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ABSTRACT

This paper attempts to show how control theory can be used to formulate a regulatory scheme for
fisheries. The regulatory mechanism considered is a limit imposed on fishing effort. It is shown that
static optimization methods, such as maximum equilibrium yield analysis, need to be supplemented
with dynamic methods, such as optimal control theory, which take into account the variable nature of a
fishery. The dynamic analysis is used to show that the size of a limit on effort should be a feedback
function of the variables in the state of the fishery. The concept of the Linear-Quadratic Optimal
Control Problem is introduced as a method for devising such a feedback scheme for fishery regulation.

A single-variable logistic model is used to introduce the basic concepts. A model with three variables
is then analyzed to show how the techniques are easily extended to the general multivariable case.
Details of the general method are given in an Appendix.

The need for fishery regulation is apparent and
will become even more important with the es
tablishment of resource management zones off
our coasts. Regulatory mechanisms include catch
quotas and limits on fishing effort (number of
boats permitted entry into the fishery, number of
hooks used, etc.). A mathematical model of the
fishery, which includes biological and perhaps
economic factors, is useful for determining the
best regulatory scheme. Some of the more familiar
examples of these models are given by Schaefer
(1954, 1968), Beverton and Holt (1957), Ricker
(1958), Larkin (1963, 1966), Pella and Tomlinson
(1969) and Fox (1970). The above models are said to
be dynamic because they utilize differential equa
tions to describe how the fishery changes with
time. The inclusion of economic factors, multiple
species, and other biological variables, such as size
and age, results in multivariable models which are
quite complex.

Much of the analysis of fisheries is based on the
concept of an equilibrium. Perhaps the best known
is the maximum equilibrium yield analysis.
However, equilibrium is an idealization and is
never actually encountered in reality because con
tinually changing environmental influences act as
disturbances which displace the system from its
equilibrium condition. For unstable systems this is
disastrous because equilibrium is never regained,
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and for stable systems with large time constants,
the return to equilibrium might take so long as to
negate the assumptions and usefulness of the
equilibrium-based analysis. Thus "static" or
equilibrium-based analysis should be supplement
ed with dynamic methods which take into account
the variable nature of the fishery. A purpose of this
paper is to show that the above considerations in
dicate that any regulatory scheme should contain
"feedback"; that is, the size of any quota or limit
should be a function of the state of the fishery.
Also, the concept of the Linear-Quadratic Optimal
Control Problem will be introduced as one way of
devising such a feedback scheme for fishery
regulation.

The Linear-Quadratic Optimal Control Problem,
which has been widely applied in engineering, is
one method within the larger framework of op
timal control theory. Other optimal control
methods have recently been applied to problems in
fishery management which are unlike the problem
treated here. Goh (1969, 1973) applied the so-called
"singular" control method to the problem of
maximizing yield with a single-species model.
Saila (in press) describes Goh's results in more
detail. Clark et al. (1973) analyze the problem of
optimal reduction of effort in an overexploited
fishery. They calculate the fishing mortality func
tion which maximizes the total present value of all
profits and utilize a Beverton-Holt model for the
fishery. Clark (1973) has presented a similar
analysis for a logistic fishery model. The above
three analyses lead to control functions which have
been loosely described as a "bang-bang" control
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SINGLE-VARIABLE MODEL

The equilibrium yield Yeq is:

o= aNeq - bN2eq - qleqNeq'

(1)
dN
- = aN -bN2- qfN
dt '

N eq = a/2b,

(a - bNeq ) N eq a
feq= q N eq 2q.

To find the maximum equilibrium yield, we
differentiate Yeq with respect to N eq' and set this
result equal to zero.

dYeq _ _
dN - a - 2bN eq - O.

eq

be treated as competing methods but rather should
be used together as part of the total approach to
the problem because they are mutually
complementary methods. This is mentioned
because there is a tendency among economics
oriented analysts to use static methods, whereas
analysts with control-theory backgrounds tend
toward dynamic methods.

It is assumed that the reader is familiar with the
fundamentals of differential equations and ma
trix operations. A matrix will be denoted by
brackets [ ]; a matrix transpose by [ F: and a
column vector by a bar underneath, as,r.

Solving this for the population size and fishing
effort corresponding to maximum equilibrium
yield, we obtain:

The following model is the Schaefer or logistic
model:

where N is the biomass or number of catchable fish
in the fishery, t is time, q is the catchability
coefficient, andfis the fishing effort. The constant
a is the intrinsic rate of natural increase of the
population, and the constant b is related to the
carrying capacity of the environment c by the
relation: b = a/c. The system's equilibrium (Neq'

feq) is found by setting the derivative in Equation
(1) equal to zero:

because the optimal values of the control variable
lie at its boundaries. Thus the control variable
switches between a lower value (usually zero) and
an upper value which might be difficult to specify.

There are advantages as well as limitations wIth
the linear-quadratic approach as compared with
the bang-bang control approach. With the linear
quadratic approach, quantities such as yield and
present value of profi ts are not directly maximized
to obtain the feedback control function, as is done
with the bang-bang approach. Rather, the
maximization is first done with static methods,
and then a feedback control function is construct
ed to keep the system near the resulting
equilibrium condition. To do this, the system
equations are linearized about the equilibrium. If
disturbances carry the system far from
equilibrium, the linearization breaks down.
However, this is generally not a serious limitation,
since the feedback control function is designed to
counteract disturbances and to keep the system
near equilibrium. The method is not restricted to
equilibrium analysis, and frequently the two
approaches are combined by using bang-bang
control methods, instead of static methods, to
compute an optimal "open-loop" control function.
Linearization of the model around the resulting
trajectory enables the linear-quadratic method to
be used to synthesize a closed-loop (feedback) con
trol function to keep the system on the optimal
trajectory (Ho and Bryson 1969).

A significant advantage of the linear-quadratic
approach is that it allows the use of linear control
theory, whose techniques are more highly
developed and easier to apply than the nonlinear
techniques required for bang-bang control
analysis. Powerful methods of compensating for
incomplete information, uncertainties in
measurements, model parameters, and model
structure are available for the linear-quadratic
approach but are scarce for the bang-bang control
approach. Also, solutions to bang-bang control
problems are extremely difficult to obtain if the
model contains more than two variables.

First a single-variable model is used to illustrate
the basic concepts. A model with three variables is
then analyzed to show how the techniques are
easily extended to the general multivariable case.
The details of the general method are in the Ap
pendix. There it is also shown in more detail why
static optimization methods, such as linear
programming, and dynamic optimization
methods, such as optimal control theory, should not
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The new variables .1' and u are the deviations in
population density and fishing effort from their
equilibrium values. After evaluating the deriva
tives of g at the equilibrium point, we obtain:

Note that a static optimization method, calculus,
has been used to find an optimal equilibrium. To
analyze the model's behavior in the vicinity of the
equilibrium point, Equation (1) is linearized by
expanding the right-hand side in a two-variable
Taylor series about the point (Neq,j~q), and keep
ing only the first-order terms (see Appendix). This
gives:

d:r = (B,q) x + (B,q~ u
dt 3N 3 f. eqeq .

where: ,q = aN - bN2 - qfN
x=N-Neq
u =f-feq'

(2)
(3)

a = 0.67
b = 3.05 X 10-9

q = 3.95 X 10-5

where N is in pounds, t in years, andfin number of
skates. A standard skate of halibut gear consists
of eight lines of 300 feet each in length, with
shorter lines with hooks attached at 10-foot inter
vals (Carrothers 1941). The time constant is 3 yr,
and thus 12 yr are required for a deviation in
population to disappear, assuming no other dis
turbances act during that time.

If we now specify, by means of a "performance
index," that we wish to keep N near N eq while
minimizing the variation infrequired to do so, we
can design a regulatory procedure which will keep
the fishery near the maximum equilibrium yield
condition. The performance index J which
specifies this desire is the so-called quadratic
index:

00

dx a aq
- - - - x- - u.
dt 2 2b

(4)

J = S(Q:l,2 + Ru~ dt.
o

where P is the positive steady-state solution of the
so-called Riccati equation:

dP 1 (aq)2- = - aP - - =- p2 + Q
dt R 2b

The squared terms indicate that we make no dis
tinction between positive and negative deviations
from equilibrium. The positive constants Qand R
are the weighting factors which indicate the rela
tive importance placed on keeping N near N eq (x
near 0) versus keeping f near feq (u near 0). The
infinite upper limit indicates that we are interest
ed in long-term as well as short-term effects of our
fishing effort regulation.

The problem of determining the function u,
which minimizes the performance index, is solved
by the application of optimal control theory. Since
the system, Equation (4), is linear, and the index is
quadratic, the problem formulated above is
referred to as the Linear-Quadratic Optimal Con
trol Problem.

The solution for the control function is (see
Appendix):

(5)1I = - Kx

1 aqK= - - -P
R 2b

dx a
-= --.1'.
dt 2

where .«to) is the deviation at time to . Since the
time constant for this system is 21a, it will take
that amount of time for the deviation to decay by
63% and for four time constants to decay by 98%. If
the constant a is small, this time can be very large.
Also, by keeping the fishing effort constant, we
cannot take advantage of higher yields obtainable
when x(to)>0, and risk overexploiting when x(to)<O.
We will show that by making the fishing effort a
function of population level, we can change the
system's time constant and also avoid the above
difficulties.

For example, the results of Schaefer (1954) give
the following values for the Pacific halibut:

If the fishing effort is kept constan tat its
equilibrium value, then u = 0 and

This system is stable for all positive values of a,
which means that if disturbed from equilibrium,
the population will eventually return to it. The
solution is:

832



PALM: FISHERY REGULATION VIA CONTROL THEORY

with initial condition P(O) = O. The solution for P
is:

Thus P and K are functions of the weighting fac
tors Rand Q, which must be specified.

Note that this method yields three results: 1)
that the optimal control function for u is a linear
function of x (a linear feedback law); 2) the means
to calculate the feedback gain K, once Rand Q are
specified; and 3) that K is negative in this example
(we assume that a, b, and q are positive). The third
result indicates that the control law, Equation (5),
opportunely calls for an increase in fishing effort
when the population increases (x > 0), and con
servatively calls for a decrease in effort when the
population decreases (x <0).

In this simple single-variable case we can utilize
the first result and avoid specifying Rand Q by
substituting u from Equation (5) into Equation (4).
The result is:

~: = (~~ K - i) x.

The time constant for this system is:

To evaluate the effects of the above regulation
scheme under various conditions, the above
expression is substituted into Equation (1), which
can then be solved by computer for Nand f as
functions of time.

As an example with the previously mentioned
results of Schaefer (1954) for the Pacific halibut, a
maximum deviation in N of 5% from N eq was pos
tulated, and a maximum deviation infof 5% from
feq was specified. Thus:

N eq = a/2b = 1.098 X 108

.t~q = a/2q = 8.48 X 103

Xm = 0.05Neq
Urn = O.Oqfeq-

Using the second method for computing K, we
obtain:

0.05feq _
K = - -- = -0.772 X 10 4.

0.05Neq

From Equation (6) the new time constant is found
to be 1.5 yr, which is one-half the value for the case
without feedback control. The fishing effort found
from Equation (7) is:

a b ( a) bf = - + - N - - = -N = 0.772 X 10-4 N (8)
. 2qq 2b q .

u",
K=- 

xlI!

where: x'" = maximum magnitude expect'ed for x
u", = maximum magnitude specified for u.

Once K has been determined,! as a function of N
can be found by substituting x and u from Equa
tions (2) and (3) into Equation (5) to obtain:

Using this approach it is possible to choose K so as
to give a desired value of the time constant.

Alternately, K may be chosen by specifying the
magnitude of the deviation in fishing effort we
will allow in order to counteract an expected
deviation in population level. Written in terms of
magnitudes, Equation (5) becomes:

In view of the impossibility of continuously and
instantly measuring population size and varying
fishing effort, f as given by Equation (8) was in
terpreted as follows. It was assumed that a limit is
imposed on fishing effort at the beginning of each
year and held constant during that year, and its
value f is calculated from Equation (8), with N
being the average population over a yearly inter
val terminating three-tenths of a year before the
imposition of the new limit. That is, three-tenths
of a year is allowed for collecting and analyzing
the population data used to calculate the next
year's limit. With this discretized version of f,
computer simulation results show that the system
time constant is 1.8 yr, which is reasonably close to
the 1.5 yr predicted by the continuous model. Thus
it is possible to use the analysis based on the con
tinuous model in the realistic situation involving
data-collection limitations and limit-imposition
constraints.

THREE-VARIABLE EXAMPLE

(6)
1

T=-----
!!:.- _ qa K
2 2b

f = feq - K(N - N eq). (7) An advantage of the optimal control method is
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its ability to accommodate multivariable system
models such as multi species models; models
describing economic as well as biological
phenomena; and detailed population models in
corporating size, age, temperature, food supply,
etc. Once a three-variable example is presented,
generalization of the technique to models with
more than three variables is straightforward. The
following model of a single species population was
developed by Timin and Collier (1971) and contains
three state variables: N, the population density;
W, the mean biomass per organism; and E, the
food density. The model is given in dimensionless
form, and thus the values of the model variables
are relative to reference values. The system's
dynamics are described by the following equa
tions:

Static optimization can be used to determine the
maximum equilibrium yield condition. For feq =
0.005, the equilibrium values are: Neq = 0.16, E eq =
20.3, Weq = Wit = 0.8. Following' the procedures
outlined in the At,pendix (Equations (A-2) through
(A-4», Equations (9), (10), and (11) were linearized
around this equilibrium to obtain:

dXI
0.03 0 -0.56 -1

dt
XI

dX2
-5.73 -0.12 -0.81 0 u (12)

dt
Xz +

dX3 0.14 0.02 -2.02 0
dt

X3

dN
- = (b-d)N-/
dt

dEd1 = u - qN - (JE

(9)

(10)

b = 3.8W2 - 3.8W + 0.95
d = 0.19/(2W-l)
u=3

W%E
q = 1 + O.IE

(J = 0.1
g = 0.2
c = 0.05
Jl. = W-1h.

dW = gq _ (W +cW _ p.w _ (Wh - W)f (11)
dt N

where: t = time measured in a dimensionless unit
equal to the time required for the or
ganism to metabolize an amount of
food equal to its own dry weight
(usually between two and four weeks
for commercial fish species)

b, d = birth and death rates per individual
f = fishing rate
g = the ratio of the quantity (energy in

gested minus energy not assimilated,
minus energy expended to catch, in
gest and assimilate the ingested food)
to the amount of energy ingested

q= food ingestion rate per individual
c= coefficient of energy loss associated

with births
Jl. = metabolic heat loss coefficient
u = rate of food supply
(J = proportionality constant for the rate

of food leaving the system through
decay or flushing

W h = mean organism biomass of harvested
individuals.

Functional forms and parameters given as typical
by Timin and Collier are:

834

where: Xl = N - N eq

Xz = E-Eeq
x 3 = W - Weq

u =/ -feq'

The following performance index J describes our
desire to keep the system near the desired
equilibrium (Appendix, Equation (A-6»:

00

J= S(Qn·d+Qzzd+ Q33 X §+RuZ)dt. (13)
'0

Here the weighting matrix[Q] becomes:

Qn 0 0

[Q] = 0 Q22 0

and the matrix [R] becomes a scalar R. A sub
stantial difference between the single-variable and
multivariable cases is that in the latter case we can
no longer easily determine the feedback gains by
specifying the desired values of the time cons
tants. Instead, the gains are calculated by
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U = - [K]"r = 0.149x I + 0.00027x2 + 0.026xs. (14)

specifying the components of the weighting ma
trices. A common procedure for doing this is to
choose the components by the rule:

R = 1
Qll = Q33 = 0.1
Q22 = O.

CONCLUSION

[

-0.119 -0.00027 0.534]

[A] = -5.73 -0.12 -0.81

0.14 0.02 -2.02

The roots of Equation (A-5) are: s = -2.09, -0.096
+ 0.17j, where j = iT" The dominant time con
stant is the negative reciprocal of the least negative
real part, and here is equal to 110.096 = lOA time
units. In a similar way the dominant time constant
for the system without feedback is 45.5 time units.
Thus the feedback control given by Equation (15)
reduces the effects of disturbances in one-fourth
the time. These linearized results have been
verified by simulation of the original nonlinear
model. Other simulations are discussed by Palm
(1975).

Before concluding this example, we note from
Equation (15) that f is a function of all three
variables. This is due to the coupling between the
three equations. Also, although the choice of the
weighting factors is somewhat arbitrary, this
should not obscure the fact that the Linear
Quadratic Optimal Control Problem provides a
systematic method for determining the feedback
gain matrix [K]. A systematic approach is needed
because the number of components of [K] becomes
so large for multivariable problems that a trial
and-error approach is prohibitive. As long as [Q]
and [R] are chosen to be positive-definite, the
resulting [K] will stabilize the system. Various
choices of [Q] and [R] merely affect the time con
stants and form of response (oscillatory vs. non
oscillatory return to equilibrium). This is the main
advantage of this technique.

With this model the effects of mesh size regula
tion can be studied by using W" as an additional
control yariable. Also, the food supply rate C1 is
another possible control variable if the model is
used to analyze fish farming. The linear-quadratic
control technique could be used in both cases.

Substitution of u from Equation (14) into
Equation (12) gives the set of linearized equations
describing the behavior of the model under feed
back control. The matrix [A] to be used in Equa
tion (A-5) becomes1R=-

ul

1
= 1.6 X 104 = 0.1 -2-'

Um

1 1
-=--
Xfm xNm

Thus:

For this three-variable model, the symmetric Ric
cati matrix [P] has nine elements, three of which
are redundant. Computer solution of the six
coupled differential equations resulting from
Equation (A-9) and use of Equations (A-7) and
(A-8) yield the 'following feedback control func
tion:

Use of Equation (14) and the definitions of Xl> x2, X3,

and u gives the optimal fishing effort as a feed
back function of the system variables:

.f =feq + 0.149 (N - Neq)

+ 0.00027 (E - E eq )+ 0.026(W - W eq ).

Xlm = 5% deviation from N eq = 0.008
xSm = 1% deviation from Weq = 0.008
um = 50% deviation from!eq = 0.0025.

Assuming that the variation ,l'2 in the food density
is not of direct interest, we set Q22 = O. Since J
from Equation (13) depends only on the relative
magnitudes of the weighting factors, we can
choose these factors to be:

where xlmis the maximum desired magnitude of
the deviation Xl of the population N, and U m is the
maximum desired magnitude of the deviation u of
the fishing rate! The components Q22 and Qss are
chosen in a similar manner. Here we assume the
maxima are specified to be:

Substitution of the equilibrium values gives:

f = -0.045 + 0.149N + 0.00027E + 0.026W. (15)
In this introductory paper we have presented

only the deterministic case of the Linear-Quadrat-
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ic Optimal Control Problem. In order to set limits
on fishing effort which are functions of system
variables such as population density or mean or
ganism weight, it is necessary to measure these
variables. Any measurement process is stochastic
or noisy, and it is necessary to compensate for this
in the design of a feedback regulation scheme. In
many engineering applications this has been suc
cessfully accomplished by the use of the Kalman
Bucy filter (Athans 1971). In addition, it may be
impossible even to measure some variables. This
problem of incomplete information has been
frequently solved by the use of the Observer
Theory (Kwakernaak and Sivan 1972).

Also there will be uncertainties in the deter
mination of the model constants. In fact the "con
stants" may not be constants at all, but merely the
representation of several effects lumped together.
Thus there is also error in the model structure,
since the model constants are actually variables
dependent upon a variety of effects. For the
Schaefer model these effects would be interspecies
interactions, age structure, availability and
vulnerability of the age groups, and physical en
vironment influences on the biological processes.
Such difficulties are amenable to solution by add
ing a "noise" term to the model equations and by
modifying the linear-quadratic techniques to ac
commodate these stochastic effects (Athans 1971).
It should also be pointed out that compensation for
modeling errors is one of the purposes of feedback
control.

The change in model parameters with time can
be compensated for by regularly recomputing the
feedback gains as more data becomes available.
Finally, while no pretense is made of being able to
predict exact time paths, the methods described in
thIS paper should prove useful in providing
management guidelines. The effects of stochastic
processes and uncertainties can be handled in a
manageable way by computer simulation, and
prediction of the future course of the managed
fishery, in an average sense, can be made with
appropriate error bands placed on the predictions.
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APPENDIX

where g is a general n-dimensional vector func
tion, y-is the n-dimensional state vector for the
mode~ and/is the m-dimensional input or forcing
function ve-ctor. If this system has an equilibrium
(lieq,jeq, the following set of algebrais equations
must be satisfied:

The Linear-Quadratic Optimal Control Problem
and its solution are now outlined. For a thorough
discussion, see Ho and Bryson (1969) or'Kwaker
naak and Sivan (1972). By use of state variable
notation, any set of time-invariant ordinary
differential equations can be put into the follow
ing form:

The values of J!.eq and !~q depend on the system's
parameters, and static optimazation methods such
as calculus or linear programming can be applied
to find the optimal J!. eq, !eq and system parameters
according to some criterion. This was done in the
first example to determine the condition of
maximum equilibrium yield. Since any real system
is subjected to varying conditions and distur
bances, it will be continually displaced from
equilibrium. Thus for unstable systems or stable
systems with large time constants, a static method
of analysis is not sufficient. In such a case the next
step is to apply a dynamic optimization method,
such as the method presented here, to devise a
control scheme which ensures that the system will
return to equilibrium with a satisfactory time
constant. Thus static and dynamic methods should
not be viewed as alternative approaches to op
timization, but rather as mutually complementary
methods.

After the equilibrium is determined, Equation
(A-I) is linearized by expanding the function g in a
Taylor series in ,If and,l; and keeping only the
first-order terms. This giVes the linearized model:

(A-7)

(A-8)

(A-5)

(A-4)

(A-3)

.u.=-[J{],r.

/S[lJ-[A]I=o

[J{] = [R]-l[B]T[P]

[A] =[{~\ ]\3!J)eq

[B] =[(:~)eJ

The feedback "gain" matrix [K] is calculated from:

The feedback control function which minimizes J
has been shown to be:

[P(O)] = [0].

d[P] = [Q] + [A]T[P] + [P] [A]
dt

- [P] [B] [R]-l [B]T [P] (A-9)

00

J = S(,rT[Q],r + .u.T[R].u.)dt. (A-6)
o

with the initial condition:

where [lJ is the (n X n) identity matrix. The
equilibrium is stable if and only if all of the roots s
have negative real parts.

By finding the function Jl which minimizes the
following quadratic performance index, ,r and .u.
are kept near zero and thus the system is kept near
equilibrium.

where the Riccati matrix [Pl, an (nxn) symmet
ric matrix, is the steady-state solution of the Ric
cati matrix differential equation:

in which the subscript eq indicates that the partial
derivatives of g are evaluated at the equilibrium.
The stability of the equilibrium can be determined
from the roots of the determinant equation:

(A-I)'!.JL _ I
dt - fl (;},1)

d,f
d~ = [ALI. + [B] !L

where: J: = JL - J!.eq
Jl =.t -l~q

(A-2) The matrix [P] is usually found by numerically
solving the Riccati equation until all the com
ponents of the solution [P] become constant. This
will always occur.
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