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ABSTRACT

Likelihood methods for the von Bertalanffy growth curve are examined under the assumption of
independent, normally distributed errors. The following are examined: determining the best method of
estimation, relationships between methods of estimation, failure of assumptions, constructing con­
fidence regions, and applying likelihood ratio tests. An eXanlple is presented illustrating many of the
methods discussed in theory.

The paper may be viewed as an application of classic nonlinear least squares methods to the von
Bertalanffycurve. As such, the concepts discussed are generally applicable and the paper may serve as
an introduction to nonlinear least squares.

Since the application ofthe von Bertalanffy (1938)
growth curve by Beverton and Holt (1957) to the
yield per recruit problem, this curve has been
widely used in fisheries biology. The original
curve has been generalized (Richards 1959;
Chapman 1961). However, this paper will not deal
with the more general Chapman-Richards growth
curve. Nor will it deal with the biological motiva­
tion for these curves which have been discussed by
the cited authors. Instead, I confine my study to
the classic von Bertalanffy curve and examine
what appears to be reasonable methods for the
statistical treatment of data.

THE MODEL AND ITS MAXIMUM
LIKELIHOOD ESTIMATES

I assume that age-length data are available on
some species, and that the relationship between
age and length can be adequately described by the
von Bertalanffy growth curve. Using the usual
notation, the length of the uth individual ofage tu
is assumed to be

where Zoo is asymptotic length, K a constant de­
scribing how rapidly this length is achieved, to the
hypothetical age at length zero, and the Eu'S inde­
pendent N(O,u2 ) random variables.
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For this model, parameters can best be esti­
mated using the method of maximum likelihood.
The principal reasons why maximum likelihood
estimates are desITable are that under very gen­
eral conditions (much more general than de-.
scribed here) they are consistent (converge in
probability to the correct value), asymptotically
normal, and asymptotically attain (except under
unusual circull\stances) the smallest possible
variance. It will not be necessary to expand on
these properties because they are among the most
important results in statistics, and are discussed
to some extent in virtually every book on
mathematical statistics.

Letting S(loo,K,to) = I u(lu-/l-(l"",K,to,tu»2, the
likelihood function can be written as

Q.(/~,K ,to,a2 )

= (21fa 2)-N/2 exp(-S(l~,K,to)/2a2) (1)

where N is the number of observations.
Since for any given value of u 2 , say u02 ,

Q(I"",K,to,uo
2 ) is maximized when S(l"",K,to) is

minimized, it follows that the maximum likeli­
hood (ML) estimates of (l"",K,to), say (CK,to), are
the least squares (LS) estimates. These estimates
shall be referred to as ML or LS depending on the
property which is being emphasized.

The ML estimate of u2 is obtained in the usual
way by first taking the log likelihood, calculating
the partial derivative with respect to u2, and set­
ting this result equal to zero

- (N/2)log(21fa2)-S(l~ ,K, to)/2a2
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alog(Q(l~, K, to,02»

aa2

-N/202 + S(l~ ,K, to)/2(02)2 0

a2 set ,k,io)/N .

Thus the problem of ML estimation for the von
Bertalanffy curve reduces to finding LS estimates
of (l""K,to)' Note that this is a general property of
the normal error model, since no special properties
of the von Bertalanffy curve have been used.

The normal equations for finding ML estimates
are obtained by taking the partial derivative of
S(l~,K,to) with respect to the unknown parame­
ters and setting the results equal to zero (Le., as/
al~ = 0; aSIaK = 0; aSlato = 0). Because these
equations do not allow a simple solution, the
graphical Ford-Walford method (Ricker 1975; ac­
tually the regression of it+i on It) has been widely

.used. The Ford-Walford plot, in addition to a plot
of average length at age, should be adequate for
determining the age range following the von Ber­
talanffy curve.

For the von Bertalanffy curve, proper ML esti­
mates can only be found using iterative al­
gorithms. A number of authors (Stevens 1951;
Tomlinson and Abramson 1961; Allen 1966) have
suggested specialized algorithms. Although these
algorithms may have advantages when computers
are not available, the easiest way to obtain ML
estimates is to use any of the general purpose
nonlinear LS computer programs available in
BMD (Dixon 1976), BMDP (Dixon 1977), or SPSS
(Nie et al. 1975). These programs have the flexibil­
ity ofallowing complicated curves to be fit to data
sets, which is especially useful if differences in
growth curves among different populations are to
be tested statistically. For example, it might be
necessary to fit different growth curves to several
populations, but with the constraint that the to's

be equal.
It should be remembered that LS solutions ob­

tained iteratively may be local rather than global
minimizations of S(loo,K,to). With this in mind,
initial values provided to any iterative procedure
must represent the best available information. I
recommend that the Ford-Walford method be used
to calculate initial values. This guarantees that
any LS solution which is obtained has smaller
residual sum of squares than the Ford-Walford
estimates.
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LEAST SQUARES METHODS
OF ESTIMATION

Under differing assumptions on the error var­
iance, four different LS methods of estimation are
appropriate. When these assumptions are met,
each method provides ML estimates under the
likelihood model (Equation (1».

Let iii be the length ofthejth individual ofage tj ,

and let lj and s? be the sample mean and sample
variance of the lengths of individuals of age t j ,

based on a sample size nj' For each method, the
assumption on the error variance and the appro­
priate sum of squares to be minimized when this
assumption is correct, is given below.

(a) All Iii have constant variance:

"2;(liFt J.(ti»2 .

(b) AlIt; have constant variance:

(c) The variance of lii varies with t j , and at age tj is
equal to u j

2 :

(d) All lii have constant variance (i.e., the same
assumption as (a) above):

The dependent variables in metnods (a) and (b)
are formally of the form described by the likeli­
hood model (Equation (1». By this it is meant that
they have constant variance, and assuming nor­
mality and independence, their likelihood is de­
scribed by Equation (1). The dependent variables
in methods (c) and (d) can be transformed into the
form of Equation (1). This can be done by placing
the weights wj = (n/s?) (method (c» and Wj = nj
(method (d» within the squared expressions.
Doing so for method (c) gives the pseudoobserva­
tion Yi = CYrt;/sj)lj with expectation E(yj)
= (\!TL;/Sj)p,(t j ) and variance asymptotically
equal to unity (as Sj ....Uj). Assuming normality
and independence, the asymptotic likelihood of
these Yi is described by Equation (1). Similarly for
method (d), the pseudoobservation becomes Y i =
(~)I; with expectation E(y;) = (Yn;)/L(t;) and
variance u 2 • Again assuming normality and inde-
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Similarity of
Covariance Matrix estimates

The sum ofsquares to be minimized using method
(d) is

~~ -2(lij-/l(ti»/lic(ti)
i j

-~2/lic(ti)ni(ii-/l(ti» = O.
i

as
-=aK

The normal equation is derived for the parame·
ter K say, using method (a), by taking the partial
derivative of S with respect to K and setting the
result equal to zero:

Because this identity ofthe two normal equations
is not due to any special property of K, normal
equations obtained from methods (a) and (d) are
identical, implying corresponding LS estimates
are also identical.

The normal equation is obtain,ed for method (d) by
taking the partial derivative of Sw with respect to
K, yielding a result identical to that from method
(a):

pendence, the likelihood ofthese Yi is described by
Equation (1). It follows that likelihood procedures
applicable to unweighted methods (a) and (b) are
also applicable to weighted methods (c) and (d)
with few modifications. These arguments apply
when fitting any function using LS estimation.

Selection of an appropriate LS method for a
given problem can largely be made on the valid­
ity of the error assumption, but not solely on this
basis. It is also useful to keep in mind the purpose
of fitting the curve. For example, a curve fit with
method (a) would do well in predicting the length
of a randomly selected individual (if data were
from random samples), and this property would
be important in, say, modeling applications.
Method (b), on the other hand, may best describe
the growth of a species over its entire lifespan, a
property which would be desirable when compar­
ing growth among species. It should be noted that
the practice of graphing the estimated curve and
plotting average lengths observed at each age is
visually biased toward method (b). Method (b)
will generally lo.ok best on this type of plot.

Method (c) is appropriate when it is apparent
that the variance at each age varies significantly.
This assumption can be examined using Bartlett's
or Cochran's tests (Dixon and Massey 1957) for the
homogeneity of variance.

Method (d) is largely a computational device. In
the following section it is shown that method (d) is
nearly equivalent to method (a), but often requires
much less computational effort.

NEAR EQUIVALENCE OF
METHODS (A) AND (D)

Calculations for method (a) can be performed
using method (d), with often a large savings in
computat~onal effort. It will be shown that
methods (a) and (d) yield identical parameter es­
timates, and similar covariance matrix estimates
ofparameter estimates. These results are general
properties of LS estimates under the assumptions
ofmethod (a), and are not dependent on the form of
the function being fitted.

Identity of Parameter Estimates

For the von Bertalanffy curve using method (a),
the sum of squares to be minimized is

S(l~,K,to) = ~~(lij-/l(I~,K,to,ti»2.
i j

The asymptotic covariance matrix for parame­
ters 8' = (81 , ••• ,8p ) estimated using ML theory is
the inverse information matrix 1(8) -1 (Kendall
and Stuart 1973), where 1(8) = (I ij),

L(8,X) = log(Q(8 ,X», and Q(8 ,X) is the likelihood
function.

For nonlinear LS estimates, 1(8)-1 can be esti­
mated using

which is the formula used by nonlinear LS compu­
ter programs. Generally, Z = (Zij) , where Zii is the
partial derivative of the expectation of the ith
observation .with respect to the jth parameter
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evaluated at the ML estimates, and 8 2 is the mean
square error.

For estimates calculated using method (a),

aJ1(t1) aJ1( t1) aJ1( t[ ) aJ1( t[ )
--- -- ---

al~
, ... , ac ' ... , ac ' ... ,

al~

aJ1(t1 ) aJ1(td aJ1(t[) aJ1( t[)
Z'= aK ,... , aK , ... , aK , ... , aK

aJ1( t1) aJ1(td aJ1( t[) aJ1(t[ )
---

ato
,... , ato

, ... ,
ato

, ... ,
ato 3XN

evaluated at (L,k,to)' with 8 2 = S<Z",k,io)1
(N -3), N = Ii ni and I the number of age
categories.

As was previously noted for method (d), it is
often advantageous to view this model as being
unweighted with transformed variables. From
this point of view, Yi = (V;;;il; is the dependent
variable, with expectation E(Yi) = cvii)JL(ti ).

Under this parameterization, var(y) = cr with

not completely collapsed (averaged) at each value
of the independent variable. Instead, data can be
partitioned so that there are several dependent
variable averages, and weights, at each value of
the independent variable. A similar technique can
be applied to method (c).

Another possibility would be to estimate u2 in­
dependent ofthe LS calculations by pooling the 8i 2

values. However, this estimate based on pure
error would tend to underestimate the true cr
which will often contain a lack of fit component
(see the following section for a discussion concern­
ing pure error and lack of fit).

Z'w FAILURE OF ASSUMPTIONS

again evaluated at (Z""k,io), with 8 w2 = Sw
(t"k,io)/(l-3).

It is easily verified that Z Z = Z w Z wand, there­
fore, any differences in the covariance matrix es­
timates of parameter estimates must be due to
differences in the estimates 8 2 and 8 w

2 of cr. Al­
though 8 2 provides a better estimate than 8 w2 in
terms of degrees of freedom (N-3 versus 1-3),
they should be similar in value, and hence it can be
expected that methods (a) and (d) provide similar
covariance matrix estimates of parameter esti­
mates.

This analysis points out that good estimates of
the covariance matrix of parameter estimates re-

oquire having sufficient numbers ofobservations so
that u2 is adequately estimated. From this point of
view method (a) is superior to method (d). How­
ever, method (d) can be modified so that data are
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There are two ways in which the assumed model
can fail: 1) growth may not follow the von Ber­
talanffy curve; or 2) error assumptions may not
hold.

Failure of the von Bertalanffy Curve

Even when growth follows the von Bertalanffy
curve, expected lengths at age from sample data
may not. Discrepancies can be caused by bias in
sampling, bias in age determination, or size selec­
tive survival in the natural population. Because
samples tend to be biased toward larger individu­
als, age readers tend to under-age older individu­
als, and larger individuals of an age group tend to
have better survival, these factors may bias the
observed size upward for a given age.

When a number of length specimens are avail­
able at each age, a statistical measure oflack offit
(departure from the von Bertalanffy curve) can be
calculated using the procedure described by
Draper and Smith (1966). For this analysis, it is
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For a linear model with no lack of fit,

Failure of Error Assumptions

F = (Slot1(1-3»/(Spe I(N-I)

would have an F-distribution with VI = I -3 and
V2 =N -1 degrees of freedom. While recognizing
that the von Bertalanffy curve is not a linear
model, this statistic may still serve as a tentative
examination for lack of fit.

Even if the data show significant lack of fit, the
von Bertalanffy curve may still provide the most
useful growth analysis. Rejection of the von Ber­
talanffy curve must ultimately be based on supe­
rior alternative curves or methods of analysis.

mate size l-q around ML estimates (t,K.to) can
be constructed using the relationship

S(loo,K,tO)

where S(l..,K,to)

S(loo,K,to) -cq = 0

. . - 3
= S(loo,K,to) [1 + N-3 F(3,N-3,I-q)]

= cq (Draper and Smith 1966)

where F(3,N-3,I-q) is the (l-q)th percentile of
the F -distribution with VI =3 and V2 =N -3 de­
grees offreedom. That is, values ofa."K,to) which
satisfy S(l"",K,to) = c!l form a three-dimensional
surface enclosing the true value of (l"",K,to) with
approximate probability l-q. The ~probability

level would be exactly l-q if the growth model
was linear, but for nonlinear models (such as the
von Bertalanffy curve) this value is only approxi­
mated. Although methods exist which provide
confidence regions with exact values for q (Hartley
1964), such methods are inferior to that of Draper
and Smith in that they: 1) have a degree of arbi·
trariness in the selection of a region, 2) do not
follow contours of equal likelihood, and 3) are
more complex to apply.

The relationship defining a contour is

Spe = ~(nj-l)sj2

Slot = S(L,K, lo)-Spe .and

necessary to assume that the error variance of
individuals is constant (Le., the variance assump­
tion of method (a) holds). It is also important to
remember that for nonlinear models (such as the
von Bertalanffy curve) the procedure is not strictly
valid, but is analogous to calculations valid under
linear models.

The residual sum of squares calculated using
method (a) can be partitioned into a pure error
component (SE-e) and a lack offit components (SID,).
Estimates of these components are

When a number oflength specimens are avail­
able at each age, parameter estimates should be
robust against violations of the normality as­
sumption. As was previously shown, estimates can
be viewed as solutions to a LS problem with obser­
vations Yj = CVn:)~ which are always approxi­
mately normally distributed due to the central
limit theorem.

The most likely form ofheteroscedasticity is the
varying of variance with age. Method (c) provides
an appropriate analysis for this case.

If observations are correlated, there will be no
practical remedy. Efficient estimates will general­
ly depend on the N x N correlation matrix of er­
rors. This matrix will generally not be estimable.

= ~ [lu 2-2/oolu(l-exp(-K(tu- to)))
u

+ I..2(I-exp(-K( tu-tO)))2]

- - - 3
and cq = S(Joo,K, to) [1 +N-3 F(3,N-3,1-q)] .

Therefore, S(loo,K, t o)-cq = Aloo2 + Bloo + C

whereA = ~ (1-exp(-K(tu- t o)))2
u

B -2~lu(1-exp(-K(tu-to)))
u

CONSTRUCTING CONFIDENCE
REGIONS

For method (a), confidence regions of approxi-
Solutions exist for the three-dimensional contour
problem whenever B2_4AC~O.
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Points on the three-dimensional contour are
easily calculated by conditioning on a value for to,
and calculating the two-dimensional cross section
([""K) by stepping through plausible values for
K, and when B2_4AC;a.0, calculating 1",=
(-B ±VB2-4AC)/(2A). By varying to also, this al­
gorithm will generate the entire three-dimen­
sional confidence region.

Although points on the contour surface are eas­
ily calculated, the fact that three parameters are
involved in the von Bertalanffy curve greatly
limits the usefulness ofconfidence regions. This is
due to the simple fact that three-dimensional re­
gions are difficult to display.

The simplest solution to this problem is to
condition on to, and graph the resulting two­
dimensional cross section (l""K). It must be re­
membered that this region is not a true con­
fidence region since more extreme values of (l", ,K)
may occur at a different value of to' Thus this
procedure will give only a rough idea of our
confidence in the estimates (l,.,,io. A more time
consuming solution is to graph a series of cross
sections, or possibly a three-dimensional graph.

Ifmethod (b) is used to estimate parameters, the
analysis follows as in method (a), by simply replac­
ing lu with lu and N with I.

Ifweighted methods (c) or (d) is used to estimate
parameters, confidence regions are defined by the
relationship

Sw(l .. ,K,to)
- .. 3

= Sw(l ..,K,to)[1+I_3F(3,I-3,1-q)] = c~.

Computations proceed as in the unweighted case,
but with

A w = ~ wu(1-exp(-K(tu- t o)))2 ,
u
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method for the statistical comparison of growth
curves. It is a well-known and oftenexploited fact
that once a general probability model has been
specified (0), hypothesis tests oflinear constraints
on parameters in this model can be derived using
the LR criterion. Alternatively viewed, linear con­
straints on parameters in 0 imply a simplified
model w. Tests of linear constraints on 0 are thus
equivalent to testing w against n.

The LR criterion can be used on the single Sarn­
pIe problem, when it is desired to test whether a
sample came from a population with some
"known" values for any or all of the parameters
(1""K,to); or for the multisample problem compar­
ing von Bertalanffy curves in different popula­
tions. The first problem will be solved by the
simplest application of theory derived mainly in
the context of the second problem. When a single
parameter is being tested in the one or two sample
problem, it makes good sense to simply use a
Z-statistic (since ML estimates are asymptotically
normal) and forego the more extensive calcula­
tions required for LR tests. One advantage that
the Z test has over the LR test for the two sample
problem is that er does not need to be equal in the
two populations.

Consider I different populations each following
the von Bertalanffy curve with parameters
(l"'i'Kj,tlJj)' i = 1,... , I. These populations would
typically be the same species in different habitats,
males and females, etc. Let liJ be the length of the
jth observation in the ith population, of age tij,
j = 1, ... , nj, N = I j nj, with variance (T2 inde­
pendent of i. Note that the meaning of subscripts
has been changed from what was used in previous
sections.

Letting S(l""K,to) = IjIj(lij-/oL(l"'i'Kj,toj,tij»2,
the likelihood function under (0) can be written as

R(I",,Kt o,er) = (27Ter) -NI2 exp(-S(l",,Kt o)/2er)

-2~ wul u(l-exp(-K(tu -to)))
u

where

and

I~ = (l"'I, , 1""1),
K' = (Kl , , K I ),

to = (tOl ' ••• , toI )'

- 2 ,
and Cw = ~ wul u -cq •

u

For method (c) Wu = nJsu.2, and for method (d)
W u = nu '

APPLYING LIKELIHOOD RATIO TESTS

Likelihood ratio (LR) tests provide a general
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Although the above parameterization is appropri­
ate for unweighted methods (a) and (b), the reader
can verify that no additional problems arise using
weighted methods (c) and (d).

Previously, it was shown that likelihood func­
tions ofthe form Q(l",,K ,to ,er) are maximized by LS
estimates (I",,K ,to), with the ML estimate of
u2 being
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This is true whether or not there are any linear
constraints placed on the parameters being esti­
mated. Substituting Q-2 intoQ(l"",K ,to,cr) yields the
maximum value of the likelihood function

max (Q(loo,K ,to ,cr» = (27TQ-2) -NI2 exp( -N/2).

The LR for the hypothesis

H w : that the parameters (l"",K,to) satisfy
some set of r linear constraints, say R

against the alternative

H n: that the parameters (l"",K,to) possibly
satisfy no linear constraints

observations maintained above the required level.
A similar technique can be applied to method (c).

The problem of constructing LR tests thus re­
duces to one of finding 18 estimates for a number
of different probability models. These models are
generated by placing appropriate linear con­
straints on the ~eneralmodel n, depending on the
hypothesis being tested. For the single sample
problem, linear constraints take the form offixing
any or all of the parameters (l"",K,to) to their
hypothesized values. In this case, the degrees of
freedom ofX~ is equal to the number ofparameters
fixed. For the multisample problem, linear con­
straints take the form of fitting von Bertalanffy
curves so that any or all of the parameters are
equal in any or all oftheI populations. In this case,
the degrees offreedom ofX~ is equal to the number
oflinear equations needed to specify the particular

. constraints. For example, I -1 linear equations
are needed to specify equality of any parameter
over I populations.

AN EXAMPLE

TABLE I.-Average length at various ages for male and female
Pacifie hake taken off California, Oregon, and Washington dur­
ing 1965-69 (adopted from Dark 1975).

As an example illustrating some ofthe methods
that have been presented, growth data (Table 1)
for Pacific hake, Merluccius productus, from Dark
(1975), was analyzed using method (b). The reader
can test his understanding of methods, as well as
the correctness of his computer programs, by du­
plicating this analysis.

A first step in nonlinear LS analysis is the selec­
tion of a general purpose iterative nonlinear LS
computer program. Such programs take initial es­
timates and attempt to find 18 estimates. For the
present analysis, BMD07R of the BMD biomedi­
cal computer programs (Dixon 1976) was used.
This choice was dictated by program availability.

Mele
Sample Mean lang1l1

slza (em)

385 15.40
28 26.93
13 42.23
83 44.59

628 47.63
1,134 49.67
1,761 50.87

432 52.30
93 54.n
21 56.43
8 55.88

Female
Sample Mean leng1l1

size (em)

365 15.40
36 28.03
17 41.18

135 46.20
750 48.23

1,073 50.28
1,459 51.82

626 54.27
199 56.98
97 58.93
44 59.00
11 60.91
6 61.83

Age
(years)

1.0
2.0
3.3
4.3
5.3
6.3
7.3
6.3
9.3

10.3
11.3
12.3
13.3

(loo,K,to)' R
is A = -------

max (Q(l"",l( to ,0-2»

Letting U~ and U~ be the ML estimates of0-2 under
wand n, respectively, this LR becomes

(21Ta~ )-N/2 exp(-N/2) __
A =- _ = (o~ {O~)N/2.

(21TO5)-N /2 exp(-N{2)

Under H w' the test statistic -2 10g(A) = -N
log(a-~/a-:) will have asymptotically a X~ dis­
tribution. A derivation of this distribution given
by Kendall and Stuart (1973) can be modified to
accommodate the present model.

Because LR tests are based on statistics having
asymptotically a X~ distribution, the validity of
this test is dependent on the sample sizes used in
calculating the test statistic. Assuming Hw is true
and that the error variance ofindividual observa­
tions is constant, the LR test statistic calculated
using method (a) will be based on more observa­
tions than the LR test statistic calculated using
method (d), and hence could be expected to better
follow the X~distribution.However, method (d)
may be modified so that there are several depen­
dent variable averages and weights at each value
of the independent variable (see the section com­
paring methods (a) and (d», and the number of
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Suitable programs are also available in BMDP
(Dixon 1977), SPSS (Nie et al. 1975), and from a
number of other sources.

Inital values were obtained from Ford-Walford
plots (Ricker 1975) which provided estimates t
and K; and from the weighted average

where 4is the average length at age t j • For these
initial calculations, it was convenient to round
ages to whole years. This disallows direct com­
parisons of Ford-Walford and LS estimates. Be­
sides initial estimates, BMD07R also requires a
FORTRAN subroutine (provided in the Appendix)
which evaluates f.L(tu ) and its partial derivatives.

Table 2 contains the initial Ford-Walford esti­
mates (t"K,to) and the final LS estimates
(l""K,to) obtained from BMD07R. LS fits of
growth curves are graphed in Figure 1.

From Figure 1 there appears to be a difference in
Z'" between sexes. As a further examination ofthis
difference, cross sections of the approximate 95%
confidence regions around ([",,in, generated by
conditioning on to, were graphed (Figure 2) using

TABLE 2.-Least squares (LS) estimates of von Bertalanffy
parameters for male and female Pacific hake, based on data in
Table 1.

Item I", K to
M8Ie:

Ford-W8Iford 1nltl81 estimates 55.63 0.43 0.35
LS estlmatss 55.98 0.386 0.171
Standard deviation 01 LS estimates 1.083 0.039 0.142

Fem8le:
Ford-W8Iford Initl81 estimatss 60.60 0.35 0.32
LS estimates 61.23 0.296 -0.057
Standard deviation of LS estimates 1.214 0.029 0.175

methods previously described. These regions not
only show a difference in Z'" between sexes, but also
indicate a difference in K.

As a final step in this analysis, LR tests for
equality of von Bertalanffy parameters between
males (population 1) and females (population 2)
were performed. It was necessary to fit data to five
models corresponding to hypotheses of interest
(Table 3).

The difficulty of fitting these models depends
somewhat on the nonlinear LS program used. If
derivative-free programs are available, the user
will be saved the complex task of specifYing de­
rivatives. If programs allow for constraints, only
the model n need be specified. Nonlinear LS pro­
grams available in BMDP have these features.

For BMD07R, the Appendix provides FOR­
TRAN subroutines which evaluate f.L(tu ) and its
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FIGURE I.-Plots of average length at
each age (from Table 1), for male and
female Pacific hake, with graphs of es·
timated von Bertalanffy curves (from
Table 2).
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FIGURE 2.-Cross sections of approximate 95% confidence re­
gions around least squares estimates (/",$), generated by con­
ditioning on to (see text), for male (M) and female (F) Pacific
hake. Letters M and F are centered on least squares estimates.

partial derivatives for the five models. These sub­
routines are general in the sense that they allow
comparisons ofany number ofpopulations. Proba­
bly these subroutines are compatible with the re­
quirements ofBMDP3R, but this program was not
readily available for a test. Also, minor modifica­
tions may be necessary to comply with require­
ments of particular computer systems.

Results of LR tests (Table 3) indicate there is a
significant difference (ex = 0.002) in 1", between
sexes, a borderline significant difference
(ex = 0.05) in K, but no significant difference in to·
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APPENDIX

This appendix contains FORTRAN subroutines
required by BMD07R to fit models corresponding
to the five hypotheses in Table 3. These sub­
routines evaluate I-t(tu ) and its partial derivatives.
To use these subroutines, the following three in­
structions need to be understood.

1. The variable NG must be set equal to the
number of populations to be compared.

2. The first NG variables ofthe data input must
be "design variables," followed by age. That is, the
first NG variables for observation ljj must consist
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of NG-l zeros and a single one, the one occurring
in the ith position; followed by age (tij). Next comes
length and statistical weights (if weighting is
used).

3. The parameters to be estimated are refer­
enced in the order alll",'s first, all K's second, and
all to's last. Relative positions of 1",'s, K's, and to's
amongst themselves are simply the order ofpopu­
lation number. It should be noted that the
number of parameters fitted under the five
hypotheses of Table 3 are H n: 3 xNG;
H w},Hw2 ,Hw3: (2xNG)+1; H w4 : 3.
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I. Subroutine FUN for hypothesis !l. ll. Subroutine FUN for hypothesis wI.

SUBROUTINE FUN(F,D,P,X) SUBROUTINE FUN(F,D,P,X)
DIMENSION D(I),P(I),X(l) DIMENSION D(l),P(I),X(l)

C NG IS THE NUMBER OF POPULATIONS TO BE C NG IS THE NUMBER OF POPULATIONS TO BE
C COMPARED C COMPARED

NG=2 NG=2
C SUBROUTINE FUN FOR HYPOTHESIS !l: C SUBROUTINE FUN FOR HYPOTHESIS wI: I ",'S
C NG DIFFERENT GROWTH CURVES C EQUAL

IND=NG+l IND=NG+1
XL=O. XK=O.
XK=O. XT=O.
XT=O. ll=1
ll=NG III=l+NG
III=NG+NG DO 10 1=1, NG
DO 10 I=I,NG lI=ll+l
11=11+1 III=llI+l
llI=llI+l XK =XK+X(I)*P(ll)
XL=XL +X(I)*P(I) XT=XT+X(I)*P(llI)
XK=XK +X(I)*P(ll) 10 CONTINUE
XT=XT+X(I)*PCllI) XL=P(I)

10 CONTINUE XX=EXP( -XK*(X(IND)-XT»
XX=EXP( -XK*(X(IND)-XT)) F=XL*(l.-XX)
F=XL*(l.-XX) 11=1
ll=NG llI=l+NG
III=NG+NG DO 20 I=I,NG
DO 20 I=I,NG ll=ll+1
ll=II+1 III=1lI+1
III=1lI+ 1 D(lI)=O.
D(I) =0. D(III) =0.
D(II) =0. IFCX(I).EQ.O.) GO TO 20
D(lll) =0. D(ll)=XL*XX*CXCIND)-XT'
IFCXCI).EQ.O.) GO TO 20 D(llI)=-XL*XX*XK
D(I)=l.-XX 20 CONTINUE
D(ll)=XL*XX*(X(IND)-XT) D(l)=l.-XX
D(llI) = - XL*XX*XK RETURN

20 CONTINUE END
RETURN
END
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Ill. Subroutine FUN for hypothesis w2. IV. Subroutine FUN for hypothesis w3.

SUBROUTINE FUN(F,D,P,X) SUBROUTINE FUN(F,D,P,X)
DIMENSION D(l),P(l),X(l) DIMENSION D(l),P(1),X(l)

C NG IS THE NUMBER OF POPULATIONS TO BE C NG IS THE NUMBER OF POPULATIONS TO BE
C COMPARED C COMPARED

NG=2 NG=2
C SUBROUTINE FUN FOR HYPOTHESIS w2: K'S C SUBROUTINE FUN FOR HYPOTHESIS w3: to'S
C EQUAL C EQUAL

IND=NG+l IND=NG+1
INDX=NG+l INDX=NG+NG+1
XL=O. XL=O.
XT=O. XK=O.
Ill=NG+1 II=NG
DO 10 I=1,NG DO 10 I=1,NG
Ill=Ill+1 11=11+1
XL=XL+X(1)*P(I) XL=XL+X(I)*P(I)
XT=XT+X(I)*P(1l1) XK=XK +X(I)*P(ll)

10 CONTINUE 10 CONTINUE
XK=P(INDX) XT=P(INDX)
XX=EXP( -XK*(X(IND)-XT» XX =EXP( - XK*(X(IND) - XT»
F=XL*(l.-XX) F=XL*(l.-XX)
Ill=NG+l II=NG
DO 20 I=1,NG DO 20 I=1,NG
III =III+1 1I=1l+1
D(I) =0. D(I) =0.
D(Ill) =0. D(II)=O.
IF(X(I).EQ.O.) GO TO 20 IF(X(1).EQ.O.) GO TO 20
D(1)=l.-XX D(I)=l.-XX
D(lll) = - XL*XX*XK D(II)=XL*XX*(X(IND)-XT)

20 CONTINUE 20 CONTINUE
D(lNDX) =XL*XX*(X(IND) - XT) D(INDX)=-XL*XX*XK
RETURN RETURN
END END

V. Subroutine FUN for hypothesis w4.

SUBROUTINE FUN(F,D,P,X)
DIMENSION D(l),P(l),X(l)

C NG IS THE NUMBER OF POPULATIONS TO BE
C COMPARED

NG=2
C SUBROUTINE FUN FOR HYPOTHESIS w4: ALL
C CURVES IDENTICAL

IND=NG+1
XL=P(l)
XK=P(2)
XT=P(3)
XX=EXP( -XK*(X(IND)-XT»
F=XL*(l.-XX)
D(l)=l.-XX
D(2)=XL*XX*(X(IND)-XT)
D(3)=-XL*XX*XK
RETURN
END
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