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Estimation ot Southern
Bluetln Tuna Thunnus maccoyii
Growth Parameters trom Tagging
Data, using von Bertalantfy Models
Incorporating Individual Variation

Abstract. - Von Bertalanffy
growth models appropriate for fit­
ting to length-increment data by
maximum likelihood are described.
Models incorporating variation in
growth among individuals, release­
length-measurement error, and model
error are developed and fit to south­
ern bluefin tuna Tkunnus maccoyii
tag-return data. On the basis of like­
lihood ratio tests, a model in which
individual variation in growth is rep­
resented by variation in Leo and
which explicitly incorporates model
error is selected as the most ap­
propriate model for these data. The
parameter estimates obtained were
/A'- = 186.9cm, OL.2 = 218.8cm2, K
= O.1401/year, and 0.2 = 15.25cm2•

Analyses of simulated data suggest
that biased estimates of growth
parameters can result ifmodel error
is not explicitly included in von Ber­
talanffy models incorporating indi­
vidual variation in growth.
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Knowledge of the growth of a fish
and, in particular, a mathematical
description of the increase in length
or weight with time, is important for
understanding its population and
fishery dynamics. Also, fish growth
has been used directly or indirectly
to calculate catch age composition
(Hayashi 1974, Baglin 1977, Kume
1978, Skillman and Shingu 1980,
Majkowski and Hampton 1983), mor­
talities (Beverton and Holt 1957,
Pauly 1987) and yield-per-recruit
(Beverton and Holt 1957, Ricker
1975) and to make inter- and intra­
population comparisons (Brousseau
1979, Goldspink 1979, Kohlhorst et
al.1980, Francis 1981).

Techniques for studying fish growth
in length fall into three categories: (i)
Direct measurements of age (such as
those obtained by counting periodic
protein and calcium depositions in
scales, otoliths, vertebrae, fin rays,
or some other hard tissue) and length;
(ii) analysis of time series of length­
frequency data (sometimes called
modal progression analysis); and (iii)
analysis of length-increment and time­
at-liberty data from a mark-recapture
experiment. In each case, a growth
model is usually fit to the data. Vari­
0us models have been proposed for
fitting to these types of data (e.g.,
Brody 1927 and 1945, Ford 1933,
Walford 1946, Richards 1959, Knight
1969), but by far the most used model

in fisheries research is that of von
Bertalanffy (1938). This model, orig­
inally formulated on physiological
considerations, has three parameters
that have the biological interpreta­
tions of average maximum length
(Lao)' the average rate at which Lao
is approached (K), and the theoretical
average time at which length would
be zero if growth had always oc­
curred according to the model (to).

The study of growth by direct mea­
surements of age (reviewed by Bage­
nal 1974, Brothers 1979, Beamish
1981, Prince and Pulos 1983) and
length is not possible for many spe­
cies. In particular, good estimates of
the ages of older fish are frequently
hard to come by. This was the case
for Yukinawa's (1970) study of south­
ern bluefin tuna Thunnus maccoyii
age and growth from presumed an­
nual rings on scales. He examined the
scales of 2240 fish within the length
range of 38-184cm, but was able to
age only about 15% of fish larger
than 120cm, and none of those larger
than 153cm. Similarly, Thorogood
(1986) was unable to age significant
numbers of large southern bluefin
from examinations of their otoliths.

A major aspect of length-frequency
analysis is the identification of age
classes in the data. To do this, Hard­
ing (1949) and Cassie (1954) used
probability paper, and Tanaka (1956)
fit parabolas to the logarithms of
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observed length-frequencies. More recently, digital
computers have been used, and the distribution of
length-at-age has been assumed to be normal or log­
normal (Hasselblad 1966, Kumar and Adams 1977,
Macdonald 1969 and 1975, Macdonald and Pitcher
1979, Schnute and Fournier 1980, Fournier and Breen
1983). Pauly's method (Pauly 1987) of fitting growth
curves to observed peaks in a time series of length­
frequency data, commonly known as ELEFAN I, has
received some recent attention, but it suffers from the
assumption that length-at-age does not vary (Hamp­
ton and Majkowski 1987).

Some attempts have been made to study the growth
of southern bluefin, using length-frequency data. Ser­
venty (1956) plotted the progressions of length-fre­
quency means and modes of juvenile age classes caught
in Australian coastal waters, but did not attempt to
quantify the results as a growth equation. Robins (1963)
made the first attempt to quantify growth, obtaining
a Walford growth transformation from an analysis of
length-frequency modes of juvenile fish. Hearn (1986)
identified a seasonal component to growth from anal­
yses of similar data. Recently, promising results have
been obtained with the application of MULTIFAN, a
likelihood-based method for estimating von Bertalanffy
growth parameters from length-frequency data, to
southern bluefin tuna data (Fournier et al. 1990).

Length-increment and time-at-liberty data from a
tagging experiment provide direct measurements of
the growth of individual fish as long as the tag or the
tagging procedure does not have a significant effect
on growth. Using a von Bertalanffy model and a fit­
ting procedure such as that proposed by Fabens (1965),
estimates of Leo and K can be obtained, but without
additional assumptions no estimate of to is available.

Murphy (1977) analyzed the release and recapture
data from 2578 tagged southern bluefin and derived
estimates of Leo and K that he considered to be more
reliable than those previously derived by other workers.
Kirkwood (1983) obtained similar estimates from a
smaller data set (n 794), excluding fish that had been
at liberty for less than 250 days. In addition, he incor­
porated age-at-Iength observations from length-fre­
quency modes to the estimation procedure to obtain an
estimate of to.

None of the studies of southern bluefin growth, and
indeed few studies of fish growth in general, take ex­
plicit account of variation in growth among individuals
by the incorporation of parameters describing such
variation into the model. Krause et al. (1967) gave the
first thorough treatment of individual variability in
growth when deriving conditional probability densities
for body weight-at-age of chickens. Sainsbury (1980)
recognised the importance of individual variability in
fishes showing von Bertalanffy growth, and derived
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equations appropriate for length-at-age and length­
increment data if both Leo and K showed individual
variation. He also showed that biased estimates of
mean growth parameters could result if individual
variability in K existed and was ignored. Kirkwood and
Somers (1984) developed a simpler model for length­
increment data in which only Leo was variable and ap­
plied it to two species of tiger prawn.

A problem with these models (as pointed out by
Kirkwood and Somers 1984) is that all the observed
"error" is attributed to individual variation in Leo
and/or K. It is, of course, reasonable to expect that
there will also be error due to some animals not grow­
ing exactly according to the von Bertalanffy model, a
so-called model error. For standard growth models not
incorporating individual variability, all residual error
is assumed to be model error. It is also reasonable to
expect that, in the case of length-increment data, the
initial or release length cannot always be measured ex­
actlyand therefore will be an additional source of error.

In this paper, southern bluefin tuna tag-return data
are analysed using three existing models, all of which
are based on the von Bertalanffy model: the standard
model, using the fitting procedure described by Fabens
(1965), model (2) of Kirkwood and Somers (1984), and
the Sainsbury (1980) model. In addition, models based
on the latter two that incorporate model error and
release-length-measurement error are derived and ap­
plied. The properties and assumptions of each of the
models are investigated using computer simulation
techniques.

Methods

Tagging methods and data

The primary method used to catch fish for tagging was
commercial pole-and-line, using either live or dead bait,
although on some occasions trolling was also used.
Prior to release, the fork lengths of most fish selected
for tagging were measured to the nearest centimeter
on a measuring board. While the fish were restrained
on the measuring board, one or two numbered tuna
tags, each consisting of a molded plastic barbed head
with a tubular plastic streamer glued to it (Williams
1982), were inserted forward into the musculature at
an angle of about 45 0

, 1-2cm below the posterior in­
sertion of the second dorsal fin. For double-tagged fish,
one tag was inserted on each side of the second dorsal
fin. Ideally, the tag barb was anchored behind the
second dorsal fin ray supports (pterygiophores).

The primary data used in this study consist of returns
of southern bluefin tagged between 1962 and 1978 that
were measured to the nearest centimeter at release,
were thought to have reliable dates of release and
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recapture, and were at liberty for at least 250 days.
These criteria were satisfied by 1800 returns. The last
criterion was applied to eliminate the possible effect
that the tagging operation might have on length
growth and to minimize the biasing effect that seasonal
fluctuations in growth, if present, might have on
parameter estimation.

Most fish were 50-80 cm long when tagged, with the
smallest 38cm and the largest 104cm. The range of
recapture lengths was 51-185cm, with most being in
the range 60-100cm. The times at liberty for the
primary data set range from 250 days (the minimum
allowed) to approximately 11 years.

Parameter estimation

Modell: Standard von Bertalanffy model The
form of the von Bertalanffy growth model appropriate
for fitting to tag-return data (indexed by i) is, as
described by Fabens (1965),

where ali is the length increment, Ii is the release
length, t j is the time at liberty, and ei is a model error
term (or residual), all for the ith observation. The error
term ej is assumed to be a normally-distributed ran­
dom variable with an expected value of zero and
variance oe2• Thus, for given Ii and t i, ali is a norm­
ally-distributed random variable with an expected value
of (Lao -Ii) (l-e -Ktj) and a variance of oe2• Estimates
of Lao' K, and 0e2 can be obtained by nonlinear or­
dinary least squares (as in Kirkwood and Somers 1984)
or by maximum likelihood (Kimura 1980). In the case
of modell, either technique can be applied, since the
variance of ali is assumed to be constant with increas­
ing t i. However, in the models that incorporate in­
dividual variability (see below), the variance of ali
increases with increasing t i. This would require the
use of weighted least-squares if this approach was fol­
lowed. Since the weights would depend on the esti­
mated K, an iterative procedure would be necessary
to obtain the appropriate estimates. Therefore, the
maximum-likelihood method, which is far more
straightforward, is used to obtain parameter estimates
for this and the models that follow.

For n observations of ali and ti (i = 1 to n), the
likelihood function is

and estimates of Lao' K, and °e2 are found by

minimizing
n

~ [ali - E(alj)f

LL = -In L = ~ In (2n oe::!) + _i=_l _
2 2oe

2

This was accomplished for all the models described in
this paper, using the minimization subroutine MINIM
(programmed by D.E. Shaw, CSIRO Div. Math. Stat.,
P.O. Box 218, Lindfield 2070, Aust.), which uses the
method of NeIder and Mead (1965). Equivalent sub­
routines are available in several commercially-available
software packages.

Model 2: KIrkwood and Somers model Kirkwood
and Somers (1984) described a model which allowed for
individual variation in growth through an individually
variable Lao' Specifically, Lao was assumed to be nor­
mally distributed with mean I-IL and variance 0L 2.

For given Ii and t i, ali is a normally-distributed ran­
dom variable whose expected value is given by

and variance by

The negative log-likelihood function now becomes

LL = 1: In [2n var (aU] + [ali - E(al i)]2 (3)
i=l 2 2 var (ali)

from which maximum likelihood estimates of I-IL ,

0L..2, and K may be obtained. ..

Model 3: KIrkwood and Somers model wIth model
error Let us now assume that the variance of dl j is
comprised of components due to both the individual
variation in Lao and to a normally-distributed model
error, ej, having a mean of zero and variance oe2• In
this case, E(ali) is unchanged from Equation (2) and
the variance of ali is given by

Maximum-likelihood estimates of I-IL , 0L 2, K, and
0e2 can again be obtained by substituting the right
sides of Equations (2) and (4) into Equation (3).
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and

[
~K2]2 - a 2

OK t· K

E(dl,) ~ fJ4.. -liJ 1 - [ 1 + "K ,]

Model 5: Sainsbury model Sainsbury (1977, 1980)
described a model that recognised individual variation
in K, as well as in Leo' He assumed that both were
independent random variables, with K following a
gamma distnbution and Leo being normally distributed.
He also assumed that, as an approximation, dl j is
normally distributed for given Ii and tj, pointing out
that this should involve little error if Leo is normally
distributed (Sainsbury 1977). With /AK and OK2

denoting the mean and variance, respectively, of K, the
relevant equations are

.,
~K-

+ 20K
2 til -OK

2

JAK

o
~K-

]

- 0 [
.) a -

0K~ t· K+ I + 1
/AK

where

and

Model4: Kirkwood and Somers model with model
error and release-length-measurement error Be­
cause the tagging operation involves the handling of
powerful, often violently struggling fish, it is quite
reasonable to expect that release length will be mea­
sured with error. If possible, this error should be in­
dependently estimated and included in the growth
model. On the other hand, measurement of a dead fish
at recapture should not involve a significant error if
competently carried out. In this study, recapture
lengths are assumed to be measured without error.

If growth is assumed to be negligible, a comparison
of lengths-at-release and lengths-at-recapture (12) for
animals at liberty for a very short time should provide
a good estimate of release-length-measurement error.
Such a comparison was made for 251 tag returns in
which the release length was 50cm or more (see
Residuals Analysis section) and the period at liberty
was 10 days or less. For this data set, the mean mea­
surement error /Am = (~{12 -ld/251) was 0.4861cm
with a variance, om2, of 5.2428cm2• At least some of
this /Am might be attributed to growth, since the
average growth increment over a 10-day period is ap­
proximately O.5cm. In this paper, lAm is assumed to be
zero.

Because eH i now depends on another random vari­
able (Ii), it is convenient to assume that the length-at­
recapture is a normally-distributed random variable.
Equation (1) can be modified to describe the ith recap­
ture length as

where £i is the normally-distributed release-length­
measurement error. The expected value of 12i is given
by Maximum-likelihood estimates of /AL , 0L 2, /AK, and

q '" '"
0K~ can be obtained as shown earlier.

where E (Ii) is equal to Ii + /Am' Collecting terms in
£j, Equation (5) is rewritten as

Model 6: Sainsbury model with model error As
shown in model 3, a model error can be included sim­
ply by adding the model error variance term to Equa­
tion (6) giving

The variance of 12 j is then given by
Solution by maximum likelihood now requires that a
fifth parameter, oe2, be estimated from the data.

Given estimates of /Am and om2, maximum-likelihood
estimates of /AL ,OL 2, K, and oe2 can be obtained as
before. '" '"

Model 7: Sainsbury model with model error and
release-length-measurement error Using logic sim­
ilar to that developed in model 4, length-at-recapture
is now considered as the random variable and assumed
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to be normally distributed, with

(7)

and

where Oel2and 0e22are independent model error vari­
ances. Maximum-likelihood estimates of ilL 0L 2 Kr co' CD' ,

to, Oe12, and Oe22 could, in theory, be found by mini-
mizing

LL = f In [2n var (ali)] + [ali-E(ali)]2
isl 2 2 var (ali)

(9)

where

Given the estimate of Om2 derived for model 4, max­
imum-ikelihood estimates of /AL ,OL 2 UK OK2 and ° 2

00 ca,r' , e
can be obtained as before.

Estimation of to An estimate of to is required for
many applications of the von Bertalanffy model, but
this parameter cannot be estimated from tag-return
data alone. To estimate to, one or more observations
of age-at-Iength are required. Kirkwood (1983) de­
scribed a maximum-likelihood method for determining
to, along with Lao and K, if supplementary age-length
data are available in addition to tag-return data. Such
data can easily be accommodated in the models de­
scribed above. Consider the case where n1 tag returns
(ali and ati) and n2 age-length observations (Ij and t·)
are available. We now have two random variables, at
and Ij, which have normal probability density func­
tions c~nditioned.on Ii (release length) and ati, and t j ,

respectIvely. TheIr expected values, for example in the
case of model 3, are given by

and their variances by

However, the estimation of six parameters (or seven
in the case of models 6 and 7) may prove unrealistic
in many cases. In order to obtain an approximate
estimate of to, I have employed a simpler procedure.
It involves fixing the growth parameters estimated
from tag-return data and estimating to by minimizing
only the second summation in Equation (9), using the
same approximate age-length data as Kirkwood (1983).
I did not attempt to estimate simultaneously all
parameters using the combined length-increment and
age-length data because of the approximate nature of
the latter data.

Model selection

An important part of this study was to select the most
appropriate growth model for use in southern bluefin
tuna stock assessments. Although L provides a means
of comparing the goodness of fit of the various growth
models with the tagging data, it is not immediately
clear whether the more complex models result in a
statistically-significant improvement in fit to the data.
Likelihood ratio tests (Mendenhall and Scheaffer 1973,
Kendall and Stuart 1979, Kimura 1980) can be used to
address this question.

Likelihood ratio tests Let A. be defined by

where L(,o) and L('a) are the maximum-likelihood
function values under the null hypothesis (the simple
model is correct) and the alternative hypothesis (the
more complex model is correct), '0 is the set of max­
imum-likelihood estimates of r parameters under the
null hypothesis, and 'a is the set of maximum­
likelihood estimates of r +s parameters under the alter­
native hypothesis. Under certain regularity assump-
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tions that hold under most circumstances for large sam­
ple sizes (Mendenhall and Scheaffer 1973), - 2loge A
behaves as a X'.!. random variable with s degrees of
freedom. Therefore -210geAmay be compared with a
critical X'.!. value (pertaining to a suitable rejection
region) and the null hypothesis either accepted or re­
jected. For example, a value of - 210geAof more than
3.84 would lead to rejection of the simple model in favor
of a model with one extra parameter (df 1) with a re­
jection region (significance level) of 0.05 on the x'.!.
distribution.

Simulations

Assessment of model performance One hundred
simulated data sets were produced and analysed by the
models described above. The simulated data sets were
produced by simulating values of dl j (for each of the
1736 observations comprising the edited data set),
using the following equation,

Leoi and ej were sampled from normal distributions,
and Kj from a gamma distribution defined by the
model 7 maximum-likelihood estimates of their respec­
tive /A'S and 02'S. The release-length-measurement
error, £j, was sampled from a normal distribution with
a mean of 0 and a variance of 5.2428 cm'.!.. Subroutine
GGNML of the International Mathematical and Statis­
tical Library (lMSL) was used to generate random nor­
mal deviates. IMSL subroutine GGAMR was used to
generate gamma deviates. Actual values of Ij and tj
from the edited data set were used.

A second set of simulations was undertaken, assum­
ing Leoi and K j to be correlated with a correlation coef­
ficient of 0.80. Correlated normal deviates were
generated, using IMSL subroutine GGNSM. This was
done to test the sensitivity of the models to the assump­
tion of independence of Leoi and Kj observations. In
this set of simulations, K was assumed, for simplicity,
to be normally distributed, rather than gamma distrib­
uted. With the values of IAK and OK2 encountered in
this study, the gamma and normal distributions are vir­
tually indistinguishable, and therefore the normal ap­
proximation should result in little or no error. This was
confirmed in a small number of simulations where
analyses of simulated data, produced using normally­
distributed Kj values (uncorrelated with Leoi ), gave
results virtually identical to simulations where Kj was
gamma distributed.

Analysis of the 100 simulated data sets by each of
the models described above provided 100 sets of
parameter estimates for each. The means and standard
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errors of these estimates were calculated to (i) derive
approximate confidence intervals for the maximum­
likelihood estimates produced by the models and (ii)
compare model performance, i.e., their ability to
estimate known parameter values.

Testing the assumption of normally-distributed 121

The assumption that, given lj and tj, the random
variable d1j(or 12j in the case of models 4 and 7) is nor­
mally distributed, is central to all the models described.
This assumption is most questionable for model 7,
where K variability and release-length-measurement
error could have unpredictable effects on the distribu­
tion of 12j. This assumption was tested for 30 com­
binations of I and t by generating 5000 values of 12i
for each combination, using the following equation.

A X'.!. goodness-of-fit test (IMSL subroutine GPNOR)
with 50 equiprobable categories was then applied to
identify possible departures from a normal distribution
with mean and variance given by Equations (7) and (8),
respectively. Values of 1of 50,60, 70, 80, 90, and 100
cm were combined with values of t of 2, 4, 6, 8, and
10 years to produce the 30 combinations.

Results

Residuals analysis

Using modell, an analysis of residuals was carried out
on the primary data set. An initial fit of model 1 to the
1800 observations yielded estimates of Leo, K, and
oe'.!. of 195.614cm, 0.131914/year, and 24.8193cm2,

respectively. Standardized residuals (Rj= ej /0e) were
calculated and plotted against tj (Fig. 1) and against
Ii (Fig. 2). Examination of Figure 1 reveals an even
distribution of standardized residuals about zero and
no obvious relationship with time at liberty. However,
Figure 2 suggests that the fit model may not be ap­
propriate over the entire range of release lengths
observed. For release lengths less than 50 cm, there are
54 positive residuals but only 8 negative residuals, in­
dicating that observed growth was faster than the
model would predict for these smaller fish. For release
lengths of 50 cm and larger, the pattern of residuals
is unremarkable. On this basis, observations with
release lengths smaller than 50 cm were excluded from
further analyses.

A refit of model 1 to the amended data set (1738
observations) provided estimates of Leo' K, and 0e2 of
200.120cm, 0.125836/year, and 23.6157 cm'.!., respec­
tively. Using these parameter estimates, standardized
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FIgure 1
Plot of standardized residuals against time-at-Iiberty follow­
ing an initial fit of model 1 to the primary data set (1t 1800).
The parameter estimates used were L.. =195.614cm, K=
0.131914/year, and o.~=24.8193cm~. The observations
labeled A and B are those identified as outliers.

residuals were recalculated and checked for outliers.
Models 2-7 incorporate individual variability in growth
parameters, necessitating the use of a quite severe
criterion in the definition of an outlier. An observation
was classified as an outlier only if the absolute value
of its standardized residual was greater than 4.4172.
Under the assumptions of model 1, only one in 2000
observations would exceed this value due to chance
alone. Two observations were classified as outliers on
this basis and rejected from further analyses. These

FIgure 2
Plot of standardized residuals against release length follow­
ing an initial fit of model 1 to the primary data set (n 1800).
The parameter estimates used were L.. = 195.614cm, K=
0.131914/year, and o/=24.8193cm2 • The observations
labeled A and B are those identified as outliers.

observations are indicated in Figures 1 and 2. The final
data set to which all models were fitted consisted of
1,736 observations.

Parameter estimates

Parameter estimates for the seven models fitted to the
final data set are given in Table 1. The estimates differ
substantially among some models, which is not surpris­
ing since they are based on rather different assump-

Table 1
Southern bluefin tuna growth parameter estimates derived for the seven models described.

Model Model /AI- OL.
2 o~ toe

no. description (cm) /AK/yr (cm~) o/Iyr (cm2) (yr) LL

1 Fabens 201.1 0.1251 22.96 -0.6884 5183.66

2 Kirkwood and Somers 157.2 0.1892 555.8 -0.2506 5224.31

3 Kirkwood and Somers, 186.9 0.1401 218.8 15.25 -0.5437 5150.86
with model error

4 Kirkwood and Somers, 186.2 0.1409 238.2 10.92 -0.5396 5151.06
with model error and
release-length error

5 Sainsbury 175.2 0.1563 100.7 0.1665E-02 -0.4660 5207.39

6 Sainsbury, with model 188.3 0.1384 177.8 0.8824E-04 15.00 -0.5620 5150.80
error

7 Sainsbury, with model 188.0 0.1387 193.0 0.1014E-03 10.56 -0.5601 5150.97
error and release-
length error
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Table 2
Estimates of mean and standard deviation of length-at-age (in cm), based on the parameter estimates for models 1 to 7.

Modell Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Age Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 38.3 4.8 33.1 5.0 36.3 4.8 36.6 4.5 35.6 8.5 36.6 5.2 36.6 4.9
2 57.4 4.8 54.5 8.2 56.0 5.9 56.0 5.7 55.4 12.2 56.2 6.4 56.1 6.3
3 74.3 4.8 72.2 10.8 73.1 7.0 73.1 6.9 72.3 14.7 73.2 7.5 73.2 7.5
4 89.2 4.8 86.9 13.0 88.0 8.0 88.0 8.0 86.6 16.3 88.1 8.5 88.0 8.6
5 102.4 4.8 99.0 14.8 100.9 8.9 100.9 9.0 98.8 17.3 101.0 9.3 100.9 9.5
6 114.0 4.8 109.0 16.3 112.2 9.7 112.1 9.9 109.3 17.7 112.2 10.0 112.1 10.2
7 124.2 4.8 117.3 17.6 121.9 10.4 121.8 10.6 118.2 17.8 122.0 10.6 121.9 10.8
8 133.3 4.8 124.2 18.6 130.4 11.1 130.3 11.3 125.8 17.6 130.5 11.0 13Q.4 11.3
9 141.2 4.8 129.9 19.5 137.8 11.6 137.6 11.9 132.4 17.3 138.0 11.4 137.8 11.7

10 148.3 4.8 134.6 20.2 144.2 12.1 144.0 12.4 138.0 16.8 144.4 11.8 144.3 12.0
11 154.5 4.8 138.5 20.8 149.8 12.5 149.6 12.8 142.9 16.3 150.1 12.0 149.9 12.4
12 160.0 4.8 141.7 21.2 154.7 12.9 154.4 13.2 147.1 15.8 155.0 12.3 154.8 12.6
13 164.8 4.8 144.4 21.6 158.9 13.2 158.6 13.5 150.7 15.2 159.2 12.5 159.1 12.8
14 169.1 4.8 146.6 22.0 162.5 13.5 162.2 13.8 153.8 14.7 163.0 12.6 162.8 13.0
15 172.9 4.8 148.4 22.3 165.7 13.7 165.3 14.1 156.5 14.2 166.2 12.8 166.0 13.1
16 176.2 4.8 149.9 22.5 168.5 13.9 168.1 14.3 158.8 13.7 169.0 12.9 168.8 13.3
17 179.1 4.8 151.2 22.7 170.9 14.1 170.5 14.5 160.9 13.3 171.5 13.0 171.3 13.4
18 181.7 4.8 152.2 22.8 173.0 14.3 172.5 14.7 162.6 12.8 173.6 13.1 173.4 13.5
19 184.0 4.8 153.1 23.0 174.8 14.4 174.3 14.8 164.2 12.5 175.5 13.2 175.3 13.6
20 186.0 4.8 153.8 23.1 176.4 14.5 175.9 14.9 165.5 12.1 177.2 13.3 176.9 13.7

Figure 3
Plot of recapture length against presumed age-at-recapture
for tag returns comprising the final data set (n 1736).

4) has little effect on the model-3 estimates, with the
exception of oe2, which is somewhat lower in model 4.
Similar effects of adding model error and release­
length-measurement error can be seen in comparisons
of the parameter estimates for models 5, 6, and 7.

The estimates of 0L 2 are substantially higher for
models that assume constant K (models 2,'3, and 4)
than for those that assume individual variability in K

..
.....

,
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. '.... ' .

tions. The effect of these differences on the mean and
standard deviation of length-at-age is shown in Table
2. Despite the differences in parameter estimates,
mean length-at-age is virtually identical for all models
up to age 7. This allows the calculation of an approx­
imate age-at-release for each observation that should
contain little error and that is essentially independent
of which set of parameter estimates is used to convert
the release length to age. With this information, a
presumed age-at-recapture incorporating individual
variation can be calculated by adding the presumed
age-at-release to the observed period at liberty. A plot
of presumed age-at-recapture (calculated using the
model 3 parameter estimates) against recapture length
is shown in Figure 3.

Model 1 produced the highest estimate of IJL and
the lowest estimate of IJK' The probable explanation
for this is that the estimates are biased by the three
observations with the greatest recapture lengths (Fig.
3). Because there is no individual variation in this
model, the estimate of Leo is forced upward to compen­
sate for these influential observations. In model 2, such
observations can be accommodated by individual varia­
tion in Leo; thus the estimate of IJL falls by more
than 20% and the estimate of IJK rises by more than
50%. When a model error term is added (model 3), the
differences in relation to modell are less dramatic. The
addition of release-length-measurement error (model
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Table 3
Values of the 97.5 percentile of the L.. distribu­
tions derived for models 2-7. These values may
be compared with an observed maximum size in
the catch of 225cm.

Model no.

2
3
4
5
6
7

97.5 percentile of
the L.. distribution (em)

203.4
216.0
216.5
194.8
214.4
215.2

correct; (2) the Ho that model 1 is the correct model
against the alternative that model 6 (5 parameters) is
correct; and (3) the Ho that model 3 is the correct
model against the alternative that model 6 is correct.
Ho was rejected for both tests (1) and (2) (P<O.OOI),
indicating that the more complex models 3 and 6 pro­
vide significantly better fits to the data than model 1.
For test (3), Ho was accepted (P>0.05), suggesting
that the additional complexity of the extra parameter
(OK2) in model 6 did not result in a significantly im­
proved fit over model 3. On this basis, model 3 was
adopted as the most appropriate model for these data.

(models 5, 6, and 7). An approximate consistency test
for derived Leo distributions is to compare an upper
percentile (e.g., 97.5) of the distribution with the
observed maximum size in a large sample of the catch
(Kirkwood and Somers 1984). The largest southern
bluefin ever measured by Japanese researchers during
many years of length-frequency sampling is 225cm
(Yukinawa 1970, Shingu 1978). This may be compared
with the derived 97.5 percentile of the Leo distributions
for models 2-7 (Table 3). While by no means a definitive
test, the comparisons suggest that the Leo distributions
derived for models 3, 4, 6, and 7 (models that include
model error) are more consistent with the observed
maximum length than the distributions derived for
models 2 and 5 (models that do not include model error).

The estimate of OK2 for model 5 fell substantially
with the addition of model error (models 6 and 7). The
value of OK2 for model 7 represents a coefficient of
variation of approximately 7%. It should be pointed out
here that the log-likelihood surface was very flat with
respect to both 0L 2 and OK2, i.e., relatively large
changes in either parameter resulted in only very small
changes in LL. This matter is explored further using
simulation techniques.

Model selection

The minimum negative log-likelihood function values
given in Table 1 are indicators of the goodness of fit
of the models to the data. Model 2 (3 parameters) pro­
vided a substantially poorer fit to the data than model
1 (3 parameters) and therefore need not be tested. Also,
the inclusion of release-length-measurement error
resulted in slightly worse fits to the data, eliminating
models 4 and 7 from further consideration. The only
likelihood ratio tests that are required are: (1) the null
hypothesis (Ho) that model 1 is the correct model
against the alternative that model 3 (4 parameters) is

Simulations

Assessment of model performance The results of
analyses of 100 simulated data sets, produced assum­
ing independence of Leoi and Kj, are given in Table 4.
These suggest that all of the models, with the possible
exception of model 2, provide unbiased estimates of
/AL and /AK. This is somewhat surprising in view of
the wide range of estimates of these parameters ob­
tained from analyzing real data with the same models
(Table 1). In particular, one might have expected, on
the basis of analyses of the real data, that models 2 and
5 would have given biased estimates of /AL and /AK
for the simulated data also. The estimates"of these
parameters obtained from the real data, using the
above models, even lie outside the approximate 95%
confidence bounds calculated from the simulated data.
A possible explanation for this is that the simulated
data do not contain all the growth-related features of
the real data. Such unaccounted-for structure, if it
affected the performance of the models differently,
could produce such inconsistencies. This, in fact, was
observed in the case of the apparently biased estimates
given by model 1 for the real data.

While the simulations indicate that estimates of the
mean parameters are relatively unbiased and precise,
this is not the case for estimates of their variances. In
particular, it is clear that reliable estimates of 0K2 can­
not be obtained from this data set, since estimates from
the simulated data ranged from practically zero to 25%
(expressed as the coefficient of variation). This could
be due in part to the loss of information on K-variability
incurred because of the necessary exclusion from the
analyses of fish at liberty for less than 250 days.

The mean values of 0L 2 are reasonably consistent
with the estimates obtained from the real data. The
estimates from models 2, 3, and 4 are positively biased,
while those from model 5 are negatively biased. The
estimates from model 7 are unbiased, but have a coef­
ficient of variation of 45%. The estimates of oe2 are
somewhat less than those obtained from the real data,
except in the case of model 1.
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Table 4
Results of analyzing 100 simulated data sets generated using model 7, assuming independence of Leo and 1\;. The true parameter
values (Le., those input to the simulation model) were those estimated from the real data using model 7 (Table 1).

Model

Parameter 1 2 2 4 5 6 7

ilL. (cm) mean 189.5 179.9 189.1 190.7 188.1 189.1 189.0
SE 5.8 5.0 5.0 9.2 5.7 5.9 4.8

lower c.b.· 178.3 170.0 179.4 172.6 177.0 177.6 179.5
upper c.b. 200.8 189.8 198.8 208.8 199.2 200.7 198.4

ilK I yr mean 0.1372 0.1498 0.1376 0.1362 0.1400 0.1379 0.1378
SE 0.0071 0.0074 0.0062 0.0093 0.0070 0.0074 0.0061

lower c.b. 0.1233 0.1352 0.1256 0.1179 0.1263 0.1234 0.1259
upper c.b. 0.1510 0.1644 0.1497 0.1544 0.1536 0.1525 0.1497

OL_~ (cm~) mean 699.2 249.7 288.4 27.1 178.1 186.3
SE 64.2 44.1 100.5 42.3 93.4 84.8

lower c.b. 573.4 163.3 91.4 -55.8 -5.0 20.1
upper c.b. 825.0 336.1 485.4 110.0 361.2 352.4

oK~/yr~ mean 0.1176 E-2 0.1973 E-3 0.1839 E-3
SE 0.1509 E-2 0.2503 E-3 0.1476 E-3

lower c.b. 0.8806 E-3 -0.2932 E-3 -0.1054 E-3
upper c.b. 0.1472 E-2 0.6879 E-3 0.4733 E-3

o.~ (cm~) mean 20.11 11.13 6.67 10.08 6.04
SE 0.75 0.97 1.11 1.49 1.17

lower c.b. 18.63 9 ...,.~ 4.50 7.16 3.75.~w

upper c.b. 21.59 13.03 8.85 13.00 8.32

• 95% confidence bound assuming variables to be normally distributed.

The results of the simulations in which Leoj and K j

were assumed to be correlated are given in Table
5. These results are essentially identical to those in
Table 4; therefore, the assumption of independence
does not affect parameter estimation in this instance.

Testing the assumption of normally-dlstrlbuted 121

Tests of normality of 12i were performed for 30 com­
binations of I and t. For each of the combinations, the
statistic G (xz distributed with 49 degrees of freedom)
and the probability, P, of wrongful rejection of the null
hypothesis of normally-distributed IZi were calculated
(Table 6). In each case, P is greater than 0.10, and
usually substantially so; therefore the null hypothesis
is not rejected for any of the combinations of I and t.

Discussion

The estimation of von Bertalanffy growth parameters
is one of the more frequently applied analyses in fish­
eries research. Despite this, the interpretation of the

parameter estimates is often ill-founded. This is par­
ticularly so with Leo' which is frequently given the in­
terpretation of maximum possible length. This would
be the case only if every fish grew exactly according
to the derived model, Le., there was no model error or
individual variation in growth. In reality, the growth
of all individual fish will not follow a single von Ber­
talanffy growth curve exactly; there will be variations
among individuals resulting from exogenous (environ­
mental) and endogenous (genetic) effects (Francis
1988). The correct interpretation of Leo estimated in
the standard way is that it is the average maximum
length that would he attained in the population repre­
sented by the data being analysed. Models have been
proposed in this paper that take explicit account of
model error and individual variation in growth. thereby
eliminating the need for such interpretations.

Previous estimates of southern bluefin growth
parameters have differed substantially (Table 7). The
previous estimates of Leo obtained from tag-return
data are somewhat smaller than the estimate derived
using model 1 in this paper. This is possibly because
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Table 5
Results of analyzing 100 simulated data sets generated using model 7, assuming correlated Loo; and Kj pairs. The true parameter
values (i.e., those input to the simulation model) were those estimated from the real data using model 7 (Table 1).

Model

Parameter 1 2 2 4 5 6 7

f.lL. (em) mean 188.2 178.5 187.6 187.3 186.3 187.1 184.6
SE 6.6 4.9 5.0 5.1 5.6 6.4 7.8

lower c.b.· 175.3 168.9 177.7 177.3 175.4 174.6 169.4
upper c.b. 201.1 188.2 197.5 197.4 197.2 199.6 199.9

f.lK/yr mean 0.1389 0.1517 0.1395 0.1398 0.1423 0.1404 0.1442
SE 0.0083 0.0075 0.0065 0.0066 0.0072 0.0080 0.0111

lower c.b. 0.1226 0.1370 0.1268 0.1269 0.1280 0.1248 0.1224
upper c.b. 0.1553 0.1664 0.1521 0.1527 0.1563 0.1560 0.1661

0L.
2 (cm2

) mean 688.6 251.3 270.6 38.6 180.9 151.0
SE 64.3 35.4 36.2 54.2 91.2 94.4

lower c.b. 562.7 181.9 199.6 -67.6 2.2 -34.0
upper c.b. 814.6 320.6 341.6 144.7 359.6 336.1

o/Iyr mean 0.1208 E-2 0.2105 E-3 0.4301 E·3
SE 0.1608 E-3 0.2771 E-3 0.4383 E-3

lower c.b. 0.8928 E-3 -0.3327 E-3 -0.4290 E·3
upper c.b. 0.1523 E-2 0.7536 E-3 0.1289 E·2

0.
2 (cm2

) mean 20.33 11.05 6.74 9.99 4.53
SE 0.79 1.05 1.06 1.74 2.79

lower c.b. 18.78 8.99 4.66 6.57 -0.95
upper c.b. 21.88 13.12 8.82 13.41 10.00

• 950/0 confidence bound assuming variables to be normally distributed.

Table 6 previous studies did not restrict the data
Values of the goodness-of-fit test statistic, G <-l distributed with 49 degrees to those observations where release length
offreedom), and the probability, P, of wrongful rejection of the null hypothesis was at least 50 cm and time at liberty at
of normally-distributed recapture lengths. Each test consisted of 5000 recap- least 250 days (except Kirkwood 1983 inture lengths generated for a specific combination of release length and time-
at-liberty. For the purpose of calculating G statistics, the simulated recapture the case of the latter restriction).
lengths were classified into 50 equiprobable categories. The estimates of Leo and K based on

Time-at-liberty (yr)
length-frequency data only (Shingu 1970,

Release length Hynd and Lucas 1974, Kirkwood 1983)
(cm) 2 4 6 8 10 and those based on scale (Yukinawa 1970)

50 G 42.02 56.00 58.16 51.68 44.68
and otolith readings (Thorogood 1986)

P 0.75 0.22 0.17 0.37 0.65
must be treated with caution because

60 G 57.54 50.86 52.38 38.74 46.84
they were estimated from samples which

P 0.19 0.40 0.34 0.85 0.56 consisted of no, or very few, larger fish

70 G 46.50 37.84 38.92 49.84 42.44
(in the case of length-frequency data,

P 0.58 0.88 0.85 0.44 0.73 modes are rarely visible beyond 100cm).

80 G 56.68 45.62 60.92 4Q.42 48.58 As discussed by Knight (1968), this al-
p 0.21 0.61 0.12 0.80 0.49 most inevitably leads to biased estimates

90 G 51.58 56.70 53.94 45.42 58.86 of the growth parameters.
p 0.37 0.21 0.29 0.62 0.16 The analyses of both real and simulated

100 G 54.96 45.70 46.70 31.94 43.78 data indicate that biased parameter esti-
p 0.26 0.61 0.57 0.97 0.68 mates may result if model error is ig-

nored. In addition, the incorporation of
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Table 7
Southern bluefin tuna growt.h parameter estimates det'ived by other workers.

Source Method L.. (ern) K/yr to (yr) n

Shingu (1970) Length-frequency 222.5 0.140 0.011
(data from Robins 1963)

Shingu (1970) Tag return 187.4 0.149 0.021

Yukinawa (1970) Scales 219.7 0.135 0.040 1025

Hynd and Lucas (1974) Length-ft'equency 220.0 0.150 ?

Murphy (1977) Tag return 180.8 0.146 -0.011 2578

Hearn (unpubl.) Tag return 178.6 0.117 -0.010 629

Kirkwood (1983) Tag return 185.3 0.155 794
Tag return· 209.0 0.125 794
Length-frequency 184.2 0.166 -0.036 77
Length-frequency· 214.8 0.133 -0.095 77
Tag return and 184.4 0.157 -0.21fi 794+77

length-frequency
Tag return and 207.6 0.128 -0.394 794+ 77

length-frequency•

Thorogood (1986) Otoliths 261.3 0.108 -0.157 "'480

• Time-at-Iiberty and/or age assumed to be the dependent variable.

model error to both the Kirkwood and Somers model
and the Sainsbury model resulted in significantly be­
tter fits to the data. This suggests that growth models
that include individual variability should, if possible, in­
clude model error in the estimation procedure.

Release-length-measurement error did not prove to
be a significant source of error in this case. However,
its effect should, if possible, be tested in tag-recapture
growth studies and, if significant, incorporated into the
model as shown in this paper. This will be essential if
negative length increments are included in the data set
being analysed.

Sainsbury (1980) showed that an underestimate of
mean K can result if substantial individual variability
in K is present but ignored. There are a number of in­
dications from southern bluefin data that the level of
individual variability in K is not substantial. First, there
is virtually no difference in estimates of /AL.. and /AK
between models 3 and 6 and between models 4 and 7.
(The only difference in the models in each case is that
both the latter models incorporate individual variabil­
ity in K.) If the real level of individual variability in K
was substantial, we might expect, on the basis of
Sainsbury's (1980) observation, that models 3 and 4
would have given overestimates of /AL.. and underesti­
mates of /AK compared with models 6 and 7. Second,
analyses of length-frequency modes suggest that the
variance of length-at-age increases with increasing age

(W.S. Hearn, CSIRO Div. Fish.. GPO Box 1538, Hobart
7001, Aust., pers. commun.). This, as Sainsbury (1980)
notes, is more the rule than the exception in fish popula­
tions, and is indicative of variation in Leo having the
dominant effect on overall variation in length-at-age.
Third, modes are clearly visible in the length-frequency
data for at least the first four age-classes (Kirkwood
1983). Majkowski et al. (1987) give a general condition
for the visual or statistical separability of length-fre­
quency modes as I/Ai - /Ai-l I<2min(oj, Oi+t>, where
/Ai and 0i are the mean length and its standard devia­
tion, respectively, of age-class i. Applying this condi­
tion to the mean-length and standard-deviation-at-age
data given in Table 2, we find that only for models 3
and 4 (no variation in K) and models 6 and 7 (OK! /AK
=0.07) is the condition satisfied for separating age­
classes 3 and 4. On this basis, we could conclude that
the visibility of at least four modes in the length­
frequency data would preclude levels of K variability
much greater than those derived for models 6 and 7.

The problem of selecting the most appropriate model
for use in stock assessment was addressed, using
likelihood ratio tests. These indicated that model 1 was
inadequate, and that a significantly better description
of the data was provided by incorporating individual
variation in Leo (model 3). However, the incorporation
of individual variation in K or release-length-measure­
ment error could not be justified.
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