
PERCENT SIMILARITY: THE PREDICTION OF BIAS

E. L. VENRICK'

ABSTRACT

An equation is developed which predicts the percent similarity index between replicate samples from an
association with specified structure and heterogeneity. A second equation gives a first approximation of the
variance between replicate indices. The magnitude of the expected index depends not only upon the
heterogeneity of the species but also upon the number of species, their abundance, and their diversity.
Because of these dependencies, care must be used in interpreting the percent similarity index.
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where ! is the similarity index between two com­
munities (1 and 2), n is the total number of species in
the combined species list, andPi. I andpi.2 are the pro­
portions of species i in the two associations such that,
within each association,

A variant of this index is based upon the percent com­
position instead of proportions and equals! X 100%.
From this variant comes the common designation
"percent similarity index." The present study is
developed in terms of proportions but the familiar
name is retained. All conclusions in this paper are ap­
plicable to both forms of the index, although the for­
mulae must be scaled accordingly.
The theoretical range of the percent similarity index

is from 0.0 for two associations with no species in
common to 1.0 for two identical associations. In ac-

Many community ecologists use the percent similar­
ity index (PSI; here symbolized by I) to compare the
species composition of different communities or
community subsets (Whittaker and Fairbanks 1958;
Miller 1970; Murdoch et a1. 1972; Hicks and Tah­
vanainen 1974; Donaldson 1975; Haedrich et a1.
1975; Silver 1975; Haedrich and Krefft 1978; Reid
et al. 1978; Silver et al. 1978; Abramsky et al. 1979).
This index, derived from the Bray-Curtis similarity
coefficient (Boesch 1977) was proposed by Whit­
taker (1952) and may be expressed as

tuality, a value of 1.0 is unlikely to be obselved even
between replicate samples of the same association2

because species abundance fluctuations in the field,
often augmented by sampling errors in the labora­
tory, reduce the index below 1.0. At present, the only
means of estimating the magnitude of this bias is to
count replicate samples within each of the two (or
more) associations being compared, 01' to obtain the
index between replicate samples by means of com­
puter simulation. Both are time consuming. Recogni­
tion of this bias has led to the development of several
different similarity indices in which certain types of
bias are reduced (Morisita 1959; Lance and Wil­
liams 1966; Horn 1966; Grassle and Smith 1976;
Wolda 1981). Nevertheless, the percent similarity in­
dex remains popular because of its simplicity.

The following paper develops the mathematical for­
mulae relating the percent similarity index expected
between replicate samples and its variance to the
abundances of the component species and the vari­
ances and covariances of the abundance estimates.
Equations are developed for the specific case of bias
introduced by subsampling error in the laboratory
where the magnitudes of the variances and covari­
ances may be controlled. However, when estimates of
these parameters are available for field populations,
the general equations may be applicable to the es­
timation of I between replicate field samples. The
equations not only offer a method of evaluating I, but
provide insight into the influence of changes in com­
munity structure (i.e., the number of component
species, and their abundances, variances, and diver­
sity) on the bias of the similarity index.
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I Marine Life Research Group, Scripps Institution of Oceano­
graphy, La Jolla, CA 92093.

2The precise definition of "association" may vary considerably
from study to study, It will generally have sputial dimensions and
may have a temporal dimension as well.
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METHODS

The diversity index used in this paper is the stan­
dardized Shannon-Wiener index (Fager 1972):

n

where H = - :E pJnpi
i=l

Hmax=lnn

H . = In T - [ (T - n + 1)] [In(T - n + 1»)
mm T

Pi = proportion of species i
T = total number of individuals in the sample
n = total number of species in the sample.

Use of 1 - Simpson's diversity index (Fager 1972)
gave similar results.

Development 6f the theoretical equations for I and
its variance (S2(1) was accompanied by computerized
simulation modeling to examine the accuracy of the
equations; values predicted by the equations were
compared with those observed in the simulation
studies. Two measures of accuracy were used:

relative error = [I predicted - observed I/predicted]
X 100%

relative bias = [(predicted - observed)/predicted]
X 100%.

Species distributions sampled in the simulation
studies were independent and normal. The conse­
quences of these two assumptions are evaluated in
detail in a later section. In each simulation the
relationship between the mean and variance (U:/J1.i =
q) was held constant for all species in an association.
This was a convenience, not a necessary condition.

To determine empirically the values ofI ands2(1) for
an association, 100 pairs of replicate samples were
drawn; the value ofI was calculated for each pair and
the mean and variance were determined over the 100
pairs. These values, I and S2(1), were compared with
the values I and 82(1) estimated from the statistics ob­
served in each sample of an independent set of 100
single samples drawn from the same association. The
comparison allowed determination and correction of
the bias of the predictive formulae for mean and
variance and the determination of the variance of the
estimate. The number of species in the association,
their abundances, variances, and diversity were
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varied independently to examine their influence on
the value of I and S2(1) and on the accuracy of the
values estimated by the formulae.

To examine any errors introduced by use of the nor­
mal distribution in the simulations, a second series of
simulations was run to sample species distributed in­
dependently according to a negative binomial dis­
tribution (Bliss and Fisher 1953). The negative
binomial distribution is generally characterized by
the parameters J1. and k = p,2/(al - J1.). However, an
alternative parameterq = (J1./k) + 1= (al/J1.) is identi­
cal to the parameter q used throughout this study to
express population heterogeneity. Thus, I have cho­
sen to define negative binomial distributions by q
rather than k. In these simulations, the parameters
used in the formulae for the expected similarity index
and its variance were not estimated from single sam­
ples but were the given parameters of the dis­
tribution.

RESULTS

Percent Similarity Index

An equation for predicting the similarity index be­
tween replicate samples from one association is

_ 0.5642 n

1= 1 - -r2- i~l ([r2al(x;) - 2fL,'rU2(Xi,1)

+ J1.~al(1)JlI\

where n is the total number of species, J1.i and al(x,) are
the mean and variance of the estimate of abundance
of the ith species, 'r and al (1) are the mean and
variance of the estimate of abundance of the total
number of individuals, and al(x i 1) is the covariance
between Xi and T (Appendix Eq~ation(5».3 The goal
of this study is to estimate, from a single sample of an
association, the value of! expected between replicate
samples. Thus, the parameters necessary for Appen­
dix Equation (5) must be obtained from one sample
or must be independently known. The observed
abundances, Xi' and T are unbiased estimators of the
true mean abundances. To simplify the estimation of
the variance and covariance components in the pres­
ent study, two assumptions have been made: 1) The
component species are independently distributed,
which may be strictly true only under controlled
laboratory conditions, as when a subsample is drawn

J1.:hese statistics must be applicable to the association represented
by I. Thus, if tbe association has a temporal dimension, this must be
represented by the means and variances.
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from a sample; and 2) the variance of a single species
may be obtained from a predetermined relationship
between the mean and the variance: u2(Xj) "'" qJ-lj "'" qxj•
A relationship between mean and variance has been
demonstrated for phytoplankton subsampled in the
laboratory (Venrick et al. 1977; Venrick 1978),
although the validity of this approximation in field
populations remains to be investigated.

Using these simplifying relationships and correct­
ing for biases, Appendix Equation (5) becomes

"1= 1 - 0.5765(q/T3)~, 1: (Tx; - X?)~"
;=1

(Appendix Equation (7)).
It is evident from Appendix Equations (5) and (7)

that the expected similarity index between replicate
samples is a function ofmany ofthe parameters of the
association: total number of species, their abundance
and heterogeneity, and diversity. These relation­
ships are interactive. The relationship betweenl and
the number of species when Tis held constant (Fig. 1)
is nonlinear, with 1approaching 1.0 as n approaches
1. Increasing the heterogeneity (q) or decreasing the
total number of individuals (7') decreases the expect­
ed similarity and increases the dependence of1on n.
When abundances of component species, rather than
T, are held constant, the value of] is essentially in­
dependent of n, except at very low species numbers
(Fig. 2). The relationship between 1and diversity is
approximately linearforvalues ofH' > 0.2, the value

ofl decreasing as diversity increases (Fig. 3), but the
slope of the relationship depends upon the other
parameters. Although] is related to total abundance
(7'), scaling the abundance data by some factor (as
when counts per sample are standardized to some
different sample area or volume) does not alter the
expected similarity index, since the values of T and q
are automatically scaled by the same factor while
w(x), w(7'), and w(x;,7') are scaled by the square of
that factor and the factor cancels out in both Appen­
dix Equations (5) and (7).

Variance of I

Appendix Equations (5) and (7) predict the value of
llikely to be observed between replicate samples
from a specified association. This is a mean value
which has a variance associated with it. Unfortunate­
ly, it was not possible to calculate an exact expression
for fi2(I). However, in some situations the approx­
imate equation may be useful:

f3 "fi2(I) =.-!l3 1: (Txj - x?)
T ,=1

where f3 is obtained from Figure 4 (Appendix Equa­
tion (9)).

Comparison of Appendix Equations (7) and (9) in­
dicates that fi2(l ) is related to (1 -l ); lower similarity
indices have larger associated variances.' In
general, the relationship between the variance of I
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FIGURE I.-Relationship hetweenj and the number of species (II) for associations of different heterogeneity (q) and total number of individuals
(T). In all cases, diversity (H') = 1.0. Foreach curve, abundance (x;) is a constant. Curves are derived from Appendix Equation (7). X's indicate
values of I observed in computer simulation and are included to indicate the accuracy of the equation,
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FIGURE 2.-Relationship between I and the number of species (n)

for associations with different abundances (x;) and heterogeneity (q).

In all cases, diversity (H') = 1.0. For each curve, total number of in·
dividuals (T) is a constant. Curves are derived from Appendix Equa·
tion (7).
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Two assumptions underlying this study are admit­
tedly unrealistic and require further consideration:

evident from Appendix Equation (9), an order-of­
magnitude increase in q produces an order-of­
magnitude increase in ifl(I ).

FIGURE 3.-Relationship between I and diversity (ff) for associa·
tions with different numbers of species (n), total abundance (T), and
heterogeneity (q). Curves are derived from Appendix Equation (7).
X's indicate values of I observed in computer simulation and are in­
cluded to indicate the accuracy of the equation.
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and the underlying community structure is opposite
in direction from that of1. However, the behavior of
ifl(I) is mediated somewhat by the simultaneous
dependence of the factor f3 on community structure
(Figs. 4,5). Thus, although 1 shows a negative re­
lationship with numbers of species, the relationship
between ifl(I ) and n is also inverse, but much weaker
(Kendall correlation, 0.05 < P < 0.10). While 1de­
creases continuously with increasing diversity, ifl (I)
increases with diversity, but stabilizes or decreases
at high diversities. The dominant influence on the
variance of I is the population heterogeneity, q. As
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FIGURE 4.-Relationship between the value of pin Appendix Equation (9) and the number ofspecies (n). Vertical bars are 95% confidence
intervals from five estimates with diversity (ff) = 1.0 and heterogeneity (q) = 0.1, 0.5, 1.0,5.0, and 10. Dots are single estimates. Open cir·
cles are maximum values of (3 observed when H' varied from 0.0 to 1.0. Shaded area approximately delimits the range of observed
values of p.
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X's represent the mean values of S'(I) observed in two or more sets of 100 replicate pairs of samples. Vertical bars represent the range of f3
values, each based upon single estimates of 0'(1) from 100 samples, total abundance (7) = 12,500, heterogeneity (q) = 1.0.

1) The assumption of independence of species
abundances may be justified in some situations, as
when a sample is thoroughly mixed before sub­
samples are drawn, but it is probably unrealistic
when applied to species in the field. However, this as­
sumption is a convenience, not a necessity. If an in­
dependent measure of species covariance is avail­
able, the covariance between species i and the
population total may be calculated and entered into
Appendix Equation (5). Any positive covariance be­
tween component species increases the expected
similarity index over that predicted by Appendix
Equation (7) (decreasing bias). Perfect covariance
between all species results in an index of 1.00. Thus,
the effect of any positive covariance on the value ofJ
is the greatest in those associations for which the ex­
pected bias is large, i.e., small samples from as­
sociations with many species, high diversity, and/or
great heterogeneity.

The effect of negative covariance is less easily an­
ticipated. For any two species, the_value of ff (Xi, T) is
decreased, lowering the value of I. However, for as­
sociations of more than two species, perfect negative
covariance does not exist. Large negative cor­
relations between some species are likely to be ac­
companied by positive correlations between others,
so that the overall effect on 1may be minimal.

2) The assumption of normality of species dis­
tributions is necessitated by the use of the theoretical
expected relationship between a range and a vari­
ance; however, this relationship has not been deter­
mined for other distributions. To examine the
consequences of the use of the normal distribution, a
final series of simulations was run to sample species
distributed independently according to the negative
binomial distribution which has given satisfactory fit
to numerous field distributions (Bliss and Fisher
1953 and references therein; Holmes and Widrig
1956). The 39 simulations investigated values of q
between 1.1 and 10. (The negative binomial is not
defined at q = 1.) Corresponding values of k ranged
between 0.44 and 900 depending upon the means
and variances of the species.

In 38 of the 39 simulations, the value of I observed
between replicate samples from negative binomial
distributions was higher than the value predicted by
Appendix Equation (7). Major deviations occur in
those associations in which all species are heteroge­
neous and rare. In these cases, the normal distribu­
tion predicts large numbers of negative abundances,
which are impossible in reality. For instance, in an
association of 100 species, all with a mean abundance
JJ.j = 4 andq = 10 (k = 0.444), the relative error ofAp­
pendix Equation (7) is 240%; in an association of 50
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species, all with J.Li = 8 and q = 10.0 (k = 0.889), the
error drops to 25%. For the same two associations,
when the heterogeneity is reduced so that q = 1.1 (k
= 40 and 80, respectively), the error is reduced to 1.0
and 0.6%, respectively. This effect of rare, patchy
species is less important in associations of lower
diversity, dominated by a few abundant species.
When such extreme associations were eliminated
from consideration, the average relative error and
bias were 1.6 and -1.6%, respectively, for 32 simu­
lations. Thus, with the exception of the extreme case
of small samples from a diverse, patchy association,
the accuracy of Appendix Equation (7) appears to be
independent of the underlying species frequency dis­
tributions. More important, the similarity index
derived from negative binomial distributions shows
the same relationships with the underlying communi­
ty structure as does the index derived from normal
distributions, decreasing either with increasing di­
versity, increasing numbers of species, or increasing
heterogeneity (Fig. 6).

The variance between values of I from replicate
samples of negative binomial distributions is satis­
factorily predicted by Appendix Equation (9). In 38
of the 39 simulations, the observed variance fell
within the predicted range (Fig. 7). Thus, it appears
that use of the normal distribution in the present
study does not restrict the applicability of the results

and that the general conclusions of the paper are in­
dependent of the frequency distribution being
sampled.

APPLICATIONS

An earlier study of small-scale variability of oceanic
diatoms (Venrick 1972) was based upon abundances
in a series of 10 samples at each of three depths in
each of two environments. The 10 samples from the
10 m depth in the subarctic Pacific were selected ar­
bitrarily to examine the performance of Appendix
Equations (7) and (9). The diatom flora consisted of
nine species and was strongly dominated by one (H
= 0.23). Although the concordance between the four
dominant species was marginally significant (Ken­
dall concordance, P - 0.10), the species were as­
sumed to be independently distributed. The
necessary parameters for the formulae (Xi' T, and q)
were calculated from the means of the 10 samples.
Observed values of q were strongly correlated with
mean abundance; a single, representative value was
calculated from individual q values weighted by each
species' mean proportion. (Individual q values could
easily have been used.) Appendix Equation (7) pre­
dicts a similarity index between field samples of
0.9101. The actual observed values, calculated be­
tween five random independent pairs of samples,
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FIGURE 6.-Estimation of 1 from a neg8tive binomial distribution. Curves are the value of I from appendix Equation (7) plotted against
species number for five associations of different total abundance (7) and heterogeneity (q). For all associations diversity (H) = 1.0. Symbols
indic8te the value of1observed between replicate samples from corresponding associations of species distributed according to a negative
binomial distribution. Each point is the mean of 100 replicate pairs,
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range from 0.878 to 0.969 with a mean value of
0.9232. Appendix Equation (9) and Figure 4 predict
a variance between replicate I values of between 1.00
X 10-3 and 2.54 X 10-3 • The observed variance is
1.48 X 10-3 •

This example is admittedly artificial; given repli­
cate samples from the association of interest, the ap­
propriate measure of the maximum expected
similarity index is that observed between indepen­
dent pairs of the replicate samples. Use of Appendix
Equations (7) and (9) is unnecessary. Nevertheless,
the example illustrates the accuracy of the equations
when applied to field conditions, even when co­
variance between species is assumed to be negligible
and the variances of species abundances are ex­
pressed as a simple function of the means.

McGowen and Walker (1979:211) present the per­
cent similarity indices between samples of oceanic
zooplankton. In order to estimate the bias of the in­
dex, they counted replicate aliquots of six samples
and calculated the values ofI between the replicates.
They generously made their raw data available (five
of the six samples), and the Appendix Equations (7)

and (9) and Figure 4 were used to estimate the value
of1expected from each single sample. A rough ap­
proximation of q between replicates was derived
from a different set of 17 replicate counts of samples
taken on the same cruise from the same location.
Scanning the data suggested a relationship between
q and the mean abundance, and the data were
therefore arbitrarily divided into three categories 'ac­
cording to abundance and separate values of q
calculated for each category.
The results are presented in Table 1. The five

values of I observed between the five replicate pairs
of samples are compared with the 10 values and the
probable ranges calculated from the equations, using
the statistics observed in each sample. Only once
does the observed value fall outside the estimated in­
terval. This is good agreement (exact probability =

0.40). This is a situation in which, given some in­
dependent estimate of q, Appendix Equations (7)
and (9) might have been used to estimate the
magnitude of the bias in I introduced by laboratory
procedures, thereby eliminating the necessity of
counting replicate aliquots of single samples.

TABLE I.-Similarity index (I) between counts from replicate ali­
quots of a single sample: observed (McGowan and Walker 1979) and
expected (i. Appendix Equation (7». The probable range is based on
the equation for the 95'i; confidence interval using a variance es­
timated from Appendix Equation (9) and Figure 4. Samples' were
collected in September 1968 near lat. 28"N.long. 155'W.

--_._---~----_._.~----_.--_.~----~-~----_._------ . _._.__.__ ..~------ .•. - ._~

1a 100-225 671 0.757 58 0.24
1b 886 0.753 69 0.23

2a 225-350 847 0.686 54 0.25
2b 842 0.649 58 0.25

3a 0-25 576 0.779 35 0.28
3b 670 0.794 33 0.29

4a 25-50 844 0.643 52 0.25
4b 960 0.624 55 0.25

5a 50-75 835 0.740 59 0.24
5b 626 0.757 54 0.25

--.._--_.__._--------
Predicted-------

Sample Observed 6'(/\ Probable range
no. f _____________~1..0·\ of!

--~~~----~---~-_._-

1a 0.8472 0.8427 0.5438 0.7970-0.8884
1b 0.8367 06363 0. 7 873-0.8861

2a 0.8680 0.8628 0.6588 0.8125-0.9131
2b 0.8643 0.6742 0.8134-0.9152

3a 0.9168 0.8490 1.0592 0.7852-0.9128
3b 0.8589 0.9609 0.7981-0.9197

4a 0.8676 0.8648 0.8059 0.8092-09204
4b 0.8698 0.7478 .0.8162-0.9234

5a 0.8701 0.8412 0.8464 0.7842-0.8982
5b 0.8304 0.9556 0.7679-0.8929
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FIGUR~; 7.-Estimation of 1t'(1) from a negative binomial distribu­
tion. Vertical bars indicate the probable range of 1t'(1) derived from
Appendix Equation (9) and Figure 4. Abscissa indicates the ob­
served s'(1) between 100 values of I from replicate samples from
associations of species distributed according to a negative binomial

distribution. Values are from the simulations used for Figure 5.
Diagonal line indicates values were 1t'(1) = s'(I).
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Venrick (1982) discussed data on the vertical dis­
tribution of phytoplankton samples from four sta­
tions at one location in the central Pacific. For the
present study, counts from samples of 15 and 120 m
depths (representing shallow and deep phytoplank­
ton associations, respectively) were used to generate
values of I between the field samples. Appendix
Equations (7) and (9) were used to estimate the
magnitude of I arising from laboratory subsampling
error. A predetermined relationship between labora­
tory sampling error and mean abundance (Venrick
1982) is available from which to estimate the value of
q. The parameters of each sample were used to calcu­
late the value ofI expected between replicate counts
of that sample and the maximum probable range (Ta­
ble 2). For the 15 m samples, one-half of the indices
observed between field samples fall within the range
expected from the equations. At least for these sam­
ples, it appears that differences between samples in
the field may be largely attributed to handling and
counting errors. For the 120 m samples, none of the
observed indices fall within the expected range. At
this depth there appear to be "real" differences be­
tween field samples.

The indices observed at 120 m are lower than those
at 15 m. The extent to which this is due to hetero­
geneity of species abundances, as opposed to shifts
in number of species, diversity, or total abundance,

FISHERY BULLETIN: VOL. 81, NO.2

may be assessed by calculating the standardized I
value:

I' = I/l

where I is the observed value and 1is the maximum
expected value calculated from Appendix Equation
(7). For each observed value of I, two values of1are
available, one from each sample. When two samples
are similar in species content, a representative value
of I may be obtained by calculating a new value of1
from pooled data. This is time consuming and, when
samples are dissimilar, the resultant value of1may
not represent either of the original samples. In
general, it seems preferable to use the mean of the in­
dividuall values.

The comparison of standardized r values for the
phytoplankton data is presented in Table 3. In five of
the six cases, the!' values at 120 mare lower than the
corresponding value at 15 m. This shift in!' values
with depth cannot be attributed only to changes in
number of species or diversity. Assuming no depth­
related change in the laboratory error, this indicates
an increase in the spatial or temporal variability of
abundances at greater depths. In the complete
analysis (Venrick 1982), the source of this hetero­
geneity is postulated to be vertical displacement of
vertically stratified populations.

TABLE 2.-Similarity index (I) observed between replicate field samples compared
with maximum expected index calculated from Appendix Equation (7). The prob­
able range is based on the equation for 95'X confidence interval using a variance
estimated from Appendix Equation (9) and the largest likely f3 from Figure 4. All
samples were collected near lat. 28"N, long. 155"W.

A. Predicted Laboratory Bias

Sample Max-
depth imum 0' (/) Probable

and no, Date H' (3 IXW-2) range

15 m:

1 6/05/77 1.574 0.438 37 0.28 0.8975 0.1976 0.8104·0.9846
2 6/13/77 1.051 0.669 40 0.27 0.8005 0.4321 0.6716·0.9293
3 6/20/77 664 0.538 36 0.28 0.7777 0.6956 0.6142-0.9411
4 8/19/78 1.897 0.328 43 0.27 0.9055 0.1347 0.8336-0.9774

120 m:
1 6/05/77 1,475 0.672 57 0.24 0.8586 0.1540 0.7817-0.9355
2 6/13/77 1.051 0.669 51 0.25 0.8773 0.1009 0.8150-0.9396
3 6/20/77 1.196 0.639 59 0.24 0.7840 0.4372 0.6544-0.9136
4 8/19/78 597 0.768 55 0.25 0.7625 0.3170 0.6522-0.8729

q values: q =0.271 species counted in entire 265 ml sample

q = 2.13 species counted in 44% of the sample
q =41.01 species counted in 0.9% of the sample

(from Venrick 1982)

B. Obs8lVed J between field samples. Underlined values are those within the expected range jf I values
from replicate counts from same sample.
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Sample
depth

and no.

15 m:

2
3
4

0.579
0.681
0.732

2

0.659
0.502

Sample
depth

and no.

120 m:
2
3
4

0.573
0.487
0.403

2

0.339
0.299 0.462
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TABLE 3.-Comparison of two phytoplankton associations using the
standardized I: r = IIi. Original values of I are given in Table 2.

Sample
Mean j

"depth
and no.

15 m:
2 0.849 0.682
3 0.838 0.789 0.813 0.835
4 0.901 0.853 0.842 0.812 0.589 0.771

120 m:

2 0.868 0.660
3 0.821 0.831 0.593 OA08
4 0.811 0.820 0.773 OA97 0.365 0.598

DISCUSSION AND CONCLUSIONS

In spite of the numerous approximations and as­
sumptions which underlie the formulae for the per­
cent similarity index and its variance, the formulae
appear to be good predictors. This is true even when
the equations are applied to actual species abun­
dances which are unlikely to fulfill all the conditions
met by computer simulation (i.e., normality and in­
dependence of species distributions and accurate
knowledge of heterogeneity).

An important result of this study is the elucidation
of the relationship between the bias of I and such
community parameters as the number of species,
their abundances, heterogeneity, and diversity. Deci­
sion about the importance of these dependencies is
hampered by the vagueness of the concept" similar",
i.e., that which is being measured by I. In my own
mind, the concept is strongly linked to differences of
relative abundances, and ultimately to q. In some
situations the dependency of Ion factors other than
heterogeneity may be desirable, or at least irrelevant,
as, for instance, when I values within one set of items
are compared with I values between that set and a dif­
ferent set. Silver (1975) calculated values of I be­
tween the diatom associations in the stomachs of
several salps and compared these with the indices
between salps and nearby water samples. Finding no
difference, she concluded that salps are nonselective
feeders. In this comparison, any differences in any of
the community parameters between the first set of
indices (salp-salp) and the second (salp-water) are
directly related to the concept of selective feeding
and are validly confounded into a similarity index. A
similar situation is presented by time series of I
values (e.g., Miller 1970; McGowan and Walker
1979) where all comparisons are within the same
general system and temporal changes in species
number or diversity are important aspects of the
evolution of the system, as measured by changes in
I.

On the other hand, I values from within quite dif­
ferent systems are occasionally compared, leading to
decisions about the relative similarity of items within
the systems. In a study of plants ad homoptera in
fields (Murdoch et al. 1972), several fields were sur­
veyed for plant and insect abundances. Values of I
between fields were lower for plants than for insects,
leading to the conclusion that "the insect assem­
blages on different fields are more alike than are the
plants." To the extent that the observed difference
could reflect only different biases of the index in the
two systems (caused, for instance, by different num­
bers of species of plants and insects), this conclusion
seems unjustified. Such a comparison between
plants and insects would be validated by the use of
standardizedf values to remove the contribution of
species number, abundances, and diversity so that
the index accurately reflects the heterogeneity of the
two systems.4

Numerous similarity indices have been proposed
with different theoretical frameworks and different
attributes. Intercomparisons have given different
results depending upon the conditions of the com­
parison and the evaluation criteria (Morisita 1959;
Grassle and Smith 1976; Pielou 1979; Bloom 1981;
Wolda 1981). There is little evidence to suggest that
other similarity indices are independent of the un­
derlying community structure, nor is there reason to
expect the relationships to be similar to those ob­
served for the percent similarity index. The ultimate
selection of a similarity index is less important than a
thorough understanding of the behavior of that index
under various conditions. Without such background
information, interpretation of any similarity index is
subject to serious error.
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APPENDIX

Derivation of Formulae for 1and cr (1), the Percent Similarity Index and
Its Variance

The Percent Similarity Index

General Case

In the equation defining the percentage similarity
index,

where n is the total number of species in samples 1
and 2, Pi, 1 and Pi, 2 are the proportions of species i in
samples 1 and 2, and the expression IPi,l - Pi,21 is the
range (w) of a sample of size two and its expected
value can be related to the standard deviation of the
underlying normal population by the equation ui =
0.8862 Wi (Dixon and Massey 1969, table A-8b (2)).
Thus

E [I pi 1 - Pi 21] = U (P;)/0.8862.

Substitution of this expression in Equation (1)
gives

"
/ = 1 - 0.5642 1: U (p;). (2)

(=1

The proportional abundance of species i, Pi' is the
ratio of the abundance of that species, Xi (or IJ-;) to the
total number of individuals in the sample, T (orr).
The variability ofPi is a function of the variance of Xi
and the variance of T. When variances are small rela­
tive to mean values, the variance ofp, may be approx­
imated by

iJ2(p;) = [r2w(x,) - 2IJ-irw(X" T) + P; w(T) liT" (3)

and

(Yates 1953; the equation may also be derived using
the differential theory of variances, or delta method,
Seber 1973).
The substitution of Equation (4) into Equation (2)

gives an equation for /:

Single Sample Case

In order to estimate / from a single sample, some in­
dependent method of estimating w(X;) , w(T), and
w(x, T) must be available. In the following deriva­
tion: two assumptions are made: 1) The variance can
be expressed as a function of the mean, e.g., u2 (x;) ~
(q) (f-li); and 2) species are independently distributed
so that w(xi"T) = w(x,). Values of X, and T from a
single sample are unbiased estimates of IJ-i and r.

When the above approximations are introduced in­
to Equation (4), the expression for iJ(p,) becomes

iJ(p;) = [(q/TJ) (Tx, - xl)I'"

and
'1 11

1: iJ(p,) = 1: [(q/TJ) (Tx, - x1)I'" (6)
j=l i=1

The accuracy of Equation (6) was examined over a
spectrum of values of q and T using computer simu­
lation. Associations of 10 species with prescribed
means and variances were sampled 10 times. The
abundances of the species in each sample were con­
verted to proportions and, for each species, the stan­
dard deviation of these proportions within the 10
samples was calculated. These observed standard
deviations were then summed over all species to give

"one simulated value of 1: u(P,). For comparison, the
i=1

observed values ofx, and Tfrom each sample and the
prescribed value of q were entered into Equation (6)

"to give 10 predicted estimates of 1: iJ(p;). Each set
i=1

of 10 samples was repeated 10 times in a run. Over 44
runs, sampling associations with a broad range of
diversities and values of q from 0.1 to 50, the mean

"relative error and bias of the estimate of 1: iJ(p,)
were 2.9 and -2.5%, respectively. i~l

Substitution of Equation (6) into Equation (2) gives
an expression for / in which all parameters may be es­
timated from one sample:

"/ = 1 - 0.5642 (q/TJ)'" 1: (Tx i - x~"'.
i=l

(5)

The factor 0.5642 is expected to be increased some­
what by the demonstrated bias in the estimation of
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.~ fT(p;) and may also be affected by any biases
1=1

resulting from approximating IPi. 1 - Pi. 2 Iby o:(p).
Thus, the equation for I was expressed as

1= 1 - o:(q/'f'3)Y' ~ (Tx i - xf)y"
i=1

and the magnitude and properties of 0: were inves­
tigated by computer simulation (described in Meth­
ods). In a total of 260 runs, the mean value of 0: was
0.5765 (95% confidence interval: 0.5751- 0.5780).
The magnitude of 0: appears to be independent of the
number of species in the association (n varied from 5
to 200; Kendall correlation,P> 0.20) and their diver­
sity (H varied from 1.0 to 0.03; run test, P > 0.20).
There is a relationship between the magnitude of 0:

and the value of q (Friedman two-way ANOVA over
20 values of nand 5 values of q; P < 0.01). However,
over the range ofq values investigated, the change in
the value of 0: is small (Appendix Table 1). Forpracti­
cal purposes, this correlation may be ignored and the
overall mean value of 0: employed. Thus, the equation
for estimating the percent similarity index between
replicate samples becomes

FISHERY BULLETIN: VOL. 81. NO.2

standard deviation estimated from a range and the
variance of the population being sampled is known
(Dixon and Massey 1969, table A-8b(1)):

w(0.886IPi.l - Pi)) = 0.571 dl(P;)

cr(I Pi. 1 - Pi)) = 0.7274 dl(Pi)'

An expression for the variance of the similarity index
then becomes

w(l) = 002(1 - 0.5 ~ Ipi, 1 - Pi, 2 1)
i=l

= 0.25 i: dl( IPi 1 - Pi 21)
i=l • ,

n

= 0.1818 ~ dl(PJ
i=1

Using the delta approximation (Equation (3)) this
becomes

n

cr(l) = 0.1818 (q/'f'3) ~ (Tx i - xf). (8)
i=l

Squaring Equation (6) and substituting gives an ex­
pression which may be used with single samples:

However, this equation, based on the addition of
variances, assumes independence ofthe components
which is not valid in the present case where the com­
ponents are fractional parts of a sample and must
sum to 1.0. The consequences of these interdepen­
dencies were investigated empirically by expressing
Equation (8) as

1= 1 - 0.5765(q/TJ)'" ~ (Tx, - x~"'. (7)
i=1

The relative error of this estimate, determined from
computer simulation, is small and independent of the
number of species, their abundances, and their diver­
sity. There is a direct relationship with the square
root of q, reflecting the dependence of 0: on q. For
values of q of 0.1,1.0, and 10, the mean relative error
was 0.005, 0.022, and 0.53%, respectively.

ApPENDIX TABLE I.-The relationship between Cl' and q

(population heterogeneity). Each value Cl' is the mean of
40 runs, with n varying between 3 and 200 and diversity
varying between 0.50 and 1.00. Friedman 2-way
ANOVA is significant and may indicate a linear trend.
(Friedman 2-way ANOVA; w = 0.0915, m = 40,
n = 5, P- 0_01.)

w(l) ~ (Tx i - x/)
i=l

(9)

Variance of the Percent
Similarity Index

A first approximation to the variance of the similari­
ty index, like Equations (2), (5), and (7), is based upon
the analogy between the absolute value of a differ­
ence and the range of a sample of size two. The
expected relationship between the variance of a

q=O.1
a= 0.5749

05 1~ ~O 100
0.5763 0.5769 0.5761 0.5797

and examining the effect on f3 of varying the underly­
ing population parameters.

f3 is dependent upon the number of species (Kendall
correlation,P < 0.01), decreasing asn increases (Fig.
4). The value is independent of T (Kendall correla­
tion, P> 0.20) and, unlike 0:, appears indepen­
dent of q (Friedman 2-way ANOVA, P > 0.25). The
relationship of f3 to diversity is nonlinea~and appears
linked to the relationship between the variance of I
and diversity (Fig. 5). At low diversities both,52 (l) and
f3 increase as H increases. At higher diversities, 82 (l)

reaches a plateau or decreases while f3 decreases
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more sharply. Thus, minimum values of f3 are asso­
ciated with values of H < 0.25 and H - 1.0, while
maximum values occur at some intermediate value of
H, possibly influenced by the number of species.

The shaded area in text Figure 4 approximately en­
compasses the maximum and minimum values of f3
observed empirically over a broad range ofH. Much
of the variability in the estimated f3 apparent in
Figures 4 and 5 is due to errors in the empirical deter-

mination ofthe true variance of/; with 100 samples in
each estimate, 95% confidence intervals are 0.4782 ­

1.3582
• Although the value of f3 cannot be determined

with sufficient accuracy to allow Equation (9) to be
used to establish confidence intervals about predict­
ed values of 1, nevertheless the figure can be used to
provide conservative estimates of f3 so that Equation
(9) may aid in decisionmaking.
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