-18 | 1635 | 23.5 | 0-66 | 755.4 | .871 | | 110.110 | 27016.51 | 120°54.51 | IX-18 | 224.5 | 23.75 | 0-68 | 656.8 | 1.031 | | 113.35 | 290121 | 115°391 | 17-16 | 1645 | 23.5 | 0-54 | 833.1 | .768 | | 117.35 | 280371 | 1150161 | IX-16 | 0955 | 23.75 | 0-64 | 786.0 | .813 | | 120.27 | 290191 | 114°23' | IX-15 | 2355 | 24.0 | 0-36 | 753.2 | .880 | | 120.35 | 280031 | 1140541 | IX-15 | 1955 | 24.75 | 0-64 | - 680.6 | .939 | | 120.45 | 27043! | 115°32' | IX-15 | 1310 | 23, 25 | 0-67 | 757.3 | ,839 | | 120.50 | 27021 | 1160101 | IX-15 | 0520 | 23.5 | 0-67 | 754.9 | .886 | | 120,60 | 270051 | 1160431 | IX-14 | 2400 | 24.0 | 0-65 | 764.0 | .851 | | 120,70 | 260501 | 117°15' | 174-14 | 1745 | 23.25 | 0-62 | 808.4 | .773 | | 1.20.80 | 260341 | 117°50' | IX-14 | 1130 | 24.5 | 0-67 | 342.0 | .793 | | 120.90 | 260121 | 118°30' | IX-14 | 0450 | 24.0 | 0-66 | 773.8 | .857 | | 1.20.100 | 25°51' | 119010; | IX-13 | 221.5 | 23.5 | 0-68 | 779.6 | .867 | | 120,110 | 25032! | 119°45' | IX-13 | 1610 | 23.5 | 0-63 | 302.3 | .783 | | 123.40 | 27°151 | 1140541 | IX-8 | 0635 | 24.0 | 0-65 | 753.2 | . 364 | | 123.50 | 260571 | 115°30' | IX-8 | 1230 | 24.0 | 0-65 | 710.1 | .91.4 | | 123,60 | 26°38.51 | 1160091 | 1X-8 | 1905 | 14.0 | 0-72 | (402.9) | 1.775 | | 127-40 | 26043.51 | 114029.51 | IX-9 | 1410 | 13.0 | 0-69 | 395.6 | 1.74年 | | 127.50 | | | Not oce | | | | | | | 127,60 | 26°03.5 | 115046.51 | IX-9 | 0045 | 13.0 | 0-62 | 406.2 | 1.529 | |
130.35 | 26°191 | 113°48.51 | IX-11 | 1.310 | 25.5 | 0-76 | 609:7 | 1.245 | | 130,40 | 26°07! | 114011, | IX-11 | 1700 | 24.0 | 0-63 | 825.6 | . 761 | | 130.50 | 250471 | 1140551 | IX-11 | 2300 | 25.0 | 0-65 | 763.2 | .846 | | 130.60 | 25°271 | 115°341 | IX-12 | 0530 | 23,25 | 0-63 | 704.2 | .900 | | 130.70 | 25°081 | 1160061 | IX-12 | 1110 | 24,75 | 0-63 | 826.8 | .761 | | 130.80 | 24048,51 | 1150401 | III-12 | 1645 | 12.75 | 0-58 | 452.2 | 1.283 | Table II Record of Pilchard Lagge, 1950 | Station | Numb
A | er of | Normal
C | Iggs
D | À | <u>Tota</u>
B | <u>llumb</u>
C | | Eggs
Uncl | n | nve. | |-----------------|------------|---------|----------------|-----------|---------------------------------------|------------------|-------------------|--------------------------------|--------------|------------|--------------| | 20201011 | <u> </u> | 4.7 | | 2.7 | 9 of Ja | | | | 0.1015 | | 1 | | Cruise 11 | LO | | | | | | | | | | | | 120.35 | 317 | 143 | 179 | | 379* | 164* | 209* | | 6 | 758 | 253 | | 120.45 | 15 | 12 | 12 | | 113 | 110* | 58* | 2 | 147 | 360 | 83 | | 120.50 | 1 | 13 | 21 | | 1 | 33* | 32* | | 6 | 72 | 36 | | 130.35 | 1 | 1 | | | 1* | 1* | 1* | | | 3 | 1 | | Total | 334 | 169 | 23.2 | | 494 | 238 | 300 | 2 | 159 | 1193 | 373 | | Cruise 12 | 2: | | | n v vanne | rita kirani, nami na na dia seo manta | | | ana ana andrewski va andrewski | | | | | 113.35 | | | 2 | | 24 | * | 2* | 5* | | 4 | 1 | | 117.35 | | 1 | 1 | | * | 1* | 1* | | | 2 | 1 | | 120.35 | | 2 | 9 | | | 2* | 29* | | | 31 | 16 | | 120.45 | | 2 | 54 | | | 4* | 263* | 2 | | 269 | 134 | | 120.90 | | | | | | 3/5 | 8* | | | 8 | 4 | | 123.40 | | 10 | 21 | | | 115* | 55* | | 5 | 175 | 87 | | 123.50 | 2 | | | | 2 | ** | * | | | 2 | 1 | | 130.35 | 284 | 932 | 1072 | | 1235* | 1335* | 2102 | | 711 | 5383 | 1480 | | 130.40 | | | | | * | 5* | | | 8 | 13 | 6 | | Total | 286 | 947 | 1159 | | 1237 | 1462 | 2460 | 4 | 724 | 5887 | 1730 | | Cruise 13 | 3: | | - de deseguida | | | 4 | | | | | | | 87.35 | | 2 | 2 | 2 | 2* | 6* | 8* | | | 16 | 5 | | 90.60 | | | -0 | 4 | ** | * | * | 4 | | 4 | 0 | | 93.30 | 00 | ٠, | 28 | | | 8* | 32*
68* | | | 32 | 11 | | 93:50 | 23 | 5
17 | 50
166 | | 45*
83* | 23* | 214* | | | 121
320 | 40
107 | | 97.32
97.40 | 23 | 12 | 100 | 2 | 9 | 32* | 8* | 2 | 6 | 57 | 22 | | 100.30 | 4 | 15 | 48 | 15 | 4. | 26* | 59* | 30* | | 126 | 41 | | 100,40 | 7 | 61 | 5 | ر بد | # | 71* | 5 | 20 | , | 76 | 36 | | 100.50 | 24/2 | 201 | 588 | , | 315* | 220# | 613* | | | 1148 | 383 | | 105.35 | | 1 | 5 | 159 | J J | 1* | 5* | 265 | | 271 | 3 | | 110.35 | | 91 | 104 | 667 | 林 | 134* | 145* | 1463* | | 1742 | 436 | | 113.35 | 2 | 4 | | i | 14* | 1.2* | 华 | 1 | | 17 | 5 | | 117.35 | | 12 | | | 2 | 24* | 2/2 | | 1 | 27 | 13 | | 120.45 | | 165 | 9 | | | 366* | 34* | | 11 | 411 | 206 | | 120.50 | | | 1 | | | 3* | 12* | | | 15 | 8 | | 123,40 | 1182 | 1521 | 3797 | 262 | 1767 | 2068* | 5860* | 1.306* | | 1//357 | 4018 | | 123.50 | 285 | 372 | 944 | | 832* | 580* | 1502 | | 25 | 2939 | 712 | | 123.60 | | | | | * | * | 2* | | | 2 | 1 | | 127.40 | | 6 | 5 | | * | 6* | 6 | | | 12 | 3 | | 127.50 | - 0 | 18 | 39 | | 001.00 | 28* | 74* | | | 102 | 51 | | 130,35 | 1077 | 85 | 19 | | 201;2* | 137* | 58 | | | 2237 | 1090
3464 | | | h h | 2843 | 52 | | 94 | 3464* | 68 | | | 3626 | 5404 | | 130.40
Total | 66
2909 | 5431 | 5862 | 1112 | 5199 | 7209 | 8773 | 3071 | ol.oć | 27658 | 10655 | Table II (cont'd) Record or Pilchard Eggs, 1950 | | b-10 b | | | | They is an individual and in a | | | | | | | |--|--------|---|-------------|---|--------------------------------|------------|-------------------------|---------|---------|---------|--------------| | Station | A | er oi
B | Tormal
C | D | A | <u> </u> | ol Tunk
C | D D | Uncl. | il | Ave. | | The state of s | | Marie Committee of the | | THE
REAL PROPERTY OF THE PARTY | - | | | | 0110715 | | 1 11 | | Cruise 14 | e
• | | lin. | | | els
eq. | (04 | * | | (0 | | | 83.60
90,60 | 2. | | 41 | | Li* | ** | 63*
* | «Iv | | 68
4 | 23 | | 93.40 | | 47 | 320 | | - 4 | 83* | 614* | 10 | 8 | 715 | 352 | | 93.50 | | | | | | * | * | 1 | | 1 | 0 | | 93.60 | _ | 4 | - / | 7 | ** | 15* | ¥¢ | 26 | | 41 | <i>5</i> 8 | | 93,70 | 1 | 4 | 16 | | 1* | *
行* | 20* | مر | | 25 | | | 97.50
97.80 | 2 | 3 | | | 5* | 8* | 7* | 5 | 2 | 5
15 | 0
8 | | 97.90 | | | 35 | | * | * | 110 | | 2 | 110 | 0 | | 100.40 | | | 2 | | 5,4 | 2,4 | 2 | | | 2 | 0 | | 105.35 | | | | | | 2* | * | | 2 | 4 | 2 | | 110.35 | | 23 | 10 | 7 | 1* | 89*
* | 13* | 13* | 33 | 149 | 37 | | 113,35
117,35 | | | | 4 | * | * | ** | 5*
1 | | 5
1 | 2 | | 120.35 | 14 | 25 | 11 | | 48* | 37* | 17 | Jl. | 9 | 111 | 46 | | 120.45 | | 752 | 1110 | | | 1248* | 2310* | | 360 | 3918 | 1306 | | 123.40 | 5 | 129 | 8 | 5 | 27 | 510* | 21* | 11* | 44 | 613 | 195 | | 1.30.35 | | 941 | 104 | | \$4. | 99* | 106 | | | 205 | 50 | | 130.40 | | 2 | 57 | | * | 33* | 113 | | 1 | 147 | 17 | | Total | 21/ | 1083 | 1714 | 24 | 86 | 2128 | 3394 | 72 | 459 | 6139 | 2052 | | | | | | | | | | | | | | | Cruise 15 | | | | | | | | | | | | | 60.70 | • | 3 | | 3 | ** | 3* | $\mathfrak{I}_{t}^{i};$ | 3 | 3 | 9 | 2 | | 60.80 | | | 4 | | | 崭 | 44 | 2% | | Ĺţ | 1 | | 60,90 | | 4 | | | 次 | 4米 | * | | | 4 | 2 | | 70.70 | | 6 | 2 | | સુંદ | 6* | 2* | ** | | 2 6 | 1 | | 70.90
77.65 | 189 | 32 | | | 297* | 44* | * | *,* | 12 | 353 | 2
118 | | 80.55 | 10) | ے:ر | 25 | 4 | 671 | ** | 27* | 42% | 2 | 33 | 11 | | 80.60 | 25 | 9 | 30 | | 37* | 16* | 30* | | | 83 | 28 | | 80.80 | | | 4 | | Å. | 2/4 | 4 | | -1 - 1 | 4 | 0 | | 87.60 | 164 | 664 | 374 | 85 | 378* | 1023* | 679* | 724 | 2476 | 5280 | 1306 | | 90.53
90.60 | 2 | 36 | 15
4 | | 2 | 40% | 15* | 5/5 | | 57
4 | 28 | | 93.40 | | 10 | 23 | | * | 1九本 | 41* | | 2 | 57 | 28 | | 93.50 | | | 12 | | * | 7% | 181 | | 11 | 199 | 3 | | 93.60 | | | 16 | | ** | * | 16* | | | 16 | 3
5
13 | | 117.35 | | | 44 | | 7 × | 3*
* | **
= ** | | 34 | 38 | 13 | | 120.45
123.40 | | | 1 | | ** | * | 1*
1* | * | | 1 | 0 | | 123.50 | | 1 | 2 | | 3* | 4* | 44 | | 1 | 52 | 4 | | 130.35 | 3 | 55 | HJ | | 5* | 141* | ** | 2 | 9 | 157 | 52 | | Total | 383 | 820 | 512 | 92 | 723 | 1305 | 1049 | 733 | 2550 | 6360 | 1610 | ## Table II (cont'd) Record of Filchard Tggs, 1950 | - | | | | | | | | | | Av | |------------|------|---|-----------------------------------|---|--|---|--|---------------------|--------------------------|---| | A | В | C | D | i A | 3 | С | <u> </u> | Uncl. | <u>n</u> | <u> n</u> | | | | | | | | | | | | | | | 2 | | | 0034 | | * | | | 2 | 13. | | 22 | 287 | | | | | | | | | 153 | | | 60 | | | | 72* | | | | 72 | 72 | | | 1 | | | | 1* | 2/4 | | | 1. | 1 | | 22 | 350 | ale gr _e a s <mark>pecial limites and transport</mark> | | 22 | 381 | | | | 403 | 238 | | ' ; | | | | ellige visiblishingsgebe i trooppyggebe birro | ** | 2* | * | | 2 | J. | | | | | | | | | | | <u> </u> | J. | | | | 3 | | | | 3 | | | 3 | 1 | | 3: | | | | ateria. Il dissallada esta esta basagarent an esc. el | | | | | | | | | 2 | | | 20* | 37 | | | 2 | 59 | 21 | | - | | | | | 37 | | | 2 | 52 | 2] | | | A 22 | A B 2 22 287 60 1 22 350 | A B C 2 22 287 60 1 22 350 7: 3 | 2 22 287 60 1 22 350 2: 3 | A B C D A 5: 2 22 287 60 1 22 350 22 3 3 | A B C D A B 2 2* 22* 287 60 1 1* 22 350 22 331 | A B C D A B C 22 2* * 287 * 306* 60 72* 1 1* * 22 350 22 331 * 3* 3 3 3* | A B C D A B C D 22 | A B C D A B C D Uncl. 2 | A B C D A B C D Uncl. n 2* * * 22 22* * 22* * 22* 287 * 306* 306 60 72* 72 1 1* * 1 22 350 22 331 403 | Table III Record of Pilchard Larvae, 1950 | 9.75 10.75 11.75 12.75 13.75 14.75 15.75 17.25 19.25 21.25 26.6 8.9 0.9 26.6 8.9 2.2 1.1 1.5 27.5 9.8 3.7 1.1 1.1 1.0 27.5 9.8 3.7 1.1 1.1 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 | | | | 1 1 | | | Midp | Midpoint of Size Class (in mm. | S1ze (| Class (| in ma.) | | | | | | ł I | |---|---|-----------|------|------|-------|------|------|--------------------------------|--------|---------|---------|--------------|----------|-------|-------|------|----------------------| | 0.9
8.9
1.5
1.5
9.8
3.7
1.1
1.1
4.5
5.5
1.1
1.1
1.1
1.1
0.9
0.9
1.0
1.0 | | 3.25 4.75 | 5.75 | 6.75 | 7.75 | 8.75 | 9.75 | 10.75 | 11.75 | 12.75 | 13.75 | 14.75 15 | .75 17.2 | 19.25 | 21.25 | Ms. | Tetal | | 11.5 16.2 3.9 1.6 1.5 23.0 49.4 44.7 19.6 27.5 9.8 3.7 1.1 1.4 26.4 16.4 16.4 11.0 4.6 4.5 2.7 1.0 1.0 2.0 2.0 1.0 | 7 | 2.6 | 3.7 | 5.5 | 11.9 | 3.6 | 0.9 | 9.9 | 20 | | 1.1 | - | | | | 1.8 | 2.6
35.6
273.0 | | 23.0 49.4 44.7 19.6 27.5 9.8 3.7 1.1 1.4 26.4 16.4 16.4 11.0 4.6 4.5 2.7 1.0 1.0 2.0 2.0 1.0 3.8 1.9 0.9 37.5 19.9 19.2 13.8 9.1 10.8 3.8 2.0 2.0 1.0 | | | 11.5 | 16.2 | 3.9 | 1.6 | | | 1.5 | | | } | | | | | 34.2 | | 26.4 16.4 16.4 11.0 1.0 4.6 4.5 2.7 1.0 1.0 2.0 2.0 1.0 3.8 1.9 37.5 19.9 19.2 13.8 9.1 10.8 3.8 2.0 2.0 1.0 | | 129.1 | 23.0 | 4.64 | 144.7 | 19.6 | 27.5 | 9.8 | 3.7 | | 1.1 | 1.4 | | | | 1.8 | 348.5 | | 26.4 b 16.4 b 15.4 b 11.0 b 4.5 b 2.7 5.5 c 0.8 b 1.6 b 0.8 b 1.6 b 4.5 b 2.7 1.0 c 1.0 c 2.0 c 2.0 c 1.0 c 3.8 c 1.9 c 1.0 c 3.8 c 2.0 c 2.0 c 37.5 c 19.9 c 13.8 c 9.1 c 10.8 c 3.8 c 2.0 c 2.0 c 1.0 c | | 0.8 | | | | | | 5.5 | 1.1 | 1.1 | 1.1 | | | | | - | 0 0 5 | | 1.0 1.0 2.0 2.0 1.0 0.9 3.8 1.9 0.8 0.8 37.5 19.9 19.2 13.8 9.1 10.8 3.8 2.0 2.0 1.0 | | 41.0 | 26.4 | 16.4 | 16.4 | 11.0 | 1.0 | 4.5 | 2.7 | | | | | | | 9.5 | 130.3 | | 3.8 1.9
0.8
0.9
37.5 19.9 19.2 13.8 9.1 10.8 3.8 2.0 2.0 1.0 | | 16.9 | 1.0 | 1.0 | 2.0 | 2.0 | 1.0 | | | | 6,0 | | | | | | 33.0 | | 0.8
0.9
37.5 19.9 19.2 13.8 9.1 10.8 3.8 2.0 2.0 1.0 | | 63.9 | 3.8 | 1.9 | | | | | | 6.0 | | 0,1 | | | | | 112.9 | | 37.5 19.9 19.2 13.8 9.1 10.8 3.8 2.0 2.0 1.0 | | | 0 8 | | | | 6.0 | | | | | | | | | | 000 | | | | 132.1 | 37.5 | | 19.2 | 13.8 | 9.1 | 10.8 | 3.8 | 2.0 | 2.0 | 1.0 | | | | 10.5 | 327.4 | Table III (sent'd) Record of Pilchard Larvae, 1950 | | | | | | | ЖФр | oint of | Size (| Midpelat of Size Clase (is mm.) | n mu.) | | | | | | | |--------------------------|-----|-----|------|------|-------------|------|---------|--------|---------------------------------|--------|----------|--|---------|-------|------|-------------| | 4.75 5.75 6. | 1 | 9 | 6.75 | 2.75 | 8.75 | 9.75 | 10.75 | 11.75 | 12.75 | 13.75 | 14.75 15 | 9.75 10.75 11.75 12.75 13.75 14.75 15.75 17.25 19.25 21.25 | 5 19.25 | 21.25 | Die. | Tetal | C | | C | < | | ¥ | | | | | c | | | | | | 14.3 | | 45.0 10.7 3.
14.8 3.7 | | า้ | 2.0 | | T.5 | | | | |)°C | | | | | | 22.2 | | | | | | | | | | | | | | | | | | 9.9 | | | | | | | | | | | | | | | | | | 10.6 | | | | | | | 2.2 | | 2.2 | 1.1 | 2.2 | | | | | | | 7.7 | | | | | | | | | | | | | | | | | | 99.5 | | 2.1 8.5 | 8.5 | | | 8.6 | 4.2 | 8.5 | 2.1 | 4.3 | 2.1 | | | | | | | 53.3 | | | | | | | | | | | | | | | | | | 200 | | 43.0 | | 15. | 80 | 18.1 | 11.3 | 4.5 | 2.3 | | 2.3 | | 2,3 | | 2,3 | | 38°4 | 393.5 | | 68.6 8.3 2.1 | | ~ | _ | | 2.1 | 2.1 | | | | | | | | | | 235.0 | | 6 | | • | • | - | | | c t | , | , | | | | | | | TOT | | 7.0 ZU.Z 14.3
1.1 1.1 | | ‡ r | J-i | 7.41 | 13.1
2.2 | 14.3 | 17.0 | 11.9 | 7.7 | | | | | | | 104.7 | | 81.1 | | た | 0 | 35.4 | 6.3 | 10.4 | 2.1 | 4.2 | | 4.2 | 4.2 | | | | | 657.4 | | - 1 | - 1 | 6 | ~ | 3.9 | 2.6 | 2.6 | 23.0 | 5.0 | 001 | 1.3 | | | | | 1.3 | 273.7 | | 529.5 924.1 227.8 99.5 | | 8 | Ŋ | 80.2 | 45.5 | 1.94 | 38.3 | 27.8 | 45.5 46.4 38.3 27.8 10.1 | | 8.5 6.5 | | 2.3 | | 39.7 | 39.7 2086.2 | | | | | | | | | • | | | | • | | i | | | | Table III (cont'd) Record of Pilchard Larvae, 1950 | | Tetal |
282.2
282.2
282.2
282.2
282.2
282.2
282.2
282.2
282.3
282.3
282.3
282.3
282.3
282.3
282.3
282.3
282.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3
283.3 | 0000 | |--------------------|-------|---|---------| | | Die. | 5.2 1.3 1.3 1.4 18.7 | 73.7 | | | 21.25 | 3.9 | t .0 | | | 19.25 | 2,2 | Tooc | | | 17.25 | 8.0
9.9
9.0
11.1
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 76.7 | | | 15.75 | 11.3 | D · J T | | | 14.75 | 3.4 6.4 3.3 | £0.03 | | Ln III.) | 13.75 | 2.2 2.2 10.2 10.2 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 | T.00 | | Size Class (in mm. | 12.75 | 2.0 2.5 4.5 116.3 | 7074 | | | 11.75 | 3.4
10.2
1.0
1.0
1.0
1.0
1.0 | 10.0 | | Midpeint of | 10.75 | 3.5
11.2
12.8
16.3
16.3
16.3 | 1000 | | Midp | 9.75 | 2.0
2.0
2.2
2.2
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3 | 1 | | | 8.75 | 11.2 2.4 4 3 1.2 2.2 1.2 2.4 4 4 5.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 | 1000 | | | 7.75 | 100 100 100 100 100 100 100 100 100 100 | | | | 6.75 | 10.1
10.1
10.1
10.0
10.0
10.0
10.0
10.0 | | | | 5.75 | 1.4
12.6
17.6
17.6
17.6
17.6
17.6
17.6
17.6
17 | | | | 4.75 | | | | | 3.25 | 17.1
14.3.0
14.3.0
11.0
35.5
35.5
36.0
36.0
50.3
50.3
10.5
11.3
10.5
11.3
10.4
63.2 | | | Station | | 90.53
93.60
93.60
93.60
93.60
93.70
93.80
97.80
97.80
97.80
97.80
97.90
100.40
100.40
100.10
100.10
100.10
100.10
113.34
1123.40
1123.40
1123.40
1123.40
1123.40
1130.46
1130.46
1130.46 | | Table III (cent'd) Record of Pilchard Lervae, 1950 | | Tetal | 3.2 | 9,4 | 0 8 1 | 10.2 | 14.0 | 18.8 | 5.7 | 329.0 | 2.4 | 4.2 | 220.7 | 3.5 | 18.9 | 92.2 | 157.9 | 1.6 | 9 6 | 1.0 | 2.0 | 1.0 | 5.4 1318.1 | |--------------------------------|-------------|---------------------|--------|----------------|-------|-------|-------|----------------|-------|-------|-------|----------------|------|----------|-------|-------------|--------|--------|--------|--------|--------|-------------------------------| | | Die. | | | | | | | | | | | 5.4 | | | | | | | | | | 5.4 | | | 21.25 | | | | | | , | | | | | | | | | 1.9 | | | | | | 1.9 | | | 19.25 | | | | | 2.6 | | | 4.1 | | | 4,3 | | | | | 0.8 | 0.0 | • | | | 12.7 | | | 1 1 | | | | | | | | | | | 14.9 | | | | 1.9 | 0.8 | | | | 1.0 | 18.6 | | | 15.75 17.25 | 14.75 | | | • | 2.3 | | | | | | | | 0 | N. | | | | | | | | 6.2 | | е
П
П | 13.75 | | | | 1.7 | 7.0 | | | • | T•7 | | 4.9 | | † | | | • | 1.0 | | | | 22.4 | | lass (| 12.75 | | | 0.4 | 5.1 | 3.5 | 0 | \ - | | | | 12,8 | 2.1 | † | | 1.9 | | | | | | 35.7 | | Midpeint of Size Class (in mm. | 11.75 | | | | | | ď | • | 4.1 | 2.1 | | 29.8 | 2.1 | | 2.0 | | | 1.0 | | | | 4.9 | | peint e | 10.75 | | 1.0 | | 1.7 | | | | 4.1 | | | 29.9 | | | 4.1 | 1.9 | | | | | | 48.1 | | Mid | 9.75 | | | 1.8 | | | | | 7.42 | 000 | | 51.2 | 4.2 | | 2.0 | 1.9 | | | | | | 89.3 | | | 8.75 | | | | | | | | 782 | F•1 | | 53.3 | 6.3 | 2.1 | 16.4 | ***
** | | | | | | 132.8 | | | 7.75 | | | | | | 0 | • | 60°0 | T. 7 | | 25.5 | 12.6 | 2.1 | 6.2 | 30.1 | | | | | | | | | 6.75 | | | | | 3.5 | 0 | • | 6,49 | 2.0 | | 53.8
4.2 | | 2.1 | 6.2 | 56.4 | | 6.0 | | | | 137.8 161.4 234.6 199.6 166.7 | | | 5.75 | | 1.9 | | | | | 1.9 | 101.5 | 2.1 | 1.8 | 20.4 | | 2.1 | 14.3 | 33.8 | • | 1.0 | | | | 234.6 | | | 4.75 | | 3.1 | | | | 6 | 1.9 | 32.5 | 31.0 | • | 6.9
4.9 | 4.2 | 10.5 | 88.8 | † •6 | | 0.0 | 1.0 | 1.0 | | 161.4 | | | 3.25 | 51 3.2 | | | | | 18.8 | 1.9 | 4.1 | 16.5 | 45.4 | 37.7 | | | 12.2 | | | | | 1.0 | | 137.8 | | 1 | 7070 | Cruise 158
60.70 | 60.110 | 77.65
80.55 | 80°90 | 80.80 | 87.60 | 20,00 | 88 | 23.53 | 93.50 | 93.60
93.70 | 8.8 | 2.2 | 97.60 | 97.70 | 100.30 | 123.50 | 127.40 | 130.35 | 130.50 | Tetal | Table III (cont'd) Record of Pilchard Larvae, 1950 | | Total |
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 69.1
11.7
3.1
14.8
1.9
11.2 | | |---------------------------------|-------------------------|---|---|--| | | Dis. | | | | | | 21.25 | 1.0 | 3.1 | | | | 1 1 | 3.8 | ω
ω | | | | 14.75 15.75 17.25 19.25 | 1.0 | 7.3 | | | | 15.75 | 2.0 | 5.6 | | | | 14.75 | 0 | 0 % | | | n mm.) | 13.75 | 1.8 | 8 | | | lass (1 | | 1,8 | 1.8 | | | Midpoint of Size Class (in mm.) | 11.75 12.75 | | 6.0 | | | oint of | 9.75 10.75 | | 1.1 1.9 1.9 | | | Midp | 9.75 | 0 0 | 2.0 | | | | 8.75 | 2.0 | 8 8 | | | | 7.75 | 9 6 | 5.3 | | | | 6.75 | 0 | 2.0 | | | | 5.75 | 7.1 | 2.1 | | | | 4.75 | 2.9 | 2.1 | | | | 3.25 | 3,9 | 3: 11.2 | | | 1000 | 10T1B1C | Crutse 16:
61.55
70.80
70.90
73.51
77.65
87.40
87.80
93.50
93.50
120.45
120.50 | Total Cruise 17: 67.55 73.51 Total Cruise 18: 120.27 120.35 130.35 | | * Represents one 31.5 mm. larva Table IV Recerd of Anchevy Larvae, 1950 | Statfer | | | | | | | | ddpeint. | Midpeint of Size Class (in mm.) | re Class | a (in m | 7: | | | | | | | | |---------------|------|-----------|------|------|------|------|------|----------|--|----------|---------|-------|-------|-------|-------|-----|-------------|------|-------| | 7000 | 3.0 | 4.75 | 5.75 | 6.75 | 7.75 | 8.75 | 62.6 | 10.75 | 9.75 10.75 11.75 12.75 13.75 14.75 15.75 17.25 19.25 | 12.75 | 13.75 | 14.75 | 15.75 | 17.25 | 19.25 | | 21.25 23.75 | Dis. | Tetal | | Cruise 1 | 80.60 | | | | | | | | 5.6 | 5.6 | | | | | | | | | | 11.2 | | 80.70 | | | | | | | | | | | 2.4 | | | | | | | | 2.4 | | 83.80 | | | | | | | | | | 2.6 | | | | | | | | | 2.6 | | 87.35 | | | | | | | | 2.2 | 1.1 | 1.1 | 1.1 | | | | | | | | 5.5 | | 87.40 | | | | | | | | | 1.2 | | | • | | • | | | | | 1.2 | | 07.50
9.30 | | | | | | | | 6 | | | 1.0 | 1.0 | 3.1 | 1.0 | | | | | 6.1 | | 90.45 | | | | | | | | 707 | 3.5 | 3.5 | 3.5 | 2,3 | 3,5 | 2,3 | 1.2 | | | | 19.8 | | 90.53 | | | | | | | | 1.0 | | | | ì | 1 | | | 1.0 | | | 2.0 | | 90.06 | | | | | | | 2.1 | 2.1 | | | 2.1 | | | | | | | | 6.3 | | 93.30 | | | | | | 1.8 | 3.7 | | | | | | | | | | | | 5.5 | | 93.50 | | | | | | | | | | 1.7 | | | | | | | | | 1.7 | | 100.40 | | | | | | | | | 2.0 | 1.0 | | | | | | | | | 3.0 | | 100.50 | | | | | 12.5 | 3.9 | 2.0 | | 1.0 | 1.0 | 6 | | | 1.0 | | | | | 4.0 | | 105.35 | 9.2 | 10.1 | 6.5 | 3.6 | 4.6 | 4.9 | 6.0 | | 2.7 | 1,8 | 6 | 0.9 | 0.9 | | | | | | 48.5 | | 115.40 | 4.0 | | 1.0 | | | | 1.0 | | | | | | | | | | | 1.0 | 2.0 | | 120.45 | | 0.0 | 6.0 | 6.0 | 1.8 | | 0.9 | | | | | | | | | | | | 5.4 | | 120.50 | 2.2 | | | 2.2 | | | | 1.1 | | | | | | | | | | | 5.5 | | 130.35 | | 9.0 | 1.2 | 1.2 | | | | | | | | | | | | | | | 3.0 | | 130.40 | | | 1.0 | | 1.0 | | | | | | | | | | | | | | 2.0 | | 130.60 | | | | 1.5 | | | | | | | | | | | | | | | 1.5 | | Tetal | 15.4 | 15.4 11.6 | 10.6 | 4.6 | 19.9 | 12.1 | 10.6 | 13.2 | 17.1 | 17.7 | 12.0 | 4.2 | 7.5 | 4.3 | 1.2 | 1.0 | | 1.0 | 168.8 | Table IV (cent'd) Record of Anchevy Larvae, 1950 | | Tetal | 0 0 0 F | 19.0 | 0 00 0 4
0 0 0 0 | 4.0 | 83.3 | 1.8 | 3.1 | 122.1 | 5.4 | 2.2 | 17.1 | 2,2,5 | 18 | 13.5 | 3.0 | 635.1 | |--------------------|----------|---|--------|---------------------|--------|-------|------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------| | | Dis. | | 7 | • | | 6.3 | | | | | | | | | | | | | | 23.75 | | | | | | | | | | | | | | | | | | | 21.25 | | | | | | | | | | | | | | | | | | | 19.25 2 | | | | | | | | | | | | | | | | | | | 17.25 19 | | | | | | | | | | | | | | | | | | | ł | | | | | | | | | | | | | | | | | | | 5 15.75 | | | | | | | | | | | | | | | | | | 目。) | 14.75 | | | | | | | | | | | | | | | | | | at) 8 | 13.75 | | | | | | | | | | | | | | | | | | Size Class (in mm. | 12.75 | | | | | | | | | | | | | | | | | | of St | 11.75 | | | | | | | 2.9 | 7.4 | | | 2,1 | | | | | 12.4 | | Midpeint of | 10.75 | - | 1 | 6.0 | | 2.0 | | | 3.7 | | 1.1 | | | 2.4 | | | 7.2 | | | 9.75 | 8 | | ₩.9 | 1.0 | 8.2 | 1.5 | 3.1 | 1.0 | | | - | • | 1.2 | | 1.0 | 8.8 | | | 8.75 | 8 0 | | 7.3 | 1.0 | 9.1 | 1.8 | | 4.8 | | | 2.1 | • | | | | 6.5 | | | 7.75 | 8 | 0.8 | 19.1 | | 22.7 | 2,4 | | 3.7 | 1.2 | 1.1 | | | 2.4 | 2.1 | | 13.1 | | | 6.75 | | | 15.5 | 0 | 22.5 | 2 4 (|) | 18.5 | | | ר פר | | 2.4 | 2.1 | | 35.6 | | | 5.75 | 8 0 | | 4.5 | 1.0 | 6.3 | 7.5 | | 3.7 | | | 8.6 | 400 | •
• | | | 28.2 | | | 4.75 | | | 2.7 | | 2.7 | 0,00 | | 7.4 | 2.7 | | 4.9 | • | | | 2.0 | 21.4 | | | 3.0 | 6.0 | 0.8 | 1.8 | | 3.5 | 97.5 | 20.0 | 77.7 | 2.7 | 111.5 | - | | | 189.3 | | 498.7 | | Stottler | 7 | Cruise 12:
87.35
105.35
110.35 | 113.35 | 120.35 | 123.40 | Tetal | Cruise 13:
83.55
87.35 | 93.40 | 100.30 | 110.35 | 117.35 | 120.45 | 123.40 | 127.50 | 130.35 | 130.50 | Tetal | Table IV (cent'd) Record of Anchovy Larvae, 1950 | 9.0 | 4.75 | 5.75 | 6.75 | 7.75 | 8.75 | 9.75 | 20.01 | 11.75 | 9.75 10.75 11.75 12.75 13.75 14.75 15.75 17.25 19.25 21.25 | 13.75 | 14.75 | 15.75 | 17.25 | 19.25 | 21.25 | 23.75 | Dis. | Tetal | |------------------|------------|------|--------------|----------------|------|-----------|-------|-----------|--|-------|-------|-------|-------|-------|-------|-------|------|------------| | 9 14: | 2 | 3.2 | | | | | | | | | | | | | | | | | 3.2 | | 0 | 1.4 | | 4.2 | 2.8 | | | | | | | | | 1.4 | | | | | 9.8 | | 0 8.5 | | 1.0 | 1.9 | | | | | | | | | | | | | | | 11.4 | | | | | | 3.6 | | | | | | | | | | | | | | 3.6 | | 90.53 | | | | | 17.2 | | 17.1 | 5.7 | 5.7 | | | | | | | | | 45.7 | | 0 | | | 3.7 | 1.2 | | | | 1 | | | | | | | | | | 4.9 | | | 7.8 | 18.2 | 15.6 | 15.6 | 7.8 | 10.4 | 2.6 | | | | | | | | | | 5.6 | 88.4 | | | | • | (| , | | | | | | | | | , | | | | | 669.8 | | 2 166.3
0 9.6 | 12.8 | 12,3 | 12.4
20.8 | 00 00
00 00 | 12,8 | 16.0 | N N | 3.1 | 3.1 | | | | 3.1 | | | | | 121.6 | 7.5 | | | 1.9 | | 1.9 | | | | | | | 1.9 | | | | | | | | 5.7 | | 52 | 0.4 | 6.7 | 4.0 | 1,3 | | | | | 1.3 | | | | | | | | | 17.3 | | 9 | | | | | | 5.7 | 1.1 | 1.1 | | 2.3 | 1.1 | | | | | | | 11.3 | | 35 | 2.4 | 3.7 | 4.9 | | | | | | | | | | | | | | | 11.0 | | 35 | | | ۳
ش ر | | 5.5 | 2.7 | 5.5 | | 2.7 | | H-8 | | | | | | | 0,00 | | £ 09 | | | 7.7 | | | 0, [| | | | 0.1 | | | | | | | | 2.0 | | 2 | | 1.6 | 4.9 | 30.5 | 22.5 | 4.9 | 1.6 | 3.2 | | | | | | | | | | 72.2 | | 50 | | | | | | | | • | 1.3 | 1.3 | | | | | | | | 2.6 | | 04 | | | | | | | | 1.1 | 2.2 | | | | | | | | | 3.3 | Tetal 869.5 | 869.5 79.7 | 69.1 | 78.8 | 82.0 | 72.0 | 72.0 48.4 | 37.3 | 37.3 16.3 | 16.3 | 6.5 | 2.9 | | 4.5 | | | | 2.6 | 2,6 1385,9 | Table IV (sent'd) Record of Anchevy Larvae, 1950 | | | | | | | | | Midpeint of | | ze Clas | Size Class (in mm. | n.) | | | | | | | | |----------------|--------|------|-------|-------|-------------------------------------|-------|------|-------------|-------|---------|--|-------|-------|-------|-------|-------|-------|-----|--------| | Station | 3.0 | 4.75 | 5.75 | 6.75 | 7.75 | 8.75 | 9.75 | 10.75 | 11.75 | 12.75 | 9.75 10.75 11.75 12.75 13.75 14.75 15.75 17.25 19.25 | 14.75 | 15.75 | 17.25 | 19.25 | 21.25 | 23.75 | Dis | Tetal | | cruise 15 | •• |) | | | | | | | | | | | 0 | | | | | | | | | | 7.35 | | 1.7 | | 5.1 | 8,5 | 18.7 | 34.0 | 8 07 | 17.0 | 0 [[| 7.6 | | | | | | | | 9.7 | | 2.40 | | 3.5 | 8.47 | 14.6 | 29.5 | 29.2 | 37.3 | 24.3 | 14.6 | 11.8 | | 7.0 | | | | | | 7.1 | 141.1 | | | | | 1.9 | 4.6 | 9,8 | 8 | 1.9 | | | | | | | | | | | | 20.8 | | 90.37
90.45 | 103.3 | | | | | | | | | a
F | | | | | | | | | 103.3 | | 0.53 | | 47.3 | 17.0 | 2.6 | 2.6 | 9, 5 | | | | T°0 | | 5 | | | | | | | 1.0 | | 09.0 | 8.1 | 4.1 | | - | 8 | 7 | | | 4.1 | | | L.Y | | | | | | - | 128.7 | | | | | 10.2 | 6.8 | 5.1 | 6.8 | 1.7 | 1.7 | 1.7 | | | | | | | | | 4°T | 72.0 | | | | | 4.2 | 2.1 | | | 2,1 | | | | | | | | | | | | \ | | | 1.8 | 200 | 7.1 | 5.3 | 5.3 | 5.3 | | | | | | | | | | | | | 114.00 | | | | | 123.7 | 75.3 | 21.5 | 2,5 | 5.4 | 10.8 | 10.8 | 5.4 | | | | | | | | | ייסרי | | | | | 2.1 | 17.1 | 10.6 | 大 | | | | | | | | | | | | | 979 | | .50 | | | 4.2 | | | 2.1 | 2.1 | | | | | | | | | | | | ά | | 09° | | 4.1 | | 4.1 | | | | 2.0 | | | | | | | | | | | 0 0 | | .70 | 8 | 20.7 | 28.2 | 16.9 | 1.9 | | | 1.9 | | | | | | | | | | | 707 | | 00,30 | | | 0,8 | 1.6 | 2.3 | 3.0 | 80 | 9 | , | 7 | ď | α | C | 7 ' | | | | | 2.00 | | 20, 50 | | | | | 0 | 0 | 0 | 10 | 1. | 1 | • | • | ۲۰۶ | D. T | | | | | 23.5 | | 23.40 | | | | | 1 | 2 | 3 | ο α
1 c | | | | | | | | | | | 0°0 | | 127.40 | | | 1.0 | | | 1.0 | | 0 | | | | | | | | | | | 0 | 2,0 | | Tetal 4 | 171.92 | 23.4 | 205.2 | 165.9 | 471.9 223.4 205.2 165.9 105.0 141.1 | 141.1 | 90.3 | 85.9 | 51.3 | 25.4 | 10.5 | 4.4 | 2.3 | 1.6 | | | | 5.8 | 1590.0 | Table IV (cent'd) Record of Anchevy Larvae, 1950 | cruise 16:
50.100
61.55
60.70 6.6 | | 5.75 | 6.75 | 7.75 | 8.75 | 9.75 | 10.75 | 11.75 | 12.75 | 13.75 | 14.75 15.75 | | 17.25 | 19.25 | 21.25 | 23.75 | Dis. | Petal | |--|-------|----------------|-------|------|-------|------|-------|-------|-------|-------|-------------|-----|-------|-------|-------|-------|------|------------------| | 9.9 | 9.9 | | 1:1 | 1:1 | | | | 0 | | | | | | | | | | | 2.2
 | | | | | | | | 002 | | | | | | | | | | | ¥ 0 | | | | | | | | | | 2.2 | | | | | | | | | | 8 | | | | | 1.7 | | | | | | | | | | | | | | | ri | | | | (| 7 0 | 5.0 | 12.6 | 5.0 | | | 7 | | | | | | | | | 8 5 | | | ٨, | ψ. γ.
ν. κ. | V.0 | | ٨, | | ٦, | | 0 0 7 | | | | | | | | | מ מ | | 2.6 | 3 | 200 | | | ; | | 3 | | | | | | | | | | | 12 | | | | | פירו | 3.8 | 3.8 | | 3.8 | | | | | | | | | | | 45 | | | 1.9 | | 2011 | | | | | | | | | | | | | | | i | | | | | | | 1.9 | 8,6 | 9,8 | | | | | | | | | | | Ħ° | | | | | | | | 7.1 | | | 3.7 | | | | | | | | | ` e | | 146.0 | 78.0 | 14.0 | 2.0 | 2.0 | 4 | 16.0 | 0 | 2.0 | , , | 7 | 0 | | 2.0 | 2.0 | | | | , 3 8 | | | 1.6 | | | 1.6 | • | - | 2 | 75.0 | • | ř | 2.0 | | 3 | | | | | 3 3 | | 67.0 | 77.2 | 14.3 | 0.4 | | | | | | | | | | | | | | | 162 | | | | | | 3.0 | | | | | | | | | | 2.1 | | | | ณ์ ค่ | | 8.4 | 8.4 | 5.0 | | | | | | | | | | | | | | | | ู้ส | | | | | | | | | | 1.0 | | | 1.0 | 1.0 | 0.4 | | | | | W H E | | 86.9 101.0 | 101.0 | 74.7 | 9.95 | 32.4 | 22.3 | 8.0 | 2.0 | 4.0 | 2.0 | 2.0 | | | 2.0 | | | | | 393 | | ć | 0,1 | | , | | | | | | | | | | | | | | | ٠. ٥ | | 7.1 | 0 0 | | T • 4 | | † • † | 1.8 | 1.8 | | | 1.8 | | | | | | | | א יא | | | | | | | | | | | | | | | | | | | 6.0 | 0 | | | | 1.8 | | | | | | | | | | | | | | | | i | | | | | | | | | 2 | Hapeint | •f St | Midpeint of Size Class (in mm. | 1 (in m | 1: | | | | | | | | |---|-------------|--------------|---------------|--------------------|-------------------------------------|---|------|------------|-------|--------------------------------|---------|-------|-------|-------|-------|-------|-------------|-------|---| | Station | 3.0 | 4.75 | 5.75 | 6.75 | 7.75 | 8.75 | 9.75 | 10.75 | 11.75 | 12.75 | 13.75 | 14.75 | 15.75 | 17.25 | 19.25 | 21.25 | 23.75 | Dis. | Tetal | | Cruise 178
20.10
20.40
30.70 | .78 | | | | | | | | | | 1.6 | 1.5 | | 1.5 | | 1.4 | | | 30.0 | |
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00
60.00 | 3.0 | 3.0 | 3.9 | 1.1
9.1
19.5 | 5.6
9.0
7.8
116.5 | 1.3
2.3
9.0
61.7 | 3.0 | 3.0 | 3.9 | 15.6 | 3.9 | 7.8 | 7.8 | 3.9 | | | | 3.0 | 3.00
11.20
12.20
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
24.50
2 | | 67.55
70.55
73.51
86.50 | 636.6 374.5 | 374.5 | 297.5 | 392.7 | 293.2 | 55.7 | 5.3 | 2.5 | 1.1 | 1.1 | | 2.0 | 2.0 | 2.0 | 5.9 | | 1.1
3.1* | 0 | 061.0
11.9
13.1 | | 86.38 | 4.8 | 2 h | 10.8 | 7.2 | 1.8 | 1.8 | 1.8 | | 0 | | | | | 3.8 | | | | | 33.62 | | Tetal | 650.8 | 390.7 | 372.6 | 524.2 | 650.8 390.7 372.6 524.2 433.9 147.2 | 147.2 | 22.3 | 14.3 | 8.0 | 16.7 | 5.5 | 6.11 | 9.8 | 11.2 | 5.9 | 3.2 | 1.1 | 8.3 2 | 2640.1 | | Cruise 18: 70.60 70.70 90.30 90.37 100.37 | 2.2
1.6 | 0 0 0
0 0 | 3.4 | | 1.7 | 7 | 0.8 | ω σ
0 C | 9.0 | | 1.7 | 6.3 | | 6.3 | | | | | 12.6 | | 120.35 | 1 | - 1 | | 1.9 | • | | 3.00 | | | | | | | | | | | | 11.4 | | Te tal | 9.5 | 3.9 | 4.5
Renres | 1.9 | 6.9 | 4.5 1.9 6.9 6.1 Renresents and 30.0 mm. large | 8.1 | 1.7 | 2.5 | | 1.7 | 6.3 | | 6.3 | | | | | 59.4 | 48 * Represents one 30.0 mm. larva Table V Record of the Larvae of Jack Mackerel (Trachurus symmetricus), 1950 | | | | Cm | pise or | nd Month | 1 | | | | | |-----------------|--------------|--------|--------------|-------------|----------------|---------|----------------|-------|----------|-----------| | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Sta. | Sta. | | Station | Feb. | March | <u>Anril</u> | <u> May</u> | June | July | Auc. | Sent. | Total | Ave. | | 40.45 | 240 | | | | - | | | | | | | 40.50 | - | | | | | | | | | | | 40.60 | - | | | | 96-0 | | | 7 | 7 | 1.2 | | 40.70 | • | | | | | | | | | | | 40.80 | Serie Series | | | | | | | | | | | 40.90
40.100 | | | | | | | | 4 | 4 | 6 | | 40.110 | - | | | | | | | 4 | 4 | .6 | | 43.50 | | | | | | | | | | · | | 43.60 | (made | | | | | | | | | | | 47.55 | - | | | - | ar., | | | | | | | 47.60 | - | | | | - | | | | | | | 50.55
50.60 | | | | | | 4 | | | 4 | ~ | | 50.70 | | | | | | 4 | | | 4 | • 5 | | 50.80 | | | | | 3 | | | | 3 | =4 | | 50.90 | | | | | | | | | | | | 50,100 | | | | | | 1 | | | 1 | e l | | 50.1.1.0 | | | | | | | | | | | | 50.120 | | | | | | | | | | | | 50.130
53.54 | _ | _ | - | _ | | | | | | | | 53.64 | _ | | - | - | | | | | | | | 55.60 | | | | | - | | _ | - | | | | 57.54 | - | | - | | | | | | | | | 57.64 | - | - | | - | | | - | | | | | 61.55 | | | | | | 2 | | | 2 | .2 | | 60.60
60.70 | | | | | | | 8 | | 8 | 1.0 | | 60.80 | | | | | | 2 | 0 | | 2 | .2 | | 60.90 | | | | | 4 | 20 | | | 24 | 3.0 | | 60,100 | | | | | 26 | | | | 26 | 3.2 | | 60.110 | | | | | 38
8
145 | 3 | | | 41 | 5.1. | | 60,120 | | | | | 8 | | | | 3 | 1.0 | | 60,130
63,57 | | | _ | | 145 | | 2 | _ | 145
2 | 18.1 | | 63.67 | Diese. | | ₩ | _ | | | <i>(a</i>
 | | 6.0 | 0 1 | | 65.60 | | | | | _ | | | - | | | | 67.55 | - | 0-4 | gurd | - | | | | ₩. | | | | 67.65 | - | - | | - | | | | - | 0.77 | 1. / | | 70.55 | | | | | 0 | 23 | 14 | | 37
7 | 4.6 | | 70.60
70.70 | | | | | 2
22 | 5
19 | 2 | | 43 | .9
5.4 | | 70.80 | | | | | bus bus | 11. | 6. | | 11. | 1.4 | | 70.90 | | 2 | | | | 43 | | | 50 | 6.2 | | 70.100 | | 2
2 | | 9 | 9 | 18 | | | 38 | 4.8 | | 70.110 | ~ | | 1 | - | 14 | | | | 1.5 | 2.1 | | 70.120 | Seet | | | 1 | 67 | | | | 68 | 9.7 | Table V (Cont'd) Record of the Larvae of Jack Mackerel (Trachurus symmetricus), 1950 | | | | C1, | uise ar | nd Montl | 1 | | | | | |------------------------|------|-------|--------------|---------------------|-------------------|---------------------|------------|-------------|---------------|--------------| | O4 . 4 3 | 11 | 12 | 13 | 14 | 15
June | 16
July | 17
Aug. | 18
Sent. | Sta.
Total | Sta.
Ave. | | Station | Feb. | March | April | May. | oune | DUTA | Alleo | - ೧೮೧೮ - | 10661 | RVC | | 70.130 | | | 2 | 76 | 98 | -1 | | | 176 | 25.1. | | 73.51 | - | - | - | - | | 94 | | - | 94
4 | 31.3 | |
73,61
77.55 | | - | _ | - | | 4
11 | 2 | - | 13 | 2.0
4.3 | | 77.65 | _ | | | | 12 | 29 | | _ | 41 | 20.5 | | 80.55 | | | | 5 | | | | •• | 5 | .7 | | 80.60 | | | | 2 (0 | 62 | 247 | 0 | - | 309 | 44.1 | | 80.70
80.80 | | | | 1 <i>5</i> 9
416 | 12 5
42 | 98
6 | 9 | a | 391
464 | 55.8
66.3 | | 80.90 | | | | 514 | 35 | J | | - | 549 | 78.4 | | 80.100 | | | 41 | 105 | 4.2 | | 2 | • | 190 | 27.1 | | 80.110 | | | 40 | 14 | _ | 1/4 | | - | 28 | 4.0 | | 80.120 | | | 58 | 195 | 9 | 14 | | •• | 262
34 | 37.4 | | 83.55 | | - | 7 | 17 | 5 | * + * | _ | - | 5 | 1.0 | | 83.60 | | - | | 7 | 5
3 | | | prot | 10 | 1.7 | | 83.70 | | - | 45 | 169 | 71 | 214 | 3 | c=+ | 312 | 52.0 | | 83,80 | | | 214 | 927 | 13 | Lļ. | - | - | 1158 | 193.0 | | 33.90
87.35 | | | 125 | 16 | 1.0 | 2 | _ | ~ | 151
2 | 25.2
.3 | | 87.40 | 2 | | | | | 4 | _ | - | 2 | •3 | | 87.50 | | | | | - | - | - | - | | | | 87.60 | | | 9 | 45 | | | 3 | dead | 57 | 3.1 | | 87.70 | | - | 316
189 | 396
109 | 6
5 8 | 1.0
27 | 1 | _ | 729
383 | 76.6 | | 87. 80
87.90 | | _ | 5 1.9 | 186 | 90 | 21 | _ | - | 705 | 141.0 | | 90.30 | | | J / | | | | | | | | | 90.37
90.45 | | | | | | 12 | 10 | | 22 | 2.8 | | 90.53 | | | 7 | 17 | | | | | 24: | 3.0 | | 90.60 | | - | 98 | 2 | 69 | 694 | | | 863 | 123.3 | | 90.70 | | | 78 | 299 | 152 | | 2 | 7 | 5 29 | 75.6
50.0 | | 90.80
90.90 | | 73 | 107
186 | 235
100 | 4
1 5 | | 3 | 1 | 350
374 | 46.8 | | 90.100 | | 5 | 61 | 17 | ر بد | | | | 83 | 10.4 | | 90.13.0 | | | 102 | 13 | 21 | 26 | | | 152 | 20.2 | | 90.120 | | | 2.3 | 2 | | 1.0 | | | 35 | 4.4 | | 93.30
93.40 | | | | 18 | 12 | | _ | | 30 | 5.0 | | 93.50 | | | 85 | 6 | 7 | 18 | | _ | 116 | 19.3 | | 93.60 | - | 52 | 85
5 | 265 | 204 | 1 | prot | | 527 | 105.4 | | 93.70 | , | - | - | 325 | 172 | 4 | | - | 501 | 125.2 | | 93.80
93.90 | 6 | | - | 525
513 | 94
92 | 1
4 | | - | 626
609 | 156.5 | | 97.32 | | - | _ | ريدر | 76 | 2 | _ | - | 2 | •5 | | 97.40 | | •• | 204 | 154 | 29 | 2. | - | - | 419 | 83.8 | | 97.50 | | - | 243 | 186 | 46 | 4 | | - | 479 | 95.8 | | 97.60 | | | - | 1.20 | 43 | 35 | _ | | 198 | 49.5 | Table V (Cont'd) Record of the Larvae of Jack Mackerol (<u>Trackurus symmetricus</u>), 1950 | | | | 0 | ruise m | n <u>ë Hont</u> l | 1 | | | | | |------------------|------|----------|----------|----------|---------------------|------|------|-------|----------|------------| | | 11 | 1.2 | 13 | 14 | 15 | 16 | 17 | 18 | Sta. | | | Station | Feb. | Harch | Amil. | 157 | June | July | Auc. | Sent. | Total | ve. | | 97.70 | | - | 582 | 164 | 209 | 41 | *** | _ | 996 | 190.2 | | 97.80 | 16 | - | 133 | 421 | 2 | 2 | - | - | 574 | 114.8 | | 97.90 | | ••• | 12 | 315 | 33 | | - | - | 360 | 72.0 | | 100.30 | | | | 200 | | 0 | | | 0 | | | 100,40
100.50 | | | 4 | 5
24 | _ | 3 | _ | 1 | 32 | 1.3
5.3 | | 100.60 | | 35 | 1.36 | 76 | _ | 34 | ~ | 7 | 281 | 46.8 | | 100.70 | | 17 | 1:98 | 502 | - | 958 | - | | 1975 | 329.2 | | 100.80 | | 39 | 342 | 11. | - | 32. | - | 1 | 1175 | 79.2 | | 100.90 | | 376 | 9 | 83 | g _i , sh | 1. | - | | 1174 | 79.0 | | 100.100 | | 152
4 | 29 | 360 | - | 1 | - | | 612 | 102.0 | | 100.110 | | **, | | 133
1 | - | | _ | _ | 137 | 22.8 | | 105.35 | | | | | | | _ | | alu | 6 2 | | 110.35 | | 3 | | | | | | 1 | Ly | .6 | | 110.40 | | 3, | 18 | 11 | - | | - | 1 | 33 | 5.5 | | 110.50
110.60 | | | 6
5 | 3
69 | | 2. | - | | 11
74 | 1.8 | | 110.70 | | | 26 | 14 | 140 | | - | | 40 | 12.3 | | 110.80 | | | 4.26 | 54: | - | 2 | - | | 482 | 80.3 | | 110.90 | | 1 | 53 | 17 | | | - | | 71 | 11.8 | | 110,100 | | 1. | 2 | 6 | - | | - | | 9 | 1.5 | | 110.110 | | | 15 | 1 | L _k | | _ | | 5 | .3 | | 113.35
117.35 | | | | 1 | 44 | | | | 5
1 | .8 | | 120.35 | | | 4 | ala. | | | 0-0 | | 14 | .6 | | 123.45 | | | | | | | - | | | | | 120.50 | | | 1 | 2 | 2 | | - | | 5 | • 7 | | 120.60 | | 1 | 6
3 | l4
3 | _ | 1 | | | 10 | 1.4 | | 120.80 | | 60 | 62 | 23 | _ | | Dies | | 1.45 | 24.2 | | 120.90 | | 295 | - | 10 | | | - | | 305 | 50.8 | | 120.100 | | | | ΰ | S-4 | | - | | 6 | 30 | | 120.110 | | | | 2 | - | | 0-0 | | 2 | •3 | | 123.40
123.50 | | 1 | | 9 | | 16 | - | | 26 | 3.7 | | 123.60 | | | 30 | 59 | 3 | | - | | 97 | 13.9 | | 127.40 | | | 36 | 12 | 4 | | 5-9 | | 52 | 7.4 | | 127.50 | | | | 5
3 | 1. | | - | - | 6 | 1.0 | | 127.60 | | | ים ד | 3 | | | | | 3
17 | 24 | | 130.35 | | | 17
31 | 3 | | | ** | | 34 | 2.4 | | 130.50 | | | .)4. | 3 | | 1 | - | | 7 | 1.0 | | 130,60 | | | | | - | | | | | | | 130,70 | 1 | | | 3
2 | - | | - | | 4 | • ? | | 130.80 | | 1 | | 2 | 5/00 | | n | | 3 | ۰5 | | Totals | 25 | 1173 | 5300 | 8597 | 2158 | 2640 | 59 | 16 | 19,963 | | | | | | | | | | | | | | Table VI Record of the Larvae of Huke (Merluccius productus), 1950 | | | | Cri | nise and | honth | | of Management of the San | | | | |---|-----------------|---------------------------------------|-------|--------------|---------|-----|--|------------|---|---| | | 11 | 12 | 13 | 1.4 | 15 | 16 | 17 | 18 | Sta. | Sta. | | Station | Feb. | March | April | Mey J | une d | ulv | Aug. | Sent. | Total | Ave. | | 50.55
50.60
50.70
50.80 | 2 | | | | | | | | 2 | •2 | | 50.90
50.100
50.110
50.120
50.130 | | | | | | | | | | | | 53.54
53.64
55.60 | - | - | _ | - | - | _ | - | - | | | | 57.54
57.64
61.55
60.60 | (julis | ٠
-
ع | _ | - | | | ~ | | 3 | .4 | | 60.70
60.80
60.90
60.100 | | 3
20
303 | 35 | | | | | | 3
55
303 | 6.9
37.9 | | 60.110
60.120
60.130
60.57
63.67 | 3 | 1. | |
 | | | _ | one
the | 3
1 | .4 | | 65.60
67.55
67.65
70.55 | - | _
_
]. | 3 - 2 | <u>-</u>
 | | 2 | - | 644
644 | 3
5 | .8 | | 70.60
70.70
70.80
70.90
70.100
70.110
70.120
70.130
73.51 | 16
10
511 | 2
24
2
76
38
173
38 | 2 | 3 | | | | _ | 5
40
12
587
88
173
38 | .2
.6
5.0
1.5
73.4
12.6
24.7
5.4 | | 73.61
75.60
77.55 | -
1
- | - | - | | 2 - | - | - | - | 2 | 1.0 | | 77.65
80.55
80.30 | - | - | _ | e-ug | 11
5 | | _ | - | 1.1
5 | 3.04 | Table VI (Cont'd) Record of the Larvae of Hake (Merluccius productus), 1950 | | | The state of the state of the | Cr | uise a | nd Montl | 1 | | | | | |--|---------------|-------------------------------|--|--------------------------------|---------------------|------------|------------|-------------|---|---| | Station | ll
Feb. | 12
Harch | 13
April | 14
May | 15
June | 16
July | 17
Aug. | 18
Sept. | Sta. | Sta. | | 80.70
80.80
80.90
80.100
-80.110
80.120
80.130 | 2000 | 7 | 16
3
3
2 | 4 | 3
1 _k | 041, | alligo. | | Total
3
24
10
3
2 | 3.4
1.4
.4 | | 83.55
83.60
-23.70
-83.80
83.90
87.35
87.40 | | -
-
- | 2
3
9
2 | 8
7
20
6 | L _k | 2 | | | 10
7
7
20
9 | 2.0
1.2
1.2
3.3
1.5 | | 87.50
87.60
87.70
87.80
87.90
90.30 | 8
7 | -
-
- | 3 | 19
3 | | | - | | 19
11
7 | 2.7
1.8
1.4 | | 90.45
90.53
90.60
90.70
90.80
90.90
90.100
90.110 | | 2 | 48
49
221
12 | 22
23
125
2
1 | 6 | | | | 79
174
223
13 | 2.8
10.0
24.9
31.9
1.9 | | 90.120
93.30
93.40
93.50
93.60
93.70
93.80
93.90
97.32
97.40
97.50 | -
2 | 21 | 201
13
373
-
-
3
18
237 | 1
26
1
40
14
16 | 2 - | | | | 5
229
14
434
16
18
3
24
242 | .8
38.2
2.3
86.8
4.0
4.5 | | 97.60
97.70
97.80
97.90
100.30 | 1 | | 62
1196
857
4 | 2
15
42 | 4 | 1 | - | - | 64
1211 | 12.8
242.2
179.8
1.4 | Table VI (Cont'd) Record of the Larvae of Hake (Merluccius productus), 1950 | | | | Cr | uise a | nd Month | 1 | | | | | |---|---------------------------|--------------------------------|----------------------------------|-------------------|-------------------------------|------|--
--|---|--| | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Sta. | Sta. | | Station | Feb. | March | April | May | June | July | Aug. | Sept. | Total | Ave. | | 100.40
100.50
100.60
100.70
100.80
100.90
100.100 | 21; | 40
7
28 | 49
6 | 3
5
11
1 | | | | | 27
58
51
13
29 | 4.5
9.7
8.5
2.2
4.8
3.2 | | 100.120
105.35
110.35
110.40
110.50
110.60
110.70
110.80
110.90 | 3
4 7
5
9 | 3
68
4
1
3 | 3
742
23
26
381
2 | 1 3 | - | | | | 6
54
818
36
28
3
381
2 | 7.7
136.3
6.0
4.7
.5
63.5 | | 110.110
113.35
115.40
117.35
120.35
120.45
120.60
120.70
120.80
120.90 | -
15
- | 8
-
18
141
14
5 | 1
-
4
52
28 | -
5
5 | - | ō-a | | - | 9
15
27
193
47
5 | 1.5
15.0
4.5
27.6
6.7 | | 120.100
120.110
123.40
123.50
123.60
127.40
127.50 | | 23 | 2 | 3 | 1 | | 040
040
040
040
040
040 | | 26
2 | 3.7
.3 | | 127.60
130.35
130.40
130.50
130.60
130.70
130.80 | 1 | 2
1
7 | 8 5 | 54 |
 | | - | | 65
6
7 | 9.3 | | Totals | 669 | 1139 | 4718 | 5 19 | Z ₁ Z ₂ | 5 | | depairment of the second th | 7094 | | Table VII Record of the Larvae of Rookfish (Sebastodes spp.), 1950 | | - | | | | nd Montl | 1 | mode frankringssen stage. | | | | |----------------|--------|-----------------|---------|-------|----------|----------|---------------------------|-------------|------------------|---------------------| | a. i. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Sta. | Sta. | | Station | Feb. | March | April . | 11977 | June | July | Aug. | Scot. | Total. | ⊥ ve• | | 20.10 | | | | | | | 0 | | 0 | 0.0 | | 20.20 | - | _ | _ | _ | | - | 8 | | 8 | 8.0 | | 20.30 | ••• | | _ | _ | _ | _ | 3 | | 2 | 2.0 | | 20.40 | - | _ | _ | - | 940 | | 4 | - | 3
4 | 3.0 | | 20.50 | - | _ | - | - | _ | _ | *1 | • | 7 | *Y• U | | 20.60 | _ | - | - | _ | - | 0-0 | | - | | | | 20.70 | - | _ | | - | - | | | - | | | | 20.80 | - | | - | | | nep | | 6 −4 | | | | 20.50 | - | - | - | | - | | | - | | | | 23.15 | - | 949 | - | - | - | - | 82 | • | 82 | 82.0 | | 27.20 | • | - | - | | - | _ | 1 | •-• | 3. | 1,0 | | 30.26 | | - | 2 | • | - | - | 4 | | 4 | 2.0 | | 30.30
30.40 | - | _ | _ | | _ | 0-0 | _ | 0 | 0 | 1. 0 | | 30.50 | _ | - | _ | _ | - | ••• | 5 | 3 | 8 | 4.0 | | 30.60 | Qued . | _ | - | _ | _ | _ | 4 | 2 | 6 | 3:0 | | 30.70 | | _ | | | _ | _ | ~~ | () | O | 9:0 | | 30.80. | - | | *** | • | | | | | | | | 30.90 | ••• | | - | - | - | - | | | | | | 30.100 | - | - | - | | | - | | | | | | 33.32 | ••• | - | •• | _ | | - | 41 | 4 | 45 | 22.5 | | 37.38 | - | _ | | | - | Seep | 2 | 2 | L;- | 2,0 | | 40.45 | - | 178* | 5 | | - | 38 | 19 | 4 | 241; | 40.7 | | 40.50 | - | 630 | 9 | 4: | - | 2 | 2 | 10 | 657 | 109.5 | | 40.60
40.70 | • | 37
29 | 2
24 | 2.2 | | 13 | 7 | | 81 | 13.5 | | 40.80 | _ | 46 | 13 | 2 | 27 | 16
9 | <i>l</i> y
2 | | 75 | 10.7 | | 40.90 | _ | 36 | 28 | 4 | 17 | 24 | 5 | | 99
9 4 | 14.1 | | 40,100 | | | 20 | 7 | 15 | 9 | 4 | 1;- | 32 | 4.6 | | 40.110 | - | | | | 2.7 | 7 | • | | 7 | 1.0 | | 40.120 | - | - | - | - | t-min | | | | • | | | 43.50 | | 64 | 29 | 3. | - | 52 | | | 146 | 24.3 | | 43.60 | - | 28 | 34 | 3 | ••• | 41 | 5 | 7 | 118 | 19.7 | | 47.55 | | 133 | 20 | _ | 0~0 | 88 | 10 | 4 | 255 | 51.0 | | 47.60 | | 45 | 18 | 46 | | 14 | | | 123 | 20.5 | | 50.55 | 34 | 14 | 4 | 1.7 | 12 | 14 | 11 | | 96 | 12.0 | | 50.60 | 4 | 12 | 2 | 4.9 | 4 | 8 | 13 | 1, | 92 | 11.5 | | 50.70
50.80 | 2
1 | 15 | 2 | | 28
2 | 49
10 | 8 | 4
2 | 89
29 | 11 .1
3.6 | | 50,90 | i | 5 | 12 | | 40 | 10 | 11 | 6. | 69 | 8,6 | | 50.100 | ٠., | J | 10 | | 14 | 2 | 2 | 5 | 33 | 4.1 | | 50.110 | | | 1 | 47 | 4 | E. | 640 | | 52 | 6.5 | | | | | | . 1 | , | | | | 2~ | | ^{*} Sample non-quantitative due to net being torn Table VII (Cont'd) Record of the Larvae of Rockfish (Subastodes spp.), 1950 | Cruise and Month | | | | | | | | | | | |------------------|-------------|----------|--------|--------------|-----------------|----------|----------------|--------|-----------|-------------| | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Sta. | Sta. | | Station | Feb. | March | April | llay | June | July | Aug. | Sent. | Total | Ave. | | 50.120
50.130 | | | | 1 | | | | | 1. | •1 | | 53.54 | - | - | | - | 20 | 51+ | 66 | 6 | 146 | 36.5 | | 53.64 | - | - | - | tem . | 22 | 53 | - | 2 | 82 | 27.3 | | 55.60 | 4 | 13 | | | | - | - | | 17 | 4.2 | | 57.54
57.64 | - | | | _ | - 13
19 | 2 | 2.0 | 11 | 46
62 | 11.5 | | 6155 | 177 | 9 | 61: | - | 35 | 37
12 | 9 | 19 | 325 | 20.7 | | 60.60 | 39 | 12 | 14 | | 4 | 6 | 36 | 20 | 121 | 15.1 | | 60.70 | L | 4 | 4 | 4 | 1.0 | 10 | 35 | 20 | 91 | 11.4 | | 60,30 | 3 | 2 | | | 8 | 42 | 7 | 3
4 | 65 | 8.1 | | 60.90 | 3
3
1 | 2 | | | 4 | 29 | | 4 | 42 | 5.2 | | 60.100
60.110 | 6 | 2 | | | | | 11 | | 14 | 1.8 | | 60.120 | O | 2 | | | | | | | 6
2 | .8 | | 60,130 | | ~ | | | | | | | 64 | • ~ | | 63.57 | • | | - | • | 5 | 47 | 13 | 0-0 | 65 | 21.7 | | 63.67 | | - | - | | 4 | 5 | ~ | | 9 | 4.5 | | 65.60 | 85 | 211 | 7 | 3 | | - | - 46 | - | 119 | 29.7 | | 67.55
67.65 | - | _ | ₩ | SWA | 60 | 8 | 256 | - | 324 | 108.0 | | 70.55 | 53 | _ | 2 | 6-4 | - 6 | 11
23 | 20 | - 8 | 11
117 | 5.5
14.6 | | 70.60 | 7 | 7 | grant. | 4 | | 5 | 2 | O | 25 | 3.1 | | 70.70 | 8 | 7 | | 6 | | 5 | | | 26 | 3.2 | | 70.30 | 6 | 15 | 2 | 4 | | 4 | | 2 | 33 | 4.1 | | 70.90 | | | 10 | | 3 | 37 | | | 50 | 6.2 | | 70.100 | | | | 1 | | 3.0 | | | 11 | 1.4 | | 70,110
70,120 | 6-4 | | | | 3 | | | | 3 | .4 | | 70.130 | ₩
₩ | | | | | | | | | | | 73.51 | - | - | | | 3 | 94 | 22 | | 124 | 41.3 | | 73.61 | • | - | - | | 5
1 6 | 3 | • | - | 13 | 6.5 | | 77.55 | | ₩ | - | - | | 11 | 12 | - | 39 | 13.0 | | 77.65 | - | - | - | - | 12 | 4 | - | | 16 | 8,0 | | 80.55
80.60 | 11
33 | 7
28 | 3 | 25
3
6 | 7 2 | 4 | 8
2 | | 62
106 | 8.9
15.1 | | 80.70 | 14 | 2.0 |) | 6 | 6, | 35
22 | 2 ₁ | | 46 | 6.6 | | 80.30 | 3 | 3 | 22 | Ŭ | 35 | but s | 2 | - | 65 | 9.3 | | 80.90 | | | | | | | | - | | | | 80,100 | | | | | | | | - | | | | 30.110 | | | | | 2 | | | •• | 2 | •3 | | 80.120 | | | | | | | | - | | | Table VII (Cont'd) Record of the Larvae of Rockfish (Sebastodes spp.), 1950 | Cruise and Honth | | | | | | | | | 1 | |-------------------------------|------------|-------------|-----------|------------|---------|-------|----------|------------|--------------| | 11 | | 13 | 14 | 15 | 1.6 | 17 | 18 | Sta. | £ /. | | Station Feb | • March | April | 167 | June | July | Auc. | Sent. | Total | Ave. | | 80.130 | | | | | | | | | | | 83.55 84 | | 270 | 1.6 | 15 | 3 | _ | | 388 | 77.6 | | 83.60 | pros | 10 | | 18 | 11 | 2 | - | 41 | 6.8 | | 83.70 70 | | 6 | | 3 | 7 | | | 91 | 15.2 | | 83.80 8 | | 2 | | | 2 | - | g=4 | 12 | 2.0 | | 83.90 | 0 | -4 | | - | | - | - | | + | | 37.35 31.8 | 118 | 52 | , | 14 | 10 | - | | 512 | 85.3 | | 87.40 318
86.50 = | 300 | 128 | 6 | 3 | 4 | 7.0 | | 759 | 126.5 | | 87.50 77 | 186 | - | 14 | - | 4 | 10 | - Design | 14 | 7.0 | | 87.60 | 21: | _ | 26 | 162 | 19 | - | - | 277
239 | 92.3
34.1 | | 87.70 8 | - | | 1.0 | ميك ت علو | 5 | 1 | _ | 1.4 | 2.3 | | 87.80 | - | | | | -/ | _ | | 4 + | | | 87.90 | - | | | | | | | | | | 90.30 16 | | 2 | 7 | 5 | | | | 144 | 5-5 | | 90.37 30 | 75 | 6 | 11 | | 4. | 6 | 3 | 135 | 16.9 | | 90.45 238 | 000 | 38 | 27 | 00 | 4 | l. | 1 | 303 | 38.5 | | 90.53 109
90.60 161 | 239 | 12ó
8 | 120
47 | 38 | 8 | 4 | | 644 | 80.5 | | 90.70 | | 11. | +41 | 93
2 | 7 | 17 | | 335 | 47.9 | | 90.80 | •• | هاد ملو | | ~ | | | | 13 | エック | | 90.90 | | | | | | | | | | | 90.100 | | | | | | | | | | | 90.110
 | | | | | | | | | | 90.1.20 | | L.O | | | _ | | | / | | | 93.30 | 11 | 48 | 1
16 | 7.0 | 7 | - | - | 67 | 11.2 | | 93.40
93.50 20 | 4 3 | 283
- 10 | 3 | 10
- li | 3
36 | | _ | 316
76 | 52.7
12.7 | | 93.60 - |) | 345 | 15 | 43 |]. | | - | 404 | 80.8 | | 93.70 6 | - | - | 13 | 6 | 2, | | - | 25 | 6.2 | | 93.80 | | y gen | 2 | 6 | | - | ₩. | 8 | 2.0 | | 93.90 | - | | | | 2 | | - | 2. | •5 | | 97.32 6 | | 126 | 1:0 | - | | pred | a-ma | 172 | 43.0 | | 97.40 2 | - | 11 | 6 | 7 | | 0~0 | - | 26 | 5.2 | | 97.40 2
97.50 3
97.60 3 | parent. | 3 | 35 | 6 | 1. | - | - | 47 | 9.4 | | 97.60. 3
97.70 24 | | | 4 | 12
24 | Ţŕ | _ | - | 19 | 4.8 | | 97.70 24
97.80 | _ | 52 | 23 | 24 | | | - | 56
79 | 11.2 | | 97.50 | - | - 349 | 12 | -7 | | de-st | - | 361 | 72.2 | | 100.30 28 | 3 8 | 67 | 15 | 14 | 1. | - | 12 | 165 | 23.6 | | 100.40 5 | 60 | 5 | 2 | - | | - | | 72 | 12.0 | | 100.40 5
100.50 3 | | 2 | 8. | - | 1 | - | | 1.// | 2.3 | | | | | | | | | | | | Table VII (Cont'd) Record of the Larvae of Rockfish (Sebastodes spp.), 1950 | Cruise and Month | | | | | | | | | | | |--|-----------------------------|--------------------------------|----------------------------|--------------------------|-------------------|-------------|----------------------|--------------|-------------------------------------|--| | , | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Sta. | Sta. | | Station | Feb. | . March | April | Hay | June | July | Aug. | Sent. | Total | Ave. | | 100.60
100.70
100.80
100.90 | | 9
1 4 | 2 | 5
15 | | 7
8
1 | - | | 14
32
15 | 2.3
5.3
2.5 | | 100.100
100.110
100.120 | | | | 22 | 000
000
000 | | | _ | 22 | 3.7 | | 105.35
110.35
110.40
110.50
110.60 | 48
3
2 | 1
12
1 | 33
8
21. | 2 3 2 | 2
4
-
- | 3 | - | | 89
19
39
2
1 | 12.7
2.7
6.5
.3 | | 110.70
110.80
110.90
110.100
110.110 | 1 | | 1 | 1 | | |
 | | 2 | •3 | | 113.35
115.40
117.35
120.35
120.45
120.50
120.60 | -
3
-
4
3
14 | 217
-
92
9
60
1 | 158
46
88
41
5 | 10
-
21
2
16 | 1
6
1
5 | -
2
1 | - | - | 386
3
165
103
123
26 | 64.3
3.0
27.5
14.7
17.6
3.7 | | 120.70
120.80
120.90
120.100
120.110 | | | | 1 | | | 000
000
000 | | 1 | .2 | | 123.40
123.50
123.60 | | 38 | - 18
2 | 31 6 | 2 | 1 2 | - | . 3 | 92
13 | 13.1 | | 127.40
127.50
127.60 | | | | 1 | | | 0 ma
0 ma
0 ma | Great | 1 | •2 | | 130.35
130.40
130.50
130.60
130.70 | 5 | 23 8 | 8 | 40
11
1 | 6 1 1 | | | 1 | 82
21
1
1 | 11.7
· 3.0
·1
·2 | | 130.80 | | | | | - | | - | | | | | Totals | 2138 | 2931 | 2739 | 913 | 979 | 1135 | 822 | 174 | 11831 | |