Abstract.—The projection of re-
source production and the effect of
removals on fisheries populations are
based on abundance estimates, partic-
ularly estimates of the most current
abundance. Monte Carlo methods
were used to investigate a size-based
method of estimating abundance for
instances where the age of caught
fish cannot be established, but where
size samples and a growth schedule
exist. Neither process variability (re-
cruitment dates, growth rates, and
unobserved change rates) nor sam-
pling error (catch estimation, growth
rate estimation, and relative abun-
dance sampling) adversely affected
estimation, although low sampling
intensities often decreased precision.
Abundances of recently recruited
fish too small to occur in relative
abundance samples more than once
were estimated with large uncertain-
ty. Inappropriately wide size-class
widths caused uncertain abundance
estimates of larger size-classes. How-
ever, if size-classes were of suitable
width, the abundance of fish large
enough to occur in abundance sam-
ples more than once were accurate-
ly and precisely estimated even in
cases of high process variability and
small sample sizes. Sampling gear
efficiency (catchability) coefficients
were often estimated without large
bias but imprecisely. The exponent
of the unobserved change rate (in-
cluding natural mortality) was esti-
mated precisely, but estimates were
often biased. High correlations be-
tween estimates of the unobserved
change rate and sampling gear effi-
ciencies were not often observed.
Estimation characteristics were un-
like those based on virtual population
analysis calculations. Maximum-like-
lihood estimates of the most recent
abundances were accurate and pre-
cise, yet calculations of historical
abundances were biased and extreme-
ly imprecise.
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Most often, the objective of fisheries
regulations is to insure that stock
abundance does not decrease or, if
abundance is low, to increase it. The
welfare of the entire stock may be of
concern, or only a part of it such as
the adult portion (spawning stock).
These objectives are obtained by
limiting yields (weight caught) to
stock growth or, in instances were
abundance is low, to less than stock
growth. Abundance estimates are the
bases for this regulation strategy. An
opinion as to whether stock abun-
dance is currently depressed or not
is based on a comparison of an esti-
mate of current abundance with esti-
mates of previous abundances. Stock
production (growth) in the immediate
future is projected from the estimate
of current abundance. Since the pro-
duction projection is the basis for the
yield limit, the estimate of current
abundance determines the yield limit.
Because it is a critical element of
regulatory responsibility, abundance
estimation methodology is of major
interest.

Most estimation methods are based
on age data. These methods specify
that the population is entirely com-
posed of unique groups of fish of
equal age (cohorts) and that all mem-
bers of a cohort grow into the first
exploitable size (recruit) instanta-
neously before fishing begins once
each year. These two requirements
rarely, if ever, occur. Most popula-
tions spawn during several months,
or sometimes throughout the entire
year, so that annual or even monthly
cohorts do not really exist. The
growth of the young fish to sizes

large enough to be caught is a con-
tinuous process so that recruitment
is typically an ongoing phenomena.
These biological realities are often ig-
nored, and age-based analysis meth-
ods are used anyway.

Since the primary data element of
age-based methods is the number of
caught fish of each age, the ages of
caught fish must be determined.
Sometimes this requirement is dif-
ficult to satisfy. Major circuli from
differing bone densities or the chem-
ical composition of skeletal structures
(scales, fin spines, or otoliths) have
been validated as age marks in only
3.4% of age determination studies
(Beamish and McFarlane 1983). Even
in cases where indirect evidence of
validation seems ample (Kreuz et al.
1982), direct measurement of growth
from mark and recapture data can
document a very different reality
(Pikitch and Demory 1988). Collect-
ing and processing samples can be so
difficult and time consuming that
large data voids occur. Frequent
molting and the absence of bony
tissue preclude the possibility of
using hardpart ageing methods for
many invertebrates, and the technol-
ogy to determine age from somatic
tissue does not currently exist.

These problems can be avoided by
methods that model populations in
terms of size and time rather than
age and years (or months). Size-based
methods need not require that the
population be composed of age-spe-
cific cohorts nor that recruitment be
an instantaneous, one-time event.
The first size-based methods, how-
ever, are not so constructed.
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The original technique to assess fish stocks from
size instead of age data is a stepwise double-estimation
procedure (see Pauly et al. 1987 for an example). Size-
specific catches are first transformed to age-specific
catches by using an inverted growth equation (Ricker
1975:221) or statistical estimators based on growth
data (Clark 1981, Bartoo and Parker 1982, Shepherd
1985, Hoenig and Heisey 1987, Kimura and Chikuni
1987) so that the stock is assumed to be composed of
age-specific cohorts. Size-to-age transformation meth-
ods that require size-frequencies only (i.e., growth data
are not required) are available (Macdonald and Pitcher
1979, Pauly 1982, Fournier et al. 1990), but Monte
Carlo tests have shown pronounced weaknesses in
these methods (Hampton and Majkowski 1987, Rosen-
berg and Beddington 1987, Basson et al. 1988). Vir-
tual population analysis (Ricker 1948, Fry 1949, Jones
1961, Gulland 1965, Murphy 1965) is then applied to
the transformed catch, but the system of cohort-spe-
cific catch equations is underdetermined (Agger et al.
1971, Doubleday 1975, Ulltang 1977, Pope and Shep-
herd 1982). The inclusion of auxiliary data (total fish-
ing effort, catch effort, or other relative abundance
samples) using any of several statistical procedures
(Laurec and Bard 1980; Paloheimo 1980; Anon. 1981b,
1983, 1984, 1986; Parrack 1981, 1986; Collie and
Sissenwine 1983; Deriso 1985; Pope and Shepherd
1985; Mendelssohn 1988) eliminates that problem, so
abundances can be estimated. If based on actual age
data, virtual population analysis using auxiliary infor-
mation does estimate stock abundances and fishing
mortality rates reasonably well if the natural mortal-
ity rate is known (Deriso 1985, Pope and Shepherd
1985), but if the method is used without actual age data,
its statistical characteristics are unknown. If the
population is not composed of true age-specific cohorts
or if the ageing of caught fish is problematic, the
method is not appropriate. Spawning often is too pro-
tracted to establish cohorts and fish cannot be aged
with reasonable certainty; yet because it is simple and
tractable, this method is used anyway.

Several size-based abundance estimation methods do
not employ data auxiliary to catches (Jones 1974 and
1981, Brethes and Desrosiers 1981, Lai and Gallucei
1988). Instead of using fishing effort or relative abun-
dance samples to overcome the determination problem,
they assume that the size-frequency of the catch, and
thus of the stock (and recruitment magnitudes), is
constant (in steady state). That assumption greatly
restricts the usefulness of these methods.

Three items seem important when considering stock-
abundance estimators. First, the data an estimator re-
quires often may preclude its use if such data is not
usually available. Next, since the likelihood procedure
requires one, often a sampling distribution for an ob-

served statistic is assumed even though support for the
assumption cannot be offered. The resulting estimator
thus might be entirely based on an inappropriate prob-
ability expression. Last, the statistical properties of
an estimator are of concern. An estimator may be too
imprecise to be useful unless sample sizes are unrealis-
tically large, or its bias may be too large to ignore dur-
ing estimation.

Since the method of least squares is not based on
probability theory, statistical characteristics of such
estimators are very uncertain. The likelihood procedure
tends to generate estimators with superior statistical
characteristics, but suceess is not guaranteed. Com-
monly, estimators of parameters of nonlinear models
are problematic. They cannot be written in closed form
so their expectations, which lead to bias and variance
expressions, cannot be derived analytically. Since the
estimator’s performance characteristics cannot be
predicted, they must be established from Monte Carlo
studies. If such studies do not exist, the estimator’s
usefulness is unknown.

The first size-based procedure, a least-squares esti-
mator, was developed (Beddington and Cooke 1981)
and applied to sperm whales (Anon. 1981a, Cooke and
Beddington 1982, Cooke et al. 1983b, Shirakihara and
Tanaka 1983, de la Mare and Cooke 1984) to assess the
northwestern Pacific stock (Beddington et al. 1983,
Cooke and de la Mare 1983b, Shirakihara and Tanaka
1983). It is based entirely on size-specific catches and
assumes a known adult-progeny ratio instead of using
fishing effort or other auxiliary data. The statistical
characteristics of the estimator were established with
extensive Monte Carlo studies (Cooke et al. 1983a,
Cooke and de la Mare 1983a, Shirakihara and Tanaka
1984, de la Mare and Cooke 1985 and 1987, Shirakihara
et al. 1985, de la Mare 1988).

The method of Fournier and Doonan (1987) was
derived by the likelihood method by assuming that
catch and effort are each lognormal random variables
and that the first four moments of length-frequencies
are normal random variables. Monte Carlo tests
established the estimator’s ability to predict optimal
long-term fishing effort, but the errors of the stock-
abundance estimates are not described. The maximum-
likelihood method of Schnute et al. (1989) assumes that
the annual ratio of total yield to total effort is a nor-
mal random variable. The statistical characteristics of
the estimator are not described.

The method of Sullivan et al. (1990) is a least-squares
estimator based on catches, but Kalman filter method-
ology also may be used to obtain estimates (Sullivan
1989). The method does not require data other than
catches even though it is well known that, in the case
of age-based (VPA) methods, the system of catch equa-
tions without auxiliary data is not determined (Agger
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et al. 1971, Doubleday 1975, Ulltang 1977, Pope and
Shepherd 1982). Sullivan et al. (1990) suggest expand-
ing the number of terms in the sum of squares to in-
clude effort and abundance indices if meaningful
weights for these auxiliary data can be found (guidance
for finding such weights is not provided). The statistical
characteristics of the estimator are not yet described.

The lack of Monte Carlo tests of the performance of
these estimators is a particular concern because,
without knowledge of their statistical behavior, little
certainty can be placed on the resulting estimates.
Some of the estimators were developed by the likeli-
hood method, but the justification for assuming the
chosen sampling distributions often seems weak or
lacking. The usefulness of those estimators that require
total fishing effort seem limited, since that statistic is
often estimated from catch and effort samples rather
than enumerated. Most of the methods estimate the
parameters of individual growth as part of the solution
vector. This seems questionable in view of findings in
a study of the separation of central moments of indi-
vidual distributions from distribution mixtures (Has-
selbald 1966), studies of the magnitude of correlation
between estimates of growth-equation parameters
(Gallucci and Quinn 1979), and of the performance of
methods that estimate growth parameters from size
distributions (Hampton and Majkowski 1987, Rosen-
berg and Beddington 1987, Basson et al. 1988). Also,
most of the methods are based on elaborate population
models, a characteristic that leads to two problems.
First, such models often include deterministic stock-
recruitment functions, and such functions are regarded
as unrealistic representations of the dynamics of fish
stocks. Second, since the population model is extensive,
it includes a large number of parameters that must be
estimated. It is well known that an exact representa-
tion of a real-world system is not possible; hence, a
suitably parsimonious model that is a useful approx-
imation with an informative structure is superior (Box
1979). The most germane variables are the current size-
specific abundances since they will determine stock pro-
duction in the immediate future.

The object of this study was to develop an abundance
estimator that would be appropriate in almost all cases,
whether or not the population is composed of cohorts,
or whether or not age data is available. Effort was
taken to write the estimation model as parsimonious
as possible, to base estimation on data commonly
collected from most fisheries, and to insure that the
correct sampling distribution was used in the likeli-
hood procedure. The bulk of the study was directed at
describing the statistical characteristics of the esti-
mator over a broad range of conditions from Monte
Carlo simulations.

Methods

Abundance estimator

An abundance estimator was developed that uses a

model of individual growth, size-specific catches and

catch dates, and size-specific abundance observations

(sighting data, research cruise catch-per-tow, etc.). The

estimator makes three assumptions:

(1) Unobserved phenomena that change stock abun-
dance (immigration, emigration, unrecorded catch,
predation, and disease) are a (continuous) Poisson
process with combined rate z,

(2) the size of an individual on a date is a known deter-
ministic function of size on another date, and

(3) the sample average of relative abundance obser-
vations is a normally-distributed random variable
with an expectation equal to a portion of absolute
abundance.

The estimator uses a growth model to relate sizes and
dates and an abundance model to project abundance
from observed catches scaled to relative abundance
observations.

Consider T time-periods, not necessarily of equal
duration, so that 0<t<T. Within period t, relative
abundance was observed on date y;, then a catch oc-
curred on date c;. The number of fish caught on date
¢; was C;. Abundance on the date of the relative abun-
dance observation (date y,) is of interest; let this abun-
dance (numbers of fish) be N,. From assumption (1),

Nis1 = [N; e~z&-¥) — C,] e ~%0ta-a),

Abundance on the date of the final abundance sample
(i.e., N7) is of most interest because stock production
in the immediate future depends on it. Writing the
above equation in terms of Nt as a time-series gives
a simple forward projection of abundance on each
relative abundance sampling date:

T-1 k-1

p3 - -1 Comyi )+ 2 % (5 — ¥
Nt = NTek_tzk(YIul Yk) + z (}k ezk Cx— Yk +i-tz'(y'+l yl).

k=t

If the unobserved change rate is assumed temporally
invariant, this simplifies to

T-1
N; = Np e20m-%) + > Cy ex%-w),
£

Each catch is subtracted separately; catching is not
assumed to occur continuously at a constant rate.
Abundance changes due to unobserved events are,
however, assumed to occur continuously at a constant
rate.
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The model suggested by Chapman (1961) and Rich-
ards (1959) may be used to include growth. Letting A,
m, b, and k be parameters, s the size, and t the time
from birth, the general model

1
§ = (Al"m — b e-k-'t)I-m

is the “logistic” function of Verhulst if m=2, the Brody
(monomolecular, von Bertalanffy) model if m=0, and
it approaches the Gompertz function as m approaches
unity. Using the rationale of Fabens (1965) where s;
is the size at time t, and s, is the size at time t;, the
above growth model leads to
1

8y = (Al—m — (Al-m_sll-m) e—k(tz—tl))l—m- (1)
This satisfies assumption (3), without reference to the
actual age of individuals, by expressing size as a con-
tinuous function of time, but if growth is intermittent
or has changed, a specialized model is most appropriate.
From (1), or a more suitable model, let

l" = the size of a fish on date y7 that was size s on
da'te Yt

u’ = the size of a fish on date yr that was size s+1
on date yi,

a’ = the size of a fish on date ¢, that was size s on
date y,, and

b’ = the size of a fish on date ¢, that was size s+1
on date y;,

where I, u/, a’, and b’ fall in size-classes [, u, a, and
b. Including size in the abundance equation gives

Nis = @)
u’ b’
T-1
f Np , dw e20r-7) + 3 Cy, w dw e2(-¥),
k=t
U a’

If size-classes are suitably narrow, the frequency of
size within size-classes tends to be proportional to size.
The frequency of size within a class is therefore approx-
imated by a trapezoid (i.e., trapezoidal integral approx-
imation). The number of fish within the size class is

s+1

F, I fy dw = Ye(s+1-5s) (f,+1..1)
8

llz(fs_fs+1),

where s is a size class, f; is the frequency at size s,

and F, is the number within size-class s. Let the
largest fish fall in class S:

fy = %Fg because fg,; = 0.

Rewriting gives fg = 2 Fg.

Proceeding to smaller sizes,

Fs_1 = 1/2(fs_1+fs) =1/2(fs_1+2Fs)

so fg_; = 2(Fs_;-Fs).
Fg_s = 1/2(fs_2+fs_1) =1/2(fs_g+2Fs_1+2Fs)

so fg_p = 2(Fg_p2-Fs_1+Fg).
Fs = Y%(f;+£.1)

= Yo(f,+2F,, —2F, o+ . .. 1 2Fg).

Rearrangement gives the general expression for the
frequency at size-class bounds:

fs = 2(Fs-Fs41+Fs0-Fg,3 +... £ Fg).

The frequency of any size, s, within class s is also
required:

o=t o+ b o ¢y (o) Ei-ty).
s+1-8

The approximate integrals for equation (2) are thus:

o
Ifu=1I I Nyw dw =
g

Ya(u' -1) e+ - D)1 —m)+ (@ = D1 -mi),

or

u

ifu > I: f Niw dw =
l

Ye(l+1-1)Yom+@ - D0nus1—-m) + mar) +- ..

Ve -w) 20y + (U - W) (a1 - M)

u-1
+ 2 Ngj,

i=l+1



306

Fishery Bulletin 90(2), 1992

and

W
ifb = a: f Cywdw =
-

Yo' —a)(cat+(@ - a)(Gas1- %)+
+ (0" =b)(gh+1- b)),
or
.
if b < a: f Cyw dw =

Ye(a+1-a")(ga+(@ -a)(sa+1-Ga) +Gasr1)+ - - -

< Y2 (0’ =b)(2¢,+ (' —b)Mcpi1—a)),

where 7= Z(N'I‘,s_NT.s+1+NT,s+2_NT,s+3+ oo iN’I‘,S,

and ¢ = 2(Cys—Cxs41+Cxkss2—Cises+ ... £Cys.

On a sampling date, r measures are recorded and
sample mean calculated for each size class:

=Y
Yt's = Z t,s.k.
k=1 T

According to assumption (3), the expectation of relative
abundance is

E[Y..] = f[BIY,C] = g N,

where B contains the sampling-gear efficiency coeffi-
cients (the qg), the unobserved change rate (z), and the
abundance of each size-class on date yr (the Nr ;).
N;s is as defined by (2), Y indicates a matrix of
relative abundance observations and C catches. Since
it is a mean, clearly

Y.s ~ N [f[8]Y,C],

02[Yt,s]
r
(assumption 3). This implies the likelihood,
n
L) = [1 @n)-* o[Y; ]! e %V, fBIY.CD*+S[¥,,],
t,s

where n is the product of the number of size-classes

and sampling dates. Maximizing its logarithm (constant
terms ignored),

T S
-3 > (Y.s—fIBIY,Cl)2+0/[Y,] @)
t 8

with respect to g yields maximum-likelihood estimates
of the g5, the Ny , and z. Maximization was achieved
by minimizing the negative of (4) by the ‘“Marquardt”
method (Morrison 1960, Marquardt 1963, Conway et
al. 1970, Gallant 1975, Press et al. 1986).

This estimator is equivalent to common least-squares
if size and date variances are equal, but that restric-
tion seems unlikely. Since

oz[Yt.s] = Nl;,s2 Var[qs]r (5)

abundance is the dominant term. Abundance is depen-
dent on reproductive success and a mortality history.
Both are time-variant, so an assumption of equal
variances is inappropriate.

This abundance estimator possesses few restrictions.
Relative-abundance measures and catches can occur on
any date. Any number of catches, or none at all, can
occur between relative abundance samples or visa
versa. The period of data collection may be short; the
time-series may be brief. Individual growth can follow
any form. Most important, recruitment to the exploited
stock can occur continuously so that breeding (spawn-
ing) and birth (hatching) need not happen just once dur-
ing each period. Reproduction may be continuous so
age-specific cohorts need not exist. This estimator is
not a cohort analysis, but it uses similar data.

Monte Carlo tests

Each test was designed to collect a history of estimator
performance over many applications of the method in
similar circumstances. Each test was composed of
several trials. On each trial, a new exploited popula-
tion was simulated, followed by relative abundance
sampling, growth rate estimation, and catch estima-
tion. Next, g was estimated by (4) from the data col-
lected in the second step. Last, estimation error for
each element of 3 was calculated. The familiar mea-
sure of error, e = (3—p), where B is the vector of
population parameters estimated by §, was not ap-
propriate because 8 changed from one simulation to the
next. Error was measured by the sufficient statistic
€=+ p. The bias of each element of 8 was estimated
as the average € over the n trials (Monte Carlo sam-
ples). If a particular estimate was unbiased, then
u[€]=1 for that parameter. The estimated error vari-
ance of each parameter, s2[€], was also calculated.
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A significance level for bias larger than 10% was
found by computing the probability of the standard
normal random variable as follows:

significance level (Eg k E]] :g:g

Z
f f, dp, Z = (€-0.9) = [s(€)/Vn].

significance level (Ho: vIElS 1-1)

HA: u[€]>1.1

o Z
f fp dp = 1.0 - f fp dp, =
Z —00

E-1.1) = [S(E)/Vn].

The results between tests were statistically compared
by placing confidence intervals on the difference
between the biases (Law and Kelton 1982:319) and
using the variance ratio test (F’ test) to compare error
variances.

In each Monte Carlo test, the intent was to complete
trials until the estimate of bias was within a given
bound with a prescribed probability (Law and Kelton
1982). Several parameters were estimated, so several
biases were involved. It was too costly to confirm that
all bias estimates were trustworthy and many param-
eters were not of primary interest, so the error of last-
period total stock size (E[N(T.)]) was used as the
reference statistic. Trials were completed until

1.962 - s2(E[N(T.)]) + n < @2,

where ® was usually small. The 95% confidence bound
half-lengths for all parameters were computed to in-
dicate how well bias was estimated for each parameter.

The method of Schrage (1979) was used to generate
uniform random variables because it is portable and
known to perform well (Law and Kelton 1982:227-
228). Normal random variables were generated by the
polar method (Law and Kelton 1982:259). The method
of Scheuer and Stoller (1962) was used to generate cor-
related bivariate normal random numbers.

In most trials, the lives of 20,000 fish were individual-
ly simulated over 20 time-periods. A history of abun-
dance and catch was created, then abundance sampling,
catch estimation, and growth parameter estimation
was simulated. Each fish possessed a unique growth

Figure 1
Frequency of recruitment dates from one trial of uniform
recruitment simulations.

pattern and recruitment date and independently en-
countered unobserved events and fishing death. The
result of these encounters, growth rates, and recruit-
ment dates were tabulated into size-class and date-
specific matrices of numerical abundance and catch.
The sequence of events of the population simulation is
diagrammed in Appendix 1. A detailed description of
the simulation and justification of control variable
levels is given by Parrack (1990).

Von Bertalanffy growth was simulated by fixing m
of equation (1) null: For each fish, A and k of (1) were
drawn as normal random variables. The expectations
were set near those estimated for many stocks, in-
cluding Pacific cod (N.J.C. Parrack 1986), and their
coefficients of variation (cv) were set as high or higher
than common in other studies (<0.4).

Two kinds of recruitment were considered, uniform
and seasonal. The uniform pattern (Fig. 1) simulated
continuous recruitment of constant magnitude. The
date each fish recruited to the minimum size category
was drawn as a U(1,20) random variable. Seasonal
recruitment dates were drawn from normal distribu-
tions so that recruitment magnitudes varied U(1, 20)
between periods and so that a typical “pulse’ of young
fish recruited once each period, with some recruitment
occurring continuously. The recruitment peak was
simulated to occur randomly during April, May, and
June by drawing the expected recruitment date for
each period U(0.25,0.50). Protracted and contracted
seasonal recruitment patterns were considered. Sea-
sonal protracted recruitment was simulated by draw-
ing the standard deviation of recruitment dates
U(0.20,0.33) so that 80% of recruitment occurred ran-
domly within +3-5 months of the peak (Fig. 2). Sea-
sonal contracted recruitment was simulated by draw-
ing the standard deviation U(0.13,0.26) so that 80%
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Flgure 2
Frequency of seasonal, protracted recruitment dates from one
trial. Peak recruitment occurs 1 April-1 June, 80% occurs
within 8-5 months of the peak, and recruitment levels vary.

of recruitment occurred randomly within +2-4 months
of the peak (Fig. 3).

The unobserved change rate was simulated both tem-
porally invariant and variant. If variant, then zn
U(z1,22) on each new trial; z; and z, were simulation
control variables. Catching was simulated either as a
single event that occurred once each midperiod or as
a continuous event in each period. Fishing mortality
was not imposed until period 6 so that the stock would
accumulate as soon as possible after simulation in-
itialization. In most tests the fishing mortality rate was
drawn U(F,,F,) on each new trial; F; and F, were
control variables. Period-specific rates were set con-
stant over all trials in two tests to guarantee a stock
depletion caused by a rapid increase in fishing levels.

Sampling simulation included the generation of catch
estimates, growth parameter estimates, and relative
abundance measures. Populations and catches were
generated over 20 time-periods. Relative abundance
samples and catch estimates were simulated in the last
four periods only, but catches were considered to be
removed after the date of abundance samples so catch
in the last period was irrelevant to estimation (and thus
was not computed).

Size-class and date-specific catch estimates were
drawn from a Gaussian distribution with catches from
the simulator as the expectations and with variances
specified by a cv. The estimator of catches was thus

Figure 3
Frequency of seasonal, contracted recruitment dates from one
trial. Peak recruitment occurs 1 April-1 July, 80% occurs
within 2-4 months of the peak, and recruitment levels vary
20-fold between time periods.

unbiased, and estimation errors (estimator variances)
were proportional to catches. _

A complete simulation of growth sampling and esti-
mation was deemed too costly, so a reasonable proxy
of unbiased estimation was used. Let A; be a growth
parameter of fish i such that A;~N(A, 02[A]. Defining
the uniqueness in growth of fish i as ;=A;- A, 02[A]
=212/N. Let A; be unbiasedly measured by a; with
normal error so that a;=A;+e;, ;vN(0, o%[e]). Since
ei=ai— A, o?[e]=2e?N, o%[a;]=E{a;- E[a;]}2=0%[A]
+02[e]+20[1,e] where the last term is null because
T and e are independent. Using the sample mean of g
fish to estimate A, 02[A] = (02[A]+02[e])/g, so that
growth-parameter estimation variance is separated
into two parts, that of inherent variability from fish
to fish and that of growth measurement error. CV’s
were used as simulation control input instead of vari-
ances, so growth parameter estimates were N(A, A2
(cv[A]%+cv[e]?)/g) random variables. In reality, all
growth parameters are estimated simultaneously. As
a rule, growth parameter estimates are highly nega-
tively correlated (Gallucci and Quinn 1979, Knight
1968, Burr'1988) with correlation coefficients often
—0.90 or less. Estimates of k and A of (1) were drawn
as normal random correlated variables (Rubinstein
1981:86) with a correlation coefficient of —0.95. The
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number of fish sampled for growth (g) was specified
in the simulation indirectly as a probability level and
limit of a confidence bound. For a 1 - a level confidence
interval on A of bound length 20A,

®A = Z(1-a/2) o[A]
= Z(1-a/2) VA2(cv[A]2+cvie]?)/g,
S0
g = Zz(l - g) (cv[A)? + cv][e]?) + @2

On each sampling date r, relative abundance samples,
1<k<r, were simulated as

r r
Yt,s = z Yt.,s,k +~r= z Qs k Nt,s T,
k=1 k=1

qs,x ™ N (g5, cv[q]? q:2),

where cv[q] and the g, were simulation constants. The
qs were 0.025, 0.05, 0.175, 0.225, 0.2425, and 0.25
(smallest to largest size-class) in most simulations.
Several other variations were tried, and it was found
that these constants did not affect results at all. Cv’s
of q were 0.4 or less. The observation and its variance
were calculated as the maximum likelihood estimates,

Yt, s

r
z Yt,s,k/r
k

sz[Yt,s] z (Yt,s,k_Yt,s)zl(rz_r)-
k

The sample size (r) was fixed indirectly by two control
variables, the probability level and confidence-bound
width for Y. ; where o2[Y; ,] is as (5). If a 1—a level
confidence interval on Y; , was to be of bound length
2e¢eN; . ®q; then:

L Nt,s Qs (1 - g) O[Yt,s]:

r = Z2(1-a/2) cv[q]? + @2
Sampling error entered the simulation as variation in
ds, not as variation in the Y, ;; the variance of the
abundance index was not an input.

These simulations encompassed many possibilities,
but not all. Random variation was simulated in all

process variables (z, growth parameters and recruit-
ment magnitude, duration, and timing), but time trends
were not. A different unobserved change rate was
drawn for each time-period (z;vN(u,, 02[z])), but the
expectation and variance were constant over time and
size. Different growth parameters were drawn for each
fish, but the expectations and variances were the same
for all fish. Recruitment magnitudes for each time-
period were drawn from a uniform distribution so time
trends were not simulated. A different recruitment
peak (i.e., the expectation of recruitment date) was
drawn for each time-period from a common expecta-
tion and variance. A duration of recruitment (i.e.,
variance of recruitment date) was drawn for each time-
period, but with the same expectation and variance.
Random variation was simulated in sampling variables
(catch estimates, growth parameter estimates, and the
gs), but biased estimates were not simulated. Al-
though a different vector of sampling efficiencies (the
gs) were drawn for each sampling date, the expecta-
tion and variance for each size was temporally constant.

Results

The Monte Carlo tests fall into two categories: those
that investigate the influence of population process
variability on estimation errors, and those that test the
effects of sampling and data estimation. Process vari-
ability includes recruitment phenomena, growth rates,
and unobserved change due to emigration, immigra-
tion, natural death, and unrecorded catch. Sampling
variation and data estimation includes four topics:
catch estimation error, unrecorded dates of catch,
growth parameter estimation error, and variability in
sampling-gear efficiency coefficients, and thus in the
abundance indices. Each of these items were studied
separately in 14 tests.

Population process variabliity

For these tests, catches, dates of catch, and popula-
tion growth parameters were considered to be known,
and sampling gear efficiencies (the q's) invariant so that
all sampling variation was absent. Catches were taken
at midperiod. The probability of death due to catching
in each period was an U(0.05,0.2) random variable, and
asymptotic size was 11.95 units (i.e., 119.5¢cm, with
10cm intervals).

Recrultment patterns Uniform recruitment test re-
sults (Table 1) show little bias and high precision in
estimates of abundance and q’s. Significance levels for
the hypothesis of bias=1.0 (unbiased) versus bias#1.0
(biased) were <0.00005 in almost every case, but bias
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Table 1
Monte Carlo tests of populations processes. Catches, dates of catch, and population growth parameters were assumed known. Sam-
pling gear efficiencies (q) were invariant. The probability of death due to catching in each period was a U(0.05,0.2) random variable.
Catches occurred at midperiod. Asymptotic size (i.e., u[A]) was 11.95.

Recruitment patterns

Variable growth Variable, rapid Variable, slow
Uniform Protracted Contracted z variable Test 1 growth - Test 2 growth - Test 3
ulk] 0.17 0.17 0.17 0.17 0.17 0.34 0.085
cvlA & k] 0.00 0.00 0.00 0.00 0.40 0.40 0.40
Loss rate z 0.10 0.10 0.10 U(0.1,0.4) 0.10 0.10 0.10
Recruit levels constant U(1,20) U(@,20) U(1,20) U(1,20) U(1,20) U(1,20)
Recruit dates u(1,20) N(u.o?) N(y,0%) N(u,0%) N(u,0o%) N,d*) Nu,0o%)
u(t) U(0.25,0.5) U(0.25,0.5) U(0.25,0.5) U(0.247,0.5) U(0.247,0.5) U(0.247,0.5)
o(t) U(0.2,0.33) U{(.18,0.26) U(0.2,0.33) U(0.2,0.33) U(0.2,0.33) U(0.2,0.83)
95% CI of bias of N(T.)
% width achieved 0.0024 0.0114 0.0160 0.0139 0.0434 0.0457 0.0498
Number of trials 1010 210 775 105 109 327 32
Variable Bias s’[€] Bias s°[€] Bias §'[€] Bias §°[€] Bias s'[€] Bias s*[€] Bias s*[€]
N(T, 3) 0.9711 0.0032 1.1319 0.0333 1.3138 0.2460 1.1569 1.0508 0.7575  0.0204 0.8594 0.0319  0.8542 0.0456
N(T, 4) 0.9923 0.0152 0.9140 0.2824 0.9780 1.5205 0.9833 0.0955 1.0697 0.0588 0.7410 0.0152 0.8815 0.0379
N(T, 5) 0.9986 0.0055 0.9710 0.0527 0.9802 0.1454 1.0191 0.0364 0.9596  0.0134 0.9087 0.0168 0.9745 0.0044
N(T, 6) 0.9941 0.0010 1.0271 0.0078 1.0632 0.0165 1.0511 0.0341 0.9964 0.0010 1.0168 0.0101 1.0051 0.0036
N(T, 7) 0.9989 0.0016 0.9651 0.0072 0.9383 0.0133 0.9742 0.0046 0.9850  0.0010 0.9892 0.0041  0.9989 0.0036
N(T, 8) 1.0049 0.0005 1.0044 0.0012 1.0018 0.0041 0.9925 0.0017 1.0041  0.0003 0.9899 0.0013 1.0364 0.0043
N(T, 9) 0.9912 0.0008 0.9933 0.0024 0.9940 0.0036 1.0003 0.0024 0.9924  0.0004 0.9911 0.0004 1.0219 0.0100
N(T.10) 1.0084 0.0009 0.9916 0.0036 0.9905 0.0087 0.9785 0.0122 1.0200 0.0007 0.9991 0.0004 1.0836 0.0241
N(T,11) 0.9752 0.2291 0.6789 1.5190 0.4585 2.1818 0.2999 5.7229 1.0590  0.4399 1.2595 0.1852 1.9661 1.5290
N(T,12) 2.3825 2.7796  3.2020 1.3185 3.7363 5.9230
N(T,13) 2.9063 5.4646 3.8776 2.0041 5.5877  13.3879
N(T,14) 3.3177 83135 4.8876 19756 9.0415  77.7329
N(T,15) 3.9400 19.2576 6.3783 29742 11.3780 166.9735
N(T,16) 44074 45.0368 8.3752 6.7119 14.2366 403.7108
N(T,17) 5.5771 120.2284 11.3020 27.2042 14.9405 905.7713
N(T,18) 5.1845 203.8775 15.4323 50.7470 18.1915 903.7181
N(T,19) 9.6012 870.1467 23.3307 358.9141 26.6017 1253.4483
N(T,20) 1.3244 222.7073 26.9926 486.5381 11.0799 640.3803
N(T,21) 4.1712 169.5628 38.8813 2180.3053 24.4425 2117.6233
N(T,22) -1.5598 53.1271 40.2471 3481.6977 23077 9.6225
N(T,23) 1.9878 41.6990 48.5059 4438.4966
N(T,24) -8.5990 2.7742 33.4447 6841.2892
N(T.25) 32.0736 4537.5995
N(T.26) 1.6141 5790.4488
N(T.) 0.9908 0.0015 1.0064 0.0071 1.0491 0.0516 1.0245 0.0053 1.0988 0.0535 1.8714 0.1781 1.1147 0.0206
gq( 3) 1.0331 0.0039 0.9010 0.0209 0.8103 0.0410 0.8891 0.0268 1.3544  0.0543 1.2201 0.0676 1.4094 0.1195
q( 4) 1.0178 0.0036 0.8844 0.0085 0.7299 0.0185 0.8728 0.0091 1.1304 0.0161 1.8772 0.0487 1.1669 0.0297
q( 5) 0.9977 0.0030 0.9787 0.0067 0.9292 0.0181 0.9581 0.0058 1.0987 0.0118  1.2252 0.0325 1.0611 0.0064
q( 6) 1.0090 0.0012 1.0212 0.0033 1.0177 0.0091 1.0161 0.0043 1.0478 0.0031 1.1014 0.0104 1.0094 0.0043
q( 7)  0.9870 0.0011 1.0758 0.0062 1.1436 0.0137 1.0855 0.0073 1.0110  0.0023 1.0738 0.0063 0.9641 0.0025
q( 8) 1.0133 0.0015 0.9290 0.0046 0.8422 0.0100 0.8780 0.0157 0.9706 0.0056 1.0444 0.0033 0.9198 0.0114
q( 9) 1.0311 0.0039 1.0462 0.0199 1.0381 0.0275 0.9848 0.0437 0.9363  0.0100 1.0057 0.0044 0.9531 0.0258
q(10)  0.9717 0.0190 0.9655 0.1925 0.9282 0.2356 0.7786 0.3357 0.8790  0.0230 0.9282 0.0058 0.8257 0.0304
q(11) 0.73656 0.1902 0.6016 1.5307 0.8387 1.7031 0.1939 2.5069 0.5449 0.3805 0.4157 0.0087 0.4976 0.0643
q(12) 0.4371 0.0403 0.3132 0.0056 0.3373 0.0272
q(13) 0.3349  0.0268 0.2554 0.0047 0.2187 0.0129
q(14) 0.2587  0.0174 0.1940 0.0588  0.1427 0.0084
q(15) 0.1777  0.0124 0.1510 0.0221 0.0983 0.0038
q(16) 0.1242  0.0051 0.1171 0.0049 0.0654 0.0019
q@7) 0.0887  0.0036 0.0822 0.0029  0.0437 0.0015
q(18) 0.0589 0.0020  0.0580 0.0012 -0.2827 2.9493
q(19) 0.0394  0.0022 0.0365 0.0009 0.7259  13.8313
q(20) -0.0925 1.0754  0.0247 0.0003 -0.1340 0.1934
q(21) 0.2614  2.9476 0.0165 0.0001 -0.0174 0.0165
q(22) -0.1324 0.5450  0.0200 0.0473 -9.6131 278.5656
q(23) -0.3803  3.0233 0.5313  53.3122
q(24) 0.0163  0.0000 0.0122  0.2028
q(25) 0.0177  0.0001 -0.0096 0.0421
q(26) -2.1688 167.9745
z 1.5847 0.0715 1.6436 0.1442 1.8264 0.2772 1.9012 0.3023 2.7344 0.55614 0.9394 0.1280
exp(z) 1.0608 0.0008 1.0676 0.0017 1.0877 0.0034 1.0959  0.0036 1.1926 0.0075 0.9946 0.0013
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was not large; the significance levels for the hypotheses
of bias <10% were >0.99995 for all estimates. Preci-
sion was not a problem, although error variances were
not zero.

Since sampling variation was zero and the estima-
tion model encompassed all of the population char-
acteristics simulated, the estimation bias and impreci-
sion were unexpected. The only possible source of that
error are the integral approximations required in
estimation.

The estimate of the unobserved change rate (z) was
biased high by about 60% and its error variance was
large. It entered estimation in an exponent, so the term
in the model was the exponent of z (the reciprocal of
“survival”’ from unobserved change), not z. The error
term was again computed on the exponent of the
estimate of z instead of z. The estimated bias was ten
times lower and the error variance was several orders
of magnitude less. This result proved consistent in all
tests of population processes.

Partial correlation coefficients between parameter
estimates did not exhibit meaningful trends. Although
some adjoining abundance estimates were correlated
(probably because the abundances were), evidence of
other correlations were absent. Estimates of z were not
correlated with the estimates of the q’s or abundances;
estimates of the q’s were not correlated with abun-
dance estimates. This result proved consistent. The cor-
relation matrices for this and following tests are not
shown for the sake of brevity but are presented in Par-
rack (1990).

The two seasonal recruitment tests (protracted and
contracted patterns) show increased bias and impreci-
sion. As the recruitment frequency contracted, bias and
error variance-of-abundance estimates of the smallest
and largest size-classes increased. This problem was
worst for the largest size-class. Estimates of the ¢’s
also degraded.

Unobserved change rate The estimator assumes
that the rate of change due to phenomena that cannot
be observed (natural death, migration, unrecorded
catch) is constant over periods. Since the assumption
is undoubtedly false, estimation errors resulting from
assigning a U(0.1,0.4) random variable to z for each
period were investigated. Other simulation character-
istics were as in the seasonal protracted recruitment
test. The 95% confidence intervals on the difference
of abundance estimation bias between this test and the
protracted recruitment test included zero for size-
classes 3 and 4, most others, and total abundance.
Error variances were likely equal for size-classes 3, 4,
and total abundance (SL 0.005, SL <0.000, SL<0.000).
Correlations between estimates were low. A fourfold
random variability in z did not affect estimation at all.

Growth Three tests consider highly variable growth.
The cv’s of asymptotic size and k were 0.4. Test 1
simulated the same growth parameters as the pro-
tracted recruitment test (k 0.17), test 2 considered
growth twice as rapid (k 0.34), and test 3 growth twice
as slow (k 0.085). All other simulation control variables
are the same as the protracted recruitment test, so the
results are comparable.

The results of all three tests were very similar. All
reflected the high variation of asymptotic size: the
parameter vector included size-classes larger than the
asymptote. Abundance and q estimates of these classes
(12 and larger) were worthless; huge bias and impreci-
sion occurred. Abundances of smaller size-classes in all
three tests were more precise than in the protracted
recruitment test where growth was not variable. Biases
and error variances of abundance and q estimates for
size-class 11 and smaller were very similar in the three
tests; performance seemed unaffected by growth rates.
The exponent of z was again estimated much better
than z in all three tests; estimates were precise al-
though significant bias was present in the case of rapid,
variable growth. Evidence of correlated estimates was
absent. The introduction of an extremely high level of
variation on individual growth parameters did not
negatively affect estimates.

Data estimation and sampling

Errors attributable to sampling and the compilation of
various input statistics were studied in seven tests.
Catches are rarely censused as assumed by the esti-
mator; estimates are usually the available statistics.
The estimator models the dates of each catch, yet catch
statistics are usually summed over an interval of dates.
Growth rates are assumed to be known, but that is
never possible; growth parameters must be estimated.
Last, the variability in sampling-gear efficiency coef-
ficients, and thus in the abundance indices, is also a
source of uncertainty.

Most of the simulation control variables in these
seven tests were the same as in the protracted recruit-
ment test. Asymptotic size was 11.95, growth k was
0.17, the unobserved loss rate (z) was fixed at 0.1, and
the seasonal, protracted recruitment pattern was
employed; thus recruitment levels varied 20-fold be-
tween periods. Catching was simulated differently than
in the protracted recruitment test. Catching was con-
tinuous (see Appendix 1, step 4) instead of a single sub-
traction at midperiod, and the fishing mortality rate
(F) was a U(0.1,0.4) random variable.

Catch dates A single scenario was used to investi-
gate the importance of recording each catch date and
modeling each catch separately. The summed catch
over each period was assumed to be known, but not
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Table 2
Monte Carlo tests for the effects of sampling variation. u[A]=11.95, u[k]=0.17, z=0.1, and seasonal, protracted recruitment was
simulated. Catching was simulated as a continuously occurring event. The instantaneous rate of fishing mortality was a U(0.1,0.4)
random variable.

Growth parameter measurement error Relative abundance
Unknown Catch with process
catch date estimation error 40% Error 15% Error variance cviq] 0.4, 78 ¢v[q] 0.2, 16

ev[A & k] 0.00 0.00 0.00 0.00 0.20 0.00 0.00
Catch estimation

catch dates absent absent absent absent absent absent absent

ev[C(t,s)] 0.00 0.40 0.00 0.00 0.00 0.00 0.00
Growth estimation

cv[error] 0.00 0.00 0.40 0.15 0.15 0.00 0.00

precision level - - - — 0.02 - -

probability level - - - - 0.95 - -

fish sampled, g 1 1 1 1 601 1 1
Sampling efficiency

evia(s)} 0.00 0.00 0.00 0.00 0.00 0.40 0.10

precision level - - - - — 0.50 0.05

probability level - - - - - 0.95 0.95

sample size, r 1 1 1 1 1 3 16
95% CI of bias of N(T.)

Y,width achieved 0.0155 0.0197 0.4789 0.0210 0.0198 0.0354 0.0198

Number of trials 101 84 192 198 79 200 52

Variable € [€] € g’[€] g s’(€] € sf(€] g s’[€] € s’[€] € s*[€]

N(T, 3) 1.1081 0.0295 1.1817 0.0646 1.8710 217.1297 1.1439 0.1424  0.9947 0.0355 1.3381 5.2758 1.0972 0.0768
N(T, 4 09710 0.3532 1.0314 0.2057 1.0034 3.4342 0.9228 1.0249 1.0184¢ 0.0767 0.9247 3.0664 0.9288 0.0823
N(T, 5) 1.0009 0.02563 0.9350 0.0398 1.1358 3.4290 1.0028 0.1066 1.0026 0.0108 0.8733 0.2110 0.9128 0.0471
N(T, 6) 1.0162 0.0062 1.0197 0.0034 1.3096 6.9835 1.0375 0.0511  0.9902  0.0011 1.0156 0.0289 1.0092 0.0056
N(T, 7) 0.9740 0.0061 0.9660 0.0066 1.83544 12.7702 0.9675 0.0170 0.9953  0.0009 0.9530 0.0430 0.9191 0.0119
N(T, 8) 1.0000 0.0010 0.9956 0.0079 1.6209 17.9277 1.0487 0.0598 1.0019  0.0010 1.0243 0.0194 1.0239 0.0045
N(T, 9) 1.0008 0.0007 0.9939 0.0061 1.5861 11.9433 1.0458 0.0952 0.9959  0.0008 0.9703 0.0073 0.9688 0.0024
N(T,10) 0.9914 0.0045 0.9973 0.0012 2.6909 26.6738 1.3480 1.1729  1.0096  0.0019 1.0077 0.0112 1.0021 0.0004
N(T,11) 0.8191 3.9963 0.7914 1.2824 3.4334 111.2210 1.2774 53882 1.1619 0.3091 1.173¢4 1.1168 0.9568 0.1516

N(T,12) 2.3955  1.6866
N(T,13) 3.4498  5.9767
N(T,14) 3.2209 16.5785
N(T,15) 3.6964 41.8706
N(T,16) 0.4291 92.2468
N(T,17) 6.5117 174.0005
N(T,18) 15430 10.9191
N(T,19) 18.1902 768.6451

N(T.) 1.0242 0.0063 1.0259 0.0086 1.4105 11.4628 1.0416 0.0226  1.0642  0.0081 1.0345 0.0653 0.9799 0.0053
q( 3) 0.9180 0.0200 0.87564 0.0291 1.3725 9.3538 0.9143 0.0715  1.0346  0.0290 0.9655 0.1063 0.9661 0.0460
q( 4) 0.8578 0.0062 0.8729 0.0126 1.5114 25.7585 0.8825 0.0451 1.0391  0.0157 0.8933 0.0776 0.9397 0.0124
q( 5) 0.9715 0.00561 0.9726 0.0108 2.0644 87.9064 1.0305 0.3386  1.0472  0.0098 1.0162 0.0709 1.0402 0.0091
q( 6) 1.0046 0.0043 1.0141 0.0065 1.9815 47.7841 1.0593 0.1689  1.0815  0.0021 1.0467 0.0553 1.0629 0.0045
q( 7 1.0783 0.0059 1.0679 0.0066 2.0977 54.6183 1.0887 0.0204 1.0112  0.0022 1.1624 0.0767 1.1242 0.0159
q( 8) 0.9093 0.0058 0.9342 0.0061 1.5826 20.5395 0.9387 0.0249  0.9900  0.0058 0.9596 0.0590 0.9590 0.0075
q( 9) 10169 0.0190 1.0447 0.0239 1.7836 46.8489 1.0023 0.0620 0.9735 0.0082 1.1949 0.1016 1.1582 0.0194
q(10) 10151 0.1572 1.0147 0.0816 1.4402 25.2990 0.8819 0.1195 0.9388  0.0293 1.0083 0.1004 0.9874 0.0182
q(11) 0.5695 0.8583 0.8320 1.4228 1.4677 34.9181 0.9667 0.5829  0.6416  0.0701 0.9200 0.6084 0.8700 0.1365

a12) 0.3774  0.0303
q(18) 02138  0.0091
q(14) 0.1017  0.0042
q(15) 0.0488  0.0012
a(16) -3.1478 425.1308
a(17) 0.0866  0.0670
q(18) -0.0707  0.0967
q(19) 12251  4.4242
z 0.8137 0.1022 1.6881 0.2587 0.2301 255499 1.0896 0.0219  0.1835  0.0000 0.8525 1.0626 0.8542 0.2896

exp(z) 0.9820 0.0010 1.0736 0.0031 0.9828 0.0416 1.0527 0.0067 1.0898  0.0022 0.9913 0.0104 0.9869 0.0029
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the dates of the catches. The accumulated catch each
period was assigned to the midpoint of each period for
estimation. The results (Table 2) were almost identical
with those of the protracted recruitment test (Table
1). The 95% confidence interval (Welch 1938) on the
difference between total-abundance estimation bias of
the protracted recruitment test and this test included
zero (—0.0014 to 0.0372). The error variances were
very similar (0.0072 and 0.0063). Estimates were not
correlated. The absence of exact catch dates did not
affect estimation.

Catch estimation error The effects of estimating
catches rather than enumerating them were investi-
gated by drawing size-class-specific catch estimates as
normal random variables with expectation C(t,s) and
variance (cv[C]-C(t,s))2. This simulated unbiased
catch estimation and estimation error proportional to
catches. A large degree of catch estimation uncertainty
was imposed (cv[C] = 0.40). Simulation control variables
were the same as in the catch date test and the pro-
tracted recruitment test. Results were also similar. The
bias of total abundance estimates was about the same
for all three tests and the error variances were nearly
so. Correlated estimates were not evident. Confidence
intervals (95%) on the difference in bias between this
test and the protracted recruitment test included zero
for all size-classes and total abundance. The error
variance for size-class 3 was different (SL.<0.0005) and
might have been different for size-class 4 (SL 0.052),
but probably not for total abundance (SL 0.142) and
all others. Imprecise catch estimates did not impact
bias or error variance.

Growth parameter estimation error The effect of
imprecise growth parameter estimates was also con-
sidered. Estimates of growth parameters were simu-
lated as normal correlated random variables with
expectations equal to those of the population. As ex-
plained in the Monte Carlo methods section, the vari-
ance of a growth parameter estimate is composed of
two parts: process variation due to variant individual
growth, and growth measurement error. Simulation
control constants were therefore the cv of A and of k,
the growth measurement error cv, the two constants
required to compute the sample size used to estimate
the growth parameters, and the correlation coefficient
between estimates (—0.95). Simulation constants were
as in the catch date test except those related to growth
parameter estimation.

Three tests were carried out, two without process
variation. First, the effect of two measurement error
cv’s was studied in the absence of growth variability.
The sample size was set at one fish in these two tests
so affects due to measurement error would be magni-

fied. Then, the combined effect of process variation and
estimation error was considered.

In the first test with extremely imprecise growth
parameter estimates (cv 0.4), Monte Carlo trials were
carried out until it became obvious that little more in-
formation would be gained with further computations.
Error variances were huge (Table 2). Only the expo-
nent of z was reasonably estimated. Many estimates
were correlated, particularly those of z with those of
sampling-gear efficiency coefficients. Even without in-
dividually variant growth rates (an unlikely prospect),
large growth-parameter measurement error created
significant uncertainty.

The second test simulated 15% measurement error.
A 95% confidence interval on the difference between
the bias of total abundance estimates between this and
the protracted recruitment test included zero, but the
error variances were probably different (SL<0.0001);
most error variances were higher. Bias was unaffected
although error variance approximately doubled. The
estimates did not seem correlated. The introduction
of a 15% growth measurement error increased error
variances but did not affect bias.

The third test simulated both process error (cv 0.2)
and 15% growth measurement error, but with a sam-
ple size such that 95% confidence intervals on the
estimate of the expectation of growth parameters were
with precision +2% (g=601 fish). The 95% confidence
interval on the difference in bias of total abundance
estimates between this test and the protracted recruit-
ment test included zero (- 0.0220 to 0.0238) although
error variances perhaps differed (SL=0.05). Estimates
were not correlated. Apparently 15% (or less) measure-
ment error, even with natural growth variation, min-
imally affects estimation.

Gear efficlency variabllity The estimator is derived
from the density function of relative abundance obser-
vations (Y), but the effect of Y variability on estima-
tion error was not of large interest. The variance of
Y is o?[Y ;]=N; ;2cv[q]2. The dominant term is the
square of abundance, so as abundance increases, o®
[Y: o] increases. This may be dampened a bit by an in-
crease in q with size, but the dominant factor in the
variance expression for the observations is abundance.
Abundance levels cannot be controlled or anticipated
beforehand, so knowledge of the effect of Y variabil-
ity is of little value. Knowledge of the effect of q vari-
ability is useful, however, since care may be taken in
the selection and design of sampling gear.

Studies that document the statistics necessary to
calculate the variability of relative abundance sam-
pling-gear efficiencies are not common. Studies of
commerical fishery statistics offer different but useful
information. Yield is a portion of biomass; the pro-
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portion is the product of fishing effort and q for the
fishing method. Since yield is the product of q, effort,
and biomass, then yield-per-effort equals the product
of q and biomass and q is yield-per-effort divided by
biomass. It then follows that the cv’s of q and yield-
per-effort are equal. The cv of yield-per-effort of the
Pacific halibut longline fishery is estimated to be 0.02
(Quinn et al. 1982), and that of Newfoundland flounder
trawlers on the Grand Bank (Smith 1980) is estimated
to be about the same. The levels used in these simula-
tions (0.4 and 0.2) are about an order of magnitude
higher than those.

Effects of the variability in q on estimation errors
were investigated in three tests. All simulation con-
stants were as in the protracted recruitment test ex-
cept those related to abundance sampling. Simulation
control constants were cv[q] and the two constants re-
quired to compute the sample size. Although they were
probably unrealistically large, a cv[q] of 0.4 was used
in the first test and 0.2 was used in the second.

First, the impact of extreme variability (cv 0.4) and
extremely light sampling was tested. The sample size
(r 8) was such that a 95% confidence interval on relative
abundance was within +50% of the expectation. The
extremely high cv[q] and low relative-abundance sam-
ple size were not reflected in error variances as much
as expected (Table 2), but error variances were higher
than those of the protracted recruitment test. Most
abundance estimates were biased by less than 10%.
Estimates were not correlated.

Next, the cv[q] was reduced to 0.1 and the sample
size was increased so that a 95% confidence interval
on relative abundance was within +5% of the expec-
tation (r 16). The result was very similar to those of
the first test except error variances were much lower.
Biases of abundance estimates were +10% or less and
estimates were not correlated.

There was no evidence that high variation in the
gs biased abundance estimates even if sample sizes
were insufficient, but error variances were affected.
Error variance was considerably reduced with reason-
able sample sizes.

The results of these experiments (Tables 1 and 2) show
that abundances and gear efficiencies (q’s) of the
smallest and largest size-classes were often biased. Bias
did not oceur with uniform, constant recruitment and
no sampling variation, but as process and sampling
variation increased, bias in estimates of the smallest
and largest sizes became pronounced.

Each expected value is a proportion of calculated
abundance. The abundance calculation sums future
catches (data), last-period abundance (estimates), and

an amount for unobserved changes (estimate). Future
catches and terminal abundance are thus the major
components of each projection. Both catch and final
abundance must be integrated over size. The integra-
tion of catch over size at each catch date following the
date of the expected value is required. The integration
of abundance over size on the date of the final relative
abundance sample is also necessary. All integrals are
approximated, so these calculations are the source of
the bias. The amount of error incurred at each integra-
tion depends on how well the trapezoidal rule approx-
imates the size distribution. Since the size frequency
within a size-class is never smooth, the approximation
will be in error with the amount depending on the
degree of smoothness within the size-class. If growth
is variable or the number of fish is small, clumps in
size frequencies can result from chance alone, but the
major factor is the growth and recruitment pattern
combination.

Narrowing the size-classes eliminates this problem.
If they are narrowed enough to eliminate clumping
caused by the particular recruitment frequency con-
traction, the size frequency within size-classes will be
smooth and the trapezoidal approximation will be ac-
curate. The seasonal contracted pattern of recruitment
test 3 was again used to demonstrate this. An asymp-
totic size of 120em was simulated with recruitment
occurring at 20cm. First, it was assumed that the data
were collected in 20 cm intervals so that the asymptotic
size was 6 and the recruitment size was class 1. In the
second case, it was assumed that data were collected
in 2cm groups so that the asymptotic size was 60 and
the recruitment size was class 10. The unobserved
change rate was set at 0.2 in both tests, and all other
simulation control variables were as in the contracted
recruitment test.

Ninety-two trials were required to obtain a 95% con-
fidence interval half-length of 0.05 on the bias of total
abundance in bias test 1 with 20cm interval data.
Estimates of the smallest and largest size-class abun-
dances were biased and the error variances were very
large (Table 3), particularly for the largest size-class.
The estimate of the survival from unobserved change
(z) was, however, reasonably accurate and precise.

Only 16 trials were required to obtain a 95% con-
fidence interval half-length of 0.03 on the bias of total
abundance in bias test 2 with two-unit size-interval data
because the error variances were very low. Estimates
of the first three size groups were probably biased by
10% or more, but the rest were not. Only six of the
47 estimates were probably biased at all (0.95 level).
The estimate of the exponent of z was also not biased.
Although the matrix was too large to be included (194
rows and columns), there was no evidence that esti-
mates were correlated.
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Table 3

Biases for 20cm size-class width data (bias test 1, 92 trials) versus biases for 2cm size-class width data (bias test 2, 16 trials).

. Significance levels . Significance levels
Estimates Bias Estimates Bias

Bias 95% CI HO:Bias»0.9 HO:Bias<1.1 | Bias — ——— 95% Cl HO:Bias>0.9 HO:Bias<1.1
test Varisble Bias  s[€] %-width HA:Bias<0.9 HA:Bias>1.1 | test Variable Bias s°[€] Y%-width HA:Bias<0.9 HA:Bias>1.
1 N(@0-39) 12941 0.1382 00746  1.0000 0.0000 1 q(20-39) 0.8296 0.0207 0.0294  0.0000 1.0000
2 N(20-21) 1.8093 05273 0.3558  1.0000 0.0000
2 N(2-23) 15883 02520 02464 10000 ity 2 q(20-21) 0.6873 0.0560 0.1160  0.0000 1.0000
2 N(24-25) 15190 0.3576 0.2930  1.0000 0.0025 2 q(22-23) 06924 00504 01101  0.0001 1.0000
2 N@26-27) 11204 0.0790 0.1877  0.9991 0.3856 2 q(24-25) 0.7464 0.0621 0.1221  0.0068 1.0000
2 N(28-29) 09746 0.0578 0.1178  0.8927 0.9815 2 q(26-27)  0.9410 0.0465 0.1057  0.7766 0.9984
2 N(30-31) 0.8908 0.0124 0.0545  0.3699 1.0000 2 q(28-29) 1.0818 0.0616 01216  0.9983 0.6151
2 N(32-83) 1.0826 0.0440 0.1028  0.9997 0.6303 2 q(30-81) 1.1408 0.0234 00749 10000 0.1431
2 N(3435) 09963 00002 00073  1.0000 10000 2 q(32-33) 09545 0.0300 0.0849  0.8959 0.9996
2 N(38-39) 09924 00005 0.0109  1.0000 L0000 % aq@6-37n  0.6608 0.0531 01129 0.0000 1.0000

2 q(38-39) 07494 0.0879 0.095¢  0.0010 1.0000
1 N(@40-59) 1.0071 0.0284 00813  1.0000 1.0000

1 q(0-59) 1.0050 0.0125 0.0228  1.0000 1.0000
2 N(@40-41) 1.0052 00008 0.0089  1.0000 1.0000
2 N(42-43) 1.0009 0.0000 0.0032  1.0000 1.0000 2 q(0-41)  0.9352 0.0009 0.0487  0.9216 1.0000
2 N@6-47) 09977 00001 00042 10000 10000 2 q(44-45) 1.0857 0.0093 0.0473  1.0000 0.9961
2 N(48-49) 1.0060 0.0008 0.0136  1.0000 1.0000 2 q(6-47) 08792 00154 0.0608  0.2518 1.0000
2 N(50-51) 09966  0.0004 0.0097  1.0000 1.0000 2 q8-49) 07148 00542 01141  0.0007 1.0000
2 N(52-53) 1.0022  0.0000 0.0030  1.0000 1.0000 2 q(0-5)  0.7373 0.0838 0.08%4  0.0002 1.0000
2 N(54-55) 09985  0.0001 0.0046  1.0000 1.0000 2 q(52-58)  0.8691 0.0090 0.0464  0.0960 1.0000
2 N(56-57) 09998 0.0000 0.0013  1.0000 1.0000 2 q(54-55) 10389 0.0488 01025  0.9961 0.8786
2 N(58-59) 09969  0.0001 0.0047  1.0000 1.0000 2 q(6-57 10858 0.0056 0.0365  1.0000 0.9997

2 q(58-59) 0.8082 0.0187 0.0670  0.0036 1.0000
1 N(60-79) 09741 00288 0.0347  1.0000 1.0000 )

1 q(60-79) 09049 0.0198° 0.0284  0.6333 1.0000
2 N(60-61) 1.0046 0.0001 0.0045  1.0000 1.0000
2 N(62-63) 09975  0.0002 0.0077  1.0000 1.0000 2 q(60-61) 0.6377 0.0760 01351  0.0001 1.0000
2 N(@©4-65 09998 00000 00018 10000 10000 2 q(62-63) 0.8143 0.0401 0.0982  0.0434 1.0000
2 N(@66-67) 09998 00001 00059 10000 1.0000 2 q(64-65) 0.9800 0.0204 0.0700  0.9936 0.9991
2 N(68-69) 1.0026 0.0002 0.0062  1.0000 1.0000 2 q(66-67)  1.0381 0.0257 0.0785  0.9997 0.9388
2 N(70-71) 09959  0.0002 0.0071  1.0000 1.0000 2 q(68-69) 0.8908 0.0447 01036  0.4306 1.0000
2 N(72-73) 1.0084 0.0001 0.0060  1.0000 1.0000 2 q(10-71)  0.7287 0.0583 0.1183  0.0028 1.0000
2 N(74-75) 1.0025 0.0001 0.0050  1.0000 1.0000 2 q(72-73) 10168 0.0152 0.0604  0.9999 0.9965
2 N(76-77) 1.0033  0.0003 0.0081  1.0000 10000 2 a(74-75) 10449 00163 00626  1.0000 0.9577
2 N(8-79) 10004 00001 00049 10000 1.0000 2 q(76-77) 0.8313 0.0415 0.0998  0.0886 1.0000

2 q(78-79) 0.7050 0.0727 01821  0.0019 1.0000
1 N(80-99) 10517 00745 0.0558  1.0000 0.9553

1 q(80-99) 0.7632 0.2257 0.0971  0.0029 1.0000
2 N(80-81) 09982 0.0003 0.0080  1.0000 1.0000
2 N(82-83) 1.0009  0.0001 0.0045  1.0000 1.0000 2 q(80-81) 0.9684 0.0892 0.0970  0.9167 0.9961
2 N(84-85) 1.0087 0.0002 0.0067  1.0000 1.0000 2 q(82-83) 10834 0.0214 00717  0.9999 0.9657
2 N(8-87) 10013  0.0000 0.0010  1.0000 1.0000 2 q(84-85 06644 0.0478 01071  0.0000 1.0000
2 N(8-89) 09995  0.0000 0.0016  1.0000 1.0000 2 q(86-87) 09742 0.0679 01277  0.8727 0.9732
2 N(90-91) 09992 0.0001 0.0054  1.0000 1.0000 2 q(s8-89) 07991 0.0914 01481  0.0909 1.0000
2 N(92-93) 09994 0.0000 0.0009  1.0000 1.0000 2 q(30-91) 07715 0.0667 01266  0.0233 1.0000
2 N(94-95) 09963  0.0001 0.0041  1.0000 1.0000 2 q(¥2-93) 09841 0.0515 01148  0.9244. 0.9761
2 N(96-97) 09989  0.0000 0.0017  1.0000 1.0000 2 q(34-95 07314 0.1194 01749 0.0294 1.0000
2 N(98-99) 09974 00000 0.0022  1.0000 1.0000 2 4a(%6-97 08420 0.03%0 0.1000  0.1279 1.0000

2 q(98-99) 0.9202 0.1227 0.1835  0.5856 0.9726
1 N(100-119) 6.4942 254.5641 38.2603  0.9996 0.0006

1 q(100-119) 0.1117 0.5453 0.1509  0.0000 1.0000
2 N(100-101) 1.0003  0.0000 0.0007  1.0000 1.0000
2 N(102-103) 0.9997  0.0003 0.0091  1.0000 1.0000 2 q(100-101) 0.7954 0.1388 01952  0.1467 0.9989
2 N(104-105) 0.9979  0.0003 0.0105  1.0000 1.0000 2 q(102-103) 0.9848 1.5099 0.6680  0.5988 0.6323
2 N(106-107) 0.9997  0.0000 0.0005  1.0000 1.0000 2 q(104-105) 1.0579 0.0507 0.1224  0.9943 0.7497
2 N(108-109) 1.0009  0.0000 0.0005  1.0000 1.0000 2 q(106-107) 0.8840 0.0867 01928  0.4350 0.9862
2 N(110-111) 0.9981 0.0000 0.0085  1.0000 1.0000 2 q(108-109) 0.8992 0.0986 02682  0.4976 0.9289
2 N(112-113) 1.0000  0.0000 0.0005  1.0000 1.0000 2 q(l10-111) 1.0052 0.1531 03885  0.7047 0.6860

2 q(112-113) 1.0121 0.0004 0.0288  1.0000 1.0000
1 NI 11808  0.0592 0.0497  1.0000 0.0007
2 N(T) 1.0388 0.0049 0.0342 1.0000 0.9998 1 exp(z) 0.9716 0.0135 0.0237 1.0000 1.0000

2 expz) 09783 0.0169 0.0637  0.9920 0.9999
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Estimates of the first three size-classes were both
biased and imprecise. Poor estimates of the smallest
few size-classes were expected. These classes lacked
a catch history at the time of the last sample, so these
estimates of abundance (at the time of the last relative
abundance sample) were a function of the last-period
relative abundance sample only.

Examples

Two tests were used to discover what might be ex-
pected when assessing populations with no periodicity
in recruitment at all; recruitment dates were complete-
ly protracted uniformly through time (Fig. 1). Most con-
trol variables were the same in the two tests. Data were
assumed to be available in two-unit size intervals. A
120-unit asymptotic size fell in size-class 60, and a
30-unit recruitment size in class 15. The growth param-
eter k was left at 0.17. Continuous fishing was simu-
lated; the fishing mortality rate (F) for each period was
drawn from a U(0.3, 0.8) distribution. The expectations
of sampling efficiencies (q;) were arbitrarily chosen so
that their regression on size was sigmoid, reaching an
asymptote at size-class 30 (0.028, 0.031, 0.033, 0.038,
0.044, 0.053, 0.069, 0.101, 0.153, 0.190, 0.218, 0.234,
0.242, 0.247, 0.249, and 0.250). Catch estimates were
simulated to be imprecise (cv 0.4). A 10% growth mea-
surement error was simulated. Sampling intensities

were the same in both tests; sample sizes for growth
parameter estimates and for relative abundance obser-
vations were such that a 95% CI was of width +5%.

Although the levels of population processes were the
same in both tests, the amount of process variability
was much higher in test 2. Normal growth variability
was simulated in test 1 and extreme variability in test
2. The rate of unobserved change in test 1 was con-
stant, but varied three-fold in test 2. The variance of
sampling efficiencies was set one order of magnitude
larger than that observed for commerecial fishing gear
in test 1 and twice that in test 2.

Error variances-of-abundance estimates were very
low in the case of normal process variability (Table 4).
Estimates of all but the smallest six size-classes were
biased by 10% or less, if at all, and were precise. Bias
(more than 10%) and imprecision of the smallest six
size-class estimates was expected because the smaller
fish were barely represented in the catch and appeared
in the relative abundance samples just once. Estimates
of the sampling efficiencies (the q5) tended to be im-
precise. Some were biased from 20% to 30% and a few
even more. The estimate of survival from unobserved
change was biased low (about 15%), yet precise. Esti-
mates did not tend to be correlated. The correlations
between the estimate of the unobserved change rate
(z) and other estimates (Table 5), particularly of the
qs, were of interest because other studies found corre-

Table 4
Monte Carlo test results for two examples of constant, uniform recruitment.

Example 1, Normal process variability

Example 2, High process variability

Loss rate z 0.20 U(0.2,0.6)
Growth cv[A & k] 0.20 0.40
Growth estimation
cv[error] 0.10 0.10
precision level 0.05 0.05
probability level 0.95 0.95
fish sampled, g 77 262
Sampling efficiency
eviq(s)] 0.20 0.40
precision level 0.05 0.05
probability level 0.95 0.95
sample size, r 62 246
95% CI of bias of N(T.)
% width achieved 0.0149 0.024
Number of trials 97 64
Estimates Bias Significance levels Eetimates Bias Significance levels
95% CI HO:Bias>0.9 HO:Bias<1.1 95% CI  HO:Bias>0.9 HO:Bijas€1.1

Bias Variance ' width HA:Bias<0.9 HA:Bias>1.1 Bias Variance ' width HA:Bias<0.9 HA:Bias>1.1

N(T,15) 0.7669 0.0368 0.0382 0.0000 1.0000 0.5605 0.0273 0.0405 0.0000 1.0000
N(T,16) 0.7556 0.0520 0.0454 0.0000 1.0000 0.6660 0.0633 0.0616 0.0000 1.0000
N(T,17) 0.8022 0.0718 0.0533 0.0002 1.0000 0.7294  0.0567 0.0583 0.0000 1.0000
N(T,18) 0.9012 0.0960 0.0617 0.5157 1.0000 0.7382 0.0765 0.0678 0.0000 1.0000

N(T,19) 0.8423 0.0689 0.0522 0.0152 1.0000 0.7538 0.0754 0.0673 0.0000 1.0000
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Table 4 [continued)
. Sigmificance levels . Significance levels
Estimates Bias Estimates Bias . .
9% CI HO:Bias»09 HOBias€1.1 ___~ "~ = 9% CI HO:Bias>0.9 HO:Bias<1.1
Bias Variance % width HA:Bias<0.9 HA:Bias>1.1 Bias Variance % width HA:Bias<0.9 HA:Bias>1.1

N(T,20) 0.8227 0.0662 0.0512 0.0015 1.0000 0.7826  0.0722 0.0658 0.0002 1.0000
N(T,21) 0.9475 0.0440 0.0418 0.9871 1.0000 0.8975 0.0738 0.0666 0.4702 1.0000
N(T,22) 1.0006 0.0001 0.0019 1.0000 1.0000 0.9982  0.0003 0.0042 1.0000 1.0000
N(T,23) 1.0007 0.0001 0.0020 1.0000 1.0000 1.0012  0.0004 0.0051 1.0000 1.0000
N(T,24) 0.9973 0.0001 0.0024 1.0000 1.0000 0.9993  0.0005 0.0053 1.0000 1.0000
N(T,25) 0.9992 0.0001 0.0019 1.0000 1.0000 0.9979  0.0002 0.0037 1.0000 1.0000
N(T,26) 0.9995 0.0001 0.0020 1.0000 1.0000 0.9946  0.0008 0.0040 1.0000 1.0000
N(T,27) 0.9979 0.0000 0.0012 1.0000 1.0000 0.9938  0.0002 0.0038 1.0000 1.0000
N(T,28) 0.9984 0.0000 0.0013 1.0000 1.0000 0.9970  0.0001 0.0022 1.0000 1.0000
N(T,29) 0.9992 0.0000 0.0012 1.0000 1.0000 0.9944  0.0004 0.0050 1.0000 1.0000
N(T,30) 0.9973 0.0000 0.0018 1.0000 1.0000 0.9944  0.0002 0.0032 1.0000 1.0000
N(T,31) 1.0008 0.0001 0.0016 1.0000 1.0000 0.9948  0.0002 0.0038 1.0000 1.0000
N(T,32) 0.9965 0.0001 0.0016 1.0000 1.0000 0.9956  0.0001 0.0028 1.0000 1.0000
N(T,33) 0.9984 0.0000 0.0010 1.0000 1.0000 0.9954  0.0001 0.0030 1.0000 1.0000
N(T,34) 0.9973 0.0000 0.0014 1.0000 1.0000 0.9951  0.0005 0.0055 1.0000 1.0000
N(T,35) 0.9987 0.0001 0.0015 1.0000 1.0000 0.9948  0.0002 0.0034 1.0000 1.0000
N(T,36) 0.9950 0.0002 0.0026 1.0000 1.0000 0.9944  0.0004 0.0051 1.0000 1.0000
N(T.37) 0.9974 0.0001 0.0017 1.0000 1.0000 0.9960  0.0001 0.0029 1.0000 1.0000
N(T,38) 0.9977 0.0001 0.0020 1.0000 1.0000 0.9980  0.0002 0.0034 1.0000 1.0000
N(T,39) 0.9984 0.0000 0.0011 1.0000 1.0000 0.9989  0.0001 0.0029 1.0000 1.0000
N(T.40) 0.9984 0.0001 0.0014 1.0000 1.0000 0.9946  0.0002 0.0085 1.0000 1.0000
N(T,41) 0.9980 0.0001 0.0016 1.0000 1.0000 0.9964  0.0001 0.0029 1.0000 1.0000
N(T.42) 0.9975 0.0001 0.0016 1.0000 1.0000 0.9983  0.0001 0.0019 1.0000 1.0000
N(T,43) 0.9988 0.0001 0.0015 1.0000 1.0000 0.9991  0.0000 0.0017 1.0000 1.0000
N(T,44) 0.9985 0.0001 0.0016 1.0000 1.0000 0.9971  0.0001 0.0026 1.0000 1.0000
N(T,45) 0.9996 0.0000 0.0006 1.0000 1.0000 0.9977  0.0001 0.0026 1.0000 1.0000
N(T.46) 0.9997 0.0000 0.0006 1.0000 1.0000 0.9995  0.0000 0.0009 1.0000 1.0000
N(T47) 0.9997 0.0000 0.0014 1.0000 1.0000 1.0041 0.0016 0.0113 1.0000 1.0000
N(T.48) 1.0000 0.0000 0.0000 1.0000 1.0000 1.0475  0.0902 0.0931 0.9990 0.8655
N(T.49) 0.9984 0.0001 0.0022 1.0000 1.0000 0.9992  0.0000 0.0016 1.0000 1.0000
N(T,50) 1.0245 0.0480 0.0579 1.0000 0.9947 1.2121 1.1789 0.3952 0.9392 0.2892
N(T,51) 0.9994 0.0000 0.0011 1.0000 1.0000 1.0000  0.0000 0.0000 1.0000 1.0000
N(T.52) 0.9744 0.0256 0.0503 0.9981 1.0000 1.0000  0.0000 0.0000 1.0000 1.0000
N(T,53) 09152 0.2376 0.1663 0.5709 0.9853 1.2839  0.9669 0.5151 0.9280 0.2420
N(T,54) 1.0519 0.0840 0.1093 0.9968 0.8060 0.9500  0.0250 0.0980 0.8413 0.9987
N(T,55) 1.0000 0.0000 0.0000 1.0000 1.0000 0.8944  0.1003 0.2069 0.4790 0.9743
N(T,56) 1.0000 0.0000 0.0000 1.0000 1.0000 0.8500 0.1350 0.2940 0.3694 0.9522
N(T,57) 1.0000 0.0000 0.0000 1.0000 1.0000 1.2500 0.2500 0.4900 0.9192 0.2743
N(T,58) 0.9000 0.0400 0.1960 0.5000 0.9772 2.0500 2.2050 2.0580 0.8633 0.1828
N(T,59) 0.6500 0.8675 0.6860 0.2375 0.9007 1.4500 0.0050 0.0980 1.0000 0.0000
N(T.60) 0.1000 0.6050 1.0780 0.0729 0.9655
N(T.) 0.9028  0.0056 0.0149 0.6165 1.0000 0.7959  0.0096 0.0240 0.0000 1.000
q(15) 1.3860 0.1273 0.0710 1.0000 0.0000 1.9296  0.3080 0.1360 1.0000 0.0000
q(16) 1.4558 0.2837 0.0962 1.0000 0.0000 1.7558 0.6789 0.2019 1.0000 0.0000
q(17) 1.4210 0.3804 0.1227 1.0000 0.0000 14925 0.1758 0.1026 1.0000 0.0000
q(18) 1.2626 0.2663 0.1027 1.0000 0.0010 1.6064 0.6341 0.1951 1.0000 0.0000
q(19) 1.3163  0.2459 0.0987 1.0000 0.0000 1.5429  0.4501 0.1644 1.0000 0.0000
q(20) 1.3521 0.2433 0.0982 1.0000 0.0000 1.4564  0.4088 0.1566 1.0000 0.0000
q(21) 1.1274  0.0701 0.0527 1.0000 0.1544 1.2697 0.1354 0.0901 1.0000 0.0001
q(22) 1.0136  0.0295 0.0342 1.0000 1.0000 1.0701  0.0400 0.0490 1.0000 0.8842
q(23) 1.0494 0.0236 0.0306 1.0000 0.9994 1.0805 0.0313 0.0434 1.0000 0.8113
q(24) 1.0770  0.0349 0.0372 1.0000 0.8875 1.0460  0.0401 0.0491 1.0000 0.9846
q(25) 1.0515 0.0266 0.0324 1.0000 0.9983 1.0328  0.0437 0.0512 1.0000 0.9949
q(26) 1.0264 0.0288 0.0338 1.0000 1.0000 0.9658 0.0560 0.0580 0.9870 1.0000
q2n 0.9990 0.0386 0.0391 1.0000 1.0000 1.0400 0.0476 0.0534 1.0000 0.9861
q(28) 1.0209 0.0333 0.0363 1.0000 1.0000 0.9478  0.0739 0.0666 0.9202 1.0000

(29) 0.9869 0.0450 0.0422 1.0000 1.0000 0.9101 0.0623 0.0611 0.6264 1.0000
q(30) 0.9408  0.0390 0.0393 0.9790 1.0000 0.9330  0.0487 0.0540 0.8843 1.0000
q(31) 0.9596 0.0434 0.0415 0.9976 1.0000 0.8261 0.0839 0.0710 0.0206 1.0000
q(32) 0.9150 0.0425 0.0410 0.7631 1.0000 0.9050 0.0622 0.0611 0.5634 1.0000
q(38) 0.9620 0.0444 0.0419 0.9981 1.0000 0.8922 0.0814 0.0699 0.4138 1.0000
q(34) 0.9051 0.0598 0.0486 0.5808 1.0000 0.8964  0.0935 0.0749 0.4623 1.0000
q(35) 0.9179  0.0619 0.0495 0.7603 1.0000 0.8245 0.0933 0.0748 0.0240 1.0000
q(36) 0.8685 0.0924 0.0605 0.1537 1.0000 0.7950  0.1000 0.0775 0.0039 1.0000
q(37) 0.8611  0.0802 0.0563 0.0883 1.0000 0.7620  0.0863 0.0720 0.0001 1.0000
q(38) 0.8240 0.0971 0.0620 0.0082 1.0000 0.7804  0.1357 0.0903 0.0047 1.0000
q(39) 0.7925 0.0791 0.0560 0.0001 1.0000 0.7502 0.1244 0.0871 0.0004 1.0000




318

Fishery Bulletin 90(2), 1992

Table 4 {continued)
. Significance levels . Significance levels
Estimates Bias Estimates Bias
_  -suma®  95% CI HO:Bias»0.9 HO:Bias<l.l __ "% 954 CI HO:Bias»0.9 HO:Bias<1.1
Bias Variance % width HA:Bias<0.9 HA:Bias>l.l Biss Variance ' width HA:Bias<0.9 HA:Bias>1.1
q(40) 0.8476  0.1304  0.0722 0.0775 1.0000 07426  0.0887  0.0747  0.0000 1.0000
q(41) 0.7956  0.0730  0.0546 0.0001 1.0000 07852 04793 01737  0.0315 1.0000
a(42) 0.6863 1.5698  0.2546 0.0500 0.9998 07424 01202  0.0885  0.0002 1.0000
a(43) 0.8525 0.1842  0.0882 0.1455 1.0000 0.8617 01037  0.0829  0.1827 1.0000
q(44) 0.8133  0.0973  0.0648 0.0044 1.0000 0.8777  0.1561  0.1044  0.3375 1.0000
q(45) 1.0254 2.2083  0.3119 0.7846 0.6804 0.8420  0.0013  0.0799  0.0774 1.0000
qa(46) 0.8358  0.1309  0.0774 0.0519 1.0000 10564 09370  0.2606  0.8803 0.6284
a(4n 0.3470 25.6967  1.1397 0.1708 0.9023  63.2003 <99999.99 121.9043  0.8417 0.1590
qa(48) 0.8576  0.6898  0.1974 0.3370 0.9919 10744 03067 01716  0.9768 0.6152
a(49) 0.7220 04331  0.1638 0.0166 1.0000 0.0008 750753  8.0502  0.2817 0.7600
q(50) 0.9710 3.3934  0.4868 0.6124 0.6988 27969 115.6154  3.9135  0.8200 0.1977
q(51)  -0.3572 73.2005  2.4998 0.1621 0.8734 0.7113 21593  0.6141  0.2735 0.8926
q(52)  -8.7106 632.0744 12.6793 0.2380 0.7715 0.8225  0.6106 03610  0.3370 0.9340
a(539) 1.0422  0.3956  0.2146 0.9031 0.7011 17977  6.0280 12861  0.9144 0.1438
q(54) 1.0498  0.3516  0.2287 0.9054 0.6700 224038 89080 18499  0.9222 0.1135
q(56) 00243 7.3499  1.2023 0.0767 0.9602 36459  67.4526  5.3658  0.8421 0.1762
q(56) 41165 89.6428  6.1858 0.8459 0.1696 32014 129452  2.8790  0.9482 0.0679
a(57) 0.8978 00700 0.2116 0.4919 0.9694 09321  0.0669  0.2536  0.5980 0.9028
q(58)  -8.1313 174.4663  8.4568 0.1751 0.8366 0.6640  0.2346  0.6713  0.2454 0.8985
q(59)  -5.6513 172.1638 14.8479 0.1936 0.8136 0.7438  0.0005  0.0294  0.0000 1.0000
q(60)  -0.3459  7.3840  3.7661 0.2584 0.7741
exp{z) 0.6422 00084  0.0182 0.0000 1.0000
Table 5
lations (Paloheimo 1980, Collie and Correlation coefficients between estimates of the unobserved change rate (z) and
Sissenwine 1983). These estimates do all other estimates.
not seem hlghly correlated. Estimate Rho Estimate Rho Estimate Rho Estimate Rho
The unobserved change rate was a
. : N(T,15) 046  N(T,38) 0.08 q(15) -0.53 a(38) -0.18
?andOFn va:nable in the second test, so N(T,16) 0.34  N(T,39) 0.11 q(16) -0.30 q(39) 0.09
its estimation error was not computed. N(T17) 045  N(T.40) 021  qd7)  -036  q@0)  -0.03
Error characteristics-of-abundance N(T,18)  0.20  N(T.41) 0.22 q(18) -0.24 q(4l) 0.02
. Py N(T,19) 027 N(T,42) 0.22 q(19) -0.18 q(42) -0.09
estimates were extremely 81m11a.r. to N(T,20) 028  N(T.49) 0.15 q(20) -0.18 q(49) -0.14
those of example one; apparently high N(T21) 028  N(T.44) 0.08 q(21) -0.22 q(44) -0.01
process variability does not adversely N(T,22) 011  N(T,4b) 0.31 q(22) -0.22 q(45) -0.07
s : N(T,28) 027  N(T46) 0.20 a(23) -0.16 q(46) 0.03
affect esi:.lmatloq even in the presence N(T.24) 022 N(TAD 0.04 a(24) -0.15 ) 0.11
of sampling variance. N(T,25) 0.21  N(T.48) 0.19 a(25) -0.27 q(48) 0.11
The contracted seasonal recruitment N(T,26) 0.10  N(T,49) 0.13 q(26) -0.31 q(49) 0.08
pattern (Fig. 3), conventionally inter- N(T27) 019  N(T.50) 0.26 a2 -0.26 q(50) 0.12
) N(T.28) 022 N(T51) 0.22 a(28) -0.10 q(51) 0.02
preted as age-specific cohorts, was N(T.29) 029  N(T.52) 011  q@9)  -035 g2  -0.11
used in the last two examples. Growth N(T,30) 0.9  N(T,58) 0.16 q(30) -0.10 q(53) 0.15
N(T,31) 017  N(T,54) 0.12 q(31) -0.43 a(54) 0.15
P ara.;neters were the same as the t\!vo N(T,82) 019  N(T,55) 0.21 a(32) 0.09 a(55) 0.02
previous examples and growth varia- N(T.33) 021 N(T56) 016  q@)  -017  q(6)  -0.05
tion was moderate (cv 0.1). Sampling N(T,34) 025  N(T.57) 006  q(39) -0.19 (57 0.15
efficiencies were also unchanged and N(T,35) 0.18 N(T,58) 0.03 q(35) -0.02 q(58) -0.11
their variability set at that of e N(T,36) 008  N(T.59) 0.06 q(36) 0.04 a(59) -0.11
examp! N(T,37) 023  N(T.60) -0.03 q(37) -0.01 q(60) -0.06
1 (cv[q]=0.2). The unobserved change

rate randomly varied five-fold (z~
U(0.05,0.25)). Catching was continu-
ous so each period’s catch was as-
signed to midperiod for estimation. Overfishing was
simulated by rapidly increasing exploitation enough to
decrease stock abundance 36% during the four periods
of sampling (last four). The fishing mortality rates for
periods 6-19 were: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.6,

0.4,0.5,0.8, 0.6, 0.8, 1.0, and 1.2. Example 3 simulated
very low sampling levels and example 4, high levels.
It was of interest to find if abundance would be cor-
rectly estimated during overfishing under either sam-
pling condition.
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Example 8 was the limited-data case. The growth
measurement error was large (cv 0.20) and the sam-
ple size for growth parameter estimation was moderate
(95% CI of width +5%, 77 fish). The precision of catch
estimates was low (¢v[C]=0.4) and relative abundance
sampling was meager (95% CI of width +30%, two
samples each period).

Error variances of the smallest seven size class abun-
dance estimates were very large (Table 6), but error
variances were low for size-classes 25 and larger.
Usefully narrow confidence intervals on the bias of
these estimates were obtained with few trials. Signif-
icance levels suggested that abundance estimates of
size-classes 17-21 might not have been biased and un-
biased estimation seemed likely for size-classes 22 and
larger. Estimates of sampling gear efficiencies (q(s))
also seemed accurate although error variances were
high.

Example four simulated sufficient sampling. A
growth parameter measurement error (cv 0.05) and
sample size (99% CI of width +1%, 829 fish) more
characteristic of databases for heavily sampled fisheries
were used. Catches were precisely estimated (ev[C]
=0.2) and relative abundance sampling was at a very
sufficient level (99% CI of width +3%, 295 samples
each period).

Biases (Table 6) were very similar to those of exam-
ple 3. Abundance estimates for the smaller size-classes

that appeared in relative abundance samples just once
were probably biased by more than 10%, but the rest
were not. Estimates of g for the smallest 10 size-classes
were biased by more than 10% and the rest were prob-
ably not. Most error variances for stocksize estimates
were several times smaller than those of example 3,
and some were an order of magnitude smaller. Like-
wise, the error variance of  estimates was also smaller.
As may be expected, sufficient sampling levels in-
creased precision but did not affect bias. Abundance
estimates of sizes that appeared in abundance samples
more than once were estimated accurately when over-
fishing occurred, whether or not sampling levels were
sufficient or not.

Estimates of historical stock sizes are usually used
to find out if stock abundance is increasing or decreas-
ing. Errors of virtual population analysis back-calcu-
lations of cohort- specific abundances converge as dates
decrease (Agger et al. 1971, Pope 1972, Jones 1981).
Conventional wisdom is thus that abundance estimates
for the last period are extremely uncertain, but due to
the convergence, estimated abundance trends are
reliable. For this size-based estimator, (2) provides
abundance calculations before date y(T) from the
estimates available at the solution of (4).

Error characteristics of historical abundance esti-
mates (Table 7) were unexpected. Bias and error
variance increased as dates decreased. Last-period

Table 6
Examples for seasonal, contracted recruitment and overfishing.
Example 3, Limited sampling Example 4, Sufficient sampling
Catch estimation
catch dates absent absent
eviC(t,5) 0.40 0.20
Growth estimation
cvlerror] 0.20 0.05
precision level 0.05 0.01
probability level 0.95 0.99
fish sampled, g Vil 829
Sampling efficiency
eviq(s)] 0.20 0.20
precision level 0.30 0.03
probability level 0.95 0.99
sample size, r 2 295
Number of trials 83 128
. Significance levels . ignifican
Estimates Biss b Estimates Bias Sign oo levels
- " 9% CI HO:Bias>»0.9 HO:Bias<1.1 95% CI HO:Bias»0.9 HO:Bias<1.1
Bias Variance % width HA:Bias<0.9 HA:Bias>1.1 Bias Variance % width HA:Bias<0.9 HA:Bias>1.1
N(T,15) 9.3261 759.7798 5.9301 0.9973 0.0033 12,8103 1297.3179  6.2399 0.9999 0.0001
N(T,16) 8.3623 546.7384  5.0804 0.9982 0.0023 8.3910 128.6375 1.9649 1.0000 0.0000
N(T.17) 2.0437 320.3240 3.8505 0.7198 0.3185 3.4678  49.7123 1.2215 1.0000 0.0001
N(T,18) 1.8321 42.6741 1.4054 0.9032 0.1536 1.2202 1.3293  0.1997 0.9992 0.1191
N(T,19) 0.9011 13723  0.2520 0.5033 0.9391 0.7992 0.3075  0.0961 0.0199 1.0000
N(T.,20) 1.1948 1.6789  0.2788 0.9809 0.2525 0.8677 0.3403 0.1011 0.26567 1.0000
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Table 6 [continued)

Significance levels Significance levels

Bias Bias

Estimates  o54 CI HOBias»0.9 HOBims<ll __ —o0mM8%8  o5w Gl HOBias»0.9 HO:Bias<l.1

Bias Variance % width HA:Bias<0.9 HA:Bias>1.1 Bias Variance Y% width HA:Bias<0.9 HA:Bias>1.1

N(T,21) 1.3401 5.0248 0.4823 0.9632 0.1646 1.7942 1.3107  0.1983 1.0000 0.0000
N(T,22) 0.9265 0.1610 0.0863 0.7262 1.0000 0.8043 1.2599  0.1945 0.1673 0.9986
N(T,23) 0.9335 0.4053 0.1370 0.6840 0.9914 0.8082 0.7830  0.1533 0.1203 0.9999
N(T,24) 0.8017 0.7664 0.1895 0.5072 0.9799 0.9673 0.1843  0.0744 0.9619 0.9998
N(T,25) 0.9988 0.0606 0.0533 0.9999 0.9999 1.0007 0.0106  0.0179 1.0000 1.0000
N(T,26) 0.9540 0.0476 0.0472 0.9875 1.0000 1.0021 0.0032  0.0098 1.0000 1.0000
N(T,27) 0.98%0 0.0186 0.0295 1.0000 1.0000 0.9898 0.0056  0.0129 1.0000 1.0000
N(T,28) 0.98656 0.0129  0.0246 1.0000 1.0000 0.9855 0.0109  0.0181 1.0000 1.0000
N(T,29) 0.9596 0.0841 0.0400 0.9983 1.0000 0.9795 0.0174  0.0230 1.0000 1.0000
N(T,30) 1.0184 0.0600 0.0530 1.0000 0.9987 0.9979 0.0235  0.0269 1.0000 1.0000
N(T,31) 0.9606 0.0254 0.0349 0.9997 1.0000 0.9916 0.0084  0.0161 1.0000 1.0000
N(T,32) 0.9922 0.0073 0.0188 1.0000 1.0000 0.9945 0.0029  0.0094 1.0000 1.0000
N(T,33) 1.0158 0.0266  0.0359 1.0000 1.0000 0.9861 0.0022  0.0082 1.0000 1.0000
N(T,34) 09851 0.0117 0.0240 1.0000 1.0000 0.9824 0.0040 0.0112 1.0000 1.0000
N(T,35) 0.9700 0.0138  0.0260 1.0000 1.0000 0.9846 0.0025  0.0090 1.0000 1.0000
N(T,36) 0.9908 0.0339 0.0411 1.0000 1.0000 0.9921 0.0008  0.0052 1.0000 1.0000
N(T,37) 0.9852 0.0071 0.0195 1.0000 1.0000 0.9988 0.0004  0.0038 1.0000 1.0000
N(T,38) 0.9807 0.0027 0.0126 1.0000 1.0000 0.9992 0.0006  0.0048 1.0000 1.0000
N(T,39) 09874 0.0116 0.0278 1.0000 1.0000 0.99567 0.0003  0.0087 1.0000 1.0000
N(T,40) 0.9841 0.0024 0.0132 1.0000 1.0000 0.9986 0.0004  0.0042 1.0000 1.0000
N(T,41) 09992 0.0010 0.0090 1.0000 1.0000 1.0001 0.0001  0.0028 1.0000 1.0000
N(T,42) 10102 0.0814 0.05649 1.0000 0.9993 1.0002 0.0000  0.0013 1.0000 1.0000
N(T,43) 09924 0.0012 0.0115 1.0000 1.0000 0.9987 0.0001  0.0025 1.0000 1.0000
N(T,44) 09798 0.0101  0.0452 0.9997 1.0000 0.9986 0.0001  0.0027 1.0000 1.0000
N(T,45) 0.9833 0.0012 0.0158 1.0000 1.0000 1.0000 0.0000  0.0000 1.0000 1.0000
N(T,46) 09854 0.0006 0.0141 1.0000 1.0000 1.0000 0.0000  0.0000 1.0000 1.0000
N(T,47) 1.0000 0.0010 0.0253 1.0000 1.0000 1.0000 0.0000  0.0000 1.0000 1.0000
N(T,48) 0.8000 0.0200 0.1960 0.1587 0.9987 1.0000 0.0000  0.0000 1.0000 1.0000
N(T,49) 1.0000 0.0000  0.0000 1.0000 1.0000
N(T.) 1.1369 32.0777 1.2185 0.6484 0.4763 1.1493  29.8091  0.9459 0.6973 0.4593
q(15) 0.3282 0.1186  0.0741 0.0000 1.0000 0.2474 0.0501  0.0388 0.0000 1.0000
q(16) 0.3998  0.2084  0.0982 0.0000 1.0000 0.2984 0.0519  0.0395 0.0000 1.0000
q@@7 0.7850  0.7019  0.1802 0.1055 0.9997 0.6889 0.2424  0.0853 0.0000 1.0000
q(18) 1.38564  0.9594  0.2107 1.0000 0.0040 1.2926 0.6908  0.1440 1.0000 0.0044
q(19) 19397 2.7958  0.3697 1.0000 0.0000 1.6785 0.6126  0.1356 1.0000 0.0000
q(20) 13499 0.6184 0.1692 1.0000 0.0019 1.4341 0.3226  0.0984 1.0000 0.0000
q(21) 0.9199  0.4187 0.1392 0.6104 0.9944 0.6845 0.0844  0.0503 0.0000 1.0000
q(22) 0.6958  0.2367  0.1047 0.0001 1.0000 0.5667 0.0730  0.0468 0.0000 1.0000
q(23) 0.7358  0.2491  0.1074 0.0013 1.0000 0.6515 0.0753  0.0475 0.0000 1.0000
q(249) 0.9467  0.5200 0.1561 0.7213 0.9729 0.7885 0.0992  0.0646 0.0000 1.0000
q(25) 10306 0.3424 0.1266 0.9784 0.8584 0.9317 0.0882  0.0515 0.8861 1.0000
q(26) 1.0431 0.2997 0.1185 0.9910 0.8266 1.0073 0.0575  0.0415 1.0000 1.0000
q(27) 1.0743 0.3260 0.1236 0.9971 0.6583 0.9851 0.0475  0.0377 1.0000 1.0000
q(28) 10729 04116 0.1389 0.9927 0.6489 0.9156 0.0586  0.0419 0.7658 1.0000
q(29) 10112  0.3568  0.1290 0.9545 0.9113 0.9105 0.0767  0.0482 0.6652 1.0000
q(30) 09345 0.4927 0.1519 0.6719 0.9836 0.9002 0.0721  0.0471 0.5027 1.0000
q(31) 10777 05119 0.1568 0.9869 0.6096 0.8955 0.0796  0.0495 0.4297 1.0000
q(32) 1.0668 0.3685 0.1339 0.9927 0.6864 0.9643 0.1123  0.0587 0.9841 1.0000
q(33) 10548 0.2669  0.1139 0.9961 0.7818 1.0293 0.1086  0.0578 1.0000 0.9918
q(34) 1.0891  0.4220 0.1442 0.9949 0.6588 0.9230 0.1087  0.0569 0.7862 1.0000
q(35) 1.2517  1.4470 0.2670 0.9951 0.1327 0.9907 0.1106  0.0597 0.9985 0.9998
q(36) 1.0885  0.5550 0.1664 0.9868 0.5537 1.0126 0.1046  0.0591 0.9999 0.9981
q(37 1.0643 0.3099 0.1286 0.9939 0.7066 1.0658 0.1899  0.0814 1.0000 0.7950
q(38) 12725  1.2458 0.2713 0.9964 0.1064 0.9944 0.0895  0.0589 0.9992 0.9998
q(39) 0.9949  0.7569  0.2239 0.7970 0.8211 1.0445 0.2018  0.0923 0.9989 0.8806
q(40) 11630  0.5160 0.1934 0.9962 0.2617 0.9748 0.1302  0.0806 0.9656 0.9988
q(41) 13898  1.4057 0.3320 0.9981 0.0435 0.9666 0.2227  0.1130 0.8761 0.9896
q(42) 14006 29713  0.5342 0.9668 0.1351 1.0596 0.2525  0.1316 0.9913 0.7265
q(43) 10215 0.2580 0.1643 0.9263 0.8256 -0.7903 123.8881  3.4933 0.1715 0.8556
q(44) 0.9185  0.2248 0.2132 0.56674 0.9524 1.1289 0.87256  0.3051 0.9293 0.4263
q(45) 4.0163 137.2726  5.4127 0.8704 0.1455 1.4194 2.0954 0.5674 0.9636 0.1350
q(46) 1.2540 0.3985  0.3572 0.9740 0.1990 1.0488 0.0964  0.1396 0.9816 0.7639
q(47) 1.2032  0.2502  0.4002 0.9312 0.3067 1.9698 5.6933 1.4101 0.9315 0.1133
q(48) 11792 0.2007  0.6210 0.8109 0.4013 1.0484 0.0029  0.0473 1.0000 0.9839

q(49) 0.9818 0.0718  0.2626 0.7291 0.8113
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Table 7
Error statistics of historical abundance estimates from example 4.
Error Bias Error Bias Error Bias

Variable n variance estimate Variable n variance  estimate Variable = variance  estimate
N(1,15) 128 115.5114 5.9596 N@,.27 128 0.1871 0.9173 N(1,39) 91 0.4743 0.7745
N(2,15) 128 86.8395 6.0680 N2,27) 128 0.1899 0.8982 N(2,39) 9 0.5662 0.9049
N(3,15) 128 119.8275 5.8517 N@3,27) 128 0.4459 1.0290 N(3,39) 91 0.4302 1.0320
N(4,15) 128 1296.6914 12.8388 N(4,27) 128 0.0056 0.9896 N(4,39) 91 0.0003 0.9957
N(1,16) 128 80.4340 4.2588 N(1,28) 128 0.4354 0.9534 N(1,40) 7 1.1408 0.9088
N(2,16) 128 184.7422 7.4660 N(2,28) 128 0.2830 1.0502 N@240) 177 0.7205 1.0607
N(3,16) 128 68.0011 6.3408 N(3,28) 128 0.4060 1.1279 N(3.40) 77 0.417¢ 0.9065
N(4,16) 128 128.6176 8.3893 N(4,28) 128 0.0109 0.9854 N(4,40) 77 0.0004 0.9986
N(@1,17) 128 10.8289 1.7620 N(1,29) 127 0.3800 0.9685 N(1,41) 67 0.8746 1.0508
N@.17) 128 50.7792 2.9860 N(2,29) 127 0.6222 1.2014 N(2,41) 67 0.7359 0.9693
N(3,17) 128 6.3308 2.2878 N(3,29) 127 0.6897 11322 N(3,41) 67 0.6803 1.1584
N@4,17 128 49.7113 3.4675 N4,29) 127 0.0174 0.9794 N(4,41) 67 0.0001 1.0001
N(1,18) 128 0.5225 0.8387 N(1,30) 125 1.3161 1.1217 N@1,42) 56 0.2236 0.5534
N(2,18) 128 1.8065 1.0217 N(2,30) 125 0.6497 1.1361 N(2,42) 56 0.9778 0.8919
N(3,18) 128 1.3119 1.1786 N(3,30) 125 0.6635 1.1661 N(3,42) 56 0.8370 1.0048
N(4,18) 128 1.3292 1.2202 N(4,30) 125 0.0234 0.9971 N(4,42) 56 0.0000 1.0002
N(1,19) 128 0.2076 0.5674 N(1.31) 125 0.4402 0.9570 N(1,43) 39 0.3770 0.7205
N(2,19) 128 0.6367 0.7745 N(2,31) 126 0.7042 1.1035 N(2,43) 39 0.7222 1.0594
N@3.19) 128 0.2891 0.8107 N(3,31) 125 1.2571 1.1914 N(3,43) 39 0.5246 0.9171
N(4,19) 128 0.3074 0.7989 N(4,31) 125 0.0084 0.9916 N(4,43) 39 0.0001 0.9987
N(1,20) 128 0.3131 0.6707 N(1,32) 125 0.4139 0.8962 N(1,44) 36 0.3870 0.8145
N(2,20) 128 0.7200 0.8515 N(2,32) 125 0.4712 1.0943 N(2,44) 36 0.3686 0.8018
N(3,20) 128 0.4237 0.9559 N(@3,32) 125 0.6876 1.1207 N(3,44) 36 0.2355 0.8025
N(4,20) 128 0.3411 0.8679 N(4,32) 125 0.0029 0.9944 N(4,44) 36 0.0001 0.9986
N(1,21) 128 1.3938 1.2717 N(1,33) 126 0.2451 0.7301 N(1.45) 25 0.4571 0.8148
N(2,21) 128 0.9207 1.3560 N(2,33) 125 0.4089 1.0021 N(2,45) 25 0.3210 0.8143
N(3,21) 128 1.5664 1.6328 N(3,33) 125 0.6067 1.1316 N(3,45) 25 0.1735 0.7110
N4,21) 128 1.3111 1.7941 N(4,33) 125 0.0022 0.9864 N(4,45) 25 0.0000 1.0000
N(1,22) 128 3.4192 1.7054 N(1,34) 123 0.7671 0.8896 N(1,46) 19 0.3338 0.6204
N(2,22) 128 6.9873 2.0668 N(2,34) 123 0.5906 0.9968 N(2,46) 19 0.3380 0.5746
N(8,22) 128 7.5242 2.6186 N(3,34) 123 0.9354 1.1637 N(3,46) 19 0.1914 0.8296
N(4,22) 128 1.2599 0.8042 N(4,34) 123 0.0040 0.9824 N(4,46) 19 0.0000 1.0000
N(1,23) 128 1.1626 1.6450 N(1,35) 119 0.2867 0.8088 N(1,47) 11 0.1290 0.4227
N(2,23) 128 1.6512 1.5052 N(2,35) 119 0.6020 1.0950 N(2,47) 11 0.2434 0.4377
N(3,23) 128 8.1272 2.3806 N(3,35) 119 0.7955 1.1538 N@3,47) 11 0.0694 0.9398
N(4,23) 128 0.7830 0.8082 N(4,35) 119 0.0025 0.9846 N(4,47) 11 0.0000 1.0000
N(1,24) 128 1.2296 1.3307 N(1,36) 115 0.2635 0.6926 N(1,48) 5 0.1338 0.4633
N(2,24) 128 2.6137 1.3469 N(2,36) 116 0.4223 0.9411 N(2,48) b 0.0132 1.0800
N(3,24) 128 23.1672 1.9363 N(8,36) 115 0.7491 1.0997 N(3,48) 5 0.1087 0.7000
N(4,24) 128 0.1842 0.9673 N(4.36) 116 0.0008 0.9921 N(4,48) b 0.0000 1.0000
N(1,25) 128 0.5672 0.9923 N(1,37) 110 0.2637 0.6720 N(1,49) 4 0.1558 0.3750
N(2,25) 128 0.7867 0.9758 N(2,37) 110 0.5350 0.8555 N(2,49) 4 0.4950 1.1000
N(3,25) 128 5.6842 1.4490 N(8,37) 110 0.6735 1.0410 N(3,49) 4 0.0050 0.9500
N(4.25) 128 0.0106 1.0005 N(4,37) 110 0.0004 0.9986 N(4,49) 4 0.0000 1.0000
N(1,26) 128 0.2515 0.8747 N(1,38) 99 0.8277 0.8260

N(2,26) 128 0.8233 0.9564 N(2,38) 99 0.2681 0.7480

N(3,26) 128 3.1000 1.2203 N(3,38) 99 0.8225 1.2851

N(4,26) 128 0.0032 1.0024 N(4,38) 99 0.0006 0.9989

Discussion

abundance estimates were accurate, but those of pre-
ceding periods were not. Error variances of estimates
before the last period tended to be one to two orders
of magnitude higher than those of the last period. This
implies that abundance trends estimated in this man-
ner probably will be wrong. In this example, the prob-
lem is large enough to mask much of the 36% decrease
in abundance; the downward abundance trend would
not be clear in calculations of historical stock sizes.

These Monte Carlo tests show that size-based methods
can be accurate and precise estimators of stock abun-
dance. Population characteristics need not conform
to the restrictive assumptions of traditional VPA
methods. Any sort of fish stock can be successfully ad-
dressed with size-based techniques, an important
aspect when assessing populations where ageing is im-
possible or where recruitment is not periodic.
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These results imply that little will be gained from the
extensive age sampling programs that are the founda-
tion of VPA-based methods. They are not needed if
size-based methods are used; only size samples and the
rate of growth are required. Light, periodic growth
sampling is sufficient to monitor possible growth rate
changes through time. Also, since growth rates are re-
quired instead of ages, mark-recapture methods can be
used to obtain growth measures if hardpart interpreta-
tions (age is not observed on hardparts; instead, char-
acteristic marks are interpreted as annular occur-
rences) are difficult or expensive to obtain.

The method of abundance estimation developed in
this study, a meticulous bookkeeper of size data as is
the method of Beddington and Cook (1981), is primitive
compared with other size-based methods (Fournier and
Doonan 1987, Schnute et al. 1989, Sullivan 1989, Sul-
livan et al. 1990). Its degree of success in estimating
abundance suggests that complete population-model
structures are unnecessary. Estimates were usefully
accurate and precise even with very high process vari-
ability. Very pronounced individual growth variation
did not cause estimation problems. These results show
that precise, accurate abundance estimates are possible
with any recruitment pattern imaginable. It was a par-
ticular surprise to find that temporally variant (four-
fold) unobserved change rates (‘‘natural mortality’’ of
Ricker (1948) but including migration and unrecorded
catch) did not affect estimation at all. That result is
reassuring, since the rate is probably extremely vari-
able in nature.

Sampling problems did not seem to degrade estima-
tion either. The level of catch estimation error proved
unimportant and there was no indication that exact
catch dates need to be recorded. Highly variable sam-
pling efficiencies (q;) did not cause estimation prob-
lems, particularly when sample sizes were adequate.
Highly variable individual growth rates (20%) and
significant growth measurement error (15%) did not
adversely affect abundance estimation when sampling
was sufficient. Very large growth-parameter measure-
ment error (40%) and small sample size destroyed per-
formance; although bias was not a problem, extreme
error variances and correlated estimates were.

It is of particular interest that this was the only test
where estimates of the unobserved change rate (z) and
sampling efficiencies (q) were highly correlated. The
lack of a pronounced correlation between sampling
gear efficiencies and the unobserved change rate in all
other tests except this one was unexpected; similar
studies of VP A-based methods (Paloheimo 1980, Collie
and Sissenwine 1983) found such correlation a major
characteristic. It thus seems possible that ageing
errors, or the violation of a connected VPA assump-
tion, contributed to correlation in those studies.

Abundances of most size-classes were estimated
precisely with little or no bias, but biased and imprecise
abundance estimates occurred in three circumstances.
First, abundances of very small fish that were recruited
between the next-to-last and last relative abundance
sample were estimated poorly. A recruitment group
had to be present in the relative abundance samples
twice to be estimated with a useful degree of certain-
ty. In practice, this problem is easily fixed if obtaining
certain estimates of recent recruitment of small fish
is important enough to justify the cost of additional
samples during the last period. Since the estimator is
not based on equal time units, only dates, additional
sample(s) will monitor the size-classes of interest
several times instead of just once. Second, wide size-
classes caused bias and imprecision, particularly for
larger sizes. This bias was easily eliminated by narrow-
ing size-classes. Last, calculations of historical abun-
dances were in large error. It is well known that VPA
calculations are poor for the most recent period of data
and improve as dates decrease. Though they are not
germane to current production levels, estimates of the
oldest stock sizes are the most certain ones in VPA.
The exact opposite is true for this size-based method.
Estimates of historical abundances obtained in the solu-
tion calculation should not be used; error variances of
these computations are very large. Since the estimates
of the final-period abundances are accurate and precise,
this is probably not a problem even if historical stock-
size estimates are needed. Although the procedure was
not tested, these estimates might be obtained by start-
ing with the initial four periods of data, estimating the
fourth period abundance vector, and then progressing
forward one period at a time. Abundance in the first
three periods cannot be estimated but subsequent abun-
dances can. The relation between the number of periods
in the data and estimation errors was not investigated,
but the authors- experience with VPA-based methods
indicates little, if any, would be gained with a longer
time-series.

This study shows that a priori knowledge of the un-
observed change rate (z) is not required to accurately
and precisely estimate abundance with this size-based
method, yet it is well known (Paloheimo 1980, Collie
and Sissenwine 1983, Deriso 1985, Pope and Shepherd
1985) that such knowledge is necessary when apply-
ing VPA-based procedures.

This study suggests that the unobserved change rate
(z) will often be estimated with bias, yet z should be
included in the vector of estimates anyway. Monte
Carlo tests of the Beddington and Cook model estab-
lished that simultaneous estimation of a natural mor-
tality schedule (analogous to the unobserved change
rate in this study) is necessary to avoid biased abun-
dance estimates (de la Mare 1988). If z is fixed instead
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of estimated, abundance estimation bias is assured
because stock size is a function of that rate. It thus
seems prudent to include the rate in the vector of
estimates to avoid abundance estimation bias even if
it is not useful. When necessary, Monte Carlo methods
can be used to establish interval estimates on e, This
study indicates that estimates of e~# are often biased,
yet precise. The estimate of error variance over the 97
trials of example 1 was 0.0084, so the 95% CI width
is +1.961/(0.0084 +97) or +0.0182, and the bias ad-
justment is 0.6422.
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Appendix: Simulation steps of Monte Carlo tests
Control varlables are F,, F2, 2y, pt, M1, M2, 01, 02, pi» €V[K], pa. cV[A], cv[q], cv[C]

Compute the following once each trial for 1<t<<T:
1 If the F, are variable, F;~U(F;, F,)
2 If the z are variable, z,~U(z,, z5)

3 If a single catch occurs once each period, then
A probability of unobserved events (z) during y; to ¢; is Pr[z'];=1-e ~%@-),
B probability of being caught (on date ¢;) is Pr{C};=F;,
C probability of unobserved events (z) during ¢; to y;, is Pr[z'];=1-e-%0t1-¢), or

4 If catching is continuous, then

A probability of death during y; to y;.; is Pr[D];=1-e-@+F)0w..-v), and
B Pr[z];=Pr[D]; z;+(z+F}).
5 If recruitment is seasonal, then
A p;~U(1,20) where p; is the proportion recruited during period t,
t  T-1

B 4, = X pi 2 p; = the accumulative frequency,

=1 j=1
C u~Uy, pz), and
D o;~U(oq, 03).

Compute the following once for each fish:

6 Draw growth parameters k and A such that

A kNN(“k’ (Mk CV[k]Z),
B A~N(ua, (us cv[A]?).

7 Draw a recruitment data, t;, such that

A if recruitment is uniform, then t;~U(1,20), or
B if recruitment is seasonal,
(1) draw t with probability specified by d,
(2) draw t;~N(u, o3).

8 If fishing is continuous, then

A for the time period of recruitment draw u where u~U(0,1).
(1) If u<zy(1-e-@u+Fa)0ua-t) s (z, +Fy), the fish exited of unobserved causes; STOP.
(2) If not, but if u<1-e-Eu+Fu)0u.i-t), the fish was caught; go to step 8C(2)(a).
(3) If neither occurred, the fish lived through the time period of recruitment; continue.
B Add a fish to the abundance matrix.
(1) t=t+1.
2) t =y
(3) s; = the lower bound of the minimum size-class.
(4) Compute the size-class from equation (1).
(5) Nis2 = Nyo+1.
(6) Ift = T, STOP.
C Draw u where u~U(0,1).
(1) If u<Pr[z];, the fish exited dur to unobserved events; STOP.
(2) If not, but if u<Pr[D];, the fish was caught.
(@) Draw u where u~U(0,1).
(b) t;=t+u.
(¢) Compute the size-class equation (1).
(d) Add to the catch matrix: C;,=C,,+1; STOP.
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(3) If neither occurred, the fish survived; go to step 8B.

9 If fishing occurs just once each period, then

A

If t;<cyy, the fish recruited before the catch.

(1) Draw u where u~U(0,1).

(2) If u<l-e-zulu-t) the fish exited unobserved events before date ¢;; STOP.
(3) If not, the fish survived to the catch date; go to step 9F.

If t; = ¢i1, the fish recruited on the catch date; go to step 9F.

If t;>c¢yy, the fish recruited after the catch.

(1) Draw u where u~U(0,1).

(2) If u<l-e-zulu.i-t), the fish exited due to unobserved events before the next abundance
sample (date yi,1); STOP.

(3) If not, the fish survived fishing and so was alive on the next sampling date: t=t+1.

Add a fish to the abundance matrix.

(1) tz =y

(2) s; = lower bound of the minimum size-class.

(3) Compute the size-class from equation (1).

(4) Nise = Nyo+1.

(5) Ift=T, STOP.

Draw u where u~U(0,1). If u<Pr[z’];, the fish exited due to unobserved events before the date of

catch; STOP.

Draw u where u~U(0,1). If u<Pr[C];, the fish was caught on date c;.

1) t =c.

(2) s; = lower bound of the minimum size-class.

(3) Compute the size-class when caught from equation (1).

(4) Gia = C2+1.

(5) STOP.

Draw u where u~U(0,1).

(1) If u<Pr[z'];, the fish exited due to unobserved events before the next abundance sampling
date; STOP.

(2) If not, the fish survived to the next relative abundance sample date.
(@ t=1t+1.
(b) Go to step 9D.

Collect samples once each trial:

10

11
12
13
14

Draw an extimate of the growth parameters such that
p[A, k] = -0.95,

k n~

N(ux, pf(cv[k]?+cv[ey]?)divg, and

A ~ N(ua, si(cv[Al2+cv[es]?) 8.

Draw an extimate of catch for all t and s where Ct,SNN(Ct,s, C: s cv[C]?).
For each t and s draw q¢ s K VN(qs, (gs cv[q]?) for 1<k<r.

Calculate Y, ; and s?[Y, 4].

Determine the largest sampled size-class.



