
A METHOD FOR GROWTH CURVE COMPARISONS
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ABSTRACT

Suppose one has a sample of pairs of age and length measurements from each of two or more
populations offish. The mathematical forms of the growth curves associated with the populations are
assumed to be specified but each form contains at least one unknown parameter. Presented in this paper
is a data analytic approach to the problem of deciding which, ifany, of the populations have essentially
the same growth curve and which have different ones.

A common problem in fisheries research is that of
Comparing two or more growth curves. This prob­
lem arises whenever investigators gather data for
the purpose of trying to determine whether or not
different species or the sexes of a given species of
fish grow at different rates, or for the purpose of
assessing growth variation of a species from envi­
ronment to environment, area to area, or stratum
to stratum in which it is found.

Since the models generally used for the age­
length relationships (e.g., von Bertalanffy, Laird­
?ompertz, logistic, etc.) are most often nonlinear
~n the unknown parameters and cannot be linear­
Ized by transformations of the variates, the usual
techniques for comparing regression equations
are not applicable. Up to this point little has been
done in the way of development of quantitative
methods for determining whether or not unknown
growth curves do in fact differ. Thus the investiga­
tor can often do little more than visually examine
plots of age-length data for samples from the
various populations being compared and arrive at
some rather subjective conclusions.

An exception is a paper by Allen (1976) which
treats the special case where each of the growth
curves being compared belongs to the von Berta­
!anffy family. There are, of course, numerous
Instances where the von Bertalanff)r model is not
appropriate and the Allen procedure does not
apply if it is not. Further, even if this model is
appropriate, some severe assumptions need to be
made in order to apply the analysis. These include:
1) the equality of the scale parameters for all
curves being compared, 2) the true value of the
common scale parameter being exactly equal to its
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estimated value, and 3) the usual normality,
independence, and equality of variance assump­
tions for the error term. The first assumption quite
clearly biases the procedure in favor of the null
hypothesis of equality of the growth curves, while
validity of the second seems to be too much to hope
for.

Gallucci and Quinn (1979) also discuss the
growth curve comparison problem for the von
Bertalanff)r case. They essentially reparameterize
the model and test the hypothesis of equality of
one of the new parameters for all curves being
compared, assuming, apparently, that the other
two have the same value for all of the curves. The
comments in the preceding paragraph also apply
to these authors' work.

The purpose of this paper is to point out how
some predictive sample reuse techniques, described
in a recent paper by Geisser and Eddy (1979), can
be adapted and applied to a growth curve compari­
son problem where two or more populations are
being studied, the growth curves associated with
each ofthe populations are unknown and are to be
compared, and a sample of age-length data is
available from each population. The problem then
is to use the data to decide which, if any, of the
population growth curves are the same and which
are different.

We will assume that the growth curves associ­
ated with each of the populations are specified
except for the values of unknown parameters.
These specifications often would be made by
plotting the sets of age-length data, fitting vari­
ous possible models suggested by the data plots,
and selecting the models which best fit the data.
The growth curves can, but need not, belong to
the von Bertalanffy family. In fact, they can
belong to any family. Thus, in essence, we are
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considering a much more general and widely
applicable problem than that discussed by Allen
(1976) and by Gallucci and Quinn (1979). For the
technique presented here, the only assumption
that is made is that the forms of the population
growth curves can be specified. No parameters
are assumed to be known or equal, and no distri­
butional assumptions are made.

The solution, described in the following sec­
tions, of our growth curve comparison problem is
not obtained via a classical statistical hypothesis
testing approach. That is, we do not formulate an
appropriate null hypothesis and derive a crite­
rion which dictates when and only when it should
be rejected. Instead, in the spirit of Geisser and
Eddy (1979), we formulate various possible mod­
els and give a data analytic approach to selecting
the one model preferred by the data.

A difficulty, which plagues classical hypothesis
testing, does not exist for the approach described
here. It is the necessity of specifying a signifi­
cance level. Historically, significance levels such
as 0.10, 0.05, and 0.01 have routinely been used
for tests without objective justification. Yet the
choice of a significance level affects the conclu­
sions arrived at. For example, it is quite possible
to find that a hypothesis can be rejected at the
0.05 level, but not at the 0.01 level. Further, the
choice of a significance level affects the probabil­
ity of rejecting a false hypothesis. Lowering the
significance level usually lowers the probability
of rejecting a false hypothesis. Requiring one to
specify a significance level presumes that one has
a sound basis for controlling the probability of
rejecting one of two possible hypotheses when it
is true, that one can objectively assign a signifi­
cance level which controls this probability, and
that controlling this probability is more crucial
than controlling the probability of not rejecting
the hypothesis when it is false. The contention
here is that for many, if not most, scientific
investigations, the consequences of rejecting one
hypothesis when it is true are no more serious
than rejecting the other when it is true. That is,
often an investigator has no reason to favor
either hypothesis, but merely wants to know
which one is more reasonable, given the data that
has been collected.

THE TWO POPULATIONS CASE

Suppose that two populations of fish are being
studied. For example, the first population might
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consist of all fish of a given species inhabiting one
area while the second might consist of all fish of
this species inhabiting a different area. Suppose
we are interested in comparing the growth curves
associated with the two populations.

We consider two possible models, say Ml and
M2 • The model Ml specifies that the growth
curves are the same, while under M2 the two
growth curves differ.

Let x and y represent, respectively, the age and
length of a fish. Then we rewrite Ml and M2 as

M l : y = f(x;(J) + e (1)
no matter which of the two popula­
tions fish belongs to.

M 2 : y = fl(X;(h) + e (2)

if the fish belongs to the first
population.

y = f2(X;fJ2) + e (3)

if the fish belongs to the second
population.

Here f(x; fJ), fl(X; (Jl), and f2(X; (J2) are each
functions of x. 0, 01 , and O2 are each vectors of
unknown parameters and f, fI' and f2 are speci­
fied except for the values of elements of fJ, 01 , and
(J2. Essentially, f, fl' and f2 represent three dif­
ferent growth curves which are specified except
for the values of unknown parameters present in
each. The function f represents the expected
length of a fish whose age is x, assuming equal
growth curves for the two populations, while fl
and f2 are, respectively, the expected lengths for
fish of age x' from the first and second populations,
assuming the growth curves differ. As usual, e
represents the unknown, random error term.

We now give a data analytic approach for
selecting one of the two possible models M1 or
M2 • The data used to make the selection are pairs
of age-length measurements for samples of fish
from each of the two populations.

Let (xu, Yu), (XI2, YI2), ... ,(Xln, Yin) represent a
sample of n pairs of observations of x and y from
the first population and (X21l Y2I), (X22' Y22), ... ,
(X2m, Y2m) represent a sample of m pairs of obser­
vations of x and y from the second population.
These n + m pairs of observations are the data
gathered by the investigator and we want to use
these data to select either M1 or M2 •

Assume, for the moment, that M2 is correct.
For j = 1, 2, ... ,n, let 01(j) represent the vector of
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AN EXAMPLE

Thus, we take M1 to specify that the average
length of a fish whose age is x is Equation (4) no

and predicted fish lengths for all n + m fish in the
samples, under M l , is

(4)f(x;a,b,c) = a
1 + e-(bx + c)

where a, b, and c are unknown parameters.

To illustrate the procedure described in the
previous section, we consider an example. The
numbers given in the first two columns of Table 1
are the ages and corresponding lengths of 15 fish
taken from the first of two populations, while the
numbers in the first two columns of Thble 2 are
the ages and corresponding lengths of 14 fish
taken from the second population. These data are
hypothetical. In fact they were generated by a
computer.

We want to use these two sets of data to decide
which of two models, M1 or M2 , is preferred,
where under M1 the growth curves for the two
populations are the same, and under M2 the two
populations have different growth curves.

Among several growth curves, including the
von Bertalanffy, Laird-Gompertz, and logistic
ones, the best fit, for both data sets as well as the
combined data set, was provided by the logistic.
The average length of a fish whose age is x, for a
logistic growth curve, is

n+m

D 1 = L [Yj - (Xj; 8tj)f.
j =,

Our rule for selecting either of M1 or M2 can be
simply stated as follows. Select M1 if Dl s;D2 ,

otherwise select M2 • This rule is a very natural
and objective one. It is based on whether the data
(i.e., the observed fish lengths) are better
predicted by one growth curve or two. If the sum
of squares of the differences between observed
and predicted lengths under Ml does not exceed
the sum of squares of the differences between
observed and predicted lengths under M2 (i.e.,
D1 s;D2 ), the data are better predicted by one
growth curve than by two and M l should be
selected. Otherwise, they are better predicted by
two distinct growth curves and M2 should be
selected.

n

n

D 22 = L [y~ - (2(X~; 82(j))]2
j =1

The quantity D 22 has an interpretation similar
to that given to D 21 • Putting these two together,
We see that D 2 represents the sum of the squares
of the differences between the observed fish
lengths and the predicted fish lengths for all n +
rn fish in the samples, under model M2 •

Next, assume that M1 is correct, pool the data,
and consider the n + m pairs (xu, Yu), (XI2,

Y12),oo., (Xln, YIn), (X21, Y2l), (X22, Y22),. 00' (X2m,

Y2m). Let (X) ,Yj) represent thejth of these n + m
pairs, for j = 1, ... ,n + m. Further, for j = 1, 2, ... ,
n + m, let B(j), represent the vector of (least
squares, say) estimates of the elements of 8
obtained by taking the relationship between x and
Y to be given by Equation (1) and using the data
(Xl,)'l), (X2,Y2), ... ,(Xj-l,Yj-t}, (Xj+l,Yj+l), .. "

(Xn+m,Yn+m), that is, all n + m pairs ofobserva­
t~ons of x and Y from the first and second popula­
bons except for the jth pair. The sum of the
squares of the differences between the observed

(least squares, say) estimates of the elements of
81 found by taking the relationship between x
and Y to be given by Equation (2) and using the
data (xu, Yu), (X12, YI2), ... ,(Xl(j-l), Yl(j-l),

(Xl(j +1), Yl(j +1)), .. ' ,(Xln, Yln), that is, all of the n
pairs of observations of x and Y from the first
population except for thejth pair. Set

D 21 = _L [Ylj - (1 (Xlj; 81(j))]2.

j =1

Note that the second term inside the brackets
is the predicted length for the jth fish in the
sample from the first population, assuming M2 is
correct. The observed length of this fish is the
first term inside the brackets. Thus D 21 is the
sum of the squares of the differences between the
observed and predicted fish lengths for the fish in
the first population sample, for model M2 .

Similarly, for j = 1, 2, ... ,m, let 82(j) represent
the vector of.(least squares, say) estimates of the
elements of 82 found by taking the relationship
between x and Y to be given by Equation (3) and
Using the data (X2l, Y2d, (X22, Y22),oo.,(X2(j-l),

Y2(j-l), (X2(j+l),Y2(j+l),oo.,(X2m, Y2m), i.e., all of
the m pairs of observations of x and Y from the
second population except for the jth pair. Set
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TABLE I.-Ages, lengths, parameter estimates, and predicted lengths, under models M1 and M2 , for 15
Population I fish.

Least squares estimates Predicted Least squares estimates Predicted
Age Length of a" b" c, under M2 length under M2 of a, b, c under M, length under M,

1 4.0 55.27,0.36, -2.70 4.9 55.67,0.35, -2.62 5.2
2 6.3 54.76,0.36, -2.60 6.2 55.44,0.36, -2.66 6.9
3 5.6 55.66,0.34, -2.56 9.9 55.91,0.34, -2.56 10.0
5 16.0 55.11,0.37, -2.73 15.9 55.57,0.35, -2.63 16.5
6 20.9 55.13,0.37, -2.74 20.3 55.56,0.35, -2.64 20.6
7 27.7 55.40,0.36, -2.77 24.6 55.70,0.35, -2.65 25.4
6 31.9 55.43,0.36, -2.73 29.9 55.70,0.35, -2.64 30.4
9 32.9 54.62,0.36, -2.76 35.7 55.26,0.36, -2.65 35.6

10 40.2 55.24,0.36, -2.71 39.4 55.62,0.35, -2.63 39.5
11 39.9 54.88,0.36, -2.81 44.0 55.37,0.36, -2.67 43.7
12 45.6 55.15,0.37, -2.74 46.4 55.56,0.36, -2.64 46.4
13 49.6 54.96,0.36, -2.72 48.6 55.51,0.35, -2.63 46.7
14 53.0 54.32,0.37, -2.71 50.0 55.26,0.35, -2.63 50.4
16 54.2 54.23,0.37, -2.74 52.2 55.27,0.36, -2.64 52.6
17 51.5 56.97, 0.35, -2.66 54.6 56.25, 0.35, -2.62 54.2

TABLE 2.-Ages, lengths, parameter estimates, and predicted lengths, under models M1 and M2 , for 14
Population II fish.

Least squares estimates Predicted Least squares estimates Predicted
Age Length of a 2 , b 2 , C2 under M2 length under M2 of a, b, c under M, length under M,

1 6.5 55.65,0.35, -2.60 5.3 55.43,0.36, -2.66 5.0
2 6.4 56.09,0.34, -2.52 7.7 55.62, 0.35, -2.62 7.1
3 6.0 56.24,0.33, -2.46 10.4 55.69,0.35, -2.60 9.7
4 14.1 55.74,0.35, -2.60 12.9 55.47, 0.36, -2.66 12.5
5 17.6 55.64,0.35, -2.59 16.6 55.53,0.36, -2.66 16.3
6 21.8 55.90,0.35, -2.56 21.1 55.56,0.36, -2.65 20.7
6 31.4 56.05,0.34, -2.56 30.6 55.65,0.35, -2.64 30.4
9 34.4 55.46,0.35, -2.59 35.9 55.46,0.36, -2.64 35.4

11 43.0 55.78,0.35, -2.57 43.5 65.54,0.36, -2.64 43.3
13 49.1 55.63,0.34, -2.56 46.6 55.54,0.35, -2.63 46.7
14 50.4 55.92,0.35, -2.57 50.7 55.56,0.35, -2.64 50.6
15 52.3 55.76, 0.35, - 2.56 52.0 55.50,0.35, -2.64 52.0
16 54.3 55.25,0.35, -2.57 52.7 55.24,0.36, -2.64 52.6
17 53.0 56.53,0.34, -2.55 54.4 55.76,0.35, -2.63 53.9

matter which population it belongs to. On the
other hand, we take M2 to specify that the aver­
age length of a fish whose age is x is Equation (4)
with a, b, and C replaced, respectively, by ai, bi,
and Ci, if the fish belongs to population i, for i =
1, 2. Note that in the notation of the previous
section 8 is the vector whose elements are a, b,
and c, while 8i is the vector whose elements are
ai,bi,andci,fori =1,2.Alson =15andm =14,
for this example.

The ith row, or threesome, for i = 1, ... ,15, of
the third column of Table 1 is the set of least
squares estimates of aI, bl , and Cl obtained by
assuming M2 to be correct and using all of the
age-length data pairs in Table 1, except for the
ith pair, to estimate aI, bl , and Cl' For example,
when the data point (8, 31.9) is ignored, the least
squares estimates of aI, bl , and Cl are, respec­
tively, 55.43, 0,36, and -2.73. The fourth column
of Table 1 gives the predicted lengths for each of
the first population fish, assuming M2 is correct.
That is, the ith element in this column is
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where Xi is the ith element of the first column
and alU), blU), and Cl(i) represent the ith three­
some of the third column.

The ith row, or threesome, for i = 1, ... ,15, of
the fifth column of Table 1 is the set of least
squares estimates of a, b, and C obtained by
assuming Ml to be correct and using all of the
age-length data pairs in Tables 1 and 2, except for
the ith pair in Table 1, to estimate a, b, and c. The
last column of Table 1 gives the predicted lengths
for each of the first population fish, assuming Ml

is correct. The ith element of this column is (5)
after alU), blu), and ClU) have been replaced by
aU), bu), and C(i), where the latter threesome is
the ith row of column five.

The discussion of columns three, four, five, and
six of Table 2 is completely analagolls to that
given in the preceding two paragraphs for these
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MORE THAN TWO POPULATIONS

for i = 1, 2, where Xij is the age of the jth fish
from population i, a = 55, b = 0.35, c = -2.55
and the Ei/S were each normal random variates
with mean zero and standard deviation equal to
two. The normal variates were generated using
the algorithm of Box and Muller (1958). Thus, in
essence, we generated both data sets using the
same growth curve and the procedure described
in the previous section made the correct selection.

The procedure used to compare the growth
curves for two populations is easily extended to
the case where the growth curves for three or
more populations are to be compared. As before,
We begin by formulating all possible or plausible
models. The number of possible models increases
Considerably as the number of populations being
stUdied increases. For example, if there are three
POPulations, there are five possible models, say
111 , ••• ,Ms. Here M1 specifies that all three
growth curves are the same. M2 specifies that the
growth curves for the first two populations are
the same but they differ from that for the third
POPulation. M3 specifies that the first and third
POPulations have the same growth curve but the
second population's growth curve is different. M4

fits each data set better than the von Bertalanffy,
Laird-Gompertz, and logistic growth curves. The
first term on the right hand side of Equation (6) is
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specifies that the first population's growth curve
differs from those for the second and third popu­
lations but the latter two are the same. Finally,
Ms specifies that all three growth curves differ.
Once again we assume that the forms of the
common and distinct growth curves are specified
for each model, but each contains one or more
unknown parameters.

Once the models have been formulated, the
problem is to use data to select one of them as
being most plausible. The data consist of samples
of pairs of age-length measurements from the
populations being studied. For each model, we
compute the sum ofthe squares of the differences
between observed and predicted lengths for all of
the fish in the samples, where the predicted
lengths are computed by assuming the model is
correct. The model selected as most appropriate,
by the data, is the one that corresponds to the
smallest sum of squares.

In order to compute the sums of squares, we
must calculate a predicted length for each fish in
the samples, under each model. For a given fish
and a given model, the fish's predicted length is
calculated by noting the population from which it
came and grouping together all data points from
this population and the populations, if any, whose
growth curves are asserted, by the given model, to
be equal to the growth curve for the fish's popula­
tion. The fish's age and length measurements are
then eliminated from the group ofdata points and
the remaining data points in the group are used to
estimate the unknown parameters in the asserted
common growth curve. Once these estimates are
obtained, unknown parameters in the asserted
common growth curve are replaced by their esti­
mates, and the fish's age is substituted into the
result to obtain the fish's predicted length.

As an example, consider the data given in
Table 3. These data represent the ages and corre­
sponding lengths of 20 fish taken from each of
three populations. Once again, the data have
been generated by a computer. Our goal is to use
the data to select one of five possible models,
M1 , •.• , Ms , where the Mi's are delineated in the
first paragraph of this section.

For this example, a growth curve of the form

+ Eij
a

Yij =
1 + e-(bXij +C)

columns of Table 1. Thus, essentially, the fourth
and sixth columns of Table 2 give the predicted
lengths of the second population sampled fish for
models M2 and M1 , respectively.

In the notation of the previous section, D 21 is
the sum of the squares of the differences between
the corresponding elements of columns two and
four of Table 1. We find that D 21 = 87.31, for this
example. Similarly, D 22 is the sum of the squares
of the differences between the corresponding
elements of columns two and four of Table 2 and
We find that D 22 = 19.39. Further, D 2 = D 21 +
D 22 = 106.70. Finally, D 1 is the sum of the
squares ofthe differences between the correspond­
ing elements of columns two and six of Tables 1
and 2. We find that D 1 = 86.77 and since D 1 <
D 2 , the model, M1 , of equal growth curves for the
two populations is the one best supported by toe
data.

For this example, the length ofthejth fish from
population i was taken to be



essentially a constant times an extreme value for
minima distribution function. This growth curve
does not appear to have been used in the litera­
ture as yet. But it probably should be considered
as a possible model whenever the other three are
tried, as I have found cases where it fits real data
better than the others.

TABLE 3.-Ages and lengths of 20 fish from each of the three

populations.

Population I Population" Population III
Age length length length

1 4.7 5.0 5.3
2 5.4 7.5 6.1
3 10.0 14.2 10.8
4 12.6 11.0 13.5
5 19.0 17.8 20.0
6 16.0 17.5 17.2
7 19.0 19.2 20.1
8 22.3 27.9 23.5
9 28.1 27.7 29.2

10 27.2 34.1 28.2
11 38.0 32.7 38.8
12 41.5 40.8 41.8
13 42.1 48.1 41.7
14 49.9 51.5 48.9
15 53.3 53.3 51.4
16 57.0 56.3 54.3
17 56.3 55.9 52.8
18 58.3 57.9 54.1
19 59.6 60.2 55.0
20 59.9 57.9 55.1

Because Equation (6) fits each data set so well,
one takes each of the common and distinct growth
curves for each model to be in the form of Equa­
tion (6). Then for each model one calculates a
predicted length for each of the 60 fish in the
samples and a sum of squares of the differences
between observed and predicted lengths. For the
models M1 , ••• ,Ms , these sums of squares, are
respectively, 334.27, 298.58, 346.45, 331.58, and
312.94. Since the second of these is the smallest,
the model, M2 , which asserts that the growth
curves for the first two populations are the same
but that for the third population is different is the
selected one.

Each of the fish lengths for this example was
calculated using Equation (6), where y represents
length and x represents age. Once again, E was
taken to be a normal random variate with mean
zero and a standard deviation of2. For each of the
fish in the first two of the three samples, a = 60, b
= 0.10, and c = 0.20. For the 20 fish in the third
sample, a = 55, b = 0.12, and c = 0.20. Thus the
first two data sets were generated using the same
growth curve, but the third data set was gener­
ated using a different growth curve. Our procedure
made the correct selection.
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SOME CONCLUDING REMARKS

It is, in general, not feasible to attempt to carry
out the calculations required for our growth
curve comparison procedure by hand or with a
desk calculator. This is because nonlinear regres­
sion analyses are usually required and there are
many of them. However, the computations are
easily programmed for a computer.

For many growth studies, rather massive
amounts of data are gathered. If the amount of
data available is excessively large, computer
time and costs may become prohibitive. It is
natural to ask whether the number of computa­
tions required can be reduced by doing away with
the process of eliminating a data point from a
data set before estimating parameters. Indeed, if
this could be done, the number of least squares
analyses needed would be drastically reduced.
Unfortunately, however, it cannot be done. For it
can be shown that if it is done, the selected model
will always be the one which asserts different
growth curves for all populations.

Often though, when there is a large amount of
data, each age in the samples is common to many
fish. In this case, a possible procedure is to work
with the data points consisting of ages and aver­
age lengths, thus reducing the number of data
points considerably. However, if the numbers of
lengths used to calculate the average lengths
vary widely from age to age, then it seems sensi­
ble to use weighted sums of squares of differences
between observed and predicted lengths, and
weighted least squares estimates of parameters,
with the weights, in each case, being the numbers
of lengths used to calculate the average lengths.
The idea is that the larger the number of observa­
tions used to calculate an average, the closer the
average should be to the true growth curve ordi­
nate and, thus, the more weight that should be
assigned to it. This modification of the present
procedure was used in Boehlert and Kappenman
(1980).

The dangers of extrapolation, after regression
analyses, are well known. Thus, the practice of
obtaining a predicted value for the dependent
variable for a subject whose independent variable
value lies outside the range of independent var­
iable values used to carry out the regression
analysis, is generally discouraged. There may be
instances where extrapolation will bias our com­
parison procedure away from one or more models.
The easiest way of checking to see if it does, in
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any given situation, is to examine the observed
and predicted length differences for each model.
Differences, corresponding to youngest or oldest
fish, being excessively large for one or more
models might be an indication that extrapolation
is biasing the procedure. This difficulty did not
appear in the examples used in this paper, but it
is possible to imagine rare cases where it could be
a problem. If this problem does arise, it is easily
remedied. One can always eliminate from a sum
of squares of differences between observed and
predicted lengths those differences whose predic­
ted lengths are obtained by extrapolation. Ifthis is
done, the sums of squares in the model selection
criterion should be replaced by averages of
squares of differences.

For each of the examples given in this paper,
all of the specified growth curves were taken to be
of the same form. This is not necessary. Any
growth curve can be given any form. For exam­
Ple, in the two population case, the common
growth curve, for the model of equality of growth
Curves, can have a mathematical form which is
different from the forms of the growth curves
specified under the model of different growth
CUrves. And, in fact, the latter two forms can be
different from each other. Thus it is possible to
handle the case where M1 specifies equal growth
curves and the common growth curve belongs to,
Say, the logistic family, while M2 specifies differ-

ent growth curves and the curves belong to, say,
the Laird-Gompertz family or one belongs to the
Laird-Gompertz family and the other belongs to
the generalized extreme value for minima family.

Finally, it should be pointed out that although
this paper has been concerned solely with growth
curve comparisons, the procedure described here
can be applied to the general problem of compar­
ing regression equations. The regression equa­
tions of interest can be either linear or nonlinear
functions of the unknown parameters. Where
they are nonlinear is of particular interest since
such comparisons have apparently not been dis­
cussed in the literature.
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