Abstract.—Determining absolute
survival rates for larval fishes is ex-
tremely difficult. However, many eco-
logical questions concern relative sur-
vival of two groups. For example, we
might ask: (1) Do older larvae have
higher survival than younger larvae?
and (2) Do faster growers have high-
er survival than slower growers? We
present a simple model and several
estimation schemes for the ratio of
survival rates based on monitoring
relative abundance of the two groups
over time. When the logarithm of the
ratio of abundances is regressed on
time, the resulting estimate of slope
is an estimate of the difference in in-
stantaneous mortality rates. An esti-
mate of the ratio of survival rates is
obtained by exponentiating the slope.
The model is shown to be a logistic
model and can be fitted by maximum
likelihood methods.
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Determining absolute survival rates
for larval fishes is extremely difficult,
even when cohorts can be accurate-
ly identified by means of daily growth
rings in the otoliths. For example,
survival between times 1 and 2 might
be estimated by catch/tow at time 2
+ catch/tow at time 1. Due to ran-
dom sampling error alone, this esti-
mate may be nonsensical (>1), and
the chances of obtaining nonsensical
estimates increases with increasing
patchiness in the distribution of lar-
vae over space.

In some cases, it may not be neces-
sary to estimate absolute survival
rates. Estimates of relative survival
rate may be sufficient and easier to
obtain. Many ecological questions
concern the relative survival rates of
two or more groups. For example, at
a given point in time, the older lar-
vae present should be larger than the
younger larvae and, hence, may have
a higher survival rate (Peterson and
Wroblewski 1984, McGurk 1986). On
the other hand, it has been suggested
that larvae born later (i.e., younger
larvae) may have a higher survival
than larvae born earlier (Victor 1983,
Methot 1983, Crecco and Savoy 1985,
Rice et al. 1987). Also, it has been
suggested that faster-growing larvae
survive better than slower-growing
ones (Rosenberg and Haugen 1982).

In this paper, we consider how rela-
tive survival rates can be estimated
for two groups occurring at the same
time and place from field data con-
sisting of the composition of the catch
at two or more times. The intuitive
basis for the method is this: Changes
in the relative abundance of two
groups over time reflect differences
in mortality rates (assuming no emi-
gration or immigration occurs). The
methods we present allow for catch-
ability to differ for the two groups
and to vary over time. However, the
relative catchability (ratio of the catch-
ability coefficients) of the groups can-
not change over the time period con-
sidered. Thus, if factors such as wind,
currents, boat speed, or net clogging
vary among sampling periods, then
the same proportional change in the
catchability coefficient must occur
for both groups. This is less restric-
tive than assuming constant catch-
ability over time (as when estimating
absolute survival rate by the decline
in ecatch-per-unit-sampling-effort
over time).

Development of the model

Suppose that at time ¢, a sample of
larvae is obtained and that examina-
tion of the otoliths reveals that all lar-
vae are of the same (approximate)
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age. It is also determined that larvae can be classified
as either fast or slow growing on the basis of the widths
of the growth increments. Thus, we can determine the
proportion of the larvae that are fast growing. If we
sample the same population at time ¢ + 1, we can again
separate the larvae into fast- and slow-growing groups
on the basis of the width of the otolith at time ¢ (not
at time ¢t +1).

Alternatively, suppose that a sample of larvae at time
t has two cohorts, where a cohort is defined to be all
larvae hatching in a given week. We can follow the
relative abundance of the two cohorts in the catch over
time by taking repeated samples from the population.

We will let the subscripts £ and L refer to the two
cohorts (e.g., E for early- and L for late-spawned). Let
the number of larvae in the population’s two cohorts
at time ¢ be Nz and Ny;. Suppose that the size of each
cohort declines exponentially over time such that, for
the ith cohort (i € {E,L}),

Ny = N; exp(-Z;t)

where Z; is the instantaneous mortality rate (time-1)
and N;, is the initial abundance of the ith group. Also
suppose that the expected catch of animals from group
1 at time t (C};), for a standard unit of effort, is pro-
portional to the abundance, i.e.,

Cit = qit Ny

where g;; is the time- and group-specific catchability
coefficient. Then the ratio of expected catches, R;, is

R, = % _ YL Npo exp(-Z,t)
Cet Qg Npo exp(-Zgt)

1)

We assume that the ratio of the catchability coeffi-
cients (gz¢/qg;) is constant over the course of the
study. Since the ratio of initial abundances (N74/Nz¢)
is also a constant, equation (1) can be rewritten

exp(-Zt)

R, =
T (<24t

= gexp{Zg - Z1)t} (2

where ¢ is a nuisance parameter that subsumes the
catchability coefficients and initial abundances. Tak-
ing logarithms of (2) results in a linear relationship with
respect to time:

loge(R;) = loge(q) + (Zg - Zy)t. ®3)

Thus, regressing the logarithm of the observed ratio
of abundances (R;) against time results in a linear
relationship with slope equal to an estimate of the dif-

ference in the instantaneous mortality rates. (The
proper weighting to use in a weighted regression is
discussed below.) Note that it is sometimes necessary
to add a small constant to the numerator and denom-
inator to avoid dividing by 0 or taking the logarithm
of 0.

Exponentiating the slope estimated by (3) provides
an estimate of the ratio of the finite survival rates:

SL/SE = eslope
where S; = e %; Sg = e 2z,

By the Taylor’s series (delta) method, the asymptotic
variance of the estimated survival ratio can be approx-
imated by (Seber 1982):

V(SLISg) = e slore) V(slope).

Diagnostics

Under the assumptions given above (constant ratio of
catchabilities over time and constant difference in in-
stantaneous mortality rates), a plot of the logarithm
of the ratio of catches versus time would be expected
to be linear (assuming the sample sizes are reasonably
large). A departure from linearity suggests violation
of one or both of the assumptions. This provides a
diagnostic procedure to check on the assumptions. If
catchabilities vary in a nonsystematic fashion, the fit
of the regressions would be low and would not be in-
fluenced by increasing sample size.

Two-sample estimator

A special case is when only two samples have been ob-
tained. Then, exponentiating the slope of the line
described by equation (8) reduces to the change-in-ratio
estimator of relative survival described by Paulik and
Robson (1969). Thus,

's;) By GGy @
SE Rl CLl CEZ

where the — symbol indicates estimated quantities. If
the proportion of early spawners in samples 1 and 2
are denoted by P, and P, respectively, then an esti-
mate of the variance can be found by the Taylor’s series
method to be (Seber 1982, p. 382)

V(SL/Sg) = [Pi(1 - Py)]-*
{@ - Py)2 P2 V(Py)

+ (1-P1)? P2 V(Pp)}
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Here, V(P;) and V(P5) are the variances of the pro-
portions, found by the usual formula for variance of
a binomial, i.e.,

i

where Nj; is the number of larvae in sample <, and ¢
can take on the values of 1 and 2.

\Weighted regression

Equation (3) can be seen to be a logistic model by noting
that log.(R;) is the logistic transformation. That is,
letting P; be the proportion in the sample at time ¢

which belongs to group “L”’ (i.e., —CL—), the logit
CL + CE
transformation of the proportion is

. P,
logit(P,) = loge ( 1 ‘P) - log.(Br).

-4t

This allows us to refer to known results for logistic
models to determine the optimum weighting scheme.

Not all observations on catch composition are of equal
value in estimating the relative survival rate. This is
because the variance of the ratio of catches for any par-
ticular sampling date will be a function of the sample
size and the proportions in the population. One method
for specifying weights to be used in the regression,
which explicitly accounts for this, is:

weight, = Cg! + Cp, L.

When these weights are used in the regression, the
resulting estimates are known as minimum logit chi-
square estimates. Once the logistic regression model
has been fitted, new weights can be computed using
the predicted catch composition, rather than the ob-
served composition. The regression can then be recom-
puted, the weights updated, and the regression recom-
puted. until adequate convergence is achieved. This
procedure results in maximum likelihood estimates
(McCullagh and Nelder 1983). Most standard statistical
packages will perform logistic regression so that the
user need not specify explicitly the iterative weighting
scheme.

The above weighting scheme is appropriate when lar-
vae are sampled randomly, i.e., each larva is sampled
independently of all other larvae. This situation is ap-
proximated when the expected catch per tow is small
(<1) and tows are random over space. When the ex-
pected catches are large, the sampling procedure re-
sults in cluster samples. Consequently, the theoretical
binomial variance is too small. However, the binomial

variance becomes increasingly small as the sample size
increases and as the proportions approach the extremes
(0 or 1), and this is what would be expected for cluster
sampling. Thus, weights computed from the binomial
variance should be reasonably appropriate.

Estimation when there are many small samples

It sometimes occurs that catch rates are extremely low
and many small samples are obtained. For example,
sampling may be conducted daily with low intensity.
In this case, the logistic regression procedure will not
work well due to the occurrence of many zero catches.
Estimation under the logistic model can still be accom-
plished by constructing the likelihood function and solv-
ing directly for the difference in mortality rates that
maximizes the likelihood function.

The probability that an individual, randomly selected
from the catch at time ¢, is from group E (early-spawn-
ing group) is equal to

Crr

Py(E) = ——
Cre+Cpy

Qg Ngo e~2%&

ggt Ngo e %t + qpy Npo e~ %t

o1 ®

1 + gedZt

where ¢ is the “apparent” initial ratio of abundances
(actual initial ratio of abundances if the ratio of catch-
ability coefficients is equal to 1) and AZ is the difference
in instantaneous mortality rates (Zg - Z. ).

The probability that an animal is from group L is the
complement of (5):

_
1 + ged?t

PL) = 1

1 + geb2t’
The likelihood function ecan then be constructed as the

product of the probabilities for each animal in each
sample:

A-H—L-q =%
i=1 1 + gefZt j.1 1 + ged?y

L
I
- ng+ny (6)

_rl (1 + ge2t)

i=1
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Figure 1
Plots of the logarithm of the ratio of abundance (cohort
1+ 1 + cohort ©) versus sampling period (measured as
5-day intervals) in 1980. Slopes of the linear regression
lines estimate Z; — Z,. (Note that the scale of the ordi-
nate varies among plots.) In all 12 comparisons of cohorts,

where ng and n;, are the total number of animals ob-
served in groups E and L, respectively, t; is the time
when the 1th individual from group 1 was caught, and
similarly for ¢;. The major statistical packages have
routines for maximizing this function.

Generalizations

The logistic model is easily extended to enable one to
incorporate the effects of covariates. For example, sup-
pose one has information on the time elapsed since the
sampling program began (¢) and also on the number
of days (¢ *) a power plant, which can be an additional
source of mortality, has been operating for each of the
sampling dates. Then instead of having ¢ as the only
explanatory variable, we can have a linear combination
of explanatory variables in the exponent

the slope is positive (later cohort has the better survival).

AZt.,; + b1 t'i.*

where b, is the differential mortality rate (per time) of
the two groups attributable to power plant operation.

Example

We consider data on American shad Alosa sapidissima
in the Connecticut River, Connecticut, USA, kindly
supplied by Victor Crecco and Thomas Savoy (Dep.
Environ. Prot., Mar. Fish Office, Waterford, CT). A
description of the study area and sampling methods,
and a careful analysis of the data, are given in Crecco
et al. (1983). Our purpose in considering these data
is to illustrate the use of our method and to explore
the kinds of questions that can be asked by study-



Hoenig et al.: Estimating survival rate over time for larval fishes

489

1981

cohort 2 vs 1 cohort 3 vs 2

. . of y
ol ok /
4 § ¢ 7 &

T B 2B B

cohort 11 vs 10 cohort 12 vs 11
. 2.

/)

Qo Ty Ta s 4T 12 1Y 94 15 16

-

sampling period

cohort 4 vs 3
1 .

B I N A

cohort 5 vs 4 cohort 6 vs 5 cohort 7 vs 6
1 . 21 1
L]
1t ® of .
L ]

o / *
~ e of -1t °
x
./ [}

o -8 %56 T4 6 T0% 7 & § 10
o)) cohort 8 vs 7 cohort 9 vs 8 cohort 10 v 9
(@] 2r 1r 1r

L]
1 o \
\. o ,\. o
ot .

ST T e 0 T A2 s e 10 1T 1T 13 T

Figure 2

Plots of the logarithm of the ratio of abundance (cohort
1+ 1 + cohort i) versus sampling period (measured as
5-day intervals) in 1981. Slopes of the linear regression
lines estimate Z; — Z,. (Note that the scale of the ordi-
nate varies among plots.) In 8 of the 11 comparisons of
cohorts, the slope is positive (later cohort has the better
survival).

ing relative survival. For instance, Crecco and Savoy
suggest that cohorts spawned later in the season have
a higher relative survival based on comparison of lar-
val and juvenile numbers. Qur method provides a tool
with which we can test this hypothesis for the larval
stage while overcoming problems which may be associ-
ated with sampling variability or limited sample sizes.

Ichthyoplankton were sampled throughout the spring
of 1980 and 1981. Approximately 30-40 larvae were
aged for each 5-day sampling period. We compared the
mortality of cohort 4 + 1 with that of cohort 4 for all
possible ¢ where cohort 1 is defined to be animals born
in the ¢th 5-day period of the season. This resuited in
12 comparisons for 1980 and 11 comparisons for 1981
(Figs. 1, 2). Because information on exact sizes of
the samples was not available to us, we computed un-
weighted regressions, This provides unbiased estimates

of the regression parameters, but the estimates are not
of minimum variance and the standard errors are not
accurate (Weisberg 1980).

The coefficients of determination were poor (r2
range 4-98%, mean 55%, for comparisons with three
or more observations) suggesting we cannot place much
confidence in the magnitude of the estimates of dif-
ferential mortality (Zg — Z;). This is undoubtably due
to the very small sample sizes. However, it is worth
noting that in 12 of the 12 comparisons using the 1980
data, the differential mortality was positive (see Figure
3), i.e., the survival rate of cohort i+ 1 (the later
spawned cohort) was higher than the survival rate of
cohort 1 (the earlier spawned cohort). Also, in 8 out of
11 comparisons using the 1981 data, the later-spawned
cohort had the higher survival rate. If there were no
differences in survival rates of the two cohorts in each
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Figure 3
Plot of estimated differential mortality (i.e., Z for cohort 7 + 1 minus
Z for cohort ¢) versus cohort number, i + 1. Differential mortalities
are estimated as the slopes of the regressions in Figure 1 (top) and
Figure 2 (bottom). Note that in all but three cases, the later-spawned
cohort is estimated to have lower mortality (higher survival) than
the earlier-spawned cohort.

pair, then one would expect half the comparisons would
have a positive estimate of differential mortality and
half would have negative estimates.

Discussion

We have presented three methods for estimating rela-
tive survival rates of larval fishes. The first method is

based on a logistic regression model. It provides a
graphic way to check the assumptions of constant
relative survival and constant ratio of catchabilities. A
special case of this method is the two-sample estimator
of Paulik and Robson (1969) (our eq. 4). Explicit spec-
ification of the likelihood function (eq. 6) is necessary
when many small samples are obtained, e.g., from a
daily sampling program where the catch per tow is very
small.

An intuitive method for estimating relative survival
rate would be to estimate the absolute survival rate of
each group by the decline in catch-per-unit-effort be-
tween two sampling times, and then to take the ratio
of the two survival estimates. Thus,

Cu1 _ Cr Cre @

g2 Cga2 Cpy
Cg1

alternative estimate of S;/Sg =

The assumption necessary for the estimation of each
survival rate is that the catchability has not changed
over time. If one were to obtain an estimate of survival
that is unfeasible (>1.0) one would be tempted to dis-
card the data without computing relative survival.
However, the expression to the extreme right in (7) is
exactly equivalent to the two-sample estimator in (4).
Thus, one can validly estimate relative survival rates
even when estimates of absolute survival are obtained
which are nonsensical. This is because the relative
survival estimators do not require the catchabilities
to remain constant over time, only the relative catch-
abilities.

On the basis of existing information, it is not possi-
ble to state quantitatively in what proportion of fish
populations or in which situations late-spawning larvae
will survive better than early-spawning larvae. In our
example, sample sizes were quite small (~30-40 age
determinations per 5-day sampling period) so that esti-
mates of relative survival rate were imprecise. It is in-
teresting to note, however, that in 12 of 12 comparisons
in the 1980 data and in 8 of 11 comparisons in the 1981
data the later-spawned cohort (week 4 + 1) had a higher
survival rate than the earlier-spawned larvae (cohort
from week 1) (Fig. 3). However, our results indicate
that late-hatching (smaller) larvae survive a given
calendar period better than early-hatching (larger) lar-
vae which is opposite to the general findings that lar-
val fish mortality rates decrease with increasing size
and/or age (Peterson and Wroblewski 1984, McGurk
1986). This suggests that whatever the cause of mor-
tality (e.g., predation, transport), the vulnerability of
larval shad in the Connecticut River to this factor in-
creases with age and/or size during the period studied.



Hoenig et al.: Estimating survival rate over time for larval fishes

491

Our method was developed for the situation in which
cohorts can be sampled simultaneously. Thus, if in a
particular week gear efficiency was better than nor-
mal, any changes in catchabilities would tend to affect
both cohorts so that the ratio of catchabilities might
stay relatively constant. It may be tempting to use our
method to compare cohorts over the same part of the
ontogeny (i.e., cohorts of the same age occurring at dif-
ferent times of the season). However, in this situation
there is no reason to believe that variations in catch-
ability over time of the first cohort will be tracked by
variations in catchability of the later cohort. Hence,
there is no advantage in using our method over tradi-
tional methods of estimating absolute survival based
on declines in catch-per-unit-effort.

Finally, we note that methods for estimating relative
survival have wide applicability beyond the study of lar-
val fishes. A classical problem is Lee’s phenomenon in
which back-calculated sizes at the first annulus do not
agree with the observed sizes of the young fish. Jones
(1958) proposed as explanation that faster-growing fish
may have a different mortality rate than slower
growers. This can be studied by observing the propor-
tion at each age that have a small back-calculated size
at the first annulus. Hoenig and Lawing (1983) describe
how the logistic model might explain the occurrence
of progressively skewed sex ratios with age. Differen-
tial survival has been studied by a variety of mark-
recapture methods in the context of fitness and natural
selection (see Manly 1985) and as a means of estimating
impacts of power plants (see Burnham et al. 1987).
Another application is to the evaluation of stocking suc-
cess as related to genetic strain of fish or hatchery
treatment. That is, the ratio of abundances of two
strains can be monitored over time to study whether
one strain survives better than the other.
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