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ABSTRACT

A modification of Gray and Hancock's theoretical method for studying propulsion of spermatozoa was
used to estimate the energy expenditure of swimming anchovy, Engraulis mordax, larvae. Wave
parameters obtained from photographs of feeding anchovy larvae were incorporated into a ti me
dependent sinusoidal body displacement function which is used in the iterated energy integrals of the
model. The integrals were numerically evaluated by 2-dimensional 16-point Gaussian-Legendre
quadrature. The results for the mean larval length of 1.4 cm was 144.8 ergs/swimming excursion or
4.91 x 10-3 cal/h using known excursion rates. 0, consumption measurement of similar size larvae
indicate a 2.19 x lo-'callh requirement. Extension to other larval sizes can be made using this model
with certain qualifications. The relationships of swimming energetics to larval fish behavior are
discussed. Current theories of large amplitude intermittent swimming are also discussed in light of
the high swimming efficiencies encountered in this study.

The theoretical evaluation of swimming fish
energetics by hydrodynamic analysis has been an
extensively treated subject in recent years. Most
of these treatments however have concentrated
on calculation of thrust and thrust efficiencies
with the exception of Lighthill (1970, 1971) who
gave direct estimates for the mean swimming
work rate and has drawn attention to the impor
tance of the accelerative, virtual mass contribu
tions in estimates of mean swimming work rate.
Most expositions, however, deal with situations
where inertial effects predominate with all sub
sequent derivations being consistent with that
assumption (Taylor, 1952a). The low Reynolds
number range of swimming energetics primarily
of spermatozoa, has also been extensively treated
(Taylor, 1951, 1952b; Gray and Hancock, 1955;
Carlson, 1959; Holwill and Miles, 1971). All these
treatments disregard inertial and accelerative ef
fects in comparison with viscous effects in their
treatment. Also, both viscous and inertial treat
ments calculate or estimate the mean swimming
work rate after steady motion has been estab
lished.

The problem attacked in this paper is a syn
thesis and extension of the two classes of treat
ments discussed above, specifically to determine
the energy expended per excursion by the l-cm

larval anchovy, Engraulis mordax. The term ex
cursion as used here requires some elaboration.
Larval anchovies have a peculiar swimming be
havior because they do not continuously propa
gate caudally directed waves. In the adult form
this behavior is noticeable by observing the tail,
i.e., it does not beat continuously even though the
fish appears to maintain constant forward mo
tion. In the larval stages, however, this behavior
results in an obvious discontinuous motion. The
result is a series of bursts of motion from rest to
rest which hereafter I refer to as excursions.

The estimation of excursion energetics by a
theoretical model rather dian indirect metabolic
estimators during excursions is demanded be
cause of the small size of the organisms consid
ered, their discontinuous motion, and the inves
tigator's inability to determine which fraction of
the total energy consumption is due to swimming
alone.

The parameters used in the model to calculate
the excursion energy are taken from photographs
of a larval anchovy of a specified size executing
excursions in search of prey organisms. Since the
search for prey constitutes a large proportion of
the larva's activity, following Kerr (1971) we can
write the total metabolism of the larva as,
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where T T

T[<'
= total metabolism
= cost of search for prey
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T s = standard metabolism
T c = internal cost of food utilization.

The growth efficiency and subsequent relations
derived from T T are important in estimating fish
yields in relation to standing food resources and
other factors important to fisheries management.
It is this larger view which gives relevance to the
rather involved procedure of simply calculating
one part of the value of T T' namely TF .

THEORY

With the body approximated as an inextensible
ribbon we find the use of the normal drag
coefficient, eN, and the tangential drag
coefficient, eT, convenient in addition to an ap
propriate sagittal contour function h (s ) where s

denotes distance along the spine of the fish (see
Figure 4),

The expression for the velocities V N and VT is
first expressed in terms of the function which rep
resents the propagated wave along the body
y(x,t), and Vx ' By noting,

dy dy
V v = - and tan e

dt dx

we can rewrite Equations (1) and (2) as,

(1 ')

11

_~dY dYJ ~ (dy )2]-j/2v: ---V- 1+-
N dx xdx dx

we get

Given cos f) = -----
[1 + tan2 e ]1/2

The derivation of the excursion energy esti
mate is based on Gray and Hancock's (1955) de
velopment for spermatozoa. Instead of a cylinder
with an inert head attached, the anchovy larva is
regarded here as a ribbon or plate of specified
width attached to an inert head (Figure 1). The
assumption that the body is a ribbon is justified
only if the ratio of the width to thickness (WIt) is
» 1. In the larvae examined in this study this
ratio averaged 2.5. While this ratio is not » 1 I
have assumed that it is to simplify the problem.
However, the error introduced is, I believe, min
imal.

From Figure 1 the following relation is noted
and will be used in the following derivations:

Vv = V, cos f) - V x sin f)

VT = V v si n e + Vx cos e

(1)

(2)

[dy dy J[ (d:V)2J- 1/2 ,
VT = Ldt dx + V r 1 + dx (2 )

where V:v = normal velocity of an element
of body

V T = tangential component
Vv = y-component
V r = x-component.

Now we may proceed to write the contributions to
the total work of excursion made by the head,
body viscous reactive terms, and accelerative
body virtual mass.

The element of work performed in moving the
inert head is gi ven by,

FIGURE I.-Diagram ill ustrating the relationship of the velocity
components of an element of body when moving transversely in
the X·direction.

dV
dWH =1I2p ellA '-':3 dt + (m + M) dt x Vx dt

(Vlymen, 1970)

where d~, = element of work performed by
the head

eH = drag coefficient of the head
A = cross-sectional area
m = virtual mass of head
M = mass of head
p = density of seawater.
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Thus, given the time of excursion as t E we get,

1
IE

1/2 0 ( p CIf A V/

d~
+ 2(m + M)Jt Vx)dt. (3)

The element of work performed by the body
contributed by viscous-reactive forces can be ap
proximated using experimental values for the
normal and tangential drag coefficient of a
smooth plate. The choices made are

2pk T y;;-
dF I' = V.j his) ds

\lVI'S

Multiplying each element of force above by the
element of distance in the direction of that force
and summing yields,

dW VR. = E.k V 2 dsdt
fj 2 N v N

Cv = k.v = 20.37 (Hoerner, 1965)
, Re Re

and C
T

= k T = 1.328 (Schlicting, 1960)
vRe v&

(4)

(5)

where dWlR is the element of viscous reactive
work performed by an element of body ribbon.
Using the Equations (1') and (2') for V N and V T

and integrating over the excursion time t E and
projected body length excluding the head we
get,

where Re is the appropriate Reynolds number re
spectively. Although these are primarily low
Reynolds number approximations they are
within 100/c, atRe = 30. Thus I"N' the normal force
on a plate of frontal area A is given by

Since for any position along the fish body

~
J2J

IE / dy V dy
WI' II. = £ ry k,," [d/- '<IX <lsdt
H:l

1l
fl+(!!.l..)2J 'h

() I If '- dx

Re
2VN his)

v
where I If is thex-projected length ofthe inert head.
Eliminating ds by the relation,

yields finally,

v the kinematic viscosity, we get using CN from
Equation (4) the normal force dFN on an element
of body ribbon as,

dF = pkNI' V 2 2h d p k v: d
N 4V

N
hls) N (s) s =2" N V N S.

In a similar manner F I' ' the tangential force on a
pIate of total wetted surface area A. is i

lE I

W
VII

. =£ fB 2
() I If

__ VTl
Since the formula for C I' above uses Re ,J

where l is distance measured along the body, we
get the tangential force dF I' on an element of
body ribbon as

IE I [dY dy J%
if 2kT V; di dX + V x his)

+P [dy )2 :3/4 dxdt.
o If{ V;; l+(dx J

As will be noted s is present in the second of the
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integrals above; however, later in the discussion
sand h(s) will be converted to appropriate func
tions of x and t so that the integrations may be
performed.

The accelerative or virtual mass element of
work can be calculated using the fact that the
virtual mass of a flat plate accelerating parallel
to its normal vector is equal to the mass of the
fluid enclosed in a circumscribing cylinder hav
ing the plate chord as diameter (Fung, 1969).
Hence from Figure 2 the virtual mass is given by

a

and the magnitude of the acceleration by

a sin (11 = a sin((1 - (12)

FIGURE 2.-Diagram illustrating body element undergoing ac
celeration ii and relationships oforientation of element to vector
ii in terms of the angles 8,0,. O2 .

where

dy V 'y
Now 8 = tan- I

dxand(12 = tan-I 
V'x

h v ' dVv d v' dVx ..were y = __v an x = -dt ' gIVIng
dt

a sin (()- (}2) = a sin (tan-I dy _ tan-I V'y)
\ dx V'x

Since Ia I = (V'~ + v'i ) 112 , we get

(

2 2 ) 1/2a sin((1- (12) = V'y + V'x

. (t -I elv t -I V'y)
·SIn an d~ - an V'x

Thus the magnitude of force F VM. on an element
of body ribbon due to induced mass dM is

I I 2 2 2 112
F VM = adM = p 7Th (s)(V'y + V'x )

d V 'y'( -I Y -I )'SIn tan dx - tan V'x'

Since the element of work is given by

dW = IF V.M.\ .\ dx I.cos(F VM. Idx)

where

888

and

( Id ) -I V'y -I Vy)
cos F V.M. X = cos(tan V'X - tan VX'

we get finally

dW = p 7Th 2 (s) W,y + Vi) 112 (V'y + v'i) 1/'2

. ( -I dy -I V'y)
. SIn tan dx - tan V'x

·cos (tan-I ~:~ - tan-I ~~) dsdt.

Using the identities for cos (a - b), sin (a - b),
and ds gives finally,

[ ,2 (d 2y) 2] 112
V x + dt 2

. A
where dWI!/ is part I of the element of work per-
formed by the acceleration of the surrounding
fluid.

In addition to dW/1/ above we also want the
work done in accelerating the body itself. Calling
PI! (8) the linear mass density of the body we get,
using Figure 2,
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elWA = P (S) (v'i + (el 2Y )2) 112
fi II fi elt 2

.(vi + v.y ) '/2

(
-1 V'y -1 Vy ) d d

• COS tan V ,~ - tan Vx s t

where (v'l +(~) yy/2 = Ia I .
(vi + vj ) 112 elt = Ielx I'
P R(S) ds = elm.

When the above terms are expanded we get, tak
ing account of els,

el d 2

elW/A = PRes) (Vx V'x +~ __V)
ill elt elt 2

(1 +C~~)2)'12 elxelt.

Integrating dW~ I +dW~Ilfrom 0 to t f; in t and Ilf
to I in x we get the accelerative body work,

pendent analogue of the function chosen in Hol
will and Miles (1971) .

The motion pictures used were obtained from
John Hunter of the Southwest Fisheries Center,
National Marine Fisheries Service, NOAA, and
the techniques used in obtaining them are de
scribed fully (Hunter, 1972). The particular se
quences used were of fish larvae varying in
length from 1.2 to 1.7 cm standard length. All
sequences were analyzed starting with the larvae
at rest through the sine-wave execution and sub
sequent forward movement to rest again. The
x-axis was considered to be parallel to the direc
tion of forward motion as monitored by a point
midway between the eyes of the fish. This point
was also u~ed to monitor forward progression.

The sequences were projected with a 16-mm
Kodak2 analyst projector on an elevated stand,
through a right-angle mirror onto a table en
closed with a darkened viewing hood. At the be
ginning of an excursion the contour of the body
was outlined with a fine-point pen on heavy-duty,
low-absorbance paper. Once the outline was
traced, the next frame was advanced (each frame
representing '/128 of a second) until the larva

f IE I (
= 1PR (s) Vx v'x +

() III

dy
elt

2 ) ( )'12d y 1 + (dYf
dt 2 dx elselt (8)

[~~ V'x - V,YJ [Vx V'x +-:-~ ~lt:Y ]
rrh 2 (s)---------.----'--"---

[V'} +(~)2J '12
dxdt.

The total work estimated per excursion is then
given by the sum of W~, W~II, and W H'

METHODS

Motion picture photographs (16 mm, 128 fps) of
swimming and feeding anchovy larvae were used
to ascertain the various parameters in the pro
posed body displacement function y(x, t) = A (t)
. 2rr dx

sm A(t) (x + =.!ld't) where A (t) is the wave amp-
l' tItude of the propagated wave, A(t) the
wavelength and x w (t) the wave position as func
tions of time. Because of the intermittent charac
ter of the motion, variance with x was not consi
dered as important an independent variable as t
in the various functions comprising Y (x, 0. The
above displacement function is a general time de-

came to rest again. The mean excursion time of
the larvae examined was 12.9frames. The contour
sequences thus obtained were taken to be repre
sentative of the feeding-searching behavior and
were used in elucidating the wave-form param
eters. In addition to the wave-contour param
eters, the midpoint between the eyes was moni
tored for use in determining Vx and V'x.

When the above contours and position points
were obtained along with the proper
magnification factors derived from knowledge of
the lengths of the fish in a particular film, rele
vant parameter values from the tracings were

'Reference to trade names does not imply endorsement by
the National Marine Fisheries Service, NOAA.
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directly measured using a set of dial calipers
read to 0.01 em.

Many of the initial sequences of an excursion
when viewed with respect to the x-axis as defined
above showed the appearance of a wave along the
proximal portion of the fish while the rest of the
body coincided closely to thex-axis. This indicated
strong x-dependence of the amplitude in the ini
tial portion of the excursion. However, after three
frames an almost symmetrical amplitude wave
was observed. Thus the amplitude in the first sev
eral frames was taken as the maximum length of
the wave above the x-axis (Figure 3).

The wave length was taken as that length be
tween two successive crossings of the x-axis by the
displacement wave form. During the later part of
the excursions no crossings from positive to nega
tive were observed and at this point the
wavelength was taken as twice the value from one
tangent of the body on the line of motion to the
other (Figure 3).

The position of the midpoint between the eyes
after each frame was monitored to yieldx(t). Each
successive movement of that reference point was
recorded in the manner outlined above and the
distance moved during each frame noted.

The projected length xp(t) was taken as the
length between the two points representing the
projection of the tail and snout tip position on the
x-axis and was used in a manner to be described
later.

The wave position xw(t) was taken as the pro
jected length of the body from the point whereA(t)
is measured to the snout tip (Figure 3).

The points representing the functions described
above at each unit of time, i.e., one frame, were
collected for 18 excursions which were randomly
selected from the larval anchovy feeding films.
The functions were then nondimensionalized by

--f--~-------""'-c---+----,,""""--t>

DirectIon of
forward movement
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division by body length and plotted. The geometric
form of the resulting function was then used as a
guide in selecting an appropriate descriptive func
tion. The parameters of these functional forms
were then fitted by computer in the least squares
sense using a nonlinear steepest descent approach
(Conway, Glass, Wilcox, 1970). The graphical rep
resentation of the proposed body displacement
function with the internal functions fitted in this
manner was found to coincide very closely with
the actual body displacements seen in the films.

In the derivations for total excursion work,
WT , the integral for tangential viscous reactive
work contains s, the distance along the fish
body, explicitly. The function satisfying F(x, t)

= s is extremely complicated for the complete
wave-form displacement function using all the
fitted internal functions and is almost impossible
to calculate explicitly. The alternative used
here is to extrapolate back from the measured
xp(t) to yield S (x, t).

We know the function F(x, t) = s satisfies

F(x,,,t) =L

where L is the length of the fish body. Since the
maximum amplitude ever encountered in this
study was around 0.2 L and the mean integra
tion distance never greater than rr/2, we can
calculate, for purposes of comparison, the differ
ences between the true length of a pure sine
wave of amplitude A and its projected length.

The unperturbed or no sine-wave form for a
rr/2 interval of integration yields simply rr/2.
The sine-wave projected length is, for y=Asine,

s = (1T/2 VI + A 2 cos2 ed e
10

where E( <f> , k) is the elliptic integral of the sec
ond kind (in this case a complete elliptic in
tegral of the second kind). Taking A~ 2.0 em
we get using A = 0.2L.

FIGURE 3.-Diagram illustrating the identification of (t)/2,
Xw(t) andA(t) from photographic records (see text).

890
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The difference between this and 1T/2 is about
4%. Thus, we expect the projected length and
real body length to differ only slightly. With
this confidence we make the following addi
tional assumptions:

of these fins quantitatively yields a more realis
tic estimate of WT' Using the notation of Figure
4 we have,

h(s) = 0 for s~lu

h(s) = 0.038L forlu<s~(lu+ IT)

h(s) = 0.038L + 0.766 (s - 0.906L).

or using values in Figure 4 the last relation
may be written

(Tu - 0.038 L)
= 0.038 L + T [s - ([u + iT)]

L

h(s)This assumption based on the error calculation
above postulates a linear relation between pro
jected length and real length. Now xp/L =xp(t)
and is obtained from excursion analyses. We
can rewrite this as

'Ax"
--='AL
x,,(t)

x
-- =s
x,,(t)

Thus we chose to identify

F(x, t) = x/xp(t) = s(x, t).

The determination of the contour h(s) was
made using biologically accurate drawings of a
1.84-cm anchovy larva. The term h(s) was es
tablished for the body distal to a vertical line
tangent to the gill plate as shown in Figure 4.

1,+I,+TL'l
I, I L' 0.155
[,/l'0.751
TLI L' 0.094

T,/l'O.11

FIGURE 4.-Lateral cross section of 1.84-cm anchovy larvae dis
playing relationship of idealized contour function h(s) (see text)
to appropriate nondimensionalized morphometric parameters.

From that point to the beginning of the tail h(s)
was taken as a constant and the relation h(s) =
0.038 L was found to hold. The dorsal and anal
fin contributions were neglected because the
plate approximation already constitutes an
upper bound estimate for WT' Thus, the neglect

The cross-sectional area Au which appears in
the work integral for the head was determined
by randomly selecting Formalin-preserved an
chovy larvae from 0.5 to 1.5 cm in length and
affixing them, via the Formalin surface tension
on their bodies, upright on the side of a small
inverted beaker. The largest cross section of the
head was then viewed directly with a Nikon op
tical comparator and an outline traced from the
lighted viewing screen. Lengths of the bodies
were also measured with dial calipers at the
time the tracings were made. Subsequently the
tracing areas were measured with a planimeter
and corrected to the true value. A least squares
analysis of the results yielded the relation
Au = 0.00423L 1.23 where L is in centimeters and
A u is in square centimeters. The graph is plot
ted along with the data in Figure 5.

The representation for p (s), the linear density
of the body, was regarded as constant for any
gi ven length and calculated from data in
Lasker, et aI., (1970). Assuming 900'0 water, the
wet weight of 0.5- to 1.6-cm larvae is then
given by 0.00319L 2 .3237 = p (s) where L is in
centimeters and p (8) is in grams per centime
ter.

The density of the seawater was taken for
T = 17°C and was 1.02454. This value was ob
tained from tables published by the U.S. Navy
Hydrographic Office (1956).

In my formulation I assume that the head is
propelled through the water as an inert object
attached to an undulating body. We want to
know the virtual mass and drag coefficient of
the inert head for use in the Wu integral. Since
the shape of the anchovy larva's head is
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FIGURE 5.-Cross sectional area oflarval anchovy head,AH' as a
function of length L.

(~) = 2.9b,.

0.00~.0~-:Q"='.2"""'-:0.~4 ....L..~0.6.,...-l-J.0.8,...........L1.0......L-I..J,..2--..1.-IJ..4....l.-I ..l..6...l......J1.8

L (em)

r
m as m = hI P V[) where hi = -2-

( ~)')

(I-E 2

)[ (l+E)])' = 2 -;;:l 1/21og l-E - E

where Cr is the frictional drag coefficient based
on wetted surface area and ClJ. is the drag
coefficient based on frontal area. We can use
this relation to approximate CD' (Tid =2.9) as-

CD' md =2.3)
suming Cr(lId = 2.9) :'0' CrU/d = 2.3), and use
the above ratio to modify the measured drag re
lation already obtained for the copepod. Sub
stituting lid = 2.9 and lid = 2.3 into the rela
tion for CD./Cr we get on dividing

CD . (lid = 2.9) = 1 00
CD. (lid = 2.3) ..

At lower Reynolds numbers we expect the
geometric differences to cause a greater
discrepancy between CD (lid = 2.9) and CD (lid
= 2.3). In particular CD (lid = 2.9» C[)(lId =
2.3). However, since in my experiments Re was
from 0- to 100, the region where we expect the
CD (Re) curve to flatten out to a fairly constant
value we take CD (Re) for the copepod as a first
approximation to the CD. (Re) for the anchovy
head. That function is C[) (Re) = 85.2/Re· Bo ,

Vlymen (1970). The virtual mass; m, occurring
in the integrals for WII is then calculated by
considering the head as if it were an equivalent
ellipsoid. Using (aa/b a ) = 2.3 we can calculate

..
o

o,
, 0

o

00

9.0

8.0

7.0

6.0
N
E
u

'" 5.0Q
~

:z: 4.0«

3.0

2.0

1.0

roughly ellipsoidal or a bluff body, I decided to
modify, with due consideration for the geomet
ric differences, the drag relationship observed
for a copepod (Labidocera trispinosa), which is a
naturally occurring bluff body of similar shape,
to represent the relevant characteristics of the
anchovy larvae head.

If the copepod is taken as an equivalent ellip
soid, we get, from data in Vlymen (1970),

where ae is the major axis length and be is the
semimajor axis length of the copepod L. tri-

spinosa and is given respectively by a e = ~(

fAil)!'(one-half the metasome length) and be = \77 .

For the anchovies studied t = 0.155 (Figure 4)

and for L = 1.4 em andA II = 0.007 cm2 , l H = 0.217

em yielding (aa) = 2.3.
b"

For high Reynolds numbers (~10
4

_105
) and

rotationally symmetrical bluff bodies of various
lid ratios, where I is the bluff body length and dis
diameter, we have

V o = 4/3rra"b,,2 Vlymen (1970).

For a lA-em larva m has a value of 1.80 x 10 -4 g
and assuming the head density is the same as
seawater we get M = 7.9 X 10-4 g. Thus Wl/
may be rewritten as

v ~.~ A dt
\- J(

C[). (I) (d )1/2 (d)2
Cr = 3 d + 4.5 T + 21 T

(Hoerner, 1965)
{

'E
-4 dV;

+ 0 (9.7 x 10 dt V,dt
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The results showed the integration scheme to be
accurate to the eighth decimal place in the former
integral when compared with tables in Rosser
(1948) and accurate to the fourth decimal place in
the latter integral using standard tables. Details
of the mathematical scheme are found in the ap
pendix.

In the integrations of W T a relative convergence
was computed by first doing the integration over
the whole interval, that is,

where v is the kinematic viscosity of seawater
0.0119 cm2 -s-1 (U.S. Navy Hydrographic
Office, 1956l.

A computer program by Stroud (1971) using
16-point Gauss-Legendre integration, and the
above outlined integration scheme was used to
compute the integrals comprising WT . The pro~

gram was translated into Algol and executed
on a Burroughs 6700 at the University of Cali
fornia, San Diego Computer Center. Accuracy
of the program was checked by evaluation of the
iterated integrals

ex'dx for various wand

In ,1 I n <0.05,
I" ' 2

RESULTS

The plotted values of the nondimensional
amplitude, A(t)/L, wave position, Xw(t)/L, and
projected length, Xp(t)/L, along with the de
scriptive functions fitted by the methods discus
sed are shown in Figures 6 and 7. The points
comprising the curves of each represent the
mean value of the particular parameter in
question at successive units of time where one
time unit is Ilt2R S.

then III is assigned the value I" , 1

The convergence is set higher than one might
expect because computation of the complex in
tegrals ofthe type used in this study is manifested
by slow and oscillatory relative convergences
necessitating a great deal of computer time. How
ever, when the convergence criteria was set at
0,05 in the integrations performed, convergences
were better than the critical value. The effect of
the higher convergence criteria is thus seen as
being an economic and computational conveni
ence.

and the process continued until convergence is
reached. Thus, if I,,, corresponding to 2" subdivi
sions, and I" + 1, corresponding to 2n + 1 subdivi
sions, are of such values that

F( x, t) dxdt.-ill!:11IIn -
II till

l '" f"v'd
o e Y II

FIGURE 6.-Nondimensional amplitude. A (t)tL and wave posi

tion, Xw (()lL, of body displacement function as functions of
time, t, in motion frame units. The graphs display the fitted
curves <line) together with the original data (open circles) and
points of the fitted curve at corresponding time units (closed
circles).

A(t)/l 0 Q206 exp [-Q044 (I ~ 7.19)~]

o MEASURED MEANS
• FITTED fUNCTION

05

I I = [1/, f Mill F(x, tJ dxdt

ill itil!

Then the value corresponding to one subdivi
sion is computed, namely,

If this value is less than 0.05, the value /2 is taken
as the value of the integral. If it is greater, the
intervals comprising 12 are further subdivided

i i/Mil!+ F( x, t! dxdt.
1/'2 flf!

The relative convergence is then computed as
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7.9
0.2

23.2
68.5

0.2

Percent
of total

11.5
0.35

33.6
99.2
015

144.8

Energy/
excursion

Total energy

Item
Normal energy
Tangential energy
Inertial energy
Body mertial energy
Head energy

would have A = x at both end points. This, I
believe, does not drastically affect the results
since the only modulatory component at the end
points is the amplitude which is zero at these
points. This accounts for the Lennard-Jones type
of function which was chosen as a functional rep
resentation of }.. (t)IL and is shown in Figure 8
along with the function itself. The values at other
than the end points together with the fact that
A (t) = 0 at these points is sufficiently descriptive
of the contour wavelength to vitiate any physical
inconsistencies or mathematical problems that
may arise from the end point modification of
}.. (t)IL discussed.

The integrals representing the work per excur
sion namely WJiB, W~, WH were subdivided
further into smaller iterated integrals and, using
the mean excursion time of 12.9 frame time units
(~0.10s) integrated by the method already out
lined. The values obtained were taken to repre
sent the work/excursion of an anchovy larvae of
length equal to the mean of the animals used in
the study or 1.4 em.

The values of the work are divided into five
categories as follows: 1) head energy representing
the value ofthe integral in Equation (3),2) normal
energy representing the value of the 1st integral
of W,jR, 3) tangential energy representing 2nd
integral of W XR

, 4) body inertial energy rep
resenting the 1st integral of W~ , and 5) inertial
energy representing the 2nd integral ofW:. The
value of these five integrals in ergs/excursion
and their fraction of the total excursion energy
is given in Table 1. It is observed from the table
that accelerative terms such as body inertial and
inertial energies account for more than three
fourths of all the energy used in swimming. It
is worthwhile noting that although this is an ex
pected outcome of the peculiar behavior of the
anchovy larvae, it is possibly true that neglect of
such terms in many analyses of fish energetics
is cause for errors. Attention to these matters has
been given thorough theoretical discussion in
Lighthill (1970,1971). The analysis in this paper,

TABLE I.-Excursion energy components in ergs for the 1.4-cm
anchovy larva.4

A(t)IL' 11.16 [( 0.947 ),.~ (0.947 )1.1 ]+2.29
t +1.02 '+1.02

o MEASURED MEANS
• FITTED FUNCTION

o MEASURED MEANS
• FITTED FUNCTION

X(1)/L~-0.OOOO965413 +0.002551 2+O.OOO6! +0.0001396020

~ 1.0
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FIGURE 7.-Nondimensional position,X(t)IL, and projected body
length, Xp(t)IL, as functions of time, t, in motion frame units.'
The graphs display the fitted curves <lines) together with the
original data (open circles) and points of the fitted curve at
corresponding time units (closed circles).

The curve for A(t)IL, deserves some discussion.
Since the amplitude of the propagated wave was
known to be zero at t = 0, both A = x or A = 0 would
be descriptive of the initial straight-line
configuration. However, A = °implies an infinite
number of oscillations varying like sin tlA with
neither the function nor the first derivative exist
ing as A - O. Since at the end points of an excur
sion a slightly perturbed wave form was observed,
i.e., a finite wavelength, the nondimensional
wavelength of the t = 0 excursion wave form was
adjusted to be equal to the last. A perfect relation

FIGURE 8.-Nondimensional wavelength,), (t)IL, as a function of
time, t, in motion frame units. The graph displays the fitted
function (line) together with the original data (open circles) and
points of the fitted curve at corresponding time units (closed
circles). The dotted portion of the fitted curve is discussed in the
text.

894



VLYMEN: SWIMMING ENERGETICS OF THE LARVAL ANCHOVY

however, depends on incorporating what actually
occurs into an easily manipulated theoretical
energy construct.

Although the point of this study is to evaluate
the swimming energetics in an indirect but non
manometric manner, it is nevertheless interest
ing to compare the calculated energy using the
theoretical model with values obtained using O2
consumption measurements obtained with an
chovy larvae. Such experiments in limited num
bers have been performed by Lasker (pers. com
mun.) using more than one larva per experiment
and with the animals confined to small volume
containers. No knowledge of activity levels was
possible during these experiments and the values
obtained reflect total O2 uptake per experimental
period averaged for the number of larvae per con
tainer. Lasker believes, however, that activity
levels during such experiments are below natural
levels because of the inhibiting effects of the con
tainer surfaces and crowding. The value obtained
from such experiments was 4.36 ± 1.05 til 02/mg
dry wtlh. Assuming an RQ of 0.70 we get 1 t.Ll O2

== 0.005 cal ± 0.00035 (Lasker, 1962). Thus, the
caloric equivalent of the anchovy larval respira
tory rate is between 0.0153 caUmg dry wt/h and
0.0289 callmg dry wtlh with a mean value of
0.0218 cal/mg/h (n == 23). A comparison between
the theoretically determined energy value and the
mean O2 uptake value given above requires a
simultaneous knowledge of swimming activity
expressed as an excursion frequency. Such infor
mation is not available and it is precisely our
inability to make simultaneous observations of02
consumption and activity offish larvae that neces
sitates the type of study undertaken in this paper.
Excursion rates observed during 5-min feeding
searching periods have been measured (Hunter,
1972) using large containers. For the periods ob
served the excursion rate appropriate to a lA-em
larvae was found to be 1.57 ± 0.03 excursions/s
with the mean time devoted to intermittent
sWimming being 82.6% ± 1.2<'10. This value is prob
ably a maximum for activity since satiation would
probably lead to a decrease in excursions as would
the lack of observable food particles. Since avail
able O2 measurements were not collected during
feeding, some modification of the above activity
value has to be made to compensate for the inhibi
tion of the container and the absence offood before
these values can be used for comparison.

The O2 consumption measurements of anchovy
larvae were performed in small 70-ml containers

in light and darkness. The only relative activity
measurements that have been performed for simi
lar situations were on 28-day-old herring larvae
ca. 1 em in length in a variety of light conditions by
Blaxter (1973). Although herring are continuous
swimmers, unlike anchovy larvae, the use of reIa
tive activities was deemed an appropriate way of
estimating the activity variation of a similar sized
nonfeeding organism in the following manner. For
herring larvae at 10 different light levels the
mean percent difference between maximum and
mimimum activity levels was found by Blaxter
(1973) to be 78.6%, maximum activity being
defined as mean activity plus two standard errors
and minimum activity as mean activity minus two
standard errors. Although this change is large, it
probably reflects behavioral modulation more
than effects of the container since in Blaxter's
experiment the container (a long tube) contained
approximately 1,500 ml of seawater. Thus, re
garding the O2 consumption experiments on the
anchovy as replesenting the minimum activity
levels of that organism in the same relationship of
active to inactive as found from Blaxter (1973), we
can, using known maximum excursion rates dur
ing feeding from Hunter (1972), calculate the
minimum excursion rate or activity correspond
ing to our O2 measurements and hence the energy
consumption for swimming based on that excur
sion rate. This analysis assumes the geometric
swimming behavior during feeding and nonfeed
ing is the same, an assumption confirmed by ob
servation.

Using the mean O2 consumption value 0.0218
callmg dry wt/h and the dry weight of a 1A-cm
larva from Lasker et al. (1970) we get an expendi
ture of22.6 x 10-

a
caUh. Taking 1.57 excursions/s

as the mean maximum activity value, decreased
by 78.6% to convert to minimum activity levels,
and multiplied by the theoretically determined
energy per excursion of the 1A-cm larva of 144.8
ergs/excursion, we get 4.91 x 10-3 cal/h. This value
yields an estimate of metabolic swimming
efficiency of 24.6% for the 1A-cm larval anchovy
assuming a poikilothermic basal metabolic rate of
0.05 til 02/mg wet wt/h. This efficiency is quite
high when compared to values obtained for larger
fish where efficiencies in the range of 8 to 15%
(Webb, 1971) are observed. However, such exper
iments are usually done on large fish constrained
by relatively small tanks, swimming continu
ously, and using a caudal propeller mode of pro
pulsion. Thus any comparison of the above results
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with the wide-range Reynolds number motions
and large amplitude wave forms encountered in
this study must be done cautiously and with ap
propriate consideration of hydrodynamical dis
similarities. However, using the most obvious be
havioral differences between the two types of
studies, a higher overall efficiency might be sus
pected based on the viewpoint of Lighthill (1971)
that the large amplitude tail motions exhibited by
some fishes be interpreted as a means ofproducing
reactive thrusts which balance the enhanced vis
cous drag produced upon the commencement oflat
eral movements. Lighthill thus implies that large
amplitude movements interspersed with periods
ofgliding are more efficient than continuous small
amplitude oscillations as a mode of propulsion.
This appears to be confirmed in the results of this
study where the behavior is of this type and the
efficiency apparently high. It should be stressed
that a range of efficiencies can exist due to the
intrinsic variability in O 2 consumption values
and associated activity measurements and the
fact that synchronous determinations ofboth have
not yet been performed. The purpose ofthe swim
ming efficiency calculation and the associated
comparison curves with O 2 values (Figure 9) is to
demonstrate the relationship the theoretical val
ues determined here have to the available
physiological parameters obtained with simple
experimental designs. If excursion energies could
be obtained by simpler means, one could circum
vent the involved procedures presented in this
paper.

It is interesting to note that the Pacific sardine,
Sardinops caerulea, whose ecological niche was
primarily taken over by the anchovy, Engraulis
mordax, in the California Current (Murphy, 1966)
does not exhibit, in the larval stages, the same
swimming behavior as the anchovy, i.e., swim
ming bursts followed by glides. Instead it swims
by constant, small amplitude oscillating move
ments of the body. In light of the results here and
theoretical work by Lighthill it is possible that the
propulsive efficiencies in the larval stages of the
sardine and anchovy are slightly different, the
sardine being less efficient. Thus a small
behavioral-propulsive difference between the an
chovy and the sardine might have permitted the
anchovy to compete more favorably when there
was a decline in sardine population.

The evaluation of propulsive energetics as
outlined in this study is directed at only one
size of the anchovy larva because the method
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• CURVE OBTAINED FROM O2
CONSUMPTION MEASUREMENTS
(SEE TEXT)

C THEORETICAL MODEL VALUE
COMPUTED WITH WAVE PARA
METERS FITTED TO 1.4 em
LARVAE (SEE TExT).

10" 0 HUNTER AMPLITUDE INTERCEPT
MODIFICATION OF THEORETICAL
MODEL FOR LENGTHS OTHER
THAN l.4em (SEE TEXT!.
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FIGURE 9.-Energy consumption of swimming based on theoret.
ical model (open circles and open square) and total energy con·
sumption based on 0; utilization (closed circles) as a function of
length. Vertical lines on both curves span one standard error of
the data.

requires detailed knowledge of the various
wave-form parameters as functions of time for
each length of the organism studied. Valid re
sults cannot be obtained for other sizes by a
mere alteration of the length of the organism in
the wave-parameter functions. By the method
outlined here, the only way to properly evaluate
propulsive energetic costs for different lengths
would be to repeat the course of wave
parameter determination completely. However,
with such limitations in mind it is interesting
to compare results obtained when modification
of the existing wave-parameter functions is
made using extensions of known length
dependent wave-parameter quantities which
have been measured for larval anchovies. The



A == 0.112 + 0.170L

A max == 0.112 + 0.094 L

TABLE 2.-Excursion energies for five larval anchovy lengths
using Hunter's modified intercept amplitude function (see text
for complete discussion) for extension to larval lengths other

than 1.4 em.
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only such wave parameter available for
modification and incorporation into the energy
formulation is the wave amplitude.

Hunter (1972) measured the relationship be
tween tail-beat amplitude and larval length for
intermittent swimming and found the relation
ship,

energy/excursion in ergs and L length in cen
timeters yielded E == 27.5 L 448. The
energy/excursion calculated for the four addi
tional lengths was then converted to hourly
energy rates using the excursion frequencies
cited earlier. The results obtained were plotted
with scales of calories per hour vs. length in
centimeters. For comparison, another curve of
the form d02 == f(L) was computed and plotted

dt .
along with the curve formed using the addI-
tional model points above (Figure 9). The line
shown connecting these points is fitted by eye.
The comparison curve was based on the respira
tion value of 0.0218 cal/mg dry wt/h and the
following relationship between dry weight in
milligrams and length in millimeters, log W ==
3.3237 log L - 3.8205 (Lasker et aI., 1971).
This comparison curve is isomorphic to the
length-weight curve with no allowance being
made for specific respiration changes with in
creasing weight. Therefore the curve is to be
regarded as the best approximation to the total
O2 consumption rate for swimming larval an
chovies. It provides only a means of judging the
physiological reliability of the energy summa
tion method employed here. However, because
the changes in specific respiration as a function
of weight would not change this comparison
curve appreciably, it can probably be regarded
as sufficiently reliable. With this understanding
some comparison of these curves can be made.

From laboratory observation of larvae it
seems apparent that nondimensional amplitude
and wavelength do not remain constant but de
crease in absolute value as length is increased.
That is, functions descriptive of these non
dimensional parameters do not remain descrip
tive of animals of all lengths. That is exactly
what is observed as we deviate from the origi
nal L == 1.4 cm point where the nondimensional
wave parameters are fitted. Even with
modification of A max used to compute the origi
nal curve this effect is still observable. Part of
the deviation is, however, due to the behavior of
the larvae as age increases. Very small larvae
float 9<YYr of the time with occasional bursts of
intensive activity (Hunter, 1972) which, as I
pointed out earlier, is quite inefficient. As the
larvae get older, however, intermittent, more
efficient swimming becomes the dominant mode
of locomotion. This trend is partially reflected
in these two curves. As the larvae get older and
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This value was substituted for A max == 0.026 L
in the amplitude function A(t) == 0.206 L exp
[-0.044 (t -7.19)2] and its first two derivatives
used in the L == 1.4 cm formulation. The work
integrals were then recomputed at the three
new points L == 0.4 cm, L == 0.7 cm, and L ==

2.0 cm. Because the A max values coincided at L
== 1.4 for both treatments this value was not
usen again in the integration procedure. The
values obtained are shown in Table 2. Least
squares regression of the data assuming the
functional form E == aL h where E is

where L and A are in centimeters. Since minimal
amplitude dependence on length exists because of
the exaggerated whiplike motion of the tail,
Hunter's amplitude value is greater than my
value for the maximum wave amplitude of l.4-cm
larvae. This is because amplitudes used in this
study are measured as the wave crest progresses
caudally at each successive time unit, whereas at
the tail, wave progression ceases along the body
and may even become retrograde due to the whip
like motion. The important point is the intercept
at zero length where both measurements must be
consistent, i.e., equal. Thus, admitting equality of
the interception point at L == 0 and adjusting the
first order coefficient in Hunter's equation to yield
the correct value for maximum amplitudes at L ==
1.4 cm we get,
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larger the intermittent swimming rate de
creases and the nondimensional amplitude and
wave functions decrease also. This accounts for
the large locomotion energy computed for lar
vae greater than lA-em in length. It is interest
ing to note how behavioral factors, when un
avoidably neglected in extending this curve,
become evident when compared with reasonable
estimates for total energy consumption.

In view of the behavioral-mathematical fac
tors influencing the shape of the theoretical
curve in the directions observed here and the
physiologic reasonableness of the metabolic
swimming efficiencies obtained when exact
wave parameters descriptive of the L = lA-em
larva are used, it is reasonable to conclude that
the energies calculated from the model are the
best estimates of the swimming energetic re
quirement per excursion of the larval anchovy,
excursion being regarded as a discrete, repro
ducible behavioral entity, currently available.

Therefore, the major results of this study are
1) the demonstration that modifications of exist
ing methods of computing energy of translation
yield information on behavior when consider
ation is given to differences in behavior, shape,
and flow scale, 2) that a good correlation exists
in terms of metabolic swimming efficiency ob
tained between direct O2 measurements and
the model, 3) a confirmation of the high
efficiency of large amplitude, intermittent
swimming behavior, and 4) quantitative esti
mates of swimming energy requirements de
rived from this model may be used for other
larval anchovy research.

Theoretical studies such as random walk
analyses and correlations with feeding behavior
and migration which are being studied cur
rently could incorporate these data to provide a
comprehensive and quantitative picture of lar
val anchovy energetics and behavior.
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APPENDIX

The integration of the iterated integrals was
accomplished via a two-dimensional extension of
the standard Gauss-Legendre guadrature. The
one-dimensional fixed limit integration formula
Was used by Holwell and Miles (1971) for similar
classes offunctions with good results. The type of
integrals requiring evaluation were ofthe general
form

f hig(tl
F(x, t) dxdt

a f<o

a, b, fixed.

Defining

t
g(1)

G(t) = F(x t) dx
{(I) , ,

we get

.Y i i th zero of P,,(x), the n- order
Legendre polynomial and

Using Gauss-Legendre quadrature on GU;J
yields,

(a
b

G(t)dt == b 2- a -£ w, (ga) F(x,~,) dxJa Jfeu

b - a ~ w. g(U- raJ. ~
==--2- ~I' 2 .I~l wIF(T/.I'~')'

where get,) - ra) .+ ga, )+ r(~i)
T/.1 = 2 Y.I 2

(b r(1) (b
Ja J{<t) F(x, t) dxdt = Ja Get)dt.

* [J2W = 2/\1 - Y) P~(T/)
.I .I

Y.I = jth root of P,,(x).

and

By n- point Gauss-Legendre quadrature Ab
ramovitz and Stegun (1966) this is given approxi
mately by,

fb G(t)dt == b ; a i~l wi Gai)

where ~ I __ b - a y +.Q.....±..Q...
2 i 2

We have finally the result,

(b Pi
lll

F(x, tl dxdt == L.!!:. LJft Jrw 2 I

where the above definitions hold.
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