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ABSTRACT

Stocks offish can occur in mixtures, and knowledgp o!'the composition ofsuch a mixture may be needed.
An estimate of the proportion of the mixture arising from each stock potentially present as well as a
measure of the precision of this estimate may suffice. To develop these estimators, we posit that the
d istri butions of characters of individuals differ among the stocks and that rules have been developed by
others with which some success in stock identification of individuals can be had. We require test
samples of individuals from each stock included in the mixture with which to evaluate the rules; these
samples must be other than the learning samples used to develop the rules. The rules are also applied to
a sample from the mixture. Using the numbers Of individuals in each test sample and sample of the
mixture which are assigned to each stock, we can estimate the composition of the mixture and the
precision of this estimation.

Approximations based on large samples underlie the estimation. Numerical studies provide some
idea of the sample sizes required for the approximations to be satisfactory as well as of the behavior of
the estimators as related to performance of rules and sample sizes.

We note that the roles of the learning and test samples from the segregated stocks may be inter­
changed, allowing a repetition of the procedure.

Stocks of fish frequently occur in mixtures. When
these stocks are ofthe same species at the same life
stage, the stock identity of an individual may be
difficult or impossible to ascertain. Yet if the dis­
tributions of characters of individuals differ
among stocks, some success may be had in iden­
tification of individuals in a mixture by use of
discriminant analysis (e.g., Hill 1959; Fukuhara
et al. 1962; Anas and Murai 1969; Parsons 1972;
Cook and Lord 1978) or more simply by a verbal
key (Konovalov 1975). In most important applica­
tions the correct identification of individuals is not
ofdirect value. Rather the accurate determination
of the proportions of the mixture belonging to each
stock is desired.

Critical to accurate assessment of composition
of a mixture are the rules of assignment of indi­
viduals to stocks. The rules applied to a vector of
measurements on an individual assign the indi­
vidual to one stock of those possible. Among rules,
those with lowest error rates of assignments pro­
vide the most accurate assessments, of course. If
individuals of known stocks, either those used in
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developing the rules or new individuals, are as­
signed to stocks using the rules, a measure oferror
rates is provided. Although some sense of the ac­
curacy of the rules is obtained, this does not pro­
vide a satisfactory evaluation of possible errors in
estimates ofstock proportions from new mixtures.

Worlund and Fredin (1962) began to attack this
problem. They developed an estimation procedure
for stock proportions in a mixture of an arbitrary
number of stocks. Further, under restrictive as­
sumptions concerning knowledge of the accuracy
of assignments, Worlund and Fredin developed an
approximate variance expression for the esti­
mates of stock proportions in the mixture when
only two stocks composed the mixture. We extend
their approach now, developing methodology to
estimate stock proportions in mixtures of an arbi­
trary number of stocks as well as the variances of
such estimates under less restrictive conditions.

BACKGROUND SITUATION AND
SAMPLING THEORY

We assume K stocks are known to potentially
occur in the mixture. Random samples of indi­
viduals are taken from each stock at a time when
the stocks are completely segregated; these may
be taken before or after the mixing. A random
sample of individuals from the mixture is also
taken.
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Because the probabilities cPkj are usually un·
known, we estimate them from T k by the well­
known maximum likelihood estimator

The sample from a stock at time ofsegregation is
partitioned into two subsamples, called the learn­
ing and test samples after Cook and Lord (1978).
Learning samples from the K stocks are used to
develop rules of assignment; the assumptions and
methods used are arbitrary for our purpose. The
realism of the assumptions forming the basis of
the rules is not critical; performance of the rules
and some knowledge of this performance is impor­
tant. Performance of the rules is determined by
their application to the test samples. The rules are
also applied to the sample of the mixture. Using
the numbers assigned to each of the stocks by
application of rules to the test samples from the
segregated stocks and the sample from the mix­
ture, we can estimate the composition of the mix­
ture and the precision of this estimation.

A caveat concerning situations in which the
methodology is not appropriate is needed before
we begin. What follows presumes the individuals
of a stock in both the test sample and mixture
sample are drawn from a common distribution of
characters used in the rules. When the condition is
violated, performance of the rules would differ im­
permissibly between test samples and that of the
mixture. We must avoid characters on which a
selection process occurs between the mixture and
the separate stocks.

Test Sample Theory and Analysis

Once particular rules have been established
from the learning samples (e.g., using discrimi­
nant analysis), individuals forming each stock in
effect have been partitioned into K mutuallyex­
clusive groups corresponding to those assigned by
the rules to one of each of the K stocks. We define
cPkj to be the proportion of the individuals compris­
ing the kth stock which is assigned by the rules to
the jth stock. Also we let tkj be the number of
individuals in the test sample from stock k as­
signed by the rules to stockj, and let T'k = (tkI , tk2 ,
... , tkJ{)' Assuming the number of individuals in
the test and learning samples is small as compared
with the number of individuals composing the
stock, the probability of the occurrence of vector
Tkis, to a good approximation, given by the mul·
tinomial probability function, i.e.,3

3The dot notation implies summation over the subscript. Thus,
t
k

= 2 .K t . is the size of the test sample from the k th stock.
. J~ 1 /1}

Test samples from different stocks are statistically
independent and covariance between elements of
<1\ and <Ilk' are zero for k f k'.

Mixed Sample Theory and Analysis

The mixture of stocks at the time of sampling is
comprised of possibly as many as K stocks. Ignor­
ing for the moment the actual stock composition of
the mixture, our rules established from the learn­
ingsamples partition the mixture intoK mutually
exclusive groups again corresponding to the K
stocks to which individuals are assigned. We
define Aj to be the proportion of the individuals
composing the entire mixture which would be as­
signed to thejth stock by the rules. Also we let In

be the actual number offish in the sample from th~
mixture which are assigned to stock}. If the size of
the sample from the mixture is small compared
with the number of fish composing the mixture,
the probability of observing the vector M' = (In I'

1n2, ... , inK) is given by the multinomial
probability function, i.e.,
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P(M)
previously defined probabilities by the equation
system

111 K

AK (4)
K

Aj = \' OIl<Pllj,
I, =.1

We can estimate the probabilities Aj from M by
the maximum likelihood estimator

j = 1,2, ... , K. (7)

corresponding to the parameter vector A' = (AI' '1..2'

... , AK ). A is unbiased and has the variance­
covariance matrix

The term, 0kcPkj, represents the probability a ran­
domly sampled individual from the mixture is of
stock k and assigned to stock); summing over the
K stocks gives the total probability the individual
is assigned to stock). This basic set of relation­
ships can be expressed in matrix notation,

i\ = eI)'O

ESTIMATION OF STOCK
COMPOSITION OF MIXTURE

~A =

A1(l-Ad A1A2 A1AK
---

m m m

A2A1 A2(I-A2 ) A2AK
--- --- (6)m m m

AK(I-AK)

m

where eI)

(8)

[

eI)l '] [<P11 <P12 •.• <PI K ]
eI)2' = :

ei)K . <PK1 <P K2 ••. <PKK

(9)
A is a natural estimator of stock composition of

the mixture. Unfortunately as we see next, its
expected value, A, depends not only on stock
composition, but also on the behavior of the rules.

Basic Relation Between Parameters of
Test Samples and Those of the Sample

from the Mixture

We know the mixture consists of individuals
from at most K stocks. Let Ii" be the proportion of
the individuals composing the entire mixture
which are of the kth stock, where 0 :S Ii" :s 1 for all
k and

K
~ 01' = 1.

1,= 1

The parameter vector 8' = (iii' 1i2, •.• , IiK ) is un­
known; its estimation is our objective. If the indi­
viduals of each of the stocks occurring in the mix­
ture are a random sample from the character
distribution of that stock, then the probability
that a randomly sampled individual from the mix­
ture is assigned to the jth stock, Aj' is related to

If Iep I ,;; 0, we can solve Equation (8) for e,

H = (ct),)"1 A.

When the rules assign individuals from the stocks
without error, q) = I, and 8 = A. Then the natural
estimator Ais appropriate. But the rules will usu­
ally be imperfect, yet Equation (9) shows we can
still solve for 0 without error provided cfJ and Aare
known. Unfortunately neither q) nor A is known in
usual circumstances; however, we saw how to es­
timate them from the test and mixed samples
using Equations (2) and (5). When A and q) in
Equation (8) are replaced by estimates from Equa­
tions (2) and (5), the problem of estimating H is a
special case of estimation of the solution of a sys­
tem of linear equations with random coefficients.
Fuller4 has provided several solutions for the gen­
eral problem; these are applicable in the present
case for large test and mixed samples. Later we
indicate how large these samples must be.

4Fuller, W. A. 1970. Mimeographed class notes, Statistics
638, winter 1969-70. Iowa State Univ. Stat. Lab., 56 p., on file
at the library of Northwest and Alaska Fisheries Center Auke
Bay Laboratory, National Marine Fisheries Service, NOAA,
P.O. Box 155, Auke Bay, AK 99821.
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Fuller (see footnote 4) begins with the simple
estimator

(10)

with the restriction that the event 11) I = 0 must be
impossible. The asymptotic variance-covariance
matrix of (~, 1 (" is given by

.... - (<p,),1 (1 + 1, ) (1)"1 (11)

..() - .\ '1,'0
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and l, is defined by Equation (6).
We remark that variation in estimates of ()

arises additively from two sources: 1) sampling
variation in estimation of the assignment compo­
sition of the mixture which is represented by l,:
and 2) sampling variation in estimation of the
probability of assignment matrix (I) which is rep­
resented by 1,j"(j' The diagonal eleme.nts of the lo
are the variances of the elements of 8; the square
roots of these are the standard errors .

where ~,j"o

-~---­

iii.

(}?¢il ¢i2
-~--­

iii.

(} i 2¢i2(1-¢i2)
~-----­

Ii.

-~----
Ii.

O/rj;i2¢iK
-~---­

Ii.

°i2<piK(1-<PiK)
~------

i 'i.

G
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Bias in estimation of 0 is approximately given
by

B == (<1),)'1 GO, (12)

where
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and cPu is the element in the ith row and jth col­
umn of <I>.I.

Improved estimators with smaller bias than (~

can also be developed from Fuller's (see footnote 4)
general results. These are the new estimators:

it. When only two stocks occur in the mixture, this
set of simultaneous intervals reduces to the famil­
iar univariate normal approximation for setting
confidence intervals:

("') = (Cf>' + or l A and (13)

(14)

(16)

where z ,,'2 is the standardized normal deviate such
that 100(u/2)c/c. of the distribution lies below -Z,ti2

and 100(u/2)'lc lies above z ,,/2. These expressions
are in terms of the estimator (); they apply as well
to the other estimators when elements of 8 or e
replace those of () within them.

Wnrlund and Fredin (1962) developed the es­
timator (') in Equation (10), To translate their no­
tation to ours, let

and permit the subscripts to take on letter values
a, b, c, .... In the special case when the mixture is
comprised of only two stocks, they developed an
asymptotic expression for the variance of H, (the
variance of IJz necessarily equals that of H, since
IJz = 1 - IJ] l. In deriving the variance expression.
they assumed '1> is known without error so that
~(i"() is a null matrix; such is approximately true
as II. and Iz. become large.

Here G is obtained by substituting the estimates
for the unknown parameters of G. To the order
of approximation provided by Fuller, these
estimators have the same variance-covariance
matrix as (~. An internal estimate of this
variance-covariance matrix l() can be obtained by
substitution of observed values for parameters in
Equation (11). We can substitute in Equation (11)
for elements of (j the corresponding elements of
either 8, (), or (). To distinguish between these
possibilities, we label the internal estimators of
~() as if), ic), or i(j, respectively. With the internal
estimate of~C., we can estimate not only 0 but also
how precisely the estimation is accomplished.

To establish confidence intervals on the ele­
ments of (), we assume test and mixed samples are
sufficiently large so that the estimators (\ (), or ()
are each approximately distributed as the mul­
tivariate normal with mean H and known
variance-covariance matrix ie), i c), or i e., respec­
tively. Then a 100(1 - (~),lc set of confidence inter­
vals such that all the unknown elements of 0 are
simultaneously covered by their respective inter­
vals with a probability 1 - u is for the estimator ()
(say) as follows (see Morrison 1967, section 4.4):

e- (- 2 2)'/2 ;;: e ;;: e- '2 2 'I:
1 - all X(I;K--1 "" 1 "" 1 + (all X,,;K-1 ) ,

0- ( '2 2)'/2 ;;: e ;;: e' (. 2 2 '/2. 2 - 022 X(I;K-1 "-". 2 "" 2 + a22 X,,;K--1 )

¢ij Pij

0; F j

Aj Rj

(17)

o (' 2 2)'/'';:::0 ;;:e' (' 2 2)'/2
" - O'd, X(l;K-1 """ "" ,,+ 0"" X,,;K-1

(15)

O· (- 2 2)'12;;:0 0' '2 2)'/,
K - aKK X ,,;K-1 "" K ~ 1( + (aKK X,,;K-1

where 6'/i/ is the element in the hth row and col­
umn ofi(., and X"'K.j2 is the value associated with
a chi-square distribution wi th K -1 degrees of free­
dom such that 100u'ib ofthe distribution lies above

We consider two examples now to illustrate our
notation and method in concrete terms. The first
case restricts our general approach to the simplest
situation of two stocks in the mixture; the second

391



FISHERY BULLETIN: VOL. 77, NO.2

The form of 8 has been chosen to agree with the
solution of Warlund and Fredin (1962); in develop­
ing this form, we used the facts for this special case
that

provides numerical computations for three stocks
so that users may verify their understanding of
the formulas.

Special Case of Two Stocks

We assume a set of rules based on learning sam­
ples from each stock has been developed which

(22)

[rf>11 rf>11 (l-rf>11 ) - rf>21 rf>1l ¢1 2 qlJ 2q1"(l-ql" ) - qI"qI" qI" ]

G t} . [2' (23)

rf>21¢12(1-rf>12) - ¢11rf>12¢11 ¢22¢22(1-<P22) _rpI2rp22¢21

11 . 12,

assigns each individual to one of the two stocks.
Individuals in two test samples, size t 1 from stock
1 and size t 2 . from stock 2, are assigned by the rules
to either of the stocks. Of the t I. individuals, tIl are
assigned to stock 1 and t

12
, to stock 2. Of the t 2 .

individuals, t 21 are assigned to stock 1 and t
22

, to
stock 2. A sample from the mixture of size m. is
assigned by the rules to the stocks-ill 1 to stock 1
and 111 2 to stock 2. Then

G, lA- and l,j,'o are obtained by substituting
estimates for the corresponding parameters. Then

(24)[1-lJ
-1 1

A};>"'2
">'. =--
~!\ m

.
<I)

.

[~: ] [mJim]
!\ (19)

m2/m .

«I) ')-1 [in ¢ 21 ]¢12 ¢22

[ -i" ]1 rp22
. . . (20)

¢11rf>22 -¢12¢21 -rp12 ¢1l

Al - ¢21
.

«j>')-}/\
rP11 -rP21

(21)f)

1>11 - Al
.

rPll - rP21
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provides internal estimates of the variance of {j or
O2 as well as their covariance. 1

Expressions for e and e follow directly from
specialization of Equations (13) and (14) to two
stocks; substitution of their elements into Equa­
tion (26) in place of those of 8 provides t· and t ..

. () 0'
respectively.

Numerical Computations for Three Stocks

To illustrate the computations for a three-stock
situation, we use the information reported by
Cook and Lord (1978) regarding stock composition
of high-seas mixtures of sockeye salmon, On­
corhynchus nerka. Their purpose was to estimate
proportions of the mixture arising from each of
three river systems - Egegik, Kvichak, and Nak­
nek - of the Bristol Bay region of Alaska. Actu-



(Our (.") is -0 of Cook and Lord (1978); their errors in
evaluating R are responsible for the discrepancy
with our esti~ate 0.)

[ UOO19 -0.07801 -0.222l8

J0.03641 1.49782 -0.53422
-0.35885 -0.47847 1.83732

[ 0.00480 -0.00086 -0.00424~
--0.00154 0.00737 -0.00666
-0.00326 -0.00651 0.01090

[0.00184 -0.00053 -0.0013l~". - 0.00169 -0.00115.-." -

0.00246

[0.00191 -0.00050 -0.00146J
I d,·() = 0.00230 -0.00180

0.00326

;:. = [0.00975 0.00208 -O.OllB~
0.01454 -0.01662 .()

0.02846
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ally the application of our methods is inappropri­
ate because Cook and Lord used individuals oftest
samples from the segregated stocks both to modify
an original set of rules from the learning samples
as well as to estimate <1). Because our purpose is
only to illustrate the computations, we will treat
their observations as though the test samples had
been used exclusively to estimate <P. Using the test
samples in developing the rules, as Cook and Lord
did, should produce greater precision in estima­
tion of composition of a mixture; the disadvantage
at present is the inability to assess the precision of
these enhanced estimates. In developing the
variance-covariance matrix I(), we assumed <1)
and A are statistically independent. Such is un­
true if the test samples are used as by Cook and
Lord both to develop the rules used to estimate A
as well as to estimate <P.

Test samples from the segregated stocks of the
three rivers were assigned by the rules to these
stocks (Table 1). Then the rules were applied to
101 fish caught on the high seas. Of these, 25 were
assigned to Egegik, 22 to Kvichak, and 54 to Nak­
nek. We identify Egegik, Kvichak, and Naknek as
the first, second, and third streams in our sub­
script use. Computations using these data produce
the following results:

[0.138~e = 0.051
0.811 [

0. 145

J
~0.14~e = 0.062 (~= 0.062·

0.793 0.793

(Our 1) is the transpose of C of Cook and Lord
(1978).)

(Our Ais the same statistic as R
li

of Cook and Lord
(1978); apparently they have numerical errors in
their evaluation of R".)

~
0.24752J

A = 0.21782 .
0.53465

~
0.80000

<1> = 0.04000
0.16667

0.08000
0.74000
0.20833

0.12000]
0.22000 .
0.62500

In computing la,.() and l(p e is used as the esti­
mate of fl.

The 90tK confidence set from Equation (15)
using e is as follows:

-0.074 ~ HI ~ 0.350
-0.208 ~ (J2 ~ 0.310

0.449 ~ (J3 ~ 1.173.

The elements of 0 must lie between 0 and 1; there­
fore, we can set the lower limits of the first two
intervals to 0, and the upper limit of the third
interval to 1. The actual composition was esti­
mated by Cook and Lord (1978) from returning
adults to Bristol Bay as

TABLE l.-Numbers of sockeye salmon in test samples from
three Bristol Bay (Alaska) rivers-Egegik, Kvichak, and
Naknek-assigned by rules to these rivers (source: Cook and
Lord 1978).

Actual
Assigned river

river Egegik Kvichak Naknek

Egegik 40 4 6
Kvichak 2 37 11
Naknek B 10 30

~
0.325Jo = 0.061 ,
0.614

which falls within the intervals of the confidence
set as would be expected. However, recall that the
condition that test samples be used exclusively to
evaluate the rules was violated; therefore, the
confidenc3 set is not valid. Further, Cook and Lord
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BEHAVIOR OF ESTIMATORS AND
ASYMPTOTIC FORMULAS

(1978) have misgivings of probable occurrence of
additional unaccounted stocks in the high-seas
mixture.

We let (-)' = <0.6,0.4) for all three cases. Based on
experience in identification of sockeye salmon in
Bristol Bay, Alaska, using discriminant functions
on scale features, the ranges of elements of <I> are
realistic. The choice of 0 is arbitrary, of course.

Given <I>, 0, and sample sizes t
l

, t~, and In, we
can enumerate all possible sample points - II I'

t
12

, t
21

, t2~' /Ill' and lJl~ - as well as compute their
probabilities of occurrence. In our evaluations, we
always used equal test sample sizes. For each
sample point, we can compute (), (\ (), ill' ill' and
ill' With these calculations for each point we can
compute the mean and variance of each estimator

Of interest to investigators beginning studies of
stock composition of mixtures is the behavior of
our estimators as test and mixed sample sizes vary
for fixed rules and the influence of rules on the
estimators. Further, we remarked that our solu­
tion of the stock mixture problem assumes large
test and mixed samples. Of concern is how large
specifically the samples must be for the asymptotic
expressions to be reasonably accurate. This
examination will be restricted to the two-stock
case which is general for our purpose in that any
number of stocks can be partitioned into two
groups; that is, we can evaluate the estimators for
a particular stock when the remaining stocks are
lumped into a second group after assignment by
the rules to the indi vidual stocks. Bias and var­
iance for the particular stock would be unchanged
then even if the stocks of the second group were
treated severally.

We evaluate estimation behavior and asympto­
tic approximation for three choices of <I> represen t­
ing rules of increasing accuracy:

by weighting its value at a sample point by the
probability of that point.

Estimation of (i by (), (1, or (~requires the prob­
ability that I <I> I = °be zero; this condition is not
met. If we supplement the procedure by assigning
arbitrary values to the estimators when I<1> I = 0,
means and variances of such modified estimators
will approach the values we obtained by omission
of such sample points. The probability that I<I> I =°rapidly decreases with increasing test sample
sizes. For case 1 with test samples of 20, it is <5 x
10-4

, and with test samples of 40, about 5 x 10-7
.

The probability also decreases with improved
identification of stocks. For case 3 with test sam­
ples of 20, the probability is <4 x 10-(;. Weighting
the arbitrary values of the estimators correspond­
ing to such points by their probabilities makes
their contributions to expectation computations
negligible.

We found these numerical studies to be expen­
sive, especially with large sample sizes. Therefore,
we began omitting sample points whose probabil­
ity was small even if I <I> 1=1= 0. Criteria for omission
of points are indicated in our tables; the justifica­
tion is again their negligible contributions in ex­
pectation computations. Results will be discussed
in terms of the first stock only.

We consider bias first. Bias of any estimator, til ,
()I, or til, is unaffected by changes in mixed sam­
ple size; however, bias decreases with increasing
test sample size. For example, we computed biases
for case 1 with three mixed sample sizes-20, .30,
and 40 - at each of two choices of equal sized test
samples - 20 and 30 (Table 2, lines 1 to 6), The
occasional change in the last digit for biases at
varying mixed sample sizes within fixed test sam­
ple sizes is probably caused by omission of improb­
able sample points in evaluation of expectations.
Bias of (II also is predicted by the asymptotic for­
mula IEquation (1211 to vary only with test sample
sizes, not mixed sample size (Table 2, last column),

Bias of HI is ofopposite sign from that ofeither IJI
or HI (Table 2, column bll, as compared with col­
umns b II, and b II,). Absolute value of bias of iii is
less than that of either HI or iii' Generally, abso­
lute value of bias of iii is also less than that of HI;
the sole exception is case 1 with test samples 01
only 20.

Bias of HI or 81 decreases with improved rules a~

we go from case 1 to case 2 to case 3, holding test
and mixed sample sizes fixed. Biases computed fOl
() decreased between case 1 and case 3 for which

I

the <I>-matrices are both symmetric; however, 1'01

0.25J

0.75

0.25J

0.90

0.1°1
0.90J

C

L
o.90

ase 3. <1> =

0.10

Case 1. <I> = ,0.75

LO.25

C I
[

0.75
ase 2. <> =

0.10
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TABLE 2.-Biases, (bli" bO,' and bll ,)' of estimators and asymptotic bias, b" from
Equation (12) for indicated <I>-matrices, indicated test and mixed sample sizes, and 0' =
(0.6, 0.4),

Test Mixed
sample sample b· b,

b 01
b ,q, sizes size 1/ II,

Case 1 20 '20 t 0,01077 ' 0.00363 ,0.01873 t 0.00750
'30 + .01076 ~ .00362 .01873 + .00750

[0.75 0.25J '40 + .01076 - .00364 - .01873 + .00750
0.25 0.75 30 '20 + .00637 - .00123 - .00381 T .00500

'30 ) .00637 ~ .00124 - .00381 + .00500
'40 + .00636 ~ .00124 .00382 + .00500

40 '40 + .00438 - .00063 - .00108 + .00375

[ Case 2 J 20 '20 t .01053 .00090 .00186 ., .00905
0.75 0.25 30 '30 ., .00660 - .00037 - .00060 , .00604

0.10 0.90 40 '40 + .00481 - .00022 - .00033 + .00453

Case 3 20 '20 + .00155 .00014 - .00018 T .00141

[090 010J 30 '30 + .00099 ~00007 00008 ) .00094

0.10 0.90

,Evaluated at all sample points except when IIj, I O.
2Evaluated only at sample points for which probability of observing the outcomes of the test samples

'10'6 and IIj, I '" 0,

two of three combinations of test and mixed sam­
ple sizes, repeated under case 1 and case 2, bias
increased between case 1 and case 2, the latter not
having a symmetric q>-matrix.

The predicted bias of 8
1

from the asymptotic
formula [Equation (12)] agrees with actual bias of
HI reasonably well. The approximation obviously
becomes more accurate as size of test samples in­
creases or as rules improve.

Biases would appear negligible in comparison
with magnitude of variances of the estimators
next considered. Absolute value ofbias in the situ­
ations evaluated represents at most 3.1'7iJ of the

parameter value, HI = 0.6. Random errors in esti­
mation are the main concern.

Variances of the estimators (), (:'j, and Ell de­
crease as test samples become larger, agreeing in
behavior with biases; in contrast to biases, var­
iances also decrease as size of mixed samples in­
creases. We computed variances under case 1 for
the same test and mixed sample sizes described for
bias evaluation (Table 3, lines 1 to 6). Although
variance of any of the estimators (81 , 81 , and iiI )

decreases with size of test or mixed samples, the
rate decreases with size of either type when that of
the other is fixed. For example, at test samples of

TABLE 3.-Variances ("Ii,', "II,', and "II, ') of estimators and asymptotic variance «1,,2)

from Equation (11) for indicated <I>-matrices, indicated test and mixed sample sizes, and

8' = (0.6, 0.4).

Test Mixed
sample sample

fT012 ITf},2 (riJ/ ,
II' sizes size "---"-

Case 1 20 '20 0.11232 0.06741 0.86891 0.06900
'30 .08685 .05120 .68980 .05250

[075 025J '40 .07417 .04311 60199 .04425
0.25 0.75 30 '20 .07957 06370 .23131 .06250

'30 .05904 .04686 .17620 .04600
'40 .04877 03844 .14864 .03775

40 '40 .04051 .03538 .03518 .03450

[o~ase 2
025J

20 '20 .04640 .04010 .04448 .03927
30 '30 .02892 .02668 .02658 .02618

0.10 0.90 40 '40 '.02111 01995 .01992 .01963

Case 3

C
O.90 0.10J
0.10 0.90

20

30

'20

'30

.02425

.01579
.02293

.01525

.02290

.01525

.02269

.01513

'Evaluated at all sample points except when l,j'l ,0.
'Evaluated ,only at sample points for which probability of observin9 the outcomes of the test samples

>10'6 and III' I'" o.
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'Evaluated at all sample points except when I<i> I ~ O.
'Evaluated only at sample points for wh,ich probability of observing the

outcomes of ,he test samples> 10-6 and I<l> I *' o.
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TABLE 4.-Variance, (Tti,', of estimator, °1 ; mean, E(a- 0,'), of
internal variance estimator, cT Ii,'; and percent bias for indicated
<P-matrices; for indicated test and mixed sample sizes; and 8' =
<0.6, O.4l.

Test Mixed Per·
sample sample <T' , E(all.')

cent
'I> sizes sIze II, bias

Case 1 20 '20 0.11232 0.24894 122
'30 .08685 .19693 127

~75 0.25J '40 .07417 17096 130

0.25 0.75 30 '20 .07957 .10171 28
'30 .05904 .07707 31
'40 .04877 .06450 32

40 '40 .04051 .04289 5.9

Case 2 20 '20 .04640 .04894 5.5

CO
.
75 0.25J 30 '30 02892 02931 1.3

010 0.90 40 '40 .02111 02125 0.7

4, lines 1 to 7); conceivably omission of sample
points in our evaluations underlies the slight in­
crease with mixed sample size. Under any case of
<1>, the internal estimator or variance of 0

1
becomes

nearly unbiased at the largest sample sizes
examined.

Our last computations are of the mean and var­
iance of the internal variance estimators (at;,2,
ali 2, and Uti 2) (i.e., of the elements in the first row
and column ~fI(,. I(» and Ii;, respectively) for the
three cases of <1> with test and mixed samples all of
size 20. Also we determined the actual probability
that 90% and 95% simultaneous confidence inter­
vals from Equation (16) using either e, e, or e,
eac~ with its internal variance estimator, I(l' Ie»
or Ii;' cover the actual composition vector 8' =

(0.6, 0.4) (Table 5).
Comparison of actual variances of the es­

timators (0 " 0 I' and 8 I) (Table 5, line 1) with the
mean of the corresponding internal variance es­
timators (Table 5, line 2) shows the positive bias of
each internal estimator diminishes as rules im­
prove. Only the internal estimator ofvariance of 0,
becomes negatively biased. Percent bias (Table 5,
line 3) of each estimator decreases sharply with
improvement of rules.

Variance of the internal variance estimators of
01 and H, are manyfold greater than that of 8,
under case 1 and case 2. With improved rules of
case 3, all internal variance estimators have com­
parable variance.

Probabilities that simultaneous confidence in­
tervals for each estimator (8, 8, and (~) cover the

20, variance of 6, decreases 24',1, when mixed sam­
ples increase from 20 to 30, but by only 16% when
mixed samples increase further to 40. Similarly at
a mixed sample of 40, variance of 8, decreases by
11% and 8',1, as test samples increase from 20 to 30
and 30 to 40, respectively. The return to sampling
effort of precision of estimation by increase in
mixed sample size with test sample sizes fixed
diminishes and is limited by test sample sizes.
Return of precision to increase in test sample sizes
is similarly related to and limited by mixed sam­
ple size.

Overriding both test and mixed samples in de­
termining ultimate precision of estimation are the
rules characterized by the <1>-matrix. As rules of
assignment improve and the (Il-matrix approaches
the identity matrix, precision of estimation at
fixed test and mixed sample sizes increases.

In our evaluations, variance of 8, is always less
than that of 8" In this respect 8, also enjoys con­
siderable advantage over HI when rules are poor,
case 1, and sample sizes are small. As test or mixed
samples increase, the advantage diminishes until
H, has the smaller variance. However, differences
among variances of the three estimators (OJ' 0

"and H,) become negligible either as rules improve
or samples sizes become large.

Predicted variance of the estimators of HI from
the asymptotic formula [Equation (11)] describes
variance of 8, remarkably well, even when rules
are poor and sample sizes are small (Table 3, com­
pare lines 1 to 7 of column (T1I 2 with column a li,2).

With improved rules, variances of each of 0" fi"
and 8, are well described by the asymptotic var­
iance (Table 3, compare lines 8 to 12 of columns
("/' (T'i

2
, and (TIl

2 with column (TI,2).

Two ~valuatio~s concerning adequacy of inter­
nal variance estimation by tt), t(» and It; con­
clude our numerical studies. Computations are
heavy so the range of these studies is restricted.
First, we computed the mean of the internal var­
iance estimator a'i 2 (i.e., of the element in the first
row and first colur';m of I(,) for the cases of <I:> and
sample sizes used in the previous evaluations of
bias and variance (Table 4). The mean of this in­
ternal variance estimator, E(a'i 2), generally ex­
ceeds the actual variance of 81, i~ Ii 2. As rules im­
prove with sample size fixed, perce~t bias changes
from large positive values to small negative val­
ues.

Percent bias under case 1 decreases sharply
with increase of test sample size, but increases
slightly with increase of mixed sample size (Table
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Case 3

C
090 0·1Ol
010 0.90J

20

30

'20

'30

.02425

.01579
.02394

.01562

-1.3

-1.1
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TABLE 5.-Variances of the estimators (8" 8" and 0,), means of internal variance estimators, percent ~ias of internal variance
estimators, variances of internal variance estimators, and probabilities of coverage of e' = (0.6, 0.4) by SImultaneous 90 and 95%
confidence intervals for three cases of <I> when test and mixed samples are all of size 20.'

fO·75 0.25] [075 0.25]
<I> [P.25 07~ [p 10 0.9Qj

Estimator 0, 0, 0, iJ , il, (I,

f090 0 161
If!10 0.9Qj

8, (I,

0.02290

0897

4.2

0.950

0.02386

0.897

0.02293

0.950

4.1

0.02387

0.02425

0.02394

-1.3

9.521 X10- 5 9.166 X 10- 5 9.140 X10- 5

0.04259

0.07374

73

0.00175 439.969

0.04009

0.04683

16.8

0.11388

0.04634

4.9

0.04859

0.86543

7.75453

796

0.10567 125.688

0.06740

0.12030

78

0.11221

0.24824

25.2471

121

Variance of esiimator
Mean of internal

variance estimator
Percent bias of internal

variance estimator
Variance of internal

variance estimator
Probabiiity of coverage of 0

by 90% confidence intervals 0.933 0.949 0.950 0.906 0.917 0917 0.890
Probability of coverage of 0 947

by 95% confidence intervals 0.976 0.981 0.981 0.956 0.960 0.960 O.

'Evaluations oniy inciude sample points for which probability of observing the outcome of the test samples> 10-6 and I<i> I * O.

parameter vector 8' = (0.6,0.4) approach the in­
tended levels ofconfidence as rules improve (Table
5, lines 5 and 6). For rules of case 1 or case 2, the
level of confidence provided by any of the es­
timators exceeds that intended; such is preferable
to the converse because the intervals provide at
least the level of confidence the investigator in­
tends_ Our normality assumption used to con­
struct confidence intervals will be better satisfied
as mixed and test sample sizes increase. Appar­
ently the internal variance estimators become less
biased as test sample size increases. Therefore, we
anticipate the level of confidence of intervals from
any of the estimators will more closely approach
the intended level as test sample size increases
even when rules are poor.

Limited as these numerical studies are, they
demonstrate that when sample sizes are small and
rules are poor, 8 should be used to estim~te com­
position ofa mixture. We found then that 8 is least
biased, has smallest variance, and its internal var­
iance estimator itself has smallest variance. With
larger sample sizes or good rules of assignment,
the estimators e, 8, and 8 appear more nearly
equivalent.

Decisions on sample sizes depend on desired
precision and the rules characterized by <1>. The
closer <l> is to an identity matrix or, equivalently,
the better the identification of stocks, the fewer
required individuals in test and mixed samples to
achieve desired precision of composition estima­
tion. With an accurate initial estimate of <l> from
the learning samples, the corresponding asympto­
tic variance-covariance matrix at Equation (11)
can be used to estimate sample sizes needed to
achieve required precision. We recall that var­
iance of Ii 1 is well described by the asymptotic
variance-covariance matrix even when rules are

poor and sample sizes are small, providing another
reason for preferring G to (~ or (~ in that cir­
CUInstance.

AFTERWORD

Withholding individuals of samples from the
separate stocks to form test samples must result in
less effective rules than if the learning and test
samples were pooled for rule formation_ Although
the practice is repaid in part by the ability to
evaluate precision of composition assessment, the
penalty at rule development can be further al­
leviated. Roles of the two samples from each of the
separate stocks can be interchanged; either can be
the learning or test sample. If each of the samples
from the segregated stocks is partitioned into two
approximately equal sized subsamples, two sets of
rules can be formed; two estimates of <1> obtained;
two estimates of e computed by any of (~, (\ or (~;

and two internal estimates of the variance­
covariance matrices ct()' i(l' or iii) calculated.
The pairs of estimates are statistically dependent.
Nonetheless, means of pairs of estimates of 8 and
I - have the same expectation and presumably
g;~ater precision than the individual members of
the pairs. Exact evaluation of that enhanced pre­
cision for estimates of the composition vector H
does not appear easy; however, use of the mean of
internal estimates of the variance-covariance
matrix in calculation of the confidence set Equa­
tion (15) provides an unknown but greater level of
confidence than the indicated 1000 - cd% value.

LITERATURE CITED

ANAS, R. E., AND S. MURAL

1969. Use of scale characters and a discriminant function

397



for classifying sockeye salmon (Oncorhynchus nerka) by
continent of origin. Int. North Pac. Fish. Comm., Bull.
26:157-192.

COOK, R. C., AND G. E. LORD.
1978. Identification of stocks of Bristol Bay sockeye salm­

on, Oncorhynchus nerka, by evaluating scale patterns
with a polynomial discriminant method. Fish. Bul\.,
U.S. 76:415-423.

FUKUHARA, F. M., S. MURAl, J. J. LALANNE, AND A.
SRIBHIBHADH.

1962. Continental origin of red salmon as determined
from morphological characters. Int. North Pac. Fish.
Comm., Bul\. 8:15-109.

HILL, D. R.
1959. Some uses of statistical analysis in classifying races

of American shad (A/osa sapidissima). U.S. Fish Wild\.
Serv., Fish. Bull. 59:268-286.

398

FISHERY BULLETIN: VOL. 77. NO.2

KONOVALOV, S. M

1975. Differentiation oflocal populations of sockeye salm­
on Oncorhynchus nerka (Walbauml. (Translated from
Russ. by Leda V. Sagen.) Univ. Wash. Pub\. Fish., New
Ser., 6, 290 p.

MORRISON, D. F.

1967. Multivariate statistical methods. McGraw-Hili,
N.Y., 338 p.

PARSONS, L. S.

1972. Use of meristic characters and a discriminant func­
tion for classifying spring- and autumn-spawning Atlan­
tic herring. Int. Comm. Northwest At\. Fish. Res. Bul\.
9:5-9.

WORLUND, D. D., AND R. A. FREDIN.

1962. Differentiation of stocks. In N. J. Wilimovsky
(editor), Symposium on pink salmon, p. 143-153. H.R.
MacMillan Lectures in Fish., Univ. B.C., Vancouver, Can.


