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Application of otolith microchemistry
analysis to investigate anadromy
in Chesapeake Bay striped bass
Marone saxatilis*

Management of Chesapeake Bay and
coastal striped bass Morone saxa­
tilis fisheries is affected by migra­
tion of large Chesapeake adults in­
to coastal waters. Tagging studies
during the 1930s and 1950s indi­
cated that a small percentage of
Chesapeake striped bass contribute
to the coastal fishery (Vladykov and
Wallace 1952, Mansueti 1961, Mass­
man and Pacheco 1961). However,
work on age- and sex-specific migra­
tion patterns (Chapoton and Sykes
1961, Kohlenstein 1981) suggested
that about half of the females aged
3+ migrate out of the Bay. The cur­
rent consensus appears to be that
young striped bass remain in or
near the tributary in which they
were spawned for 2 or 3 years;
thereafter most males remain in
the Bay, while a substantial number
of females migrate out of the Bay
and remain in coastal waters until
sexually mature (Chapman 1987,
Setzler-Hamilton and Hall 1991).
Although facultative anadromy is
suggested by tagging studies, age­
and sex-specific rates of anadromy
remain largely unknown (ASMFC
1990).

Wave-length dispersive electron
microprobe analysis of strontiumJ
calcium ratio (Sr/Ca) in otoliths has
recently been employed as a method
for distinguishing between fresh­
water and marine life-history phases
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of individual fishes (Casselman 1982,
Radtke et al. 1988, Kalish 1990). Sr
is substituted for Ca into the lattice
of aragonitic calcium carbonate
(Kinsman and Holland 1969), and in
otoliths the rate of substitution is in
proportion to its abundance in the
endolymph (Kalish 1989). Sr con­
centration in seawater is more than
one order of magnitude greater
than in freshwater (Bagenal et al.
1973, Radtke et al. 1988, Kalish
1990, Ingram and Sloan 1992).
Therefore, Sr levels in otoliths of
fish exposed to seawater should be
substantially higher than those ex­
posed to freshwater.

Sr/Ca ratio in otoliths of anad­
romous striped bass was analyzed
to determine its usefulness in chart­
ing individual migratory histories.
In a prospectus, Coutant (1990) sug­
gested a similar application to in­
vestigate patterns of estuarine use
by Chesapeake Bay and Roanoke
River striped bass. Here, I looked
for a seasonal pattern in otolith
Sr/Ca ratios that was consistent
with anadromous behavior. An an­
nual cycle of low Sr/Ca ratios dur­
ing spring (exposure to Sr-poor
freshwater) and high ratios during
fall and winter (exposure to Sr-rich
saltwater) was expected in large
adults. If such a pattern existed,
then further research and applica­
tion would be justified. Analysis of
Sr/Ca composition could be applied
to problems of migratory behavior,
spawning, hatchery contribution
to coastal stocks, definition of life-

history traits, environmental degra­
dation (Coutant 1990), and conse­
quences of anadromy to recruit­
ment (e.g., Kalish 1990).

In this investigation, I related
Sr/Ca ratios to annuli which are
assumed to form in spring (see Dis­
cussion). I used a less traditional
definition for annulus, ..... a ridge
or a groove in or on the [hard] struc­
ture ... " (Wilson et al. 1987), be­
cause opaque and translucent zones
did not adequately describe the
microstructure observed under
scanning electron microscopy or
light microscopy.

Methods

Sr/Ca ratios were examined for five
large adults from the Chesapeake
Bay and South Carolina (Table 1).
Adults from the Chesapeake were
presumed to be anadromous based
on their size (Setzler-Hamilton and
Hall 1991); the South Carolina
population is a freshwater popula­
tion, resident to the Santee-Cooper
watershed (Secor et al. 1992).
Chesapeake Bay fish (n 3) were col­
lected by charterboat fisherman
from Solomons, Maryland during
the May 1991 "Maryland Trophy
Season", presumably caught in up­
per Bay waters. South Carolina fish
were collected at a 1989 fishing
tournament. Otoliths were removed,
cleaned in 10% sodium hypochlorite
solution (bleach), and rinsed with
deionized water. They were em­
bedded in Spurr epoxy, sectioned in
a transverse plane with a Buehler
Isomet saw, and mounted on a glass
slide. Otoliths were polished (see
Secor et al. 1991) until all annuli
were visible with transmitted light
on a compound microscope. Otolith
sections were further polished with
31lm alumina to limit any surface
structure that could cause artifacts
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Table 1
Striped bass Morone saxa.tilis from Chesapeake Bay (MD and Juv) and
Santee-Cooper (SC) populations used in electron microprobe analyses.

TL Weight
ID Population Sex Age (em) (kg)

MD-1 Chesapeake Female 21 119 15.5
MD-2 Chesapeake ? 8 94 7.3
MD-3 Chesapeake ? 9 93 8.1
SC-1 Santee-Cooper Female 6 80 4.8
SC-2 Santee-Cooper Female 5 81 5.4
Juv-1 Patuxent River Juvenile 0

in microprobe analysis (Kalish 1991). Otolith sections were carbon­
coated in a high-vacuum evaporator.

A sagitta from a juvenile striped bass sampled from the Patux­
ent River (Chesapeake Bay tributary) was similarly prepared and
polished so that the core and all increments were sectioned (Secor
et al. 1991). The juvenile's parentage, a 20kg female that was
assumed to be migratory based on its size (Kohlenstein 1981), was
known because the juvenile was a marked hatchery fish released
as a 9-day-old larva.

X-ray intensities for Sr and Ca elements were quantified using
a JXA-840A JEOL wave-length dispersive electron microprobe
(Central Facility for Microanalysis, Univ. Maryland, College Park
MD 20742), with Calcite (CaCOs) and Strontianite (SrCOs) as
standards. Striped bass otoliths were resilient to high-beam power
densities compared with previous work on salmonid otoliths
(Kalish 1990) and showed no diffusion of elements over a 32-sec
counting period (Table 2). This permitted analysis of small

Table 3
Summary statistics for Sr/Ca ratios of Chesapeake Bay and Santee-Cooper
samples. All ratio statistics have been multiplied by 1000 for presentation
purposes. Age is given in parentheses below each sample. Step = distance
between sampled points along transect.

Step
Sample Transect (j.Im) N x SE Mode Median

MD-1 1 20 99 2.753 0.094 3.4 2.8
(21) 2 20 99 2.645 0.095 2.3 2.6

3 13 60 3.713 0.124 4.7 4.0
(age ~7)

MD-2 13 99 2.974 0.155 0 3.0
(8)

MD-3 1 20 100 2.385 0.097 2.8 2.4
(9) 2 13 70 2.323 0.086 1.7 2.3

SC-1 20 130 0.937 0.061 0 0.9
(6)

SC-2 13 99 0.241 0.054 0 0
(5)
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Table 2
Effect of counting time on strontium and cal­
cium counts. Accelerating voltage = 25kV,
probe current = 20nA, sample size = 511m2.
Note that Sr and Ca show no decline with count­
ing time which would indicate sample
destruction.

Counts/sec
Seconds
counted Sr Ca

0 585 16763
4 586 16678
8 576 16725

12 589 16869
16 586 16748
20 578 16847
24 570 16828
28 592 16850
32 603 16813

sample points (5 x 51lm) at high accelerating
voltage (25kV) and probe current (20nA).
Background and peak counting times were
each 20 sec for Sr, and 5 sec for Ca. Back­
ground counting times were equally divided
below and above the peak position. The
detection limit for Sr was 580ppm. Preci­
sion was calculated at <1% for Ca counts
and 8.2% for Sr counts (at Sr/Ca=0.003)
(1.960; Goldstein et al. 1981). The electron
beam caused a physical disruption (a pit) at
the section's surface which limited the prox­
imity of adjacent points that could be accur­
ately sampled. Initial analyses of Chesa­
peake sample otoliths at "step" distances of
81lm resulted in no Sr X-ray counts. This
was probably due to physical disruptions
among adjacent points because surface
structure can cause artifacts in microprobe
analysis (Kalish 1991). Analysis was there­
fore conducted at 13 and 20llm step sizes
where positive counts occurred (Table 3).
Transects (700-2600llm in length) across
annuli in the otolith sections were selected.
The electron microprobe sampled 60-130
points along these transects. Each point re­
quired "'70sec of microprobe time. X-ray in­
tensities were calculated using the ZAF pro­
cedure (Reed 1975), normalized to stan­
dards, and converted to elemental (atomic
weight) ratios.

Due to their close proximity, individual
points were not always visible in probed
otolith sections. To relate Sr/Ca ratios to the
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freshwater excursions, results indicate yearly migra­
tion for this large female.

Lack of agreement among replicate transects (Fig.
2) probably was due to the manner in which ages were
assigned, spatial resolution, and within-sample vari­
ability. Probed points of replicate transects could not
be directly "lined up" with respect to annuli. This
offset occasionally resulted in the interpretation that
an annuli was associated with a peak in one transect
and a nadir in the other transect (e.g., annuli 15, 18,
and 19 in Transect 1 vs. these annuli in Transect 2
for MD-l; Fig. 2). Transects 1 and 2 for Sample MD-l
(20jJm step size) sampled few points between succes­
sive annuli at older ages, and the accuracy with which
points could be assigned to annuli was less (Fig. 4).
Transect 3 for MD-l (13/Am step size) clearly shows
increased resolution of the ratio across annular in­
crements. Similarly, Transect 2 (13/Am) for MD-3
revealed several more peaks and nadirs after the
5th annulus than did Transect 1 (20 jJm). The overall
Sr/Ca ratio was significantly different between
Transects 1 and 2 for MD-3 (Table 4, t 3.06, p<
0.01). Replicate transects in MD-l, where step size

••

/.

Figure 1
Back-scatter electron micrograph of otolith from striped bass Morone saxatil·is Sample
MD-l. Twenty-one annuli are clearly visible along the sulcus (s) and sulcal ridge. Transects
1 and 2 were performed at 20/olm step size; Transect 3 began at the 7th annular check
and 13/o1m step size. The probed transect previous to Transect 3 was performed at 8/o1m
step size and resulted in no positive Sr counts. Note that individual probed points are
visible in a series of physical disruptions (pits) for Transects 1 and 2.

Results

Mean Sr/Ca ratios in Chesapeake striped bass were
three to four times greater than Santee-Cooper striped
bass (Table 3; Figs. 2,3). This trend is consistent with
a salinity influence on the ratio, because Santee-Cooper
striped bass are confined to freshwater and both
Santee-Cooper females were sexually mature. Al­
though substantial variation occurred in Sr/Ca between
South Carolina samples, both samples were near the
electron microprobe's detection limit of Sr/Ca (Sr/Ca
=0.0008). Instrumental precision decreases markedly
as the detection limit is approached, which may pro­
duce spurious variation. Peaks and nadirs in the Sr/Ca
ratios were apparent in Chesapeake striped bass, and
in fish >age-4, these patterns generally showed an an­
nual cycle (Fig. 2). This is most apparent for sample
MD-!. Because low Sr/Ca ratios can be associated with

opaque zones of annuli checks,
probed sections were viewed
under a compound microscope
and transect distances between
annuli measured with an ocular
scale. Because the distance be­
tween each microprobe mea­
surement was known, distances
between measurements can be
converted to distances between
annuli. Distances between annuli
(annular increments) became
narrow with increasing age (<50
/Am) (Fig. 1), and points did not
always sample directly on annuli.
Therefore, it was necessary to
assign an annulus to the closest
sampled point. Points between
annuli were assumed to sample
age in linear proportion. For in­
stance, if 10 points were sampled
between annuli 5 and 6, then
points would be assigned ages
5.0, 5.1, 5.2, ... 6.0. A replicate
scan was performed on two of
the otolith samples. In the
juvenile's otolith, not all daily in­
crements were visible along the
transect with scanning electron
microscopy or light microscopy.
Therefore, Sr/Ca ratios were
related to standard length using
an otolith/fish-length relation documented for the
Potomac River population (Houde and Rutherford
1992).
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FIgure 2
Transects of Sr/Ca ratios across annuli increments of Maryland striped bass Morone saxatilis. Mean ratios are plotted for ages <5
and ages ~ 5 for each sample. See Table 3 for step sizes. Arrows indicate presumed freshwater excursions. Circled arrows indicate
nadirs in ratios which were consistent with an annual cycle but did not coincide with annuli.

was 20,.em for both transects, did not significantly
differ.

Despite the differences among transects, the over­
all trend in Chesapeake fish was a nadir in Sr/Ca ratio
at or shortly after annuli that coincided with spring

spawning runs (Merriman 1941, Robinson 1960).
This trend occurred only in fish >4 years old. There
was a significant increase in the overall Sr/Ca ratio
in fish >5 years for two of three Chesapeake fish
(Table 4).
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Figure 3
Transects of Sr/Ca ratios across annuli of adult female Santee­
Cooper (SC) striped bass Morone saxatilis. Mean ratios are
plotted across all ages.

Sample: SC-1

Discussion

Annulus formation

Rate and season of annulus formation in striped bass
otoliths are critical to interpretation of the results on
annual and seasonal changes in otolith microchemistry.
Heidinger and Clodfelter (1987) validated the hypoth­
esis of yearly annulus formation for young (<5 years
old) striped bass. However, no directed research has
documented the time of annulus formation in striped
bass otoliths or scales despite their widespread use in
fisheries (e.g., Beamish and McFarlane 1983). Several
investigators have made the observation that annuli are
not observed until spawning season in scales (Merriman
1941, Robinson 1960) and otoliths (M. White, S.C.
Wildl. Mar. Resour., Bonneau SC 29431, pers. com­
mun.). Based on these limited observations and the
general trend of spring annulus formation in other
North American temperate fishes, it was assumed that
annular check formation occurred during or just prior
to the spawning season (February-April).

Strontium was not detected in the Patuxent River
juvenile striped bass otolith until it reached "-8mm SL
(Fig. 5). Because larvae less than this size tend to utilize
freshwater nurseries (Houde and Rutherford 1992),
this further verified that freshwater residence results
in low levels of otolith Sr.
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Figure 4
Number of sampled points between annuli checks at two step sizes. Contours for a
hypothetical 50j.lm annular increment are plotted at 13 and 20j.lm step sizes.

Because Chesapeake samples
had substantially higher Sr/Ca
ratios than South Carolina sam­
ples, there appears to be a salin­
ity effect on the ratio. This con­
clusion is further substantiated
by the juvenile otolith that was
examined and showed nondetect­
able Sr/Ca ratio during the early­
larval period, a time when Chesa­
peake tributary larvae generally
occur above the salt-wedge
(Uphoff 1989, Houde and Ruth­
erford 1992). Patterns in otolith
Sr/Ca in adults were consistent
with expected seasonal changes
in ambient salinity. The range of
ratios found for Chesapeake
striped bass was similar to those
found by Kalish (1989) for 12
marine species (Sr/Ca 0.0018
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and age effects on Sr/Ca ratios, he pos­
tulated that during certain periods of active
metabolism, Ca-binding proteins are more
abundant in the serum which results in a
higher relative fraction of free Sr available
for deposition onto the otolith. If Sr/Ca
ratios in the otolith are controlled by phys­
iological processes alone, then a different
pattern of Sr/Ca ratios would be expected
compared with those observed for striped
bass, i.e., Sr/Ca ratios would tend to rise in
late-winter and early-spring during vitello-
genesis but might also be high during peri­
ods of active growth. However, physiolog­

ical effects such as sexual maturation and stress could
explain both the increase in Sr/Ca ratio after the 5th
annulus in Samples MD-1 and MD-3, and seasonal
(subannular) patterns which varied among samples
(e.g., the major peak which proceeded the 6th annulus
in Sample MD-2; Fig. 2).

Although results exist for few species, the magnitude
of the salinity effect found in this and other studies
(Casselman 1982, Kalish 1989 and 1990) may be greater
than differences expected due to physiological condi­
tion (Kalish 1989, 1991) and temperature alone (Radtke
1984, Townsend et al. 1989, Radtke et al. 1990). Similar
to my findings, Kalish (1989, 1991) reported a three­
to four-fold difference in Sr/Ca ratio between groups
of young rainbow trout exposed to either freshwater
or saltwater. Casselman (1982) reported a three-fold
difference in Sr/Ca ratio between the marine and fresh­
water life-history phases of American eel. In labora­
tory-rearing studies on larval herring Clupea harengus,
temperature effects resulted in no more than a two­
fold difference in Sr/Ca ratios (Townsend et al. 1989,
Radtke et al. 1990), although a complementary field
study conducted by Townsend et al. (1989) showed that
temperatures of I-12°C had a four-fold effect on Sr/Ca
ratio. Physiological condition has been associated with
an approximate two-fold effect on Sr/Ca ratio in juve­
nile Australian salmon Arripis trutta (Kalish 1989).

A three-fold difference in Sr/Ca ratio in otoliths is
consistent with the probable influence of ambient con­
centrations of Sr and Ca. since the Sr/Ca ratio is at
least four times greater in saltwater than in freshwater
(Casselman 1982, Radtke et al. 1988, Kalish 1989 and
1990). Further, Berg (1968) has shown substantially
less physiological discrimination against Sr than Ca in
scale formation, and Kalish (1989) shows excellent cor­
respondence between otolith microchemistry and the
chemical composition of endolymph that bathes the
otolith. Therefore, ambient levels of Sr could be
reflected in the otolith's microchemistry (Mugiya and
Takahashi 1985, Kalish 1989) dependent upon the
degree of physiological discrimination against Sr.
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Figure 5
Transect of Sr/Ca ratios for the early-larval period from a
juvenile striped bass Morrme saxatilis sampled from the Patux­
ent River, 1991. Transect distance was converted to standard
length using regression of standard length on otolith length
for Potomac Rivt'r striped bass larvae (Houde et aI. 1992).
Transect points were converted to larval lengths assuming
a linear growth rate and constant otolith length:fish It'ngth
relationship.

Agt'<5 Age ~5

Sample Transect SD N SD N

MD-I 1 2.17 0.89 44 3.22 0.68 55
2 2.16 0.89 44 3.03 0.64 55

MD-2 2.96 1.50 65 3.01 1.66 34

MD-3 1 2.15 0.93 78 3.20 0.67 22
2 2.01 0.62 35 2.61 0.70 35

Table 4
Comparison of ratios betwt'en probed points < 5 or ~ 5 years. Significant
differences (p<0.001) art' shown by an asterisk.

-0.0062) and 1 freshwater species (Sr/Ca 0.0005­
0.0010).

Radtke (1984) and others (Townsend et al. 1989,
Radtke et aI. 1990) have shown an inverse relationship
between temperature and otolith Sr/Ca ratio. If there
were such an inverse relationship in adult striped bass
otoliths, then ratios would increase during fall and
winter and decrease during spring and summer, a pat­
tern which would to some degree parallel the pattern
seen for anadromous striped bass.

Kalish (1989, 1991) in recent directed research found
no temperature relationship for otolith Sr/Ca ratio, and
suggested that seasonal changes in fish physiology can
cause incidental correlation between temperature and
Sr/Ca ratios. Based on evidence for seasonal, growth,
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Otolith microchemistry and
migratory history

The otolith microchemistry method offers great poten­
tial to address questions related to time of maturation
and frequency of spawning. A distinct positive shift in
Sr/Ca ratio at 5 years in samples MD-1 and MD-3 could
be indicative of maturation or onset of coastal migra­
tion. Current estimates of age-at-maturation for
Chesapeake population females indicate that <30% of
females are mature by age 5 years (Maryland DNR
1991). Kohlenstein (1981) showed through a tagging
study that the majority of female striped bass migrate
by 5 years. Lack of a shift in MD-2 might indicate that
this individual was a male or had a different migration
history.

All Maryland striped bass samples showed annual
peaks and valleys in Sr/Ca ratios. Based on a salinity
effect, it can be inferred that valleys represent excur­
sions into strontium-poor freshwater habitats. Assum­
ing that large, mature adults venture into freshwater
or low-salinity habitats to spawn, then spawning fre­
quency can be estimated.

Precision error and spatial resolution of the electron
microprobe analysis is critical in the proposed applica­
tion of charting individual migratory histories. Preci­
sion errors were indicated by differences in Sr/Ca pat­
terns and overall level between transects of the same
sample (e.g., MD-3). Changing spatial resolution be­
tween measurements of 20 and 13/lm permitted
greater resolution of seasonal (subannular) patterns.
A more complete series of measures along a transect
is taken at lower step sizes because gaps between
measured points become narrower. This effect could
explain variation in mean Sr/Ca levels among transects
for the same sample. Alternatively, lack of agreement
between transects could indicate machine precision
limits in detecting Sr/Ca levels.

A decline in otolith growth rate with age also caused
a decrease in spatial resolution (Fig. 4). At a 13/lm step
size, four or five measurements were taken per annular
increment in fish >7 years. Therefore, each measure­
ment can correspond to several months of the fish's
life. This would explain why nadirs in Sr/Ca ratio rarely
approached zero after the 5th annulus. Tagging studies
indicate that adult striped bass can migrate between
freshwater and coastal habitats within a month (Man­
sueti 1961, Chapoton and Sykes 1961, Waldman et al.
1990). Peaks and nadirs observed in otolith Sr/Ca ratio
may therefore represent temporally-averaged values.
Laboratory verification studies are planned to gauge
the spatial sensitivity of otolith microchemistry to
resolve changes in ambient salinity.
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Other life-history applications

An ingenious application of the Sr/Ca method to early­
life-history consequences of anadromy was made by
Kalish (1990). He was able to detect Sr in the core of
salmonid otoliths (the earliest deposited material).
Under the rationale that maternally-derived protein in­
fluenced offspring otolith microchemistry, it was pos­
sible to segregate offspring on the basis of whether
they originated from eggs spawned by anadromous
(high Sr/Ca) or nonanadromous (low Sr/Ca) females. In
my study, a single striped bass juvenile of known anad­
romous parentage had no detectable Sr in the otolith
core. In contrast to salmonid embryos and larvae,
striped bass obtain relatively small amounts of mater­
nal protein and lipids, and the period of endogenous
feeding is considerably shorter. Also, the chorion of
striped bass eggs is highly permeable; therefore, am­
bient concentrations of Sr could have a greater in­
fluence on otolith microchemistry.

Substantial variation in Sr/Ca ratio occurred for
young adult (" 5 years old) Chesapeake fish. In all
samples, values ranged below detection limits. Pre­
sumably these values represent excursions unrelated
to spawning by young fish into freshwater systems.
Freshwater and slightly saline environments in the
upper reaches of Chesapeake Bay tributaries may serve
as foraging grounds. Future research could analyze the
duration and seasonality of freshwater habitation by
fishes that reside in the Chesapeake Bay.

Further verification studies are needed to establish
whether estuarine and marine phases can be distin­
guished using Sr/Ca ratios. Ratios tended to continu­
ously increase following nadirs, and this pattern could
indicate exposure to waters of increasing salinity. A
verification study could be carried out by probing the
last deposited otolith material (the edge) for Sr/Ca and
relating that ratio to the salinity in which the striped
bass was sampled in the field or through laboratory
rearing studies (Kalish 1989, Townsend et al. 1989,
Radtke et al. 1990). A key comparison will be that be­
tween samples from estuarine habitats (salinity 5-20
ppt) and marine habitats (~32 ppt). Should differences
be detectable between these groups, then it will be
possible to infer detailed patterns of anadromy and
related life-history traits.
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