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ABSTRACT

A general life history population simulator. UXPOPS. with provisions to exploit any age
sector of the population is presented. In addition to the usual fish life history pattern. the
model allows simulation of random mating, sex-differential maturation. and stepwise growth
found in many crustacean and some fish populations. UXPOPS provides for monthly calcu
lations and all rates may be as general as month specific. The generality of the model is
illustrated with an examination of dosed season management strategies for a pandalid
shrimp population.

The advent of the digital computer has allowed
simulation modeling to become the current
vogue within nearly all fields of science; fisher
ies is no exception. The computer has freed
mathematically inclined scientists from being
able to examine only equilibrium or cursory
transitional states and from the need for ex
pressing relations in neat closed analytical
forms. Numerical integration schemes and the
speed of computation have made possible the
examination of large systems of differential
equations with feedback mechanisms, both from
deterministic and stochastic standpoints. Even
the simplest self-regenerating population mod
el of Beverton and Holt (1957), which may be
regarded as a simulation model in that it has a
feedback mechanism, is largely intractable for
looking at transitional states and parameter
variability without the aid of a computer.

Paulik (1969) gives a good review of simula
tion modeling in fisheries. He divided the mod
eling of fishery systems in an admittedly arbi
trary way into two categories. management
models and scientific models, depending on the
manner in which a model is utilized. Manage-
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ment models are employed for decision making
in evaluating 01' planning strategies for manage
ment purposes, while scientific models are con
structed to help elicit certain basic knowledge
of a biological system. The actual implementa
tion of models in the two categories, however,
should be similar in utilizing the model for
planning, alternative evaluation, organization,
and identifying sensitive areas of the system.

There are at least two fishery simulation mod
els currently in existence which were designed
to be generally applicable to most exploited
populations. The most comprehensive IS

GAMES (Gales. 1972), This simulator has sev
en interacting sectors from the fish stock to
the marketing of the final fish product, is modu
lar in structure, and uses the most updated
means of input/output. Unfortunately. GAMES
is still in a state of development. The other
simulator, POPSIM, was written by Walters
(1969). POPSIM's major feature is an optimiza
tion routine for planning harvesting strategies
for a number of harvesting periods. Both of
these simulation models are easily adapted to
the life history characteristics of fish popula
tions which have been traditionally studied in
fisheries science. However, the FORTRAN IV
computer simulation model, GXPOPS, was
written to allow additionally for the life history
pattern of many crustaceans and some fishes
that require actual copulation in reproduction
and a sex-differentiated maturation schedule.
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year class, i = 1. .. n, and j = 1. .. 12. With
natural and fishing mortality so general one
can evaluate the effects of seasonal mortality
patterns such as mass winter mortalities, closed
seasons, etc. The coefficient A allows patterns
of selectivity or seasonal availability, etc. to be
incorporated. The average number alive of year
class i during month j is given by

MODEL STRUCTURE

A flow-chart of GXPOPS indicating the op
tional life history sectors is presented in Fig
ure 1. Each sector is described by the equations
below. The basic time period for calculations in
GXPOPS is monthly with all processes summed
or averaged annually. There are three output
options: 1) annual summaries only, 2) monthly
and annual summaries by age class, and 3)
monthly listings by age class as well as monthly
and annual summaries.

- -Zoo
N·· = N·· (1 - e IJ)/Z"IJ IJ IJ' (3)

Growth

-K(12i + j - 13 - 10) 3
wir Woo [1 - e I (4)

where wij is the average weight of an individ
ual in year class i at the beginning of the
month j, and Woo, K ann to are parameters of
the von Bertalanffy growth equation. The seg
mental growth option is formulated as

The growth in weight of the animals is rep
resented by one of two options, the von Berta
lanffy growth equation or a linear segmental
growth curve as in POPSIM (Walters, 1969).
The von Bertalanffy formulation is

(5)Wij = a + b (I, t

FIGURE I.-Simplified flow chart of the computer pro
gram, GXPOPS. Boxes represent state variable compart
ments, solid lines represent material flows, dashed lines
represent information flows, and circles represent regula
tory functions; CF = copulation function, FF = tlshing
mortality function, MF = sex specific maturation func
tion, and RF = recruitment function.

Mortality

Mortality may be age-specific on a monthly
basis and is assumed to be representable by an
exponential decline such that

(1)

where a = Wi,j_1,b = (11'ij - Wi,j-1) and
(1,1 = 1. Using the segmental option, any shape

growth curve may be approximated, including
the stepwise growth pattern of crustaceans and
many temperate fishes and mollusks.

Yield

with

(2)

Yield is computed monthly both in numbers
and weight for each year class under either the
von Bertalanffy or linear segmental growth
option.

where Nlj is the number of animals belonging
to the ithyear class at the beginning of month
j, Mij is the instantaneous coefficient of nat
ural mortality, Aij is an availability multi
plier, Fij is the potential instantaneous coef
ficient of fishing mortality of a fully available

(6)

where YNij is the yield in numbers. Under the
von Bertalanffy growth option, the yield in
weight, YWl)' is computed as
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(7)

(8)
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3 Duc-uK(12i + j - 13 - to)
Yw.. = AijFijNijWoo 2:

IJ u = 0 Zij + uK

x ll- e -(Zij+ uK)1

where Q u = 1, - 3, 3, - 1, respectively. With
the linear segmental growth option

Yw .. = YN .. {Wi}' + (wij + 1 - wij)
IJ 11

z..
IIIZij - 11(e IJ - 1)1}

Equations (7) and (8) are modified for monthly
calculations from Beverton and Holt's (1957)
equations 4.4 and 9.5 respectively.

Maturation

A maturity schedule of the sexes is necessary
to compute several relationships associated with
the reproductive sextor of GXPOPS. This is
accomplished in the simulator with two vectors
of age-specific values, one denoting the average
fraction of mature males in each year class dur
ing the breeding season, 1>mb and the other
denoting the female fractions, ¢ifi. The mean
number of mature males, 3mj' and mean
number of mature females, Nfj' during month
j of the spawning season are

where ts and t~ are respectively the months
that breeding- begins and ends.

The maturation fractions, 1>. are assumed
to be constants in the present version of
GXPOPS. It is pm,sible that the 1> may be
density-dependent in certain populations. One
can investigate the effect of differences in 9
at equilibrium with the current version of
GXPOPS, but it would be a simple matter to
reprogram GXPOPS to examine the conse
quences of any functional hypotheses.

Reproduction

The major components of the reproduction
sector of GXPOPS are copulation, egg-carrying
(ovigerous period), and hatching. For the
common spawing characteristics of freely cast
ing both spermatozoa and eggs, the copulation
and ovigerous period sector may be bypassed.

The traditional concept of fertilization success
in fisheries population dynamics, excluding the
salmonids. is described by Beverton and Holt
(1957, p. 61) as:

... if there is free liberation of gametes. with sperma
tozoa greatly in excess of eggs. and especially if the
percentage of successful fertilisations is fairly high. then
the number of fertilised eggs would tend to be a con
stant fraction of the numbers laid. In addition. a large
spawning population would tend to distribute eggs over
a rather wider area than a small one. so that the num
ber of gametes per unit volume. which in such a situa
tion determines the rate of fertilisation. would not be
expected to change much.

where Sj is the mean monthly sex ratio. The
mean sex ratio for the breeding season is given
by

t'S
s=l ~ sJ'1/(['s-l s +l) (12)

j = Is "

and

With

Nr=
J

n -Z"
~ <!>I"N .. (1 - e IJ)IZij

i = 1 II I]
(10)

(11)

Copulation is one mode of ensuring the fertiliza
tion of eggs in sexual reproduction. The success
of fertilization, therefore. depends on the copu
lation rate which is at least some function of the
sex ratio and density of the mature population.
Beverton and Holt recognized this may be the
case for a lobster population, in which copula
tion occurs.

Copulation is a part of reproduction in most
commercially exploited crustaceans, and some
fishes. With the exception of salmonid studies.
where a form of pseudocopulation occurs, popu
lation dynamics studies of commercial fisheries
have ig~ored the effects of exploitation on the
rate of copulation. Conway (1969) presents the
most extensive quantitative treatment of repro
duction in insects, whose copulation parallels
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where * denotes copulated females and k e
is the coefficient of copulation. The copulation
coefficient may be thought of as consisting of
two multipliers - the instantaneous coefficient
of males contacting females at random and the
fraction of these encounters that result in copu
lation. Equation 13 has the solution

where p is the fraction of mature females that,
at the end of the breeding season (scaled to be
of one unit length for convenience), have been
copulated. Equation (l4b) may also be derived
probabilistically by assuming the number of
copulations is Poisson distributed such that ke
is the mean rate of contact resulting in copula
tion per male, then

equation (14b) under slightly different circum
stances, Writing equation (14a) in terms of the
sex ratio (males: females), S, and total mature
population, Nu' we have

•'"* 1 -k (_s_) N
IVr= (l+s)Na [l-e e l+s a]. (15)

Therefore, as the total mature population de
creases, or as the sex ratio increases, the
number of females being copulated with de
crease under this model for reasonable values
of S in the virgin state.

With the aid of equation (15) one can easily
follow the reasoning of Beverton's and Holt's
conclusions for large, long-lived fish popula
tions with essentially a constant sex ratio. The
maximum sustainable average yield (MSAY)
in these populations is likely to occur at rela
tively low rates of fishing, hence there would
be only a small reduction in population size
from the virgin state. If ke were high, then
the reduction in Nr* would be negligible. On
the other hand, if the population is short-lived,
the MSAY is likely to occur at a relatively
lower population level. If fishing also increases
the sex ratio, the deleteriouR effectR on the Rize
of Nr* are compounded.

Equation (13) may be extended to become
more realistic for a multiage population under
exploitation. Often the mortality during breed
ing is neglected; however, exploitation may in
crease the mortality significantly and the breed
ing season may be protracted. Therefore, with
the additional assumption that males make no
distinction between year classes of females, for
any year classi during monthj

(14a)

(14b)
-k N

p = (l - e e m)

•'"* -k NIv/=Nr.1- e em)

or

that of many crustaceans. He recognizes three
types of mathematical models for representing
reproduction: 1) derivations from the Lotka
Volterra equations, 2) empirical models (essen
tially multiple regressions from data sets with
a number of variables), and 3) structural models
of the causal mechanisms likely to be involved.

Derivations from the Lotka-Volterra equa
tions assume that if mating is random, then the
rate of change of copulated females is propor
tional to the expected rate of contact per fe
male times the number of uncopulated females.
The rate of contact per female is assumed to be
proportional to the number of males, giving

Rewriting equation (16) in terms of the ratio of

n -Z ..t
N m (t) = 2: ¢ NI·J·e IJ (17)

i = 1 ml
with equation (14b), therefore, expressing the
probability that at least one copulation per fe
male has occurred in one unit of time (Klomp,
Montfort, and Tammes, 1964 [cited in Conway,
1969]). This assumes that the population is
not aggregated but is randomly distributed over
the breeding grounds regardless of the Rize of
the population. Philip (1957) has also derived

and

n -Z ..t
2: ¢rN·;(' IJ

i = 1 ,/ /J
(18)
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where lh is the time at hatching. Instantaneous

In developing a reproduction model for in
sects, Conway (1969) criticized the first assump
tion as being unrealistic. Empirical evidence
and biological induction suggest that the copu
lation rate should be concave downwards, ris
ing to a maximum at some intermediate density
and declining at very high densities owing to
interference. Conway (1969) dismissed the sec
ond type of models (empirical) as lacking gen
erality for a critical examination of reproduc
tion, and developed three structural models
based on nearest neighbor distances. Given the
population size, density, and sex ratio, four
parameters are contained in his models as com
pared with only one for the simple model. Con
way fits each of his models to data obtained
fro~ the literature on insects. The fits he ob
tained are hardly remarkable considering that
four parameters were estimated, and a number
given, for only eight points. However, the fits
are an indication of the flexibility and possible
validity of Conway's structural concepts-es
pecially since an irregularity in the data with
biological significance was predicted with the
fitted model. The decline in copulation rate in
the data, however, occurs at very high popula
tion densities. The major use of GXPOPS will
likely be for examining the dynamics of popula
tions under exploitation, hence at less than vir
gin population densities. Also, since the two
data sets given by Conway are adequately de
scribed by a straight line for the observations
at population densities before the decline in
copulation rate occurred, and lacking other em
pirical evidence to the contrary, equation (22)
was adopted as the copulation model in
GXPOPS.

Many exploited animals carry their fertilized
eggs so that the number of eggs reaching the
hatching period is intimately tied to the sur
vival of the females during the ovigerous peri
od. If it is assumed that all female mortality
results in the loss of the eggs as well, then the
number of copulated females reaching the hatch
ing period is given by

FOX: POPULAnON SIMULATOR

copulated females to total mature females, p(t),
giving

n Z ..t
dp(t)ldt=l~e ~ rPmiNijC--/) ll-p(t)],(19)

i = 1

the solution obtained is

-k n -Z"
Pl' = [1 - e e. 2; !/JmiNij (l - e 1))IZi)'] (20)

1=1

with t = (0, 1) months and Po = O. Equation
(20) may be further simplified by substitution
from equation (9) to give

(21)

Therefore, the fraction of the females in any
year class that are copulated is the same for all
year classes provided that ke is not age spe
cific. Given the fraction copulated in the previous
month, Pj _ 1 [where Pts _ 1 = 0], the fraction
copulated at the end of the month j is

-lleN .pr [1- (l-Pj _l)e mil. (22)

The total number of females in the population
bearing fertile eggs at the end of the breeding
season is then

n
Nft' = Pt' L rPr Nit', (23)

S si=l/ S

further assuming that one copulation results in
fertilization.

Recounting the assumptions implicit in the
simple model, equation (23), they are:

1. The instantaneous copulation rate per female
is linear and proportional to the number of
males.

2. The copulation coefficient is independent of
the age of the males and females.

3. The copulation coefficient is independent of
population size.

4. A single copulation results in fertilization.
5. Multiple copulations, if they occur, do not

alter the fraction of each egg clutch that is
fertilized from the first copulation.

n
Nfth' = Pt' . ~ ¢riNith

s I = 1
(24)
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hatching is assumed, so Ih represents the
mean hatching time.

Individual fecundity (eggs per female) is
usually correlated with the size of the individ
ual. Many plots of fecundity on length appear
to be concave upward, which indicates that
fecundity is closely proportional to the weight
of the individual. In order to be more useful
generally, however, fecundity in GXPOPS is
represented by a vector of mean viable eggs per
female at hatching by age class, A.i> such that
the total number of larvae hatched, Lh' is
given by

FISHERY BULLETIN: VOL. 71, NO.4

where PI and P2 are the density-independent
and density-dependent larval mortality coef
ficients. Equation (26) integrates to

for the survival of larvae from month j - 1 to j.
Collecting the constants we have

or

n
~ AjcjJfNith'

i = 1 I
(25) (28)

Recruitment

Any equilibrium point achieved with the
population model as now formulated is likely
to be unstable, such that with a sustained in
crease or decrease in mortality the population
will decrease to extinction or increase to in
finite size. Most successful natural poplilations
are believed to achieve equilibrium through any
of a number of homeostatic mechanisms asso
ciated with density-dependent reproduction or
mortality. One such mechanism already men
tioned is a decrease in copulation rate at high
densities. Others include a lack or destruction
of oviposition sites at high densities as in insects
or salmonid fishes, an overutilization or com
petition for a fixed food supply, cannibalism,
predator-prey interactions, etc. The usual mode
of population regulation assumed in fisheries
studies is through density-dependent early
stage (or larval) mortality. Treatises on this
subject can be found in Ricker (1954, 1958)
and Beverton and Holt (1957).

Two models have been widely used in fishery
population dynamics; GXPOPS allows the
selection of one or the other. The first model,
owing to Beverton and Holt (1957), states that
the simplest assumption one can make is that
the larval mortality coefficient can be expressed
as a simple linear function of larval population
size

1024

for Ir months of larval existence. Equation
(28) is a concave downward function that in
creases monotonically with Lj for a constant
period of larval existence and it approaches an

Ir - 1
asymptote of ~ 0:2/0:1 at an increasing

r = a
rate as 0:2 increases.

Thesecond model, owingtoRicker(1954, 1958),
simply assumes that the density-dependent co
efficient, PZ' may operate only until some criti
cal size is reached and that the time to attain
this critical size may be proportional to the
size of the larval population at hatching, Lh'
which gives

or on integrating

for Ir months of larval existence. Equation
(29) is also concave downwards, but monotoni
cally increases to a maximum at Lh = I/P2,
and then monotonically decreases approaching
zero as Lh becomes infinite.

Both equations (28) and (29) allow a popula
tion to achieve stability over a range of sustained
mortality rates. Equation (29), additionally,
will produce oscillations in the population
(Beverton and Holt, 1957), the criteria for
which are given by Paulik and Greenough (1966).
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EXAMPLE: A PANDALID SHRIMP
POPULATION

Constant recruitment of size 1/a1 may be
simulated with GXPOPS by selecting equation
(28) and setting a Z = o.

Timing in the Simulator

GXPOPS was designed to be useful for ex
amining the responses of many life history pat
terns to exploitation. The impetus. however.
Was to examine the response to exploitation
of a pandalid shrimp life history (Fox. 1972).
Pandalid shrimps are protandric hermaphro
dites-i.e., individuals mature as males but
later transform to function as females (Berke
ley. 1930). fertilization is accomplished through
copulation. the females carry fertilized eggs 3-9
mo until hatching. and they exhibit pronounced

Reference in this study is made to a year di
vided into 12 mo because the reproductive cycles
of many exploited fish populations are annual.
It is just as easy to consider the "year" as a
reproductive cycle (16 days, 3 yr, etc.) divided
into 12 time periods of equal length.

The conventional notation. for numbering
timestream entities. is for the initial or first
instance to be denoted as O. The computer.
however, begins with 1 in executing "DO"
loops, etc.. therefore. the ordinal numbering
system is used in GXPOPS. The first month
and year are denoted as 1, as are the initial
numbers and yields of the first month and
year, and the young of the year. The simulator
takes the hatching time. th' as time 1 (i.e.•
Lh = L1) and the year is carried on a biologi
cal fiscal basis. For example. if hatching oc
curs on April 1. recruitment to the main popu
lation on July 1 of the first year of life, and
breeding begins October 1 and ends December
1; then

stepwise growth. While the extensive simula
tion studies investigating the effects and man
agement implications of all sectors of the
pandalid shrimp model will be published subse
quently. one particular study of the effect of
season length on the simulated fishery is useful
for illustrating the utility of GXPOPS.

Table 1 contains the parameters of the simu
lated pandalid shrimp population which 1)
consists of six year classes, 2) is fully recruited
to the fishable population during the third year
of life (at 2 yr old). 3) breeds over 2 mo. 4)
carries its eggs 51f2 mo until hatching, 5) re
cruits to the main population during the fourth
month of life (3 mo after hatching), 6) matures
as males during the third year of life (at 2 yr
old). and 7) tranSforms into females during the
fourth year of life (at 3 yr old). The stepwise
growth in weight is given in Figure 2.

Exploiting the simulated pandalid shrimp
produced the relationship between equilibrium
yield and fishing effort (= instantaneous fish
ing mortality coefficient since the catchability
coefficient was assumed to be 1.0) given in Fig
ure 3. An equilibrium yield was achieved with
fishing effort up to 1.4. with the maximum
equilibrium yield occurring at about 1.0. Fish
ing above a level of 1.4 did not result in equil
ibrium within 25 yr of simulated fishing, and
continued fishing somewhere between 1.4 and
2.0 would eventually result in extinguishing
the population. By not including the effect of
random mating (copulation), Le.. k(' = 00.

the simulated population achieved equilibrium
out to nearly F = 1.8 (Fox. 1972). This exhibits
some need for considering the implications of
copulation success in evaluating management
alternatives.

The equilibrium yields given in Figure 3 are
for an annual pandalid shrimp fishery. Several
states, however, have closed seasons during that
part of the year when females are carrying
fertilized eggs - ovigerous period - (Dahl
strom. 1970). For the simulated pandalid shrimp
population. the ovigerous period lasts 6 mo
(months 7-12). It is of interest to compare the
results of the closed ovigerous season strategy
with other possible season lengths, all begin
ning subsequent to hatching and running con
tinuously until reaching the closed season.

occur
t r =

th = 1, tr = 3, ts = 7, and ts' = 8,

respectively. If recruitment does not
until July 1 of the third year of life. then
27.
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TABLE-I.-Parameters of the simulated pandalid shrimp population.

Parameter

1. Number of year classes

2. Instantaneous natural mortality coefficient

3. Availability multipliers

4. Month breeding begins

5. Month breeding ends

6. Year of first maturity

7. Age (mo) at first recruitment

8. Copulation coefficient

9. Recruitment parameters of the Beverton
ond Holt model

10. Fecundity coefficients

11. Male maturity fractions

12. Female maturity fractions

10

8.,
E
~

6'"
t-
:J: 4
£!
w
;it

2

00 2 3 4 5 6

AGE (years)

Symbol Value

6 (i = 1-6)

All} 0.06 (for all i and j)

A ij
0.0 (for i < 3)
1.0 (for i ;;;. 3)

t, 7

t' 8s

1m
3

'r + I 4

kc 10-"

Ql 3.2851 X 10- 11

Q2 1.01

~i
0.0 (for i = 1-3)
1314 (for i = 4)
1679 (for i = 5)
1997 (fori = 6)

°mi 0.0 for i = 1,2 ond 4-6
1.0 for i = 3

(,')fj 0.0 for i = 1-3
1.0 for i = 4-6

catch per unit effort were obtained with the 8
mo season (columns 3 and 4, Table 2). Com
pared with an annual fishery, however, the 8
mo season resulted in a 5% decrease in the aver
age weight of a shrimp in the catch (column 5,
Table 2). The 6-mo season (closure during the
breeding, ovigerous, and hatching periods) was
only slightly less than the 8-mo season in yield
and catch per unit effort, but it was better than
the annual fishery. However, there was an 11%

6

FIGURE 3.-Relationship between equilibrium yield and
fishing effort for the simulated pandalid shrimp population.
Dashed line represents nonequilibrium region,

02 04 06 08 10 12 14 16

FIGURE 2.-Arbitrary growth curve exhibiting the step
wise growth pattern of pandalid shrimps.

The simulated pandalid shrimp population
was fished for six different season lengths,
from 12 to 2 mo after the hatching period (Ta
ble 2). The maximum equilibrium yield for
each season length occurred with an annual
fishing mortality coefficient, F, of 1.0. This
means that the monthly fishing effort must in
crease proportionally to the inverse of the sea
son length to obtain the maximum equilibrium
yield (column 2, Table 2). Of those seasons
simulated, the greatest equilibrium yield and
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TABLE 2.-Effect of season length, beginning subsequent to hatching, on maximum equilibrium yield and allied fishery
parameters for the simulated pandalid shrimp population.

(1) (2) (3) (4) (5) (6)
Season Monthly Season Average Average Breeding
length fishing yield in monthly individual success

(months) effort weight catchleffort weight (percent)

12 1.0 5,60 X 10" 0,467 X 10" 3.7 85,5
10 1.2 5,68 X 10" 0,474 X 10" 3,6 82,0
8 1.5 5.70 X 10" 0.475 X 10" 3.5 76,1
6 2,0 5,67 X 10" 0.472 X 10" 3,3 71.3
4 3,0 5,63 X 10" 0,469 X 10" 3,1 71,3
2 6,0 5.57 X 10" 0,464 X 10" 2,9 71.3

decrease in average weight as compared to the
annual fishery. The breeding success, defined
as the fraction of available eggs which are fer
tilized, declined with the season length until a
6-mo season was reached.

An unknown factor not programmed into the
simulation model, however, is the effect of
trawling on the behavior of the shrimp during
breeding or on the possibility of causing dis
lodgement of the egg clutches and a subsequent
higher mortality rate. In view of these uncer
tainties, the adoption of a 6-mo season from
hatching to the onset of breeding, as several
states have, appears to be a biologically pru
dent approach for a natural population similar
to the simulated population. The 6-mo season
is only slightly lower in maximum equilibrium
yield, catch per unit effort, and average size
than the optimal 8-mo season, but is better
than the annual fishery in the first two cate
gories. The actual implementation of a 6-mo
season on an annual fishery, however, would
have to weigh socioeconomic factors because
the maximum yield is obtained with twice the
amount of fishing effort per month as compared
with the annual season. If the fishery were only
able, at the time of adopting the closed season,
to exert a monthly effort of 1.0, the expected
seasonal equilibrium yield is about 10-15% less
than that for the annual fishery, but the expect
ed equilibrium mean monthly catch per unit
effort would increase 70-80%. The latter should
provide a substantial increase in the economic
standard of an average fisherman, provided
that he has an alternative means of investment
for the 6-mo closed season which would provide
a sufficient return. The simulation model can

be used also to evaluate the expected transition
al states from an annual fishery to a seasonal
closure fishery as well as the expected equilib
rium results discussed here. A socioeconomically
feasible strategy, then, may be determined
given the current state of the fishery.

PROGRAM AVAILABILITY

A listing and card set-up documentation for
program GXPOPS are available on request
from the author.
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