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ABSTRACT

Considerable attention has been given in the literature recently to continuous time dy-
namic maximizing models for fisheries in general, but the time discreteness and inter-
dependency problems encountered in the case of most salmon fisheries have been largely
ignored. Hence, a discrete time profit maximizing model for a salmon fishery is devel-
oped in this paper, and it is shown that a correct salmon management policy takes the
form of an investment decision with respect to the level of escapement and that a man-
agement policy of maximum sustained yield may be incorrect from an economic stand-
point. It is hoped that continued research including construction of a working model will
provide some indication of the difference between the magnitude of spawner stocks se-
lected on the basis of maximum sustained yield and stocks selected on the basis of economic

optimality.

Continuous time dynamic maximizing models
have been developed in the literature recently
to handle the problem of optimally managing
a fishery resource (Brown, 1969°; Quirk and
Smith, 1970*). The continuous time approach to
analyzing management policy for a salmon fish-
ery tends to be unrealistic since the reproductive
process for salmon is periodic, and for certain
species reproduction involves rather complex
time interdependencies. In the simplest case
salmon spawned in a given time period will re-
turn to their spawning ground in some future
time period, while in more complex cases salmon
spawned in a given time period will return to
their spawning grounds in several different runs
over a number of time periods; also, the level of
spawning activity in one time period may affect
the fertility of the spawning grounds in future
time periods. Such discreteness and time inter-
dependencies cannot be adequately characterized
in a continuous time mathematical model.
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Hence, the purpose of this paper is to develop
a discrete time maximizing model based on cur-
rently accepted views of biological spawner-re-
turn relationships for salmon; the model is de-
veloped with the biological properties of the
Bristol Bay fishery foremost in mind (Mathews,
1967). It is shown that a correct fishery man-
agement policy takes the form of an investment
decision with respect to the level of escapement
and that a management policy of maximum sus-
tained yield may be incorrect from an economic
standpoint. In essence the fishery manager must
decide whether to invest in spawners which yield
a return of additional fish at future points in
time, or to catch and sell potential spawners
today.

In the first section of the paper, the no-
tation and assumptions of the analysis are pre-
sented, and in the second section, a simple
first-order difference equation model of a salm-
on fishery is developed and discussed. In the
third section, the model is extended to account
for the fact that salmon spawned in time per-
iod ¢ will return to the spawning grounds in
time periods t+4, t+5, and ¢+6, and also
to account for the possibility that fish spawned
in time period t will deplete the spawning
grounds of food to such an extent that the
number of fish the spawning grounds can sup-
port in time period t-+1 will be reduced. De-
sirable refinements and applications of the model
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are discussed in the concluding section. In the
Appendix the continuous time analog to the
simple model is presented.

NOTATION AND ASSUMPTIONS .

The notation to be used is as follows:

R: = the size of a run of salmon into a given
river in time period t;

S: = the number of spawners allowed to
escape up the river in time period ¢;

z: = the catch of salmon from a given river
in time period t;

E. = the amount of effort used to catch x:
salmon in time period ¢;

Pr = the price per unit of effort;

P, = the price per unit of fish;

r = the appropriate discount rate;

T = the total number of years.

The assumptions of the analysis are as fol-
lows:

(i) The industry catch for a given river,
is a linear homogeneous function of the amount
of effort employed E: and the size of the run E::

F(E:, R:)
R, F(E./R. 1)
R: f(k:); where k: = E/R:.*

Tt

It

(ii) The biological spawner-return relation-
ship is of the form developed by Ricker (Math-
ews, 1967):

R: = a S¢—1 el—bS_p,

A graph of this function for a simple first order
model appears in Figure 1. If a policy of max-
imum sustained yield is followed, the escapement
in year t—1, S%-1, occurs where B; — Si—1 isa
maximum, or where

d (Si=1 a e=bSt-0 — S;_,)

- St-1

@ e~t-P(1 — b Si—;) — 1 = 0.
5 The first derivative of f will be denoted f".
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The escapement in year ¢ is:
St = Rt — R f (k).

(iii) The appropriate objective function to
maximize is assumed to be

-1
2 ﬁv[}at f(kt) Px _— RJC;PE]
=0

+ zl_Tl—TT, G(Rr)

where the expression on the left is the present
worth of industry profits over T—1 years, and
the second expression is the present worth of a
value function for the terminal stock of fish.

(iv) The price of fish P, and the price of effort
Py are assumed to remain constant for all time
periods.

For some readers the purpose of making these
assumptions may at this point appear unclear.
Hopefully, the comments to follow will clarify
any ambiguities.

In assumption (i) a linear homogeneous ag-
gregate production function is selected for its
convenient mathematical properties, and because
it has an important economie property, constant
returns to scale. In most industry aggregate
production function studies, the assumption of
constant returns has been found to be reasonably
realistic. However, in the case of the salmon
industry, this hypothesis has yet to be tested.

The spawner-return relationship specified in
assumption (ii) has the usual properties of fish-
ery recruitment functions. It is clear from the
graph that spawner stocks to the right of the
point S;-1, where R is a maximum as a function
of S:-1, are irrelevant from a policy standpoint,
since for any feasible run size R: there corres-
ponds a spawner stock Si-; with Si—1 < Si-1.
Note that no species interaction is implicitly
assumed,

The assumption that the present worth of in-
dustry profits is the appropriate objective func-
tion to maximize is an assumption commonly
made in economic analysis. Other types of ob-
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FIGURE 1.—The Ricker spawner-return relationship for
salmon.

jective functions are mathematically feasible,
but it is not obvious what they might be without
going beyond the scope of this paper and under-
taking a political analysis of salmon fishery man-
agement. Specifying a terminal value function
is a mathematical necessity and will be discussed
later.

Assumption (iv) implies, among other things,
that the catch ¢ from the salmon stock being
analyzed is not large enough to influence the total
industry price structure for salmon and that the
factor supply market for effort, E:, is competi-
tive.

The problem of gear congestion on the fishing
ground is adequately dealt with elsewhere and
is avoided here by assuming that the fishery
management authority undertakes appropriate
policies to insure that only efficient levels of ef-
fort are employed (see footnote 8; Quirk and
Smith, 1970). It is also assumed that salmon
are not caught on the high seas but are harvested
as they return to the river to spawn. .

A SIMPLE MODEL

In this section the simplest type of spawner-
return relationship is examined where salmon
spawned in time period t—1 return to their
spawning ground in time period ¢, Given the
assumptions of the above section, the problem
is to maximize

2, rr%ys(Rr f(ke) Pz — R,ktPE)

+ Tyr G (R,

subject to:

St = R: — Rs f(k),8: =0, k: =0, R(0) = R,,
and

R: = a Se-1 eb5t~0,

The appropriate Lagrangian for the maximi-
zation problem is:

L (k S, \) =

-1

> L R (Ps f(kee) — Pz ke)
0 m(t t E t)

+ ﬁrp G (Rr)

r—1
+ 2 T]_-E}l-_'rv )\t[Rt — Rt f(kt) - St]’
[1]
where k& = (ko,..., kr-1),8 = (8o, ..., Sr-1),

and X = (Ao, ... ,\r—1), and R, is given.

The appropriate Kuhn-Tucker necessary condi-
tions for a maximum of L (%, S, A) are as fol-
lows:

oL/ok: < 0; ks L/2k: = 0, [2]
t=20,..., T—1;

oL/38: < 0; 8t 9L/2S: = 0, [3]
t=20,..., T—1;

L/one = 0, [4]
t=0,..., T—1.
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It is assumed that the solution to the maximizing
problem is interior; i.e., ke > 0, S: > 0, A > 0.
Then [2] and [3] are satisfied if [5], [6], and
[7] are true:

(Pz—)\t) f,(kt) =PE, t= 0,...,T—-—-1; [5]

At-1 =

T]T-i_'r—)- (PI f(k) — Pe k) dR./dS:-1

" (T_}F'?T Ae [1 — f(ke)] dRe/dSe-s,

t=1,...,T—1; (6]
M-t = T+ 7 dRr 51

and [4] is satisfied if [8] is true.

S = R —R:f(k), t=0,...,7—1. [8]
For ¢t = 1 equation [6] can be written more
simply as
1 dRy
Moo= g P flR) — Pehl g
n 1 281 [6']

1 +r )\laSo'

By substituting for A, in [6’], an expression of
Mo results with Az in it, and by substituting for
Az an expression of Ao results with A; in it, and
so on until an expression of Ao results with Ar—i
in it. Equation [7] can then be substituted for

Ar-1.° The resulting expression is:
Ao =
-1 L SR
t
51 T 77 | P=fk) —Peke | S5~

¢ This procedure is discussed in Burt and Cummings
(1970).
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1 dG JRr
+ 1 + )7 dRr 28 L]

Equation [5] can be rewritten for ¢ = 1 as

AN = P:— Pu/f (k). [57]

Equation [5’] suggests that Ao can be inter-
preted as the marginal profitability of catching
an additional fish in period 0, while equation [9]
suggests that Ao can be interpreted as the present
value of the marginal profitability of adding an
additional spawner to the escapement level in
period 0; i.e., the level of escapement should be
selected in time period 0 such that the incre-
mental profitability of an additional fish caught
today is just equal to the present value of the
profitability of the future return resulting from
an incremental spawner. In order to attain the
desired level of escapement it is necessary to
select an appropriate level of ko, since escape-
ment is equal to the run size in period 0 minus
the catch. Note that this analysis can be applied
to any time period ¢, not just to £ = 0.

In order for the analysis to be valid in the
general form presented here, it is necessary to
prove the existence of values for & = (k, ...,
Fr-1), 8 = (S, .. ey Sr—1), and A = (Noy « v .,
Ar-1), which satisfy equations [51, [6], [7], and
[8] given By = R(0). This is not an easy task
if T is finite, so it is assumed that 7 — «.” In
this situation an equilibrium, or steady state
solution is possible, where

k*:ko:klz...,—_—k’l‘
S* =8 =8 =..., = 8
M =X =X\ = ..., = M.

If T is finite this kind of a solution makes no
sense. If T - o« and an equilibrium solution
exists, then equation [9] can be rewritten as

" For a discussion of the mathematical problems in-
volved in the case of an infinite time horizon (Burt and
Cummings, 1970).
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A =
0
1 * * aR‘*
+ lim 1 dG OF; | [9']
T—> (i + 7';7 adBr 31;_

Both expressions to the right of the equal sign
in equation [9’] must converge for existence.
This requires that

dR*

o MM—7fEH1I <1+ [10]

Then equation [9’] can be rewritten as
M= e [Ph f(RY)

- 1+ *

. GR* 1
— Pe Bl g8 T I GIT aRF [97]
—71+r da5

since lim 1 dG oRr*

T>o (I + N7T dRr 53, converges to
dG
zero for & bounded. Also [5] and [8] can
be rewritten as
(P: — \*) f' (k"
S* = R* — R* f(k*). [8]

= PE’ [5’]

Equations [10] and [9”] together suggest that
the productivity of the spawner stock in pro-
ducing additional spawners must be less than
the social rate of discount, =, in order for A*, the

8 Tn a steady state solution,

* dR.
&= ([1 — £ gg‘)

where * denotes evaluation at the equilibrium solution.
Note also that

t—1

t—1 dR
B, _. dR, _ T
&= I 1‘11 1 — fk)] go—
dR, tﬁl ?Sr

ES——in the general case.
CAN ™1

1 =1

profitability of an incremental spawner, to be
positive.

A steady state solution exists if the determi-
nant of the Jacobian matrix for [5’], [8’], and
[9”], is non-zero. It can be proven that the
Jacobian determinant is negative if it is assumed
that the expression to the left of the inequality
sign in [10] is less than or equal to 1. Unfor-
tunately, there is no reason to assume this, even
though in the context of a specific model, with
funetions and parameters assigned, one might
expect that it is true.”

Note that the equilibrium solution requires
that Ro = S*/(1 — f(k*)). Clearly there is
no reason to anticipate that the initial run size
will be at the desired level for an equilibrium
solution, and to reach the desired level may be
costly. Hence, the analysis ignores the question
of optimal policy for reaching the equilibrium so-
lution. Note also that there is no reason to an-
ticipate that S*, the equilibrium solution, will
correspond to maximum sustained yield. These
issues are discussed more extensively in the ap-
pendix in the context of a continuous time model.

MORE COMPLEX MODELS

A simple model of the type presented in the
previous section is not completely realistic for
certain species of salmon where fish spawned in
time period ¢t will return to their spawning
grounds in time periods t+4, t+5, and £+6.
Assuming that the percentages of the total re-
turn to the river in time periods t +4, t+5, and
t+6 from spawning efforts in time period ¢ are
constants, a4, as, and as, the spawner-return re-
lationship becomes:

R: = Si-sa4a P9

+ Si—s a5 a €S-8

+ Si-s a5 a e"%5-0, [11]

where as + as + a¢ = 1.

® See the appendix for a proof that the Jacobian de-
terminant is negative for the given assumption.
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The Lagrangian for the maximizing problem
now becomes:

L =
T—6 1
Eo emeroy R [P, f(k:) — P& ki)

+ M [Re — Rif (ke) — St]]

T
+ 3 G (B, [12]

t=T—56

given R(0) = Ro, R(1) = Ry, R(2) = R,
R(8) = R3, R(4) = R,;, and R(5) = Rs. Note
that in this model Ry, Ri, Rs, R, R4, and R are
the given initial run sizes and that the terminal
value condition must be modified to account for
the more complex spawner-return relationship
now being used. Also, it is implicitly assumed
that run sizes in the last five periods have no
direct effect on one another, but are determined
by spawner stocks in previous periods. Once
T — o« is allowed this assumption becomes un-
important.

The necessary conditions for a maximum of L
with ke > 0, S: > 0, A\t > 0 are satisfied if:

(P:—\) f'(ke) =Pg, t=0,...,7T—6; [13]
1
M-y = T+ ne ([sz(kt) — Pgk:]
oF:
+ A [1 — f(ke)]) aSt ~,

1

+'(1—+'T)i ( [Pf (kt+1) — Prkiti]

R
Mg [1 — Qftery
+ t-1 [ f(kH—l)]) Yo

1

+ '(—i—_‘__r)s ( [Pf (kt+2) — Pikisz]
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4 ohees [1— f(kt+2)]> 2Russ

2St-a '
t=4,...,T—8; [14]
Moy = e ( [P
-1 = {1 )4 [Pef (kr-17) — Pskr—r]
Ar—r 1 — _ @&
+ T--7 [ f(kfl‘ 7)]) aST—ll
1
+m <[Pxf(kT—-ﬂ) — Pglr-¢]
+ Ao [1 — F(lre ) oFr=s
-6 [ fkr-g)] SFr—s
1 dG ORr-5 |
T 1 + )¢ dRr-5 2871’ [15]
1
M- = T ([Pxf(kr—e) — Pgkr—g]
+ Ao [1 — (koo ) Lz}
T—-6 f( T 6)] aST—IO
. 1 dG DRr—s
(1 + 7)% dRr—s 3S7-10
1 dG ORT-4 .
+(1 + 7)% dRr—s 2Sr-10’ [16]
_ 1 dG ORr-5
Moy = T @Ry 35,
1 dG oRr-4
(1 + 1')5 dRr—4 aST 9
1 dG oRr-3s |
T T M0 dBiss 29 [17]
_ L dG ORT~4
M-8 = T35 7% dRrs oSrs
+ 1 dG ORr-3
(1 + 7)% dRr-3 OST—3
1 dG ORr-2 |
t@ + 1) dRros o8r-s [18]
N 1 dG RT3
(L + 7)* dRr-3 2Sr-1
1 dG ORr-s

(1 + 7)5 dRr-2 2Sr—7
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1 dG Rr—1 |
T ¥ M° dRrer oSr— ° [19]
A. — 1 dG aRT—z
T-6 = (1 + 7)* dRr-2 28r-s
+ 1 dG oR7r—1
@+ 1)° dBres 28—
1 __dG oRr .
AT dBr 25is [20]
St = Ri[l—Ff(k)],t=0,...,T—6. [21]

For a steady state (k*, S*, A*) these necessary
conditions reduce to the following:

(P- — \*) f/(k*) = Ps, [22]
o= PSR —Pakt] B
D
* 1D [23]
§* = R*[1—f(")], [24]

[+ 21 as ag .
where D = 7 it T 53T @ £ )°

*
In order for A* to be positive, [1 — F(k*)] %g_

must be less than 1/D. The economic interpre-
tations of [22], [28], and [24] are the same as
the corresponding interpretations of [5'], [9”],
and [8] in the second section.

Some biologists believe that for certain spe-
cies and spawning grounds spawned salmon in
time period ¢ will deplete the spawning grounds
of food to such a degree that food sources will
not be replenished sufficiently in time period £ 41
to support an equally large number of spawned
fish., The nature of this phenomenon has not
yet been very well specified, but one possible
expression of it is the following spawner-return

relationship where feeding interaction between
years is accounted for by modification of the
power term for e:

Rt — St—4 aniaze(_blst'"4_ bzst_5)
+ St-5 az0e 5 t—5— bist—e’

+ Si-s agaet~vSt—e BSt) |

[25]

The necessary conditions in a steady state for
the model using this spawner-return relationship

are the same as [22], [23], and [24], except
*

that %— must be replaced by

*
‘—ég—: ae~® * St (1, S* — 'i_l-)T-g_r S*).

One thing should be noted about the two
models presented in this section. In order to
attain the steady state solution, it is necessary
to set the run size equal to its equilibrium so-
lution level for the first six periods in the first
model and the first seven periods in the second
model. Hence, the problem of attaining the
equilibrium solution is of greater magnitude here
than in the simple model, where it was necessary
to set the run size equal to its equilibrium so-
lution level only in the initial period. This
problem can, perhaps, be more adequately dealt
with in the framework of a specific model and,
in any case, requires further research.

NEEDED REFINEMENTS

Thus far, the analysis considers only necessary
conditions for the existence of a maximizing so-
lution. Sufficient conditions for existence are
satisfied if the Lagrangian is concave in all var-
iables. Unfortunately, concavity neither can be
proved or disproved for the models examined in
this paper. Again, the proof may be possible
in the context of a more specific model, where all
parameters and functions are assigned.

A practical application of the model presented
here would involve significantly difficult estima-
tion problems. Some work has already been
done on estimating spawner-return functions,
but the results in most cases have not been too
promising (Mathews, 1967). The spawner-re-

508



turn relationships seem to possess a high degree
of variability, which suggests that a stochastic
specification of the problem may be more real-
istic than our deterministic approach. Esti-
mating a catch function may also be troublesome
since it would require a careful specification of
effort and of its price.

Despite the difficulties, construction of a work-
ing model would be worthwhile because it would
provide insight into some of the unresolved math-
ematical problems mentioned above, and more
importantly it would provide further informa-
tion on the significance of the difference between
the magnitude of spawner stocks selected on the
basis of maximum sustained yield and stocks
selected on the basis of economic optimality as
defined in this paper.
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APPENDIX

A continuous time analog to the simple model
will now be discussed briefly. The problem is
to maximize.

o0
f Bi[P.f (ke) — Peki]e~"'dt [A-1]
0
subject to

S. = Ri[l —f(k)] —8,, [A-2]

. dsS, .
where §; = d_ti’ and p is the continuous time

discount rate. The appropriate Hamiltonian for
the maximum problem is

H —= e *t <Rt[Pxf(kt) —_— PE’Ct]
+ M[BRJI-f(k)] — S: — St] ) [A-3]

Assuming the existence of an interior solution,

the necessary conditions for a maximum are,
along with [A-2],

H
9o =0, [A-4]
d ?H oH -
T 5% = S5 (4-5]
[A-4] and [A-5] are satisfied if
(P: — M) f* = P, [A-47]
)'\t = p)\t
— ( [P: (k) — Pe o] 4B
+ A1 — Flke)] ggti -—)\t) [A-5]

where ).\t = dA\/dt.

If [A-4] is used to eliminate one of the un-
k.nowns, the result is a system of two differen-
tial equations in two unknowns, [A-2] and
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[A-56’]. Utilizing the following derivatives, it

is possible to consider a phase diagram analysis
of this equation system.

dhi/dS:

A=0

+( [Pzf (kt) — Peke] + M[1 — f(ke)] ) %}%’5_

p + 1 —[1—F(k)] dRe/dS:

[A-6]

d\:/dS: S — 90 =
74 th
(P: — M) f <[1 — f(ke)] s, 1) ’
Rtf’2

[A-T]
dA B
dS; | A constant

_( [P:f (k) — Peke] + M[1—f (k)] dz}ft ’

[A-8]
g):?— S; constant = Ref' (k&)
t (P:c e )\t)f (k—t)— [A_g]

Before proceeding with the analysis, note that:

(i) >0, <0,P;—x>0by[A-4],and
[(P: — M)f(kt) — Pgke + A] > 0 since
P. — A\ = Pg/f and £ > f'k.

(ii) If a steady state solution exists, such

that A = 0 and S¢ = 0, which satisfies the ne-
cessary conditions for a maximum, the equilib-
rium value for S;, S*, will be such that $* < S:
where S; maximizes R: as a function of S;. The
reason for this was discussed in the section on
Notation and Assumptions. It then follows that
dR:/dS: > 0, and d*R:;/dS:* < 0.

(i) 0 < [1 — Ff(k)] < 1 since S: =
R [1 — f(k] > 0 and S < R

(iv) dR./dS: = 1 evaluated at S where
S¢ is the spawner stock required for maximum
sustained yield; if S; < S¢, dR:/dS: > 1, and
if St > SO, dR/dS: < 1.

It is now possible to attach signs to [A-6]
through [A-8] as follows:

d\/dS: < Ofor S << S <8,

A=0

indeterminant for S: < S¢&; [A-10]
d\:/dS: G0 >0 for 8¢ < S: < S,
interminant for S; < S¢; [A-11]
dr

m{hconstant > 0 for 8§ < S [A-12]
ds

HX,"S, constant > 0 ¥V S [A-13]

If [1 — F(ke)] ggf < 1, then there are no sign

ambiguities in the relevant range, and the equil-
ibrium solution exists. From the phase diagram
in Appendix Figure 1, it is clear that the equil-
ibrium is a saddle point; i.e.,, given an initial
So < S, there exists a time path for A, k., and
S: converging to the steady state equilibrium,
along which the necessary conditions for a max-
imum are satisfied. Hence, the optimal policy
for reaching a steady state solution can be spe-
cified even if Sy == S*. Again there is no reason
for §* = S/, where S¢® corresponds to maximum
sustained yield.

It is now possible to calculate the Jacobian
determinant J of the system of equations [A-2]
and [A-5’] evaluated at the steady state equil-
ibrium, using [A-4’] to eliminate one of the var-
iables. In order to calculate the determinant,
the following derivatives are required:

505



3
X“

APPENDIX FiGURE 1.—A phase diagram of optimal

oAt

28:/28: =

508

dR:
st

solution paths.

1 —f(k)] — L

O _ 5 41— [1—f(k)]dR/dS, [A-14]

[A-15]
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Using [A-8], [A-9], [A-14], and [A-15], and
assuming that [1 — f(k:)] %f- < 1,

oM M
e oS¢

28. S
oA o8¢

If » is substituted for p in the determinant, it
equivalent to the one discussed in the second
section.

As in the second section, it is not possible to
prove that the equilibrium solution satisfies suf-
ficient conditions for a maximum, since, in this
case, it is not possible either to prove or disprove
the concavity of the Hamiltonian.



