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where F is the instantaneous rate of
fishing mortality per year, F MSY is
the value of F that produces MSY in
equilibrium, M is the instantaneous
rate of natural mortality per year,
B(F) is the equilibrium stock biomass
corresponding to a fishing mortality

Two rules of thumb
Despite its acknowledged shortcom
ings (e.g., Larkin 1977), management
for maximum sustainable yield (MSY)
remains a common strategy among
fisheries professionals. Under a con
stant harvest rate policy, this strate
gy is implemented by exploiting the
stock at the fishing mortality rate
corresponding to MSY (FMSY)' Alter
natively, this strategy could be imple
mented by exploiting the stock so as
to maintain its biomass at the level
corresponding to MSY, B(FMSY)' To
estimate F MSY and B(FMSY), fishery
scientists and managers employ a
variety of approaches, ranging from
highly sophisticated simulation
models to simple "rules of thumb."
Frequently used examples of the
latter can be found in the form of two
hypotheses employed by Alverson
and Pereyra (1969) in their analysis
of the potential yield of certain fish
stocks. These hypotheses (hereafter
referred to as Rules I and II) are

rate of F, B(FMSY) is the equilibrium
stock biomass when F=FMSY , and
B (0) is the pristine stock biomass
(i.e., equilibrium stock biomass when
F=O).

Alverson and Pereyra (1969) pre
sented a sketchy derivation of Rules
I and II, leaving open the question of
which models might be capable of
leading to the hypothesized relation
ships. A number of authors have sub
sequently examined specific models
in this context and shown them to be
inconsistent with Rules I and II.
Gulland (1971) and Beddington and
Cooke (1983) cast doubt on the
robustness of Rules I and II in terms
of their applicability to the "simple"
model of Beverton and Holt (1957),
but did not generalize their conclu
sions beyond that particular model.
Likewise, Francis (1974) demon
strated inconsistencies between
Rules I and II and a set of assump
tions derived from the Schaefer
(1954) model, although his argument
was weakened somewhat ry com
puting MSY in terms of numbers, not
biomass. Deriso (1982) showed that
the discrete fishing mortality rate
generated by his delay-difference
model at MSY was consistently
highet than the discrete natural mor
tality rate when recruitment was
constant, while under several other
stock-recruitment assumptions the
relationship was reversed. Shepherd
(1982) also demonstrated that Rules
I and II did not adequately describe
the behavior of a particular surplus
production model.

Since none of these authors ad
dressed the possibility that other
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Abstract.-This paper is devoted
to a theoretical examination of two
rules of thumb commonly used in
fishery management: (I) the fishing
mortality rate associated with max
imwn sustainable yield (FMSY ) equals
the natural mortality rate, and (II)
the equilibrium stock biomass at
maximum sustainable yield equals
one-half the pristine stock biomass.
Taken together, these rules of thumb
are shown to be inconsistent with
any simple dynamic pool model in
which three conditions hold: (1) the
first derivative of the stock-recruit
ment relationship is uniformly non
negative, (2) the second derivative of
the stock-recruitment relationship is
uniformly nonpositive, and (3) the
first derivative of the weight-at-age
relationship is uniformly positive. An
example of such a model is presented
and the equilibrium solution derived
analytically. In this model, FMSY can
be either greater than or less than
the natural mortality rate, while the
equilibrium stock biomass at max
imum sustainable yield is consistent
ly less than one-half the pristine
stock biomass. To illustrate the util
ity of the theoretical framework de
veloped, the model is applied to the
eastern Bering Sea stock of rock sole
Pleuronectes bilineat-us.
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b(F, a) = W(a) n(F, ar ) e -Zla-ar), (3)

Average weight of individuals in the stock W(F) can
be written

co
B(F) = n(F, ar ) f weal e -Z(a-ar ) da. (5)

ar

In the case where a=ar, Assumptions (G) and (H)
imply that the left-hand side of Equation (3), recruit
ment biomass, is a deterministic function of equilibrium
stock biomass reB (F»:

(4)

(6)

n(F, ar )
N(F) = --

Z '

b(F, ar ) = r(B(F».

where b(F, a) is the stationary population distribution
(in biomass) by ages a when the stock is exploited at
a fishing mortality rate of F.

Assumptions (B), (C), (E), and (F) imply that total
equilibrium stock numbers can be obtained by inte
grating Equation (2) from a=ar to a=oo, giving

where N (F) represents total equilibrium numbers when
the stock is exploited at a fishing mortality rate of F.

Likewise, equilibrium stock biomass is obtained by
integrating Equation (3) from a =ar to a = 00 :

models might support Rules I and II, it remains to be
seen whether these rules are inconsistent only for
isolated special cases, or are actually incompatible with
a major class of models.

One place to start in the search for models that might
be compatible with Rules I and II is within the family
of simple dynamic pool models. As distinguished from
surplus production models such as those of Schaefer
(1954) and Pella and Tomlinson (1969), dynamic pool
models describe stock dynamics in terms of the indi
vidual processes of recruitment, growth, and mortal
ity, and incorporate age structure at least implicitly
(e.g., Pitcher and Hart 1982). Within the broad class
of dynamic pool models, a model will be referred to here
as "simple" if it reflects the following assumptions: (A)
Cohort dynamics are of continuous-time form, (B) vital
rates are constant with respect to time and age, (C)
fish mature and recruit to the fishery continuously and
at the same invariant ("knife-edge") age, (D) mean
body weight-at-age is determined by age alone, (E) the
stock (or population) consists of the pool of recruited
individuals, (F) maximum age is infinite, (G) the stock
is in an equilibrium state determined by the fishing
mortality rate, and (H) recruitment is determined by
stock biomass alone. Within the framework provided
by these assumptions, particular models are distin
guished by the forms assigned to the weight-at-age and
stock-recruitment functions.

Assumptions (A-C) imply that simple dynamic pool
models conform to the following pair of equations:

Review of simple dynamic pool models

and

dn(F, a)

da
-n(F, a)Z, (1)

(2)

coI w(a) e -Z(a-arl da
ar

W(F) = ----coI e -Z(a-ar) da
ar

For the case of a pristine stock (F = 0), Equations (4)
and (8) imply that equilibrium stock size (in terms of

where a = age, n(F, a) is the stationary population
distribution (in numbers) by ages a when the stock is
exploited at a fishing mortality rate of F, Z is the in
stantaneous rate of total mortality (F + M), and ar is
the age of recruitment.

Equation (1) gives the instantaneous rate of change,
by age, of the distribution n. When integrated with Z
constant (Assumption B), Equation (1) gives Equation
(2), numbers as a function of age. Assumption (D) im
plies that Equation (2) can be cast in terms of biomass
by multiplying both sides of the equation by the weight
at-age function weal:

- z Ico- w(a) e -Z(a-arl da.
ar

Equation (5) can then be rewritten

W(F) n(F, ar)
B(F) = .

Z

(7)

(8)
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The argument of Francis (1974) can be generalized to
address more fully the compatibility of Rules I and II.
The method to be used is as follows: First, it will be
shown that if Rules I and II were to hold simultaneously
with the properties of simple dynamic pool models,
these rules would imply a particular result. It will then
be shown that this result is incompatible with a major
subset of the family of simple dynamic pool models,
thus proving that Rules I and II are also incompatible
with this subset.

Rule II and Equation (10) imply

Now let the discussion be restricted to models in
which the first derivative of the stock-recruitment rela
tionship is uniformly nonnegative. In such cases, Equa
tion (15) indicates that the left-hand side of Equation
(14) is less than or equal to 1 if equilibrium stock
biomass decreases as a function of F [i.e., if B(FMSY )
<B(O), then r(B(FMSy»<r(B(O))]. To examine the
conditions under which this occurs, let Equation (8) be
rewritten

Equation (16) can be differentiated as follows:

numbers and biomass, respectively) is given by

N(O) _ n(O, ar)
- M '

and

W(O) nCO, ar)
B(O) = .

M

Inconsistency of Rules I and II

W(O) n(O. ar)
B(FMsy ) = .

2M

(9)

(10)

(11)

dB (F)
--=

dF

b(FMSY, ar)

b(O, ar)

r(B(FMSY»

r(B(O»

W(F) r(B(F»
B(F) = .

w(ar) Z

r(B(F» [ Z(7) - W(F)]

Z [wear) Z-W(F) (dr(F(F»)]
dB(F)

(15)

(16)

(17)

Equation (8) implies that B(FMSY) must also con
form to

Solving Equations (11) and (12) for FMSY gives

The numerator in Equation (17) is negative whenever
dW(F)/dF<O, which is easily shown to be true when
ever w(a) is monotone increasing, a characteristic
typical of all commonly used growth functions (Schnute
1981).

Thus, it follows that dB (F)/dF will likewise be nega
tive whenever the denominator in Equation (17) is
positive; that is. whenever

(
2W(FMSY) n(FMSY, ar) )

FMsy = - 1 M.
W(O) nCO, ar)

(13)
w(ar) Z dr(F(F»
---> .
W(F) dB (F)

(18)

Next, Rule I and Equation (13) imply By Equation (16), the left-hand side of (18) can be
rewritten as the ratio of r(B(F» to B(F), giving

n(FMSY ' ar)

nCO, ar)

W(O)

W(FMSY)
(14)

r(B(F» dr(B(F»
----'-> .

B(F) dB (F)
(19)

The left-hand side of Equation (14) can be rewritten

n(FMSY, ar)

n(O, ar)

w(ar) n(FMSY ' ar)

w(ar ) n(O, ar)

Given that the discussion has been restricted to
models with stock-recruitment relationships that are
nondecreasing (nonnegative first derivative), a suffi
cient condition for Equation (19) to hold is for dr(B
(F»/dB(F) to be nonincreasing (nonpositive second
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Example of a simple dynamic
pool model

Growth, biomass, recruitment, and yield

As an alternative to Rules I and II, it is possible to
examine the behavior of FMsy/M and B(FMSy)/B(O)
explicitly for a particular model. The model to be ex
amined here incorporates a linear weight-at-age func
tion (Schnute 1981). Let

derivative). Therefore, for all simple dynamic pool
models in which r(B(F» is nondecreasing and dr(B
(F»/dB(F) is nonincreasing, the left-hand side of Equa
tion (14) is less than or equal to 1.0.

Turning to the right-hand side of Equation (14), note
that this expression is necessarily greater than 1.0
whenever dW(F)/dF<O, a condition which has already
been noted to hold whenever w(a) is monotone
increasing.

Summarizing the argument, then, it has been shown
that Rules I and II cannot hold simultaneously for any
simple dynamic pool model in which the first derivative
of the stock-recruitment relationship is uniformly non
negative, the second derivative of the stock-recruit
ment relationship is uniformly nonpositive, and the first
derivative of the weight-at-age relationship is uniformly
positive.

Multiplying both sides of Equation (24) by F then
gives the equation for yield Y (F) shown below:

(26)

(23)

K" 1= ----.
M(ar-an)

1

B(F) = p~- (1 + 1 )] 1=Q. (24)
L. Z Z(ar -an)

The stock-recruitment relationship of Cushing (1971)
will be used to complete the model, giving recruitment
as a power function of stock size:

A partitioning of stock production

From this point on, it will prove helpful to make use
of a new parameter K", defined as follows:

1

Y(F) = F [E.(1 + 1 )]l-Q

• (25)
Z Z(ar - an)

where p and q are constants, and O:E;;q:E;; 1. In the
limiting case of q =0, recruitment is constant, while in
the other limiting case of q= 1, recruitment is propor
tional to biomass.

The Cushing stock-recruitment relationship has the
advantage of rendering Equation (22) explicitly solv
able. Substituting Equation (23) into Equation (22) and
rearranging terms gives the following equation for
equilibrium stock biomass:

(20)
(

a-ao )w(a) = wear) -- ,
ar-ao

where an represents the age intercept.
Biomass at age is then

b(F, ar) (a-an) e-Z(a-ar )

b(F,a) = , (21)
ar -an

For a given value of b(F, ar), biomass at age can be
integrated from a =ar to a = 00 to obtain the correspon
ding equilibrium stock size. Equation (21) can be in
tegrated by parts, giving the following expression for
equilibrium stock biomass (Hulme et al. 1947):

B(F) =
(
b(F, ar») f co
ar-an a

r

(a-an) e-Z(a-ar ) da

The parameter K" has a special biological interpreta
tion in the context of the present model. To develop
this interpretation, first multiply Equation (22) through
by Z, yielding:

ZB(F) = b(F, ar) (1 + 1 ). (27)
Z(ar-an)

Assuming no immigration or emigration, stock losses
due to mortality must equal stock gains due to recruit
ment and growth at equilibrium (Russell 1931). Since
the left-hand side of Equation (27) represents losses due
to mortality, the right-hand side must equal the sum
of equilibrium recruitment and growth. Therefore,
Equation (27) can be rearranged to define equilibrium
stock growth G(F) as follows:

(
b(F' ar») ( 1)

Z 1 + Z(ar-ao) .
(22) G(F) = Z B(F) _ b(F,ar) = b(F, ar)Z(ar -an)

(28)
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In the case of a pristine stock, Equation (29) reduces
to

Dividing Equation (28) through by b(F, ar) gives the
ratio between the two components of stock production,
i.e., growth and recruitment:

G(F)
b(F, ar)

G(O)

b(O, ar)

1

__1__ = K".
M(ar -au)

(29)

(30)

r~

:r '0'\:'0
2~., \. \

I '. K"-3' ...

:~
0.0 0.2 0.4 0.6 0.8

Recruitment Parameter q
1.0

In other words, K" is simply the pristine ratio of
growth to recruitment. At values of K" >1 pristine pro
duction is dominated by growth, while at K" =1 the two
components of pristine production are equal, and at
values of K"<1 pristine production is dominated by
recruitment,

Figure 1
Ratio of FMSY to M. For a given K" value. the ratio decreases
toward zero as q approaches 1.0. Higher K' values result in
lower values of the ratio, reaching a lower limit as K" ap
pt'oaches infinity.

Fishing mortality at maximum sustainable yield

Differentiating Equation (25) with respect to F and setting the resulting expression equal to zero gives the follow
ing equation for F MSY :

(
q+ 1 )- --- +M+

ar - an
F MSY = .

(
q+1)2 (6q-2)M) "--- + +M~

a -~~ a -~~
r ""U r ""U _ M.

2q
(31)

Using F' to denote the ratio F/M, Equation (31) can be simplified via Equation (26) to

- (q+l)K" + 1 + V(q+l)2K"2 + (6q-2)K" + 1
F'MSY = - 1.

2q
(32)

Figure 1 illustrates the behavior of F'MSY as a func
tion of q for four values of K" (0, I, 3, and 00). Note that
F'MSY can deviate substantially from the value of 1.0
suggested by RuIe 1. The locus of parameter values for
which Rule I holds under Equation (32) is

implying that q must be less than 0.5 in order for Rule
I to hold.

When q =1, Equation (32) falls to zero. As q ap
proaches zero, Equation (32) approaches an upper limit
F'max defined by

The limits of Equation (32) as K" approaches zero and
infinity are, respectively,

F'max = K" +1
K"-1

(35)

(36)

(34)

l-q

l+q

l-q
lim F'MSY = --
K'-O q

lim F'MSY
K"-co

and

(33)
1

q = K" +2'



Figure 2
Ratio of BWMsr) to B (0). For any given K" value, the ratio
increases toward a value of lIe as q approaches 1.0. Higher
K" values result in higher values of the ratio, reaching an upper
limit as K" approaches infinity.

o~ Q4 o~ Q8

Recruitment Parameter q

Thompson: Management advice from a simple dynamic pool model

When pristine growth and recruitment are exactly
balanced (K" =1), Equation (32) reduces to

(37)

In the case of Equation (34), Rule I is always an
underestimate (Le., F'MSY is always greater than 1.0).
In the case of Equation (35), Rule I is an underestimate
whenever q<0.5 and an overestimate whenever q>0.5.
In the case of Equation (36), Rule I is always an over
estimate, except in the limiting case where q = O. In the
case of Equation (37), Rule I is an underestimate
whenever q< 1/3 and an overestimate whenever q> 1/3.

Biomass at MSY relative to pristine biomass

Substituting M+ FMSY for Z in Equation (24) gives
B(FMSY)' Likewise, substituting M for Z in Equation
(24) gives B(0). Forming a ratio from these two bio
masses gives

0.4 FMSY )/B(O)

0.3 ~ K"-infinity ~~

oJ.~~/~
" ~/'=1..// /"'K'-o

0.1 1/' .
L'0.0"" .__-'-__--L_

0.0

557

1.0

Applying the model to rock sole

As an illustration of the approach suggested above. the
model can be applied to the eastern Bering Sea stock
of rock sale Pleuronectes bilineatus. This stock is ex
ploited by a multispecies flatfish fishery, and is also the
target of an important roe fishery (Walters and Wilder
buer 1988).

where F'MSY is given by Equation (32).
Equation (38) is illustrated in Figure 2. Note that all

of the curves in Figure 2 exhibit the same upper bound
(lie, about 0.37), which is reached in the limit as q ap
proaches 1.0. Thus, Rule II always overestimates Equa
tion (38) by a minimum of about 36%. At values of
q>0.5, the biomass ratio is always greater than 0.25.
but at lower values of q the ratio can be much smaller.

Multiplying Equations (32) and (38) gives the ratio
MSY/MB(O), which is plotted in Figure 3. This ratio
describes a stock's maximum sustainable fishery
induced losses as a proportion of its pristine losses.
Alverson and Pereyra (1969) suggested that the MSYI
MB(O) ratio should equal 0.5, a figure obtained by
multiplying Rules I and II together. Note that this sug
gestion errs on the high side whenever K" exceeds 1.0,
as well as whenever q exceeds "'0.23.

B(FMSY)

B(O)

I

(
K" + F'MSY + 1 )l- q

(K" + 1) (F'MSY + 1)2 '
(38)

L,~YIMB(O)

::: I. K~':'O" '..
I K"-1 ".

::~~J
0.0 0.2 0.4 0.6 0.8 1.0

Recruitment Parameter q

Figure 3
Ratio of MSY to the product of M and B(O). For a given K'
value, the ratio decreases toward a value of zero as q ap
proaches 1.0. Higher K" values result in lower values of the
ratio, reaching a lower limit as K" approaches infinity.

The parameters to be estimated are q and K". The
parameter q can be determined from data on stock
biomass and recruitment. Trawl survey estimates of
rock sole stock biomass are available for the years
1979-88 (Walters and Wilderbuer 1988). In addition,
age composition of the stock has been determined for
the years 1979-87. In order to obtain an estimate of
age composition for 1988, the "iterated age-length
key" approach of Kimura and Chikuni (1987) was ap
plied to the 1986 age-length key and the 1988 length-
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Figure 4
Stock-recruitment data and curve for eastern Bering Sea rock
sole Pl.em·onecf.es bilineatus. Age-3 biomass (lagged 3 yr) is
plotted against stock biomass for the years 1979-88.

The topic of this paper, management advice from a
simple dynamic pool model, has been considered from
the perspective of how two commonly used rules of
thumb compare with simple dynamic pool models in
general, and how they compare with one such model
in particular.

Discussion

frequency distribution. Assuming that rock sole recruit
at age 3 (Walters and Wilderbuer 1988), these data
provide seven years of information on the stock
recruitment relationship. Fitting Eq. (23) to these
seven points (assuming lognormal error, Fig. 4) gives
q=0.235.

The composite parameter K" can be estimated from
its constituent parameters ar, 8.0, and M (Eq. 26).
Walters and Wilderbuer (1988) set ar =3 and M =0.2.
The parameter 8.0 can be derived by regressing a line
through the mean weights-at-age, as shown in Figure
5 (R'2 =0.904). This gives an 8.0 value of 1.475 years,
implying a K" value of 3.279.

With these parameter values, Equation (32) gives
F'MSY =0.880, or FMSY =0.176. This estimate of FMSY
compares favorably with the value of 0.155 that
Walters and Wilderbuer (1988) derived from a surplus
production model. It is relatively close to (within 12%
of) the value indicated by Rule I.

However, Rule II does not fare so well in this ex
ample. Equation (38) estimates the ratio between
B(FMSY) and B(O) at a value of 0.245, 51% below the
value predicted by Rule II.

Choice of functional forms

Within the family of simple dynamic pool models, a
particular model is defined by its stock-recruitment
and growth functions. As Paulik (1973) and Ricker
(1979) state, the choice of functional form for these
two processes is largely a matter of convenience. The
linear growth and Cushing stock-recruitment functions
have been chosen for the proposed model, in part
because of the tractability they confer. For example,
their use permits explicit specification of FMSY (im
possible in other known examples of simple dynamic
pool models, except in the special case where FMSY =
Fmax)' Another advantage is economy of parametriza
tion: only two parameters (K" and q) are required. The
main disadvantage is the possibility that the simplicity
of these functional forms might ignore critical
behaviors.

The linear growth assumption is probably the more
controversial of the two choices. The primary criticism
of the linear growth equation is that it implies a con-

Figure 5
Weight-at-age data and relationship for eastern Bering Sea
rock sole PlRuro-necte.s bilineatus. Data are from the 1986 trawl
survey conducted by the Alaska Fisheries Science Center.

stant growth rate, whereas other commonly used func
tions exhibit decreasing growth rates at upper ages
(Beverton and Holt 1957), usually manifested in the
form of an upper asymptote. In practice, however, the
absence of an asymptote may be inconsequential or
even preferable (Knight 1968. Ricker 1979) for two
reasons: (1) In exploited populations, individuals may
only rarely survive to reach the portion of the growth
curve where a marked decrease in growth rate would
be most discernible; and (2) in functional forms that in
corporate an asymptote, this parameter is often poor
ly estimated, being highly correlated with at least one
other parameter in the equation.
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Robustness of the rules of thumb

Neither Rule I nor Rule II is particularly robust when
applied to simple dynamic pool models in general or
to the model developed here in particular. Rule I can
drastically over- or underestimate the true relationship
between F MSY and M. When q exceeds 0.5, Rule I con
sistently overestimates the ratio between FMSY and M,
whereas when q is less than 0.5, the ratio can range
both well above and well below the value suggested by
Rule 1.

Although these results do not provide much theoret
ical support for Rule I, it is still possible that Rule I
holds as an empirical generalization (it turned out to
be fairly close in the case of eastern Bering Sea rock
sole, for example). If Rule I does hold as an empirical
generalization, Equation (33) indicates that this implies
an inverse relationship between the relative importance
of growth in pristine production (K") and the degree
of density-dependence in the stock-recruitment rela
tionship (q). Further work is necessary to see if such
an inverse relationship is supported on the basis of life
history or other theory.

Rule II consistently overestimates the ratio between
B(FMSY ) and B(O) in the Model presented here (Eq.
38, Fig. 2). In the case of eastern Bering Sea rock sole,
Rule II was off by 51%. The problem with Rule II stems
from the "diminishing returns" nature of the relation
ship between F and B(F), wherein successive increases
in F result in less and less of an impact on biomass.
Rule II, on the other hand, was inspired by the Schaefer
(1954) model, in which the relationship between F and
B(F) is linear (i.e., it exhibits constant returns to scale).

Interestingly, the upper asymptote displayed in Fig
ure 2 corresponds exactly to the asymptote observed
in a pair of surplus production models proposed by Pella
and Tomlinson (1969, reparametrized by Fletcher 1978)
and Fowler (1981), models that are conceptually very
different from the one presented here. Mathematical
ly, the isomorphism stems from the fact that all three
models involve functions that raise a parameter x to
an exponent of the form l/(l-x). The fact that this
result can be obtained from both surplus production
and dynamic pool models indicates that it may be
worthy of further investigation.

Since the rule of thumb setting MSY /MB(O) equal
to 0.5 was derived by multiplying Rules I and II, it is
affected by the upward bias inherent in Rule II. This
is reflected in the eastern Bering Sea rock sole ex
ample, where the estimated value for the MSY/MB(O)
ratio was only 0.216. It appears that the "MSY/MB(O)
rule" can be a good approximation only when Rule I
results in a major underestimate, which in the context
of the model developed here requires two things: (1)
Recruitment must be relatively independent of stock

size, and (2) pristine production must be relatively
dependent on recruitment (Fig. 3). Another conse
quence of this relationship is that Rule I can never hold
when MSY /MB(O)= 0.5, and vice-versa. This conclusion
stands in stark contrast to the traditional view which
holds that the MSY /MB(O) rule derives from Rule 1.
Instead, it seems more likely that the two are mutual
ly exclusive, at least in the context of simple dynamic
pool models.
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