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ABSTRACT

Box·Jenkins models are suggested as appropriate models for forecasting fishery dynamics. Unlike
standard production models, these models are empirical, dynamic, stochastic models. Box·Jenkins
models are not biased when estimating relationships between catch and effort, as are standard
production models. The use of these techniques is illustrated on catch and effort data for the skipjack
tuna fleet in Hawaii. An actual 12-month forecast is shown to give a reasonable fit to the observed data.
Most of the discrepancies are explained by changes in the behavior of the fishermen (i.e., economic
factors), rather than by lack of knowledge of the behavior of fish.

Accurate forecasting models would be useful in
fishery management because extended jurisdic
tion and international agreements require pre
seasonal predictions of the actual catch of a fleet.
In addition, improved forecasts of fish availability
can lead to improved planning by fishermen or by
processing firms. Forecasting techniques have
expanded greatly in the last years, but few have
been adapted to research in fisheries manage
ment. Instead, techniques designed to establish
the equilibriurn health of the stocks are also being
used to attempt dynamic forecasting.

At present, two least squares procedures are
being used to estimate the general production
model, the search procedure of Pella and Tom
linson (1969) and the weighted least squares of
Fox (1970, 1971, 1975). The Fox procedure fits
catch per unit effort against a function of lagged
effort. Several authors (Chayes 1949; Eberhardt
1970; Atchley et al. 1976) have demonstrated that
scaling the dependent variable (i.e., catch) by
the independent variables (i.e., effort) biases
the fit by introducing artificial correlation into
the data. Johnston (1972) showed that ordinary
least squares gave biased estimates and an in
flated F-statistic when used with variables lagged
on themselves. Neither the Fox nor the Pella
Tomlinson procedure accounts for the effect of
autocorrelated errors in the estimation procedure
which Granger and Newbold (1977) and Newbold
and Davies (1978) have demonstrated bias both
estimation and tests of fit. An examination of the
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residuals in Fox (1971, figure 3B) clearly shows
them to be autocorrelated. Residuals from many
spawner-recruit curves display similar behavior.

In this paper, the use of Box-Jenkins models
for modeling and forecasting fisheries dynamics
is explored. Box-Jenkins and other related fore
casting techniques are specifically designed for
estimating and testing models in the presence
of autocorrelated errors. The fitted models are
stochastic rather than deterministic, thus reflect
ing the variability found in most fisheries. The
models are constructed empirically, and are best
suited for forecasting. The models tell us little
about the long-term health of the stocks, so that a
judicious use of production, yield per recruit, and
accurate forecasting models is required to give the
best overall picture of the fishery.

My preference for Box-Jenkins models over
other forecasting methods now available is due to
the good documentation (see for example Ander
son 1975; Box and Jenkins 1976; Granger and
Newbold 1977) and computer accessibility. The
results presented here were obtained using a
package originally developed by David Pack at
Ohio State University and now available through
Automatic Forecasting Systems?

The three-step process of model identification
model estimation, and model diagnostic checkin~
is illustrated by developing a model that makes
monthly forecasts of skipjack tuna, Katsuwonus
pelamis, catches in Hawaii. Experience with the
model suggests that for a 12-mo forecast of catch,

2 Reference to trade names does not imply endorsement by the
National Marine Fisheries Service. NOAA.
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during peak months the forecast is within 15% of
the observed catch (and is usually within 8-10% of
the observed catch), most turning points in the
catch trend are predicted, and the important
feature of a low, flat catch during the summer
months or high, peaked catches are accurately
predicted. Moreover, the reasons for forecasts with
large errors appear to be related more to fisher
men's decisions in face of weather and economic
factors, than to mispredicting the availability
of the fish.

THE DATA AND
UNDERLYING MODEL

The data to be analyzed are landings ofskipjack
tuna by approximately 12 boats from Oahu during
1964 through 1978. The raw data consist of the
daily landings (each boat rarely stayed out more
than a day or two), broken down by boat, and by
four skipjack tuna size classes: large, medium,
small, and extra small. For purposes of analysis,

FISHERY BULLETIN: VOL. 78. NO.4

the data were aggregated into monthly totals,
with the total number of fishing trips used as the
measure of fishing effort. For monthly catch and
effort during 1964-78 see Figures 1 and 2.

There are several causes for the observed sea
sonal variability. First, the tuna are only avail
able in large numbers seasonally. Second, price
considerations, particularly around Christmas
and New Year when there is large demand, tend to
spur fishing even when availability is low. Third,
with only 12 boats fishing, if 1 or 2 boats are not
able to fish for a few weeks, the catch will drop
sharply. Finally, environmental factors, partic
ularly weather (such as bad seas) will affect the
landings since the boats are unable to fish.

Folklore in Hawaii has it that the catch remains
similar each year, no matter how many boats fish.
Comitini3 examined the fishery using dummy
variables and ordinary least squares to estimate

3Comitini, S. 1977. An economic analysis of the state of
the Hawaiian skipjack tuna fishery. Sea Grant Tech. Rep.
UNIHI-SEAGRANT-TR-78-01, 46 p.
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FIGURE I.-Level of Hawaiian skipjack tuna catch by month. 1964-78.
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a Cobbs-Douglas production function. He con
cluded, among other things, that natural fluctua
tions in resource availablity are significant, but
did not include them in his analysis, nor did he
provide a means for forecasting future catch. The
National Marine Fisheries Service, using a re
gression model based on the previous year's catch,
water temperature, and salinity at the start of the
year, makes yearly predictions that have been
mixed in accuracy.

Box-Jenkins models are autoregressive-inte
grated-moving-average models, or ARIMA mod
els. These are linear, stochastic models that can
describe fairly complex behavior, in contrast to
Parrish and MacCall (1978) who use highly non
linear equations to model the fluctuations in
fishery data.

The modeling is based on the properties of
stationary time series. A time series Xt is station
ary if it has a constant mean, and if the covariance
between events Xt, Xt-s depends only on s and not
on t. Many series are stationary after removing a

deterministic trend. Others are differenced in
order to achieve stationary. Also, transforming
the time series, particularly using the Box-Cox
family of transformations, often improves the
behavior of the time series. The initial step then is
to transform and difference the data as necessary
to achieve stationary. It is convenient to use the
backshift operator Bi, where BiXt = Xt-i, to de
note lagged variables. Given the new series Zt

= (1 - Bd)Xt, a mixture of autoregressive and
moving average models are sought. Autoregres
sive models are models that depend on the past
history of the time series:

in terms of the backshift operator:

while moving average models depend on past
values of the noise or error:
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FIGURE 2.-Number of fishing trips per month by the Hawaii skipjack tuna fleet 1964-78, near Oahu, Hawaii.
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or:

A model that has both moving average and auto
regressive parameters is a mixed autoregressive
moving average model, whose representation in
terms of the backshift operator is:

MODEL IDENTIFICATION

The first step in the Box-Jenkins modeling
process is to use properties of the data to tenta
tively identify a model. Even if a multivariate
model (i.e., a model based on catch and effort) is
the ultimate goal, univariate models ofeach series
are constructed first. Often the univariate model
produces forecasts that are almost as accurate as
the multivariate model forecast.

My procedure was to identify, estimate, and
check a series of models based on the data from
January 1964 through July 1977. These models
were used to forecast the already observed catch

and effort for the period August 1977-December
1978. The models with the best "fit" were then
reestimated to make the forecast for 1979. To
make clear the feedback nature of identification,
estimation, and checking in Box-Jenkins models,
results from models fixed to 163 and 180 mo ofdata
are intermingled, but clearly labeled.

A tentative model can be identified by esti
mating the autocorrelation and partial autocor
relation functions for each series. These are shown
in Figures 3 and 4. Significant is the undamped
sinusoidal behavior ofeach, with a period of12 mo.
Failure of both the autocorrelation and partial
autocorrelation functions to go to zero is a sign
of a nonstationary series, and the need for dif
ferencing. The 12-mo period suggested a yearly
seasonal model, so that twelfth differences were
taken, i.e., Zt = (1 - B 12

)xt.

The estimated autocorrelation and partial auto
correlation functions for the differenced catch and
effort series are given in Tables 1 and 2. Following
guidelines in appendix 9.1 in Box and Jenkins
(1976), seasonal models with period s of the form:
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TABLE I.-Autocorrelation functions for 12th differenced effort series of the Hawaii skipjack tuna fleet, 1964-78.

Lag (mo)
Item 2 3 4 5 6 7 8 9 10 11 12 13 14

Regular auto. 0.39 0.17 0.20 0.16 0.10 0.04 0.03 0.07 -0.02 -0.08 -0.20 -0.45 -0.18 -0.08
SE .08 .09 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .12 .12
Partial auto. .39 .03 .15 .03 .01 -.04 .00 .00 -.08 -.07 -.19 -.39 .15 .04

Lag (mo)
Item 15 16 17 18 19 20 21 22 23 24 25 26 27

Regular auto. -0.18 -0.13 -0.12 -0.17 -0.15 -0.17 -0.12 0.05 0.04 0.02 0.00 -0.07 0.03
SE .12 .12 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .13
Partial auto. -.03 .02 - .07 -.14 -.01 -.02 -.05 .16 -.08 -.19 .05 -.12 .03

TABLE 2.-Autocorrelation functions for 12th differenced catch series of the Hawaii skipjack tuna fleet, 1964-78.

Lag (mo)
Item 2 3 4 5 6 7 8 9 10 11 12 13 14

Regular auto. 0.58 0.40 0.33 0.20 0.11 0.05 0.01 0.02 -0.06 -0.12 -0.21 -0.38 -0.21 -0.15
SE .08 .11 .12 .12 .12 .12 .12 .12 .12 .12 .13 .13 .14 .14

Partial auto. .58 .09 .10 -.07 -.03 - .04 - .00 .04 -.11 - .07 -.17 - .29 .28 .03

Lag (mo)
Item 15 16 17 18 19 20 21 22 23 24 25 26 27

Regular auto. -0.16 -0.12 -0.08 -0.09 -0.08 -0.12 -0.10 -0.08 -0.08 -O.Og -0.06 -0.06 -0.05
SE .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14

Partial auto. -.01 -.06 -.02 -.07 .02 -.05 -.04 -.04 - .11 -.17 -.19 -.01 -.02

were hypothesized as the appropriate univariate
models for both the catch and the effort time
series.

ESTIMATION AND CHECKING

Given a tentative model, such as Model (1), the

next step is a recursive procedure of estimating
the parameters of the model, ~alculating the
autocorrelation and partial autocorrelation func
tions of the residuals from the estimated model,
and then testing the residuals for significant
departure from the assumption that they are
white noise. When a final model has been identi-
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fied, overfitting is tried, that is extra parameters
are added to see if they are found to be not
significantly different from zero.

To insure that I found the simplest model
possible, I fitted first the model Zt = (l - 81B)
(1 - 8 1 B 12 )at, and then added parameters as
seemed necessary based on the diagnostic check
ing. The estimates for Model (1) for catch and
effort are given in Tables 3 and 4. Estimates
using two estimation techniques, one using back
forecasting and one suppressing it, are presented.
Some programs do not have a backforecasting
feature; my experience is that the estimated
models obtained using backforecasting are far
superior, as can be seen in the tables presented.

TABLE 3.-Parameter estimates for effort model, Model (l)
(see text). (Based on 180 observations.)

FISHERY BULLETIN: VOL. 78, NO.4

correlation functions of the residuals (not shown)
show no sign of additional lags or trend. The test
statistic that the residual series are not signifi
cantly different from white noise gave no reason
to doubt the models adequacy, and overfitting by
including a 8 2 B 24 term found this term to be
nonsignificant.

TRANSFER FUNCTION MODELS

If both the catch time series, say Yt, and the
effort time series, say Xt, have been suitably
transformed so that the resulting series are sta
tionary, a transfer function of the form:

TABLE 4.-Parameter estimates for catch model, Model (l)

(see text). (Based on 163 observations.)

Estimate
sUfcressin~

SE
Estimate using

Parameter back orecasllng backforecasting SE

8, -0.38349 0.07942 -0.44756 0.07886
82 -.11326 .07996 -.12795 .07911
8, .5894 .08122 .99493 .00650
8 2 .00069 .08609

x2 statistic
on residuals 26.894 with 44 df 37.319 with 45 df

Residual
meen square 1,018.60 755.270

Residual SE 31.915 27.482
Residual mean 1.629 0.5338

Parameter

8,
82

8,
8 2

x' statistic on residuals
Residual mean square
Residual SE
Residual mean

Estimate suppressing
backforecasting

-0.54100
-.22745

.75314

.05184

27.470 with 43 df
165,410

406.71
17.506

SE

0.08190
.08235
.08718
.09256

can be estimated where 7/t is not assumed to be
white noise, but itself can be modeled as an
autoregressive-moving average process of at .

The procedures for identifying and estimating a
transfer function model are similar to those for the
univariate model, except that attention is focused
on the estimated cross-correlation function be
tween the "prewhitened" catch and effort series.
Series are prewhitened if they are reduced to the
residuals left from a given model. In this instance,
both series are prewhitened by the univariate
model for effort estimated in the preceding sec
tion. The estimated correlation function, impulse
response function, and residual noise autocorrela
tion function are given in Table 9, The estimated
autocorrelation function for the noise is similar
to the original univariate autocorrelations, sug
gesting a noise model of the form:

The estimated autocorrelation and partial auto
correlation functions of the residuals from both
models are given in Tables 5 and 6. For the effort
series, there is no sign of a lack of fit, while for
the catch series terms of lag three or four are
suggested. An overspecified model:

Based on guidelines in Box and Jenkins (1976:386
388) and knowledge of the fishery, two models
were hypothesized:

(4)

was estimated for both the catch and effort time
series. The results are summarized in Tables 7 and
8. The estimated autocorrelation and partial auto-

892
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TABLE 5.-Estimated autocorrelation function for residuals of effort model for the Hawaii skipjack tuna
fleet, 1964-78.

Item

Auto.
SE

Item

Auto.
SE

0.01
.07

13

0.05
.08

2

0.03
.07

14

-0.01
.08

3

0.09
.07

15

-0.04
.08

4

0.06
.08

16

-0.09
.08

Lag (mo)
5 6

0.04 -0.11
.08 .08

Lag (rna)
17 18

-0.08 -0.09
.08 .08

7

-0.05
.08

19

-0.07
.08

8

0.04
.08

20

-0.08
.08

9

-0.09
.08

21

-0.16
.08

10

0.02
.08

22

0.10
.08

11

0.03
.08

23

0.07
.08

12

-0.01
.08

24

-0.02
.08

TABLE 6.-Estimated autocorrelation function for residuals of catch model for the Hawaii skipjack tuna
fleet,1964-78.

Lag (rna)
Item 2 3 4 5 6 7 8 9 10 11 12

Auto. 0.04 0.11 0.23 0.06 0.06 -0.05 0.00 0.10 -0.03 0.04 0.01 0.00
BE .08 .08 .08 .09 .09 .09 .09 .09 .09 .09 .09 .09

Item
Lag (rna)

13 14 15 16 17 18 19 20 21 22 23 24

Auto. 0.05 -0.01 -0.07 -0.01 -0.00 -0.04 0.00 -0.01 -0.06 0.01 -0.04 -0.03
BE .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09

backforecasting is used in estimating the pa
rameters for Models (4) and (5). The chi-square
statistics show no reason to suspect model inade
quacy. The residuals show no significant cross
correlation with total catch, when vVi80 (180
observations in the series) is used as a rough
standard error. The residual autocorrelation func
tion shows spikes around lag 15 that are higher
than would be desired, but overall the fit is
reasonable, and the model residuals could reason
ably be modeled as white noise.

DISCUSSION AND FORECASTS

Two transfer function models and one univari
ate model have been used to forecast the catch and
effort in the skipjack tuna fishery during 1979. It
is worth emphasizing that the original 12-mo fore
casts were made in January 1979 and the updated
forecasts were made in May 1979, so the reported
results are true forecasts-there was no a priori
knowledge of the data to help improve the "fit" of
the forecasts. The original catch and effort fore
casts are given in Tables 12 and 13 while the
updated catch forecasts are given in Table 14.

The models used to produce the forecasts are
best understood when written out in difference
equation form. The univariate model for catch is:

TABLE 7.-Parameter estimates for effort model, Model (2)

(see text). (Based on 180 observations.)

Estimate

Parameter
suppressing Estimate using

backforecasting SE backforecasting SE

8, -0.36746 0.08004 -0.43862 0.07930
8, -.14976 .08412 -.18144 .08590
83 -.16111 .08458 -.15377 .08617
8. -.17096 .08454 -.16298 .08593
8, -.11547 .08089 -.17291 .07998
e, .59065 .08431 .99483 .00033

)(' statistic
on residuals 20.696 with 42 df 27.494 with 42 df

Residual
maan square 1.000.40 752.67

Residual SE 31.629 27.435
Residual mean .82151 .35175

TABLE 8.-Parameter estimates for catch model, Model (2)
(see text). (Based on 180 observations.)

Estimate
suppressing Estimate using

Parameter backforecasting SE backforecasting SE

8, -0.55368 0.07972 -0.53771 0.07462
8, -.35882 .08989 -.43825 .07543
83 -.33817 .09056 -.41197 .01144
8. -.24282 .09012 -.30909 .07479
8, -.12294 .07994 -.14974 .07440
e, .76951 .05062 .99585 .00825

)(' statistic
on residuals 15.092 with 42 df 20.384 with 42 df

Residual
mean square 143.240 115,170

Residual SE 378.47 339.37
Residual mean 2.1150 3.3299

Yt = Yt-12 + (at + 0.538at-l + OA38at-2 + OA12at-3 + O.309at-4) (6)

- (O.996at-12 + 0.535at-13 + OA36at-14 + 0,410at-15 + 0.308at-IO) ,
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i.e., catch this month is equal to the catch during
the same month last year, adjusted by a difference
ofthe weighted sums ofthe forecasting errors over
the previous 4 mo. If the forecasts this year have
consistently underpredicted compared with last
year's forecasts, then the estimated catch is in
creased, while if the forecasts this year have
consistently overpredicted compared with last
year's forecasts, then the estimated catch is
decreased. The forecast maintains a balance be
tween keeping the catch in equilibrium and keep
ing the error in equilibrium.

This impression of a yearly cycle with variabil
ity is reinforced when examining the polynomial

FISHERY BULLETIN: VOL. 78. NO.4

TABLE n.-Parameter estimates for transfer model, Model (5)

(see text). (Based on 180 observations.)

Estimate
suppressing Estimate using

Parameter backforecasting SE backforecasting SE

8, 0.01286 0.30389 0.86672 0.22308
8, .88121 .28641 -.70763 .21659
Wo 7.3488 .73352 8.1855 .82832
W, -1.3011 2.16847 6.7421 1.71214
W, 6.8509 2.34577 -7.3133 1.58459
8, -.49924 .08302 -.46980 .08013
0, -.29495 .09102 -.33234 .08870
0, - .16384 .09191 -.17199 .09012
0, - .13639 .08352 -.21746 .08098
El, .83311 .05511 .99543 .00623

x' statistic
on residuals 33.067 with 43 df 38.906 with 43 df

Residual
mean square 85,673 69,066

Residual SE 292.70 262.80
Residual mean -1.9979 -2.4666

TABLE 13.-Predicted and observed number of fishing trips for

the Hawaii skipjack tuna fleet in 1979.

TABLE 12.-Catch forecasts for 1979 for the Hawaii skipjack

tuna fleet from Models (1), (4), and (5) (see text).

Model

Month (4) (5) (1) Observec catch

Jan. 102.24 157.48 159.97 52.6488
Feb. 78.91 123.32 117.81 74.1184
Mar. 121.86 118.83 108.40 102.4088
Apr. 202.05 169.75 175.82 131.0658
May 423.40 406.87 423.95 470.5450
June 595.39 605.68 598.17 358.5100
July 666.16 684.99 607.07 600.6930
Aug. 528.09 535.73 523.14 600.5200
Sept. 297.96 294.92 291.97 148.3070
OCt. 224.28 216.64 222.96 79.3360
Nov. 173.99 168.83 172.94 27.5084
Dec. 133.22 131.61 132.58 84.7755

Total 3,547.55 3,614.65 3,534.78 2,730.4367

TABLE 9.-Estimated cross-correlation function, impulse re

sponse function, and noise autocovariance function for a

catch-effort transfer model for the Hawaii skipjack tuna fleet,
1964-78.

Estimated
impulse

Lag Estimatec Estimatec noise response
(mo) cross-correlation autocovariance SE weights

0 0.651 8.409
1 .080 0.49 0.10 1.035
2 .070 .21 .12 .903
3 .086 .16 .12 1.111
4 -.033 .16 .13 -.431
5 .044 .10 .13 .566
6 -.098 .07 .13 -1.269
7 .099 .03 .13 1.276
8 .103 .13 .13 1.334
9 -.017 .14 .13 -.215

10 .043 -.05 .13 .556
11 -.040 -.14 .13 -.517
12 - .20 -.26 .13 -1.555
13 .026 -.05 .14 .338
14 - .109 .05 .14 -1.404
15 .003 -.12 .14 -.038
16 - .098 -.16 .14 - .415
17 .014 -.01 .14 .043
18 - .110 -.05 .14 -1.271
19 -.037 -.12 .14 .185
20 .006 -.12 .14 -1.422
21 - .006 -.16 .14 -.475
22 - .108 - .11 .14 .080
23 .012 -.18 .15 -.075
24 - .108 -.21 .15 -1.393
25 -.001 -.09 .15 .181
26 -.108 -.08 .15 -1.390

TABLE 10.-Parameter estimates for transfer model, Model (4)

(see text). (Based on 180 observations.)

Month

Jan.
Feb.
Mar.
Apr.
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

Original preciction

98.93
97.50

101.06
122.30
174.00
196.16
209.37
183,04
139.18
121.20
104.23
100.92

Updatec preciction

167.71
187.36
206.14
179.81
138.73
120.45
104.83
100.51

Observec

53
75
78

118
173
182
200
174

84
84
51

109

Estimate
suppressing Estimate using

Parameter backforecasting SE backforecasting SE

Wo 7.5989 0.69403 8.0003 0.83561
8, -.47621 .07993 -.48894 .07851
8, -.32874 .08734 - .32633 .08541
8, -.17034 .08803 -.14853 .08666
0, -.20033 .07905 -.17506 .07822
6, .83384 .05271 .99587 .00707

x' statistic
on residuals 34.953 with 43 df 32.018 with 43 df

Residual
mean square 83,323 71,300

Residual SE 288.66 267.02
Residual mean -15.152 0.18650

894

TABLE 14.-Updated forecasts of total catch for 1979 for the

Hawaii skipjack tuna fleet.

Model

Month (4) (5) (1) Observed catch

May 393.214 382.430 401.874 470.545
June 547.014 586.400 589.524 358.510
July 644.638 705.137 668.895 600.693
Aug. 500.151 527.945 521.456 600.520
Sept. 293.130 283.067 289,516 148.307
Oct. 220.557 197.953 222.806 79.336
Nov, 174.567 164.720 173.594 27.5084
Dec. 130.947 136.831 133.148 84.7755

Total 2,904.218 2,984.483 3,000.813 2,370.1949
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representation of Model (1). The value of 8 1 is
nearly one. Thus the term (1 - B 12 ) appears on
both sides of the equation, and can be cancelled.
Abraham and Box (1978) showed that this is
sufficient reason to suspect a deterministic cosine
function trend with a moving average model
around the trend. Given the high residual mean
square for the model (115, 170), this latter inter
pretation is consistent with the folklore on the
fishery-highly variable but on the average
things are similar from year to year.

The first transfer function model is:

within 8% of the observed total catch, and for the
period July 1977-December 1978 the model fore
casted within 12% of the observed total catch.

Except for June 1979, the summer months were
predicted accurately. Experience with the model
on the data from July 1977 suggests that the
summer months are almost always predicted
within 10% of the observed catch. In fact, in March
1979, an industry representative doubted the high
catch forecasted for the summer, due to the low
catch in January and February 1979. Similarly,
the sharp drop in catch in September was pre-

Yt = 8.003xt + (Yt-12 - 8.003xt-12) + (at + 0.489at-1 + 0.326at-2 + 0.149at-3 + 0.175at-4) (7)

- (0.996at-12 + 0.487at-13 + 0.325at-14 + 0.148at··15 + 0.174at-16).

This model has an interpretation similar to that
of the univariate model, except now catch per
weighted units of effort are compared between
years. The second transfer function model com
pares lagged values of catch and effort also.

It is difficult to judge the value of a forecast,
since this will depend on the use being made of the
forecast and the alternatives available. Granger
and Newbold (1977) suggested the most appropri
ate measure of the value of a forecast is a loss
function which reflects the loss from inaccurate
forecast in the actual application for which the
forecasts were developed. For forecasting the skip
jack tuna fishery in Hawaii, there were four
immediate goals. The first was to give a reason
ably accurate estimate of total catch over the
year, within a 15-20% error rate. The second
was to predict what kind of summer it would be,
May through September being the main fishing
months. This means predicting what month the
fish start running, what month the fish stop
running, and whether the catch is high and
peaked as in 1979, or flat and low as in 1978. An
important concern is the relative size of the drop
in catch when it occurs in September or October.

A third concern was an accurate forecast of the
catch in December, when the holiday demand for
sashimi (a Japanese raw fish delicacy) drives
prices very high. And finally, an increased under
standing of the dynamics of the fishery was
desired.

Based on these criteria, I feel the forecasts have
performed well, especially compared with any
alternative available. The error in predicting the
1979 total catch is higher than desired. However,
for the last 6 mo of 1977 the model forecasted

dicted by the model. Again, in August 1979 an
industry representative doubted that a sharp
decline in catch would occur in September, but
said that this could be a useful piece of knowledge
since their decisions would change if they knew
they could expect the supply to drop sharply.

The forecasts have provided insight into the
fishery. The major failures of the forecasts were
January 1979 and October-December 1979. Jan
uary 1979 was a period ofunusually bad storms, so
that few fishing trips were made. However, the
observed catch per trip was 0.993 metric tons (t),
while Model (4) predicted a catch per trip of1.033 t.
The main source of the error in the forecast was
the predicted number of trips to be made.

Similarly, the high summer catches, coupled
with very high catches ofyellowfin tuna, drove the
price for skipjack tuna to very low levels. At the
end of September, most of the boats went into
drydock because of the prevailing low prices. The
few boats that remained tended not to be the
industry leaders (i.e., boats with a proven record of
higher catch rates), and made only short forays
rather than their usual fishing trips.

The point of these explanations is that the
causes of the poor forecasts appear to be related
not to the behavior of the fish stocks but rather to
the behavior of the fishermen. Therefore, the
effort to improve the forecasts needs to be di
rected at understanding the fishery, rather than
the fish. (An economic study of the industry is
near completion.)

Finally, water temperature and salinity data
for one location off Oahu were included in the
transfer function models. These variables added
little to the forecasts, and since there is no
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mechanistic explanation as to why these variables
should affect the catch and effort, they are not
being used at this time in the forecasts. (How
ever, the ability to include random environmental
factors into the forecasting model is an advantage
when using stochastic models as compared with
the normal deterministic production models.) Dis
aggregating by size class might also improve the
forecasts. Prior to 1973, the catch of the large
skipjack tuna and the total catch were highly
correlated. Since 1973, this has not been true and
there has been a definite change in the size
composition of the catch. A disaggregated inter
vention model may be able to explain this change.

SUMMARY

Box-Jenkins models have been proposed as
an alternate ;model for forecasting fishery data.
ARIMA models provide maximum likelihood esti
mators that are not biased when the data is
seasonal and autocorrelated, and when a variable
is lagged on itself. Techniques are explored which
allow the model to be constructed from the data
up, rather than from theoretical models that may
not be supported by the data. The procedure is
illustrated on skipjack tuna catches in Hawaii,
which traditionally has been considered too
variable to forecast on a monthly basis in a
reasonable manner.
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