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ABSTRACT

To estimate the parameters of the Pella-Tomlinson model, as restructured by Fletcher in this issue, we
suggest a derivative-free version of the Levenberg-Marquardt algorithm, along with an algorithm that
locates starting values for the iterative procedure. The iterative method of Levenberg-Marquardt was
applied to two versions of the restructured model: five parameters were estimated in the first version
and three in the second, the latter preventing degeneracy of the model to exponential form. We discuss
in particular the causes of the degeneracies associated with previous applications of the model. Such
faults lie, inherently, with the mathematical indeterminacy of the system equations themselves, so
that all nonlinear estimation methods will tend to be inefficient in the absence of external constraints.
The effectiveness of the Levenberg-Marquardt method was eva'\uated by Monte-Carlo simulation. As
examples, we analyzed catch-effort data from the yellowfin tuna fishery of the eastern Pacific and
catch-effort data from the Pacific halibut fishery (Area 2 of the International Pacific Halibut Commis­
sion).

Parameter estimation has been the greatest
source of difficulty in applying the generalized
stock-production model to management schemes,
and the problem has attracted considerable atten­
tion. Pella and Tomlinson (1969) fitted the model
to the catch-effort history of a fishery under
nonequilibrium conditions by means of a search
algorithm, and although good graphical fits are
generally obtained by that procedure, unreason­
able parameter estimates are frequently gener­
ated owing to the lack of internal constraints on
parameter values (see Ricker 1975, example 13.6).
Fox (1971) constructed a stochastic representation
of the generalized production model and employed
simulation to infer the effects of random variabil­
ity in catch data. Fox suggested that variation in
catch increases with the size of the catch (additive
proportional error) and he gave a new formulation
of the minimization criterion for the Pella­
Tomlinson procedure. Walter (1975) suggested a
graphical method for calculating the coefficients of
the Graham-Schaefer model. Walter's procedure
requires the plotting of catch per effort against
effort data and then correcting for disequilibrium
of the fishery. Fox (1975) also described a proce­
dure for fitting the Pella-Tomlinson model that
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requires equilibrium approximations. And finally,
Schnute (1977) derived linear and nonlinear
methods for finding estimates of the coefficients of
the Schaefer model; his method also includes a
way of measuring the uncertainty of the esti­
mates.

Fletcher (1978b) presented a reparametrization
of the generalized production model and explains
how the tendency to ill-determined parameter es­
timates arises from a conflict between variable
graph curvature and its coupling with the
coefficients of the system. In this paper, we take
advantage of that restructuring and examine the
use of a derivative-free version of the
Levenberg-Marquardt numerical optimization
algorithm, together with a Runge-Kutta differen­
tial equation solver, to estimate parameters in
Fletcher's differential form of the Pella-Tomlinson
model. Estimates of the variability in the
coefficients are also provided, and the complete
estimation procedure is analyzed by a Monte­
Carlo simulation. The estimation problem is
finally reformulated to prevent ill determination
of the parameters and degeneracy of the model to
exponential form.

MODEL AND NOTATION

As indicated by Fletcher (1975, 1978b), the
generalized production model can be generated by
the single differential equation
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(1)
DETERMINISTIC MODEL AND

STOCHASTIC REPLICATES

with the quantity y wholly a function of II in the
relationship

nn/n-l

-y = n-1 . (2)

The Pella-Tomlinson system has the five
parameters 111 ,B (Xl> II, q, and B o. The fifth parame­
ter, initial population size B o, is needed to specify
a particular solution ofEquation (1). By taking the
following arbitrary values for the parameters,

and at MSY the yield per unit of effort U MSY is
obtained by dividing m by fMSY'

where q is the catchability coefficient. Equations
(1) and (3) constitute a coupled system ofnonlinear
differential equations. The system, as it is formu­
lated in Equations (1) and (3), represents the
continuous-time model. In practice, though, for
each finite time interval T over which yield statis­
tics are integrated, fishing effort is usually as­
sumed to be constant. It follows thatf(t) must be a
step function that describes the effort as being
constant over each time interval T with abrupt
changes at the end of each period. Then the effort
required, over one time interval, to maintain
maximum productivity is given by

B(t), the solution ofB, represents the stock size at
time t, while Y(t), the solution ofY, represents the
cumulative catch of the stock. ParameterB x is the
maximum stock size of the unexploited popula­
tion, while m is the maximum productivity in the
productivity function or the maximum sustain­
able yield (MSY) in the complete exploitation
model. Exponent n controls the location of the
inflexion point in the latent productivity function
of the stock. Therefore, parameters B x' m, and n
are nonnegative. With this new formulation of the
system equations, the sign reversals of the
coefficients at the turning point n = 1 are now
automatic. Also the parameters are expressed in
more meaningful terms for the fishery scientist,
and some aspects of parameter estimation are
simplified thereby.

By presuming thatf(t) units of effort operate on
the population over time increment dt, the yield
rate is often put into the instantaneous form

TABLE I.-·Simulation of a logistic stock under exploitation (de­
terministic modell,

4.60 X 10-6

3.48 X 106
m 1.36 x 106

B~ 3.48 X 106

n = 1.80,

Time Catch
U .0

(yr) Catch Effort Effort

1 79,529 5,000 15.91
2 156,989 10,000 15.70
3 306,812 20,000 15.34
4 516,722 35,000 14.76
5 893,564 65,000 13.75
6 1,129,740 90,000 12.55
7 1,402,830 125,000 11.22
8 1,565,040 160,000 9.78
9 1,631,400 195,000 8.37

10 1,614,130 230,000 7.02
11 1,478,930 250,000 5.92
12 1,434,220 300,000 4.78
13 1,196,850 320,000 3.74
14 988,745 320,000 3.09
15 895,127 350,000 2.56
16 737,908 350,000 2.11
17 607,937 300,000 2.03
18 649,627 300,000 2.17
19 632,633 250,000 2.53
20 773.600 250,000 3.09

we constructed an example of a fishery over the
course of 20 yr with {( t) increasing within the first
10 yr and stabilizing thereafter (Table 1).

We also constructed 20 stochastic replicates of
the deterministic catch history. In all the stochas­
tic versions we assume additive proportional error
terms Ei (with i the annual index), consisting of20
sets of 20 values each of normally distributed,
independent random variables with expected
means ofzero and standard deviations (a) of 0.025,
0.050,0.075,0.100,0.125,0.150,0.175,0.200 (12
replicates), and 0.250. Although Fox (1975) takes
a similar approach, we recognize the fact that se­
rial correlation of errors is likely to exist in
natural data. As put by J. J. Pella in a personal
communication, "If yield is above average in one
year because the population is above average, it
will probably be above average in the following
year." But at this stage of the analysis, the explicit
consideration of serially correlated errors would
only complicate the estimation problem unneces-

(3)

(4)- -ym [n-1]--- --
qB~ n '

Y = q f(t) B(l)
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In terms of residuals (Y; - }ri)' this is equivalent
to

PARAMETER ESTIMATION
PROCEDURE

(11)

(10)
_ A_2

W. - Y. .
I I

A A ~ Ta-I Te. =8. - ~. 1
5

+ J. J. J. E..
J+I J J J J J J

ACCURACY OF RESULTS

where the Wi are statistical weights. That is, from
Equation (7),

In Equation (11), f3J is a positive constant, 15 the
identity matrix of order 5, Jj an r by five matrix
having elements aE;/(j0k (i = 1, ... , r; k = 1, ... ,
5), and Ej the vector of errors after) iterations. The
method combines the best festures of both the gra­
dient and the Taylor series methods and avoids
their most serious limitations (Conway et al.
1970). We employ a FORTRAN computer program
which incorporates a derivative-free version of the
Levenberg-Marquardt method (Brown and Den­
nis 1972), and we approximate the solution of the
model differential equations (1) and (3) by a fourth
order Runge-Kutta algorithm for numerical in­
tegration. The general structure of the program is
shown by the flow diagram of Figure 1. Since all
the parameters have to be positive, we also con­
strain the optimization by transforming each
component of e by its absolute value before
evaluating the model.

Ifs(e) were an analytic form, we would find eby
writing the normal equations

[a:~~)J = o.
Since S must be calculated via numerical
methods, we will instead consider See) as a con­
tinuous function that describes a hypersurface in a
five-dimensional parameter space; that space
must be' searched for the appropriate minimum
value of S( e). The iterative process of successive
approximations which we employ is an adaptation
of the Levenberg-Marquardt technique (Leven­
berg 1944; Marquardt 1963). Given some initial
estimate 8 0 , the method generates a sequence of
estimates ej from the inductive relation

(8)

(7)

(6)

8(8) = ~ e?
i I

Y. = Y. + Y. (3",
I I I

where Y; represents the observed yield over the
interval i. Then the error is described by the rela­
tionship

In its general form, the solution of the nonlinear
model described by Equation (3) can be written as

Y
i

= g(fl ,{2' ... ,fi ;8) i = 1,2, ... ,r (5)

where2 8 = [m,B~,n,q,Bo]T.

sarily; our immediate purposes are better served
by the simpler form of the Ei' We want to observe
the response of the estimation procedure to realis­
tic levels of stochastic error, but we also want to
avoid wrong interpretations in those cases where
parameter values might be ill determined because
of some inherent fault of the estimation procedure
itself and not because of some complication of the
error structure. Therefore, the stochastic repli­
cates, as well as the objective function of our esti­
mation procedure, are constructed on the assump­
tion of independence of errors. As we shall see in a
subsequent discussion, the following estimation
procedure is indeed robust with respect to that
assumption.

Least squares estimation of 8 by a vector e re­
quires minimization of the function

Quantity r represents the total number of observa­
tions over time, Ii the fishing effort during time
interval i, and -Vi the predicted yield (biomass or
number) over the interval i. Following Fox (1971),
we also consider an error term Ei proportional to
population size and equivalent in terms of yield to
the form

'The notation [... J indicates that a row vector or matrix IS

formed of the elements enclosed by brackets.

Since the solution to the least-squares estima­
tion problem is the result of a numerical search
along the S«(~) hypersurface, we do not generate
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FIGURE I.-Information flow diagram
for the computer program written to es­
timate the coefficients of the
generalized production model.
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an analytical form for the uncertainties in the
final values of the parameters (Bevington 1969),
By letting S(8) be the weighted residual sum of
squares for the final parameter estimates, how­
ever, the variance-covariance matrix of the esti­
mates (Bard 1974) can be approximated by

imation in the neighborhood ofe is appropriate. A
necessary and sufficient condition for the
F-distribution to be appropriate here is that dif­
ferences in true and estimated parameter values
are independent and approximately normally dis­
tributed with zero mean and equal variance.

(12)
DETERMINATION OF
STARTING VALUES

STEP 2. Find estimates of B (, 1 from the equa­
tion

In order to reduce the number of iterations re­
quired to minimize Equation (8), reasonably accu­
rate starting values should be employed. Starting
values can be calculated from a linearization and
simplification of the basic model.

STEP 1. By using Yl' Y 2 , .•• , Y,. andfl,(2""
t;, find an estimate ofq from the Delury technique.
Note that this procedure generally underesti­
mates q (see Ricker 1975), Correction for q will be
provided in step 4.

Some idea of the joint variability of the parame­
ters can be obtained by evaluating the ellipsoidal
confidence region, based on the assumption that
the linearized form has validity around (.) <Draper
and Smith 1966). The confidence region is then
given by

[0-8] JT J[o-e]T < 5;~~) F(5, r-5, I-a),

(13)

where F(5, r-5, I-a) is the standard tabulated
F-statistic. The ellipsoid is not a true confidence
region, of course, since the dependent variable, Y,
is a nonlinear function of () The intervals ob­
tained are valid to the extent that a linear approx-
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where (by assuming fl,t+1 constant over the inter­
val t,t +1)

mates ofm andB 'X;' Finally,Bo is approximated by

B t ,t+1 = Yt ,t+1/q ft,t+1' (15)

Note that Yt,t+l and ft,t+] correspond to Yi and f, of
Equations (6) and(5l.

(20)

Steps 1 through 5 provide a set ofstarting values
for the optimization algorithm (11). Usually the
starting values are near the solution and few iter­
ations will be needed. Of course, it would be possi­
ble to derive algorithms for more accurate starting
values, but our purpose here is to find a rough
estimate for each coefficient and to let the iterative
procedure (11) converge to the minimum. Some­
times, by experience or by prior information, it is
possible \;0 provide starting values as satisfactory
as those provided by the algorithm given above.

whereB 1 andBo.I are estimated by Equations (14)
and (15), respectively,

(16)

x = B"-1
t t'

Yt = 0'0 + 0'1 Xt'

dB
t

-- + qft •
B

t
dt

where Y
t

STEP 3. Let n = 2, as in the Graham-Schaefer
model, and estimate m andB'X; by fitting the linear
model

Rt t+2 = (In Bt+2 -In Bt ) /2. (17)

~or the purpose of fitting Equation (16), quantity
R t,t+2 may be considered an estimate of R t+I.,
which corresponds to B t + l • Whence. Equation
(16) provides estimates of m and B x as

Equation (16) is derived from Equations (1) and
(3). However, Equation (16) requires an estimate
of the relative growth rate dBtfBtdt, say R t . As
suggested by Causton (1969), the mean value ofR
between t and t +2 is gi ven by

MONTE-CARLO SIMULAnONS

The parameter values that we chose to generate
the data of Table 1 (deterministic model) were
recovered exactly by the estimation procedure.
Results of fitting 18 stochastic versions of the de­
terministic model are also included in Table 2.
Based on our simulation results, there do not ap­
pear to be any serious problems with bias of
parameter estimates. The bottom line of Table 2,
which gives the coefficients of variation of the
parameter estimates, reveals that esti mates of the
three parameters of principal interest to the man­
ager have the smallest variability. Those
parameters are maximum sustainable yield l Ill,

C.V, = 14(;(), optimal effort level(/MSY' C.V. = 67r),
and yield per unit of effort at optimum effort
lU MSY ' C.V. = 9ckl. Our results confirm the ob­
servations of Fox (1971) and Pella and Tomlinson
(1969) on the robustness of m and lMSY with re­
spect to error in the measurement of the yield
data. From Table 2, we can also compare variance
estimates from Equation (12) with variance of es­
timates for 10 replicates at (T = 0.200. Equation
(12) appears to give (approximately) unbiased es­
timates of the variance of the sampling distribu­
tion of (). Also, out of the 19 cases considered, the
true parameter value lay outside the arbitrary ±2
(sm confidence interval twice foniz and only once
each forB x' 11, andBn. Although we did not employ
an extensive Monte-Carlo simulation, our results
suggest that the normal approximation to the
sampling distribution of () is an acceptable ap­
proximation, at least [or management purposes.

(18)

(19)

'Y
m

STEP 5. Step 3 is repeated iteratively for in­
creasing values of n, parameter q being kept con­
stant. The value ofn which provides the minimum
residual sum of squares l~ (Y; - Y;)2] is accepted

as the appropriate startin~value for 11. In the last
iteration, Equations (18) and (19) provide esti-

STEP 4. Steps 2 and 3 are repeated iteratively
for increasing values of q. The value of q which
provides the minimum residual sum of squares

II (Yi - Y, )2] is accepted as the appropriate start-,
ing value for q.
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In a few additional simulations (replicates 13
and 15), parameters obtained by the five-para­
meter procedure were ill determined. A parameter
is considered ill determined if its estimated
value responds unreasonably to seemingly insig­
nificant variations in the data (Bard 1974). The
basic difficulty is that the model is extremely gen­
eral and capable of several types of behavior over
the space of e. In the Pella-Tomlinson system,
ill determination often occurs whenever an itera­
tion of the algorithm (11) gives an estimate of e
such that the point (m, fMSY) of the yield-effort
plane lies outside the concentration of data. In
such a circumstance the exponent ntakes on small­
er and smaller values in the successive iterations
and the solution of system (1) and (3) degenerates
to an exponential form for which only four
parameters are required for uniqueness. That is,
as n -... 0, in Equation (1), then (BIB x)" -... 1 and y
-... - 1 . The five-parameter procedure then over­
prescribes the system, which in turn predisposes
the coefficient estimates to extremely large var­
iances. The ultimate irony here is the fact that
wholly unrealistic parameter estimates still gen­
erate good fits to the catch-effort history (i.e. small
residuals). For example, in Figure 2 the fitted
five-parameter curve predicts fMSY near infinity
while in the true model fMSY actually corre­
sponds to 174,000 units of effort. However dif­
ferent the equilibrium curves are, the five­
parameter procedure still generates a good fit to
the catch history (S(O) = 1.10). Incompleteness of
information over a wide range of effort values, as

well as excessive noise in the catch-effort data,
will tend to bring about such pathological condi­
tions.

To overcome these difficulties, reformulation of
the estimation problem is necessary. By the fol­
lowing considerations, the five-dimensional
parameter space can be reduced to three dimen­
sions. First, we will approximate Bo by Equation
(20). Furthermore, if the data contain information
on the yields under low exploitation, we may
define B x as

B= = MAX(YJq f) i = 1, ... , r. (21)

By using Equations (20) and (21),B o andB x can be
deleted from e, leaving only Ill, q, and n as the
independent parameters requiring estimation. It
is important to understand at this point that Bo
and B x are not fixed; they are reevaluated by
Equations (20) and (21) at each iteration, along
with the parameters Ill, q, and n. In fact, the solu­
tion of Equations (1) and (3), as well as Equations
(20) and (21), specify a new model with unknowns
e =[m, q, nJT. By this restructuring, much ofthe
degeneracy associated with the model can be
eliminated. As shown in Figure 2, this procedure
also provides a closer correspondence between the
"estimated" and the "true" equilibrium model.
Furthermore, the three-parameter procedure still
generates an adequate nonequilibrium catch his­
tory (S(8) = 1.40). In a Monte-Carlo simulation
study, parameter estimates obtained by using
these transformations fell within reasonable
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FIGURE 2.-Comparison of the "true"
model with the models obtained by
using the estimation procedure on three
and five parameters respectively. Solid
lines show equilibrium yield curves;
data points show nonequilibrium simu­
lated (dots) yields and predicted (circles)
yield values from the three-parameter
approach. Dashed vertical lines indi­
cate the magnitude of residuals.
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bounds (Table 3). Out of the 20 cases considered,
the true parameter value lay outside the arbitrary
±2 (8D) confidence interval only once for n'i and ii.

Also, variance estimates were comparable with
the variance estimates of the five-parameter pro­
cedure (compare Tables 2 and 3),

TABLE 2.-Estimated parameters for the deterministic model and for 18 stochastic replicates. The

Levenberg-Marquardt algorithm is employed in a five-dimensional parameter space (m ,B "" n, q ,Bol. For each
parameter and replicate, the parameter estimate ± its estimated standard deviation from Equation (12) are

tabulated. Replicates 13 and 15 have been excluded due to degeneracy of the model, as discussed in the text.

Repll· m Bx q Bo fM,SY

cale (j-' (1O') (1O') n (10-6) (1O') (10') UMSY

1 0.000 0.000 1.34:00.00 3.49:00.00 1.80:00.00 4.60:00.00 3.48:00.00 1.74 7.70
2 0.025 0.014 1.34:00.01 3.56:00.10 1.79:00.03 4.54:00.12 3.44 :00.12 1.72 7.75
3 0.050 0.046 1.37:00.04 3.34:00.32 1.88:00.10 4.80:00.42 3.24 :00.41 1.76 7.82
4 0.075 0.071 1.49:00.06 2.78:00.36 2.14:00.15 5.68:00.67 2.89:00.63 1.84 8.10
5 0.100 0.111 1.41 :00.09 2.62:00.50 2.36:00.28 5.28:00.92 2.86:0099 1.91 7.36
6 0.125 0.096 1.36:00.09 3.34 :00.62 1.81 :00.19 4.96:00.87 3.84:00.95 1.72 7.95
7 0150 0.109 1.55:00.10 2.94:00.59 2.33:00.27 5.23:00.96 5.97:02.60 1.90 8.15
8 0.175 0.159 1.26:00.17 3.92:01.37 1.61 :00.35 4.26:0 1.41 4.13:01.74 1.64 7.66
9 0.200 0189 1.15:00.24 5.16:02.25 1.56:00.49 2.90:01.36 7.75:03.53 169 6.79

10 0.200 0.216 1.75:00.16 1.90:00.53 2.61 :00.47 8.34:02.02 0.85:00.66 2.00 8.73
11 0.200 0.159 1.19:00.12 2.91 :00.84 1.71 :00.28 5.10:0 1.45 4.89':01.93 1.71 6.97
12 0.200 0.211 1.50:00.23 3.63:01.57 2.06:00.55 4.59:!:1.79 3.08:01.85 1.78 8.41
14 0.200 0.136 1.24 :00.17 4.33:01.55 1.52:00.39 3.85:01.24 3.47:01.43 1.67 7.46
16 0.200 0.187 1.46:00.14 2.45:00.77 2.03:00.38 6.40:0 1.87 4.34:02.85 1.85 7.88
17 0.200 0.261 1.62:00.20 2.33:00.94 2.28:00.51 7.08:02.55 2.24:02.05 1.87 8.66
18 0.200 0.113 1.37:00.12 3.88:00.91 1.94 :00.26 4.10:00.92 5.68:0 1.59 173 7.88
19 0.200 0.185 1.24:00.24 4.50:02.19 1.86:00.57 3.27:01.53 5.32:02.61 1.73 7.15
20 0.200 0.185 1.48:00.16 2.94:01.04 1.98:00.42 5.46:01.77 2.03:01.15 1.85 7.99
21 0.250 0.269 1.38:00.31 4.04 :02.46 1.38:00.54 5.25 :02.86 2.89:02.25 1.52 9.08

Mean2 1.40:00.18 3.40:01.38 1.96:00.44 5.11 :01.71 3.97:02.12 1.79 7.79
SD' 020 1.06 033 1.74 2.04 0.10 0.69
Coeff. of var. 14% 31% 17~o 34% 51~/o 6~o 9%

1(T S(IW(r-5)
'For 10 replicates with <T ~ 0.200.
JOveral1 standard deviation of parameter estimates for 10 replicates with <T 0200.

TABLE 3.-Estimated parameters for 20 stochastic replicates of the deterministic

model. The Levenberg-Marquardt algorithm is employed here in a three·
dimensional parameter space (m, q, n). For each parameter and replicate, the

parameter estimate ± its estimated standard deviation from Equation (12) are
tabulated.

Repli· ., m q fMSY uMSYcate <T (10') (10") (105)

2 0.025 0017 1.35:00.02 462±0.15 1.86±0.03 1.75 7.68
3 0.050 0.045 1.38:00.04 4.86:00.40 1.92:00.08 1.78 7.77
4 0.075 0.081 1.46±0.07 5.31 ±0.74 1.89±0.12 1.73 8.45
5 0.100 0.106 1.40±0.08 5.17±0.86 2.24±0.18 1.87 7.47
6 0.125 0.094 1.35±0.09 4.86:00.85 1.69±0.15 1.66 8.15
7 0.150 0.152 1.48:00.18 4.58±1.34 1.67:00.26 1.63 9.06
8 0.175 0.169 1.25±0.16 4.36:0 1.26 1.33±023 1.49 8.42
9 0.200 0.212 1.19±0.32 3.61 ±1.96 1.20±0.49 1.51 7.87

10 0.200 0228 1.72±0.17 7.18:01.92 1.98±0.25 175 9.78
11 0.200 0.188 1.17±0.18 5.14±2.01 1.27:00.28 1.48 7.88
12 0.200 0.203 1.44±0.22 4.17±1.48 1.74±0.34 1.66 8.68
13 0.200 0.216 1.39±0.18 3.47±1.06 1.70±0.31 1.66 8.38
14 0.200 0.140 1.06:00.23 2.94:01.18 1.05±0.41 1.53 6.97
15 0.200 0.287 1.19:00.19 4.10±1.50 1.37±0.29 1.48 8.08
16 0.200 0.198 1.42±0.17 5.99±2.07 1.56:00.26 1.64 8.64
17 0.200 0.251 1.60:00.21 6.54±2.38 1.99:00.32 1.74 9.17
18 0.200 0.140 1.31 :00.19 3.87±1.22 1.49:00.27 1.53 8.58
19 0.200 0.194 1.24±0.25 3.67=': 1.72 1.51 ±0.41 1.60 7.74
20 0.200 0.176 1.46±0.15 5.27±1.63 1.88:00.29 1.82 8.05
21 0.250 0.254 1.38±0.28 5.24±2.65 1.39:00.39 1.53 9.04

Mean2 1.35±0.21 4.66:01.72 1.56±0.33 1.62 8.32
SD' 0.19 1.34 0.31 0.11 0.73
Coell. of var. 14%l 29% 20% 7% gOlo

liT S «(l)/(r·3).
2For 12 replicates with fT =, 0.200.
'Overall standard deViation ot parameter estimates for 12 replicates with <T ~ 0.200.
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CASE STUDIES

We applied the three-parameter method to the
catch-effort data of the yellowfin tuna fishery of
the eastern tropical Pacific, 1934 through 1967
[the same data that were analyzed by Pella and
Tomlinson (1969) and by Fox (1971)]. Table 4 gives
a comparison of results, and our final equilibrium
model is shown by Figure 3. As indicated by Table
4, the parameter estimates of the Levenberg­
Marquardt method are comparable with the esti­
mates that Fox obtained with his search al­
gorithm. Pella and Tomlinson also employed a
searching algorithm but their minimization
criterion was an unweighted least-squares func­
tion. Our standard deviation estimate is very
small for ,h(MSY) but relatively large for 13 x' n, ii,
and 130 , which is a consequence of insufficient in­
formation in the yellowfin tuna data on yield at
high fishing rates. With such limited information,
one can anticipate that neither the shape nor the
location of the descending portion of the equilib­
rium curve (dashed in Figure 3) could be deter­
mined with much accuracy, and the large variance
estimates on the system coefficients reflect this
situation. Of course, the variance estimates for
fMSY and VMSY can always be calculated by the
delta method, and to avoid the complex deriva-
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tions that accompany the presence of covariance
terms, an alternative would be to define a new
parameter space so as to estimate fMSY or U MSY

directly. The variance-covariance matrix for the
coefficients would then provide the desired infor­
mation on the variability of those parameters.

Our final example is based on the data from the
Pacific halibut fishery in International Pacific
Halibut Commission Area 2, as given in Ricker
(1975, table 13.1). To analyze these data, Ricker
derived an estimate of q from the age composition
of the catch. Then he obtained parameter esti­
mates for a Graham-Schaefer model by regressing
YEIB against Band YElf against f (Ricker 1975,
examples 13.5 and 13.6). In both cases, Ricker
employed GM and Nair-Bartlett regression. The
results Ricker obtained by fitting the Graham­
Schaefer model were compared with the results we
obtained from fitting the generalized stock pro­
duction model by our three-parameter version of
the Levenberg-Marquardt method (Table 5). The
latter provided estimates of m, q, and n with rela­
tively small variance estimates. Furthermore, the
estimate of n appears to be significantly different
from 2.00, which validates the use of the Pella­
Tomlinson model. Nevertheless, estimates of m
are not significantly affected by the choice of the
wrong model, while estimates of fMSY are slightly

TABLE 4.-Comparison ofparameter estimates obtained by Pella and Tomlinson (969), by Fox (971) and by the
Levenberg-Marquardt algorithm for the yellowfin tuna in eastern Pacific Ocean. Values that follow the ± signs
are the standard-deviation estimates for each parameter.

S:£. q 80 m
Reference p (lOB) n (10'5) (lOB) (lOB) 'MSY U MSY Residuals

Pella and Tomlinson (1969,
table 5) 1.40 45.0 1.826 35,300 5,173 1.78 x 10"

Fox (1971, table 4) 1.427 2.10 8.10 1.206 1.926 32,700 5,890 0.736
Levenberg-Marquardt 1.448 2.08 8.01 1.192 1924 32,700 5,884 0.735

algorithm ~0.890 ±0.75 ±4.9 ±1.24 ±0.90
Levenberg-Marquardt

algorithm 0.27 1.274 230 9.08 1.079 1.962 32,170 6,097 0.641
(correlated error) ±0.25 ±0653 ±0.55 ;A.7 ±0.553 ±0.106

TABLE 5.-Comparison between the estimates of Ricker (19751 for the Pacific halibut (interna­
tional Pacific Halibut Commission Area 2) and those obtained by the Levenberg-Marquardt
algorithm. Values that follow the ± signs are the standard-deviation estimates for each
parameter.

Levenberg-Marquardt algorithm 0.33
(correlated error) ±0.16

Reference

Ricker (1975. example 13.5)
GM regression
Nair-Bartlett regression

Ricker (1975. example 13.6)
GM regression
Nair-Bartlett regression

Levenberg-Marquardt algonthm

p
8, q m

110') n (10") (10') 'MSY U MSY

204 2.00 9.07 31.2 3.37 92.6
195 200 9.07 310 350 88.6

256 2.00 9.07 33.0 284 116.2
239 2.00 9.07 31.8 294 108.2
187 1.28 14.45 31.6 283 111.7
±18 ±0.09 ±1.36 ±0.83
188 1.28 14.33 31.8 2.84 112.0
±22 ±0.12 ±1.67 ±1.0
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FIGURE 3.-Equilibrium stock produc­
tion model for yellowfin tuna data, from
1934 through 1967, as determined by
the Levenberg-Marquardt algorithm.
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overestimated in most applications of the
Graham-Schaefer model (note also that Ricker's
treatment assumes equilibrium). In contrast to
the yellowfin tuna data, analysis of the equilib­
rium model for halibut data indicates that fishing
effort has been concentrated slightly to the right of
fMSY (compare Figures 3 and 4).

In the preceding case studies, the Levenberg­
Marquardt algorithm gave estimates with rela­
tively small coefficients ofvariation. In both cases,

FIGURE 4.-Equilibrium stock produc­
tion models for Pacific halibut (Interna­
tional Pacific Halibit Commission Area
2), from 1910 through 1957, as deter­
mined by Ricker (1975, examples 13.5
and 13.6, Nair-Bartlett regressions)
and by the Levenberg-Marquardt al­
gorithm (three-parameter version).
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e.g., the coefficients of variation for the estimates
of maximum sustainable yield (Til) were below 6%.
It is questionable, however, whether the data can
justify such precision. Variability of the exploited
population due to migration, to changes in fishery
regulations over time, and to expansion of the
fishing areas, as well as variability of q due to
learning by fishermen and to technological de­
velopments, are important factors underlying the
complexity of events influencing the serial catch­
effort information. In future research, alternative
forms of the model in which q is a variable
parameterized with respect to time will be
explored. Furthermore, in a randomly fluctuating
environment, equilibrium population levels (and
MSY, by extension) are not constant and the
equilibrium points are instead described by a
probabilistic cloud representing the equilibrium
probability distribution (May 1974). The knowl­
edge of this equilibrium probability distribution
would give us some idea of the probability of
achieving the desired management goal (MSY, for
instance).

w

Parameter p, constrained between 0 and 1, is a
measure of the importance oflags and can be esti­
mated along with the parameters of the differen­
tial equations (1) and (3). It can be seen that Equa­
tion (9) is a particular case of Equation (22), where
the off-diagonal elements of Ware null.

The Levenberg-Marquardt algorithm, as formu­
lated in Equation (11), is designed to minimize
directly a sum of squares of residuals as given by
Equation (9). In order to minimize Equation (22)
by using Equation (11), we must scale W by the
transformation

where D is a diagonal matrix having elements D ii
= Yi (i = L ... ,r), and write Was

8(8,p)

= [Y - Y] D-I U A-I UT n-I [Y - Y]T. (25)

where U AUT is the eigenvalue and eigenvector
decomposition ofX. Note that X is actually the
correlation matrix of errors. Therefore Equation
(22) becomes

(24)

(23)

W = D U A UT D,

x = D-I W D-I ,

Then Equation (25) has the same form as Equation
(9), where the weights (Wi) are the square roots of
the eigenvalues of X and where the residuals are
given by [Y-YjD -1 U. Such a procedure requires,
however, diagnoalization of an r by r matrix.
Moreover, diagonalization must be repeated at
least p times for each iteration. This procedure
produces a 10-fold increase in computing time.

Although an exhaustive study of all possible
stochastic effects on the model was not attempted,
some simulations were done to determine the
magnitude of error in parameter estimates due to
serial correlations of the Ei' Results are given on
Tables 4 and 5. For the yellowfin tuna data, jJ =

where Y is the row vector of observed yields, Y is
the row vector of predicted yields, and W is the
symmetric, positive definite matrix

DISCUSSION ON
ERROR STRUCTURE

In the preceding examples, we found runs in the
time sequence plot of residuals. Those runs indi­
cate correlations among the residuals. Serial cor­
relation, as we usually find in applying production
models to catch data, indicates that the real sys­
tem is working differently than the presupposed
model and that some minor effects have been neg­
lected (such as age composition or environmental
factors). But as indicated by Draper and Smith
(1966), the effects of correlation can be ignored
when the ratio (r - p )/r tends to unity (p being the
number of estimated parameters). In certain situ­
ations, of course, this ratio is likely to become
small (tending to zero as r approaches p) and we
may want to consider weights (Wi) which account
for both the inequality ofvariance and the correla­
tions. In our estimation procedure, the assumption
of uncorrelated error can be relaxed by writing
Equation (9) in the more general form (J. J. Pella,
pers. commun.)
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0.27. For the Pacific halibut data, p = 0.33. In
either case, pexhibits a relatively large coefficient
of variation when compared with the elements of
8. One could anticipate such results since p
reflects the "persistence" of fluctuations in popula­
tion size, and the estimation of p would therefore
require a longer catch history in order to achieve a
greater precision. But more importantly, the val­
ues of 8 and Var[8] were not significantly altered
by the inclusion of the additional parameter. And
while the errors of any particular catch history
might indeed by correlated, the minimization
criterion (9) will provide satisfactory estimates of
e despite the fact that correlations do not enter
into its formulation. The limited results contained
herein suggest that serial correlation can be safely
ignored when the ratio (r - p)/r is near unity.
Under such a condition the estimation procedure
is robust with respect to the assumption of inde­
pendence of errors in actual data.

CONCLUSION

The purpose of this paper has been to examine a
version of the Levenberg-Marquardt algorithm as
an alternative method for estimating the
coefficients of the generalized stock production
model. The parameter values obtained by this pro­
cedure are close to those obtained by previous
studies on yellowfin tuna and Pacific halibut. Ob­
viously, data requirements are such that a full
range of effort values (ranging over low and high
exploitation rates) are necessary to insure con­
vergence in the estimation procedure and to pro­
duce estimates with small variability. Our simu­
lations reveal that with the Levenberg-Marquardt
method both the estimates of coefficients and the
estimates of variances remain approximately un­
biased when white noise is considered. Ifpresent,
such bias is sufficiently small as to be obscured in
the variability associated with catch error. The
simulations also showed the range ofvariability in
parameter estimates that might be expected for
given levels of normally distributed error in catch
data.

Because the parameters of interest appear
explicitly in the system equations, the estimation
procedure for the parameters also produces the
variance estimates directly. Moreover, the method
has a reliability and an efficiency of computation
somewhat greater than previous methods. And
since the estimation procedure relies on a numeri­
cally integrated system of differential equations,

modifications of the model to incorporate such
hypothetical effects as migration or stock interac­
tions can be made easily. Of course, to the extent
that the estimation procedure must rely strictly on
catch-effort data, it will be subject to the same
information uncertainties as any other method.
But within the basic estimation procedure, we can
combine the catch-effort data with prior informa­
tion and thereby reduce the uncertainties in our
estimates. The prior information can be any in­
formation on a state variable, such as B( t), or even
any prior knowledge of the coefficients as express­
ed by () ::+: Var(~). Suppose, for example, that we
have information from independent surveys on
stock density (acoustic surveys, indirect estima­
tion from knowledge of larval densities, or even
virtual.population analysis from catch records).
Such surveys would then provide us with esti­
matesEt each having a variance V(Et ), let us say,
at various times t. We can easily introduce such
information into the estimation procedure by
defining the new objective function

8(8) = ~ w.(Y. - Y.)2 + L V
B

- 1 (B. - B.)2. (26)
i II I j j J J

Introduction of the second term in the objective
function constrains the optimization and thereby
improves convergence. If the prior information
has extremely large variance, then this informa­
tion is ofno value; the second term ofEquation (26)
will tend to zero and the objective function then
reduces to Equation (9). In general, the alteration
permits the simultaneous employment of the two
state variables. Therefore, the final coefficients
are no longer based solely on catch and effort data;
their determination includes our knowledge of
previous stock densities.

As observed here in a statistical setting, and
by Fletcher (l978a, b) in the exact analysis,
the Pella-Tomlinson system exhibits internal in­
stability in its parametric relationships. That
behavior arises from the variable nature of the
system's nonlinearity, which would not be particu­
larly detrimental if our problems were limited
strictly to the geometric syntheses ofdata by curve
fitting. But for the purposes of management and
preservation of stocks, the subject is elevated
partly at least to the status of parameter estima­
tion "where we look for procedures to obtain val­
ues of the parameters that not only fit the data
well, but also come on the average fairly close to
the true value" (Bard 1974). Although the Pella-
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Tomlinson system exhibits a convenient flexibil­
ity with a minimum number of coefficients, the
peculiar coupling of the coefficients to the non­
linearity of the system often provides more flexi­
bility than we care to have, and a conventional
least-squares statistic may not be sufficient to con­
trol the system in the estimation procedure. In
consequence, many constraints have to be imposed
on the system in order to obtain convergence in the
estimation procedure and to insure reliability in
the coefficient values thus estimated.
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