Abstract. — An analysis of alter-
native methods for detecting trends
in a series of abundance indices is
carried out through simulation. The
alternative procedures explored have
been applied to analysis of relative
abundance indices of dolphins in the
eastern Pacific Ocean. They include
a linear test over a moving time-
period, and a nonparametric proce-
dure based on smoothing of the time-
series of abundance indices. Results
indicate that the nonparametric pro-
cedure outperforms the linear tests
in most of the situations tested.
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An important part of the analysis of
any set of abundance indices is the
application of an objective procedure
or test to determine whether changes
in the estimates are due to random
fluctuations in conditions of the sam-
pling procedure or to actual changes
in the population size. Such a proce-
dure must exhibit certain properties
in order to be effective. Among these
properties, perhaps most important
is the power of the test for a given
significance level.

In deriving conclusions about
changes in the size of a population,
we can fall into two types of error.
First, we can erroneously conclude
that population size has changed
when, in fact, differences in estimates
are due to random errors. This is
usually known as a Type-I error. A
Type-II error occurs when we con-
clude that the estimates reflect ran-
dom fluctuations when, in fact, there
has been a change in population size.
The probability of falling into a
Type-1 error is usually referred to as
the significance level of the test. The
power of a test is defined as 1 minus
the probability of a Type-II error. An
ideal test will minimize the trade-
offs between both types of error. An-
other desirable property of a test is
robustness to underlying assump-
tions about the populations. For ex-
ample, tests commonly carried out to
detect changes in population size are
based on specific assumptions about
the error structure of the estimates
(e.g., normality) and the model that
would best describe the population

size as a function of time (e.g.. lin-
ear, exponential; see, for example,
Gerrodette 1987).

In the case of dolphin stocks in-
volved in the tuna fishery in the east-
ern Pacific Ocean (EPO), it has been
recommended that their management
should include both estimates of ab-
solute abundance, derived from re-
search-vessel data (RVD), and analy-
sis of trends in relative abundance,
derived from tuna-vessel observer
data (TVOD) (IWC 1992:218). In the
case of EPO dolphin stocks, the use
of TVOD seems the natural choice
for analyzing trends, given the vast
amount of low-cost information avail-
able from the observer programs.
However, for this analysis to be ef-
fective, it is necessary to obtain abun-
dance estimates with a constant bias
over the years, or, at least, a bias
that shows no trend over the years.
Procedures developed by the Inter-
American Tropical Tuna Commission
(IATTC) to analyze the TVOD, de-
scribed in Buckland & Anganuzzi
(1988) and Anganuzzi & Buckland
(1989), were specifically aimed at re-
ducing the magnitude of year-to-year
fluctuations in the estimates due to
changing biases. These procedures
were complemented with more spe-
cific analyses when there were rea-
sons to suspect that biases might be
changing, for example, due to wide-
spread use of high-resolution radar
for the detection of birds (Anganuzzi
et al. 1991). However, in spite of the
robustness of the methods, randomly
fluctuating biases (an extra source of
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variability) may still affect estimates from year to year.
This problem may not be exclusive to the TVOD esti-
mates; interannual variability also seems to affect
estimates of relative abundance derived from research-
vessel data (Wade & Gerrodette 1992). These biases
and imprecise estimates will affect the performance of
statistical tests designed to detect trends and, ulti-
mately, our ability to draw conclusions about the sta-
tus of populations.

For the analysis of trends in the EPO dolphin stocks,
Buckland & Anganuzzi (1988) applied a linear test for
trends over a moving period of 5 yr, although they ex-
pressed concern about the low power of such a test.
Edwards & Perkins (1992) extended the moving time-
frame to 10 yr to increase the power. However, such a
test still shows some undesirable properties. Given the
inadequacy of the tests based on linear regressions,
Buckland et al. (1992) proposed a different procedure,
based on a nonparametric regression, which addresses
some of the problems exhibited by the linear test.

In this paper, the characteristics of these tests are
discussed and compared by analyzing their performance
in a number of simulated scenarios.

Current tests for trends

Linear tests

Buckland & Anganuzzi (1988) tested for linear trends
over successive 5 yr periods by carrying out a weighted
linear regression of abundance index vs. time. Each
individual estimate was weighted by the inverse of its
variance, calculated by applying a bootstrap procedure.
The null hypothesis for the test is that no change has
occurred in the population, i.e., that the slope of the
regression is equal to zero. As the authors noted, the
test has low power since it estimates precision from
the deviations of only five estimates from a straight
line. Power can be increased by extending the moving
time-period to incorporate more years in the test. Un-
fortunately, this also increases the probability of vio-
lating the assumption of a constant rate of change
implicit in the linear model being fitted to the esti-
mates (Edwards & Perkins 1992).

The linear test also fails to consider the precision of
estimates adequately. Variances of the estimates are
not taken into account except as weights in the regres-
sion. As a consequence, only the ratios of the variances
between estimates are relevant, and not their absolute
values. For example, if for any given series of esti-
mates we double the variance of each individual esti-
mate, the results of the test will remain unchanged.

Weighting by the inverse of the variance can also
present other problems. Suppose, for example, that

the variance of the estimate is not independent of
the estimate itself, but that the variance is correlated
with the estimate, i.e., the coefficient of variation
{CV=ratio of standard error to point estimate) is con-
stant. In this case, a very low estimate (and especially
in the case of an outlier) with a correspondingly
small variance will become an influential observation.
A linear test for trends will then indicate that there
was a decline in the population if that estimate is
at the end of the moving period, or a significant in-
crease if it is at the beginning. An example from the
EPOQ dolphin abundance estimation is the case of the
1983 index of relative abundance for the northern
stock of offshore spotted dolphin Stenella attenuata,
which was an anomalous index as a result of a very
strong El Nifo event (Fig. 1). In such cases, where
the error distribution of the estimates seems to be
better approximated by a lognormal distribution,
it would be more appropriate to apply weights (wt)
defined as

wt = In(1+CV?%)-', (1)

For the comparisons in this paper, two versions of the
linear test are applied: the original 5yr linear test
with inverse variance weighting applied by Buckland
& Anganuzzi (1988), and a 10yr linear test with
weights as described by Eq. 1.

Smoothed trends

The approach taken by Buckland et al. (1992) differs
considerably from the method just described. First, they
replaced the assumption of a parametric model for the
underlying change in population with a nonparamet-
ric model. Among the many possible choices for such a
model, they selected the smoothing algorithm known
as ‘4253H, twice’ (Velleman & Hoaglin 1981) on the
basis of a comparison described by K. L. Cattanach
and S. T. Buckland (SASS Environ. Model. Unit,
MLURI, Craigiebuckler, Aberdeen, Scotland, unpubl.
manuscr.). The adoption of a nonparametric model in-
creases the robustness of the test to model mis-
specification, a problem that affects the linear test.
Furthermore, the procedure, which involves the use of
a compound running median, incorporates the infor-
mation from nearby years into calculation of the
smoothed estimate for a particular year, therefore re-
ducing the influence of possible outliers and increas-
ing the precision of each smoothed estimate. The
smoothed test also provides a different way of looking
at the trend. Instead of the trend being described by a
single parameter (the slope of a linear regression), the
sequence of smoothed estimates constitutes the best
estimate of the underlying trend.
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shown that results are robust-to-
moderate departures from it. The
third condition is not met for es-
timates that are close in time,
due to the correlation introduced
by smoothing, and the relative
importance of this effect is dis-
cussed further below.
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To illustrate the difference in per-
formance between methods, a
simulation study was carried out.
Series of estimates were simu-
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Figure 1

Smoothed trends in abundance of the northern offshore stock of spotted dolphin Stenella
attenuata in the eastern tropical Pacific Ocean. Broken lines indicate ~85% confidence
limits. Horizontal lines correspond to 85% confidence limits for the 1990 estimate. If
both the 1990 confidence limits lie above the upper limit for an earlier year, abundance
has increased significantly between that year and 1990 ( p<0.05); if both limits lie below
the lower limit for an earlier year, abundance has decreased significantly.

lated by assuming different sce-
narios of underlying trends in the
population over a period of 25 yr.
The following scenarios were
chosen.

1990 1992

Stable population Population
exhibits no trend over the simu-

To obtain confidence intervals of the smoothed esti-
mates, Buckland et al. (1992) combined smoothed esti-
mates and bootstrap replication using the following
procedure. First, they obtained 79 bootstrap estimates
of the abundance index for each year. Next, they built
bootstrap replicates of the series of estimates by tak-
ing, for example, the first bootstrap estimate for each
year to obtain the first replicated series. They smoothed
each replicated series, thereby obtaining 79 smoothed
estimates for each year. Finally, they sorted the
smoothed estimates within each year and obtained 85%
confidence intervals based on the percentile method
(Buckland 1984). The median of the smoothed boot-
strap replicas is considered to be the best smoothed
estimate.

The confidence intervals thus calculated allow a di-
rect comparison between estimates. If the confidence
intervals for two estimates do not overlap, then they
are significantly different at a level of ~5%. An ex-
ample based on estimates of relative abundance for
the northern stock of offshore spotted dolphin is shown
in Fig. 1. Since the last and first smoothed estimates
are too variable, Buckland et al. (1992) recommend
excluding them from the comparisons. The significance
level is approximate, since it depends on normality of
the estimates, homogeneity of the variances of esti-
mates, and their independence. The second condition

lated period. This scenario pro-
vides us with an estimate of the
probability of a Type-I error de-
tecting a trend when, in fact, there is none, or obtain-
ing a “false positive.” Under this scenario, a percent-
age of detected trends close to 5% would be expected
for a test based on a significance level of 5%.

Rapid decline Population remains at a constant level
for a period of time, and then declines sharply over a
period of 3yr to 50% of its previous level. After the
decline, the population recovers at a rate of 5% per yr.

Steady decline Population declines exponentially at
an annual rate of 10%.

Steady cycle Population follows a sinusoidal change
over the simulated period, completing one cycle over
the 25yr. Amplitude of the cycle is 30% of the original
population size.

These scenarios are intended as a means of high-
lighting properties of the different tests and not as
an exhaustive list of possible situations. Each
scenario was replicated 100 times for different combi-
nations of sources of variation. Variability in the esti-
mates was assumed as coming from two different
sources: (1) Interannual variability, resulting in a
point estimate for each year t of

IOt = Ntez,
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where z is a random variable distributed as N (0, ¢2%),
and (2) precision of the estimate, represented in
the distribution of the simulated bootstrap replicas for
year t, I;, as

I, =LeY, forb=1,..., 79,

where v is a random variable distributed as N (0, £2).

The rationale for a setup with independent control
of two sources of variation and a lognormal error struc-
ture lies in the properties of the estimates and in the
fact that the linear and smoothed tests deal differ-
ently with both components of variation. The choice of
a lognormal error structure can be justified by consid-
ering that the abundance estimates are naturally con-
strained to be positive. The choice of error structure
for the simulation can be further justified by an analy-
sis of the available TVOD estimates (Fig. 2), which
shows that the main target stocks tend to have con-
stant CV’s, particularly in recent years when observer
coverage of the tuna fleet increased and more in-
formation was available for abundance estimation.
There is considerable variability in some stocks, due
to changing levels of targeting from the purse-seine
fleet that result in unequal sample sizes from year
to year.

The argument for including two sources of variation
in the estimates is based on the possibility that actual
relative abundance indices are affected by random bi-
ases from year to year. Under standard assumptions,
o? and €2 should be equal. However, estimates of dol-
phin abundance may exhibit an additional variability,
represented in this setup as o®>¢> This can be attrib-
uted to randomly-fluctuating biases, such as those in-
troduced by changing environmental conditions or
differences in the way the purse-seine fishery oper-
ates. It is important to separate these two components
since, for example, in the case of the linear test, the
results are affected only by the variability represented
by o2

Therefore, it was assumed in the simulation that
estimates are lognormally distributed around the un-
derlying trend with a constant coefficient of variation.
Figure 3 illustrates one simulated series for each of
the different scenarios. The simulations were repeated
for different combinations of CV, and CV,, the coeffi-
cients of variation for both sources of variation.

To compare the test for trends, two diagnostics were
used.

Number of detected trends For the linear trends,
this is the number of 10 yr periods with slopes signifi-
cantly different from zero at the 5% significance level.
For the smoothed test, it is the number of significant
differences between the next-to-last estimate and the
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Figure 2

Coefficients of variation in relative abundance estimates of
dolphin stocks in the eastern Pacific Ocean as a function of
time. NOFF=northern stock of the offshore spotted dolphin
Stenella attenuata; SOFF=southern stock of the offshore spot-
ted dolphin; EAST=eastern stock of the spinner dolphin
Stenella longirostris; WHBL=whitebelly stock of the spinner
dolphin; NCOM=northern stock of the common dolphin Del-
phinus delphis; CCOM=central stock of the common dolphin:
SCOM-=southern stock of the common dolphin.

estimate 10 yr earlier. In this way, the comparison is
based on the same number of tests for each method.
Since there are 25 yr simulated in each replica, a total
of 1500 tests were carried out in the simulation of
each scenario.



Anganuzzi: Detecting trends in dolphin abundance indices

187

3000

STABLE POPULATION

2500

3
3

Abundance
I
o
=]

1000

500

L T T T 1T
123 45686 7 8 910111"13|415|S|71319202122232425
Year

3000

STEADY DECLINE

2500

2000

Abundance
@
Q
S

1000

500

12 3 4 5 6 7 89 ID‘I1121314]516171819202|22232425
Tear

distribution of dots.

Figure 3
Example of a simulated series of relative abundance estimates for each of four scenarios. Solid line represents true underlying trend in
the population. Dashed line connects simulated point estimates. Distribution of simulated bootstrap estimates is represented by the
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Ratio between estimates As a way of assessing how
well each method describes the underlying trend in
the population, an estimated rate of change was ob-
tained. For the smoothed test, this is the ratio of two
smoothed estimates separated by 10 yr. For the linear
test, it is the ratio of the corresponding estimates cal-
culated from the linear regression. These estimated
rates of change were then compared with the true rates
of change and the discrepancies summarized as aver-
age absolute error.

Correlation in the smoothed estimates

One of the problems of the smoothed test is that the
smoothing procedure induces a correlation between es-
timates. This lack of independence affects the results
of the comparison between estimates close in time,
and it is therefore important to assess the magnitude
of this correlation and how it is reduced as the separa-

tion in time between estimates increases. To investi-
gate this, the following Monte Carlo procedure was
carried out on the series of relative abundance esti-
mates for dolphin stocks in the EPO reported by
Anganuzzi et al. (1992).

1 For each year, 79 estimates were sampled with
replacement from the distribution of bootstrap esti-
mates of relative abundance. The 79 estimates were
available from the standard bootstrap procedure used
to estimate confidence bounds in the relative abun-
dance estimation {Anganuzzi & Buckland 1989).

2 Each of the 79 trajectories obtained in the previ-
ous step were smoothed, and 85% confidence limits for
the resulting smoothed estimates were obtained based
on the percentile method. This step is essentially the
application of the smoothed test.

3 Steps 1 and 2 were repeated 100 times, therefore
obtaining 100 estimates of the lower and upper confi-
dence bounds for the smoothed estimates for each year.
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4 A correlation matrix between years for both up-
per and lower limits of the confidence bounds was esti-
mated on the basis of results of the previous step.

5 Estimates of correlation as a function of the dis-
tance in time between estimates were obtained. This
was done by averaging over all correlation coefficients
between estimates separated by a given number

of years, that is, by taking the
average of elements in the
subdiagonals of the correlation
matrix obtained in step 4.

Resuits

Number of detected trends

The results of this analysis are
shown in Figs. 4-7, as the num-
ber of detected trends each year
in 100 simulations for the differ-
ent scenarios. The underlying
trends are shown on an arbitrary
scale to relate changes in perfor-
mance of the tests to changes in
population trajectory.

Stable population This sce-
nario can be used to assess the
actual level of significance of the
tests. An ideal procedure for de-
tecting trends would indicate sig-
nificant trends in ~5% of the
tests under this scenario, given
that the significance level is set
at 5%. Results from the simula-
tions are shown in Fig. 4. Both
linear tests show an actual sig-
nificance level close to the ex-
pected value. These results were
relatively robust to the different
values of CVs tested. The
smoothed test also performs well
in all cases, except when
interannual variation exceeds the
precision of the estimate. For ex-
ample, for CV =0.2 and CV.=0.3,
the percentage of detected trends
was ~10%.

Rapid decline In this scenario,
different trade-offs of the tests
are illustrated by their perfor-
mance along the simulated pe-
riod (Fig. 5). For CV,=CV,, at the

beginning of the period both the linear and smoothed
tests have similar proportions of detected trends, close
to the nominal significance level. As the underlying
trend in the period included in the tests departs from
linearity, the smoothed test tends to outperform both
linear tests. For CV,=CV,=0.2, the smoothed test indi-
cates a maximum of almost 80% significant trends in
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Percentage of trends detected in 100 simulations of the ‘stable population’ scenario
for two levels of precision:
each smoothed test represent different levels of interannual variation, CV,. Broken line
(—- —) represents underlying trend in the population on an arbitrary scale.

(top) CV_=0.2, and (bottom) CV,=0.3. The two lines for
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comparison with <60% for the linear test. In the recov-
ery phase of the trajectory (starting when the tests
cover the period between years 12 and 22), the linear
test improves its performance relative to the smoothed
test. In absolute terms, the performance of both tests
seems to be poor between years 20 and 23, but this is
the result of the small difference between the first and
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Percentage of trends detected in 100 simulations of the ‘rapid decline’ scenario for
two levels of precision: (top) CV,=0.2, and (bottom) CV,=0.3. The two solid lines for
each smoothed test represent different levels of interannual variation, CV,. Broken line
{(— - —) represents underlying trend in the population on an arbitrary scale.

last year of the period included in the moving time-
frame. After that, the 10 yr linear test performs al-
most as well as the smoothed test, as the result of an
underlying trend that can be approximated well by a
linear model. The 5yr linear test does not perform
well, although it detects the decline more frequently
than the 10 yr test. In spite of the improvement in the

last part of the trajectory, both
linear and smoothed tests reach
a maximum of only ~70% of sig-
nificant trends. The performance
of all tests degrades quickly for
higher amounts of variability; the
maximum percentage of detec-
tions for the smoothed test falls
to around 40% for CV=CV.=0.3.

In the case of the smoothed
test, the number of detections in-
creases when CV_>CV,. This re-
sult seems to be a consequence
of higher Type-I error probabili-
ties, as suggested by the higher
number of detections in years 11
and 12.

Steady decline The power of
both types of tests improves
under this scenario relative to
the previous one, due to the
smoother nature of the underly-
ing trend (Fig. 6). For CV,=CV,
the smoothed test outperforms
the linear tests for all levels of
variability. The percentage of
significant trends detected by
the smoothed test ranges from
over 95% for CV’s of 0.20 to ~80%
for a CV of 0.30. The power of
the 10 yr linear test seems to be
more affected by increasing vari-
ability in the estimates, falling
to ~50% detections for CV=0.40.
For CV_>CV,, the power of the
smoothed test seems to increase
although, as before, this is prob-
ably the result of greater Type-I
error rates. The 5 yr linear tests
show low power for all levels of
variability.

Steady cycle The results of this
set of simulations are very simi-
lar to those from the ‘rapid de-
cline’ scenario (Fig. 7). Overall
performance for both tests im-
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proves relative to that scenario,
due to the smoother underlying CVgi0.2

trend, reaching a maximum of
90% for the smoothed test for
CV=0.2. This performance falls
rapidly, as the amount of variabil-
ity increases, to a maximum of
slightly over 20% when CV=0.40.
For CV>CV,, the smoothed test
again shows an apparent increase
in power related to high Type-I
error probabilities. Once more, the
5yr linear test shows very low
power throughout the series.
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assess sensitivity of the estimated o
rates of change, obtained by
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underlying trend. It also mea-
sures the ability of the procedures
to reconstruct the true underly-
ing population trajectory. The re- 8 1
sults of this analysis are shown
for each of the simulated trajec-
tories in Fig. 8. Results indicate
that the estimated rates of change
obtained through the smoothing
procedures are better, in terms of
the average absolute error, than
estimates obtained by any of the ]
linear methods, even when the
simulated trend is linear (‘stable’
scenario, Fig. 8, page 192). Esti- © -
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mates from the 5 yr linear regres-
sions are consistently worse than
estimates from the 10yr regres-
sions, as expected due to the
greater number of points on which
the latter is based. The only ex-
ception is for the scenario with
cyclic fluctuations, where the

~Cvg 0.4
~
\\
\\\
.\\.‘\ _______
- e S ovgi03
------- T—— T, P e %
_______ ~ \:-—-?.l\_‘_\‘:':*— et i — cve:0.4
T T T T
0 10 15 20 25
Year
Figure 6

Percentage of trends detected in 100 simulations of the ‘steady decline’ scenario for
two levels of precision:
each smoothed test represent different levels of interannual variation, CV,. Broken line
(—-—) represents underlying trend in the population on an arbitrary scale.

(top) CV,=0.2, and (bottom) CV_=0.3. The two solid lines for

10 yr linear estimates are poorer
than the 5 yr estimates. This is a
consequence of the period of the
sinusoidal cycle in the underlying population that
can be better approximated by a linear model over a
short period of time. For longer periods in the cycle,
10yr linear estimate should improve, as suggested
by its performance in the scenario with an expo-
nential decline. Results for the smoothed procedure
are consistent over the sets of scenarios, indicating its

robustness to departures from linearity in the popula-
tion trajectory.

Correlation between smoothed estimates

Results from this analysis are shown in Figs. 9 and 10
(pages 193, 194), which indicate that the correlation
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A characteristic of the
smoothed test is that, while the

Percentage of detected trends

smoothing procedure induces a
correlation between estimates,
the correlation across years be-
tween fixed percentiles of the dis-
tribution of smoothed estimates
is lower. This is a result of the
(implicit) sorting of estimates
that removes some of the depen-
dency. To illustrate this, the
average correlation between
smoothed estimates obtained be-
fore sorting is also shown in
Figs. 9 and 10, suggesting that
the reduction in correlation due
to sorting is ~30% for estimates

close in time.

Discussion

In summary, the two types of
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tests represent different ways of
looking at the data, and a com-
parison between them based on
the same criteria only partially
reflects these differences. The
smoothed test provides more in-
formation since it allows a
graphic comparison between in-
dividual estimates. It is based in
a more robust assumption about
the underlying trend of the popu-
lation, since it assumes only that
the change has been smooth over
a short time-period. It also in-
corporates the lack of precision

Figure 7

represents underlying trend in the population on an arbitrary scale.

Percentage of trends detected in 100 simulations of the ‘steady cycle’ scenario for two
levels of precision: (top) CV_=0.2, and (bottom) CV,=0.3. The two solid lines for each
smoothed test represent different levels of interannual variation, CV,. Broken line (—--)

25 of the estimates in a much more
effective way than the linear test.

In some cases, however, the
linear test might be more suit-
able. For example, if the amount
of interannual variation is low
relative to the precision of the

declines rapidly as distance between the estimates in-
creases, approaching very low values as the separa-
tion between estimates exceeds 4 yr. This suggests that
the validity of the test will not be seriously compro-
mised by the correlation induced from the smoothing
procedure, when the comparison is carried out on esti-
mates that are separated by at least 4 yr.

estimates, or if changes are
closely approximated by a linear
function, the linear test should
perform better. Also, if large changes in population
size occur over a very short time-period, smoothing
the series will tend to underestimate the rate of change.

Despite limitations of the comparison, the results
from simulations indicated that the smoothed test out-
performs the linear test in most situations. The only
exception is the tendency to detect spurious trends
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Average absolute error as a function of different degrees of interannual variation, represented by CV,, for each of the four scenarios

when the amount of interannual variability exceeds
precision of the estimates. In other words, in the in-
evitable trade-off between Type-I and Type-II errors,
the smoothed test has lower Type-II error rates at the
expense of an increase in the Type-I error rate. From
the management point of view, this is a safer compro-
mise than the one posed by the linear test, since the
probability of failing to detect a significant trend is
smaller with the smoothed test. The increase in Type-I
error rates can be related to the amount of smoothing
done by the particular algorithm chosen. An algorithm
that would smooth the estimates more would be less
prone to this problem, but it would have less power to
detect trends in the estimates in certain situations.
Such an algorithm would also induce more correlation
between smoothed estimates, and the separation in

time between them would have to be greater in order
not to compromise validity of the comparisons. An al-
ternative would be a smoothing algorithm that can
adaptively change the amount of smoothing done on
the estimates, either by cross-validation techniques or
by controlling the amount of smoothing through incor-
porating auxiliary information, such as birth and death
rates, in the procedure; in other words, by building a
model of the population dynamics.
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Correlation between smoothed estimates as a function of the separation in years between estimates for four stocks of dolphin in the
eastern Pacific Ocean: Offshore spotted Stenella attenuata and spinner dolphin Stenella longirostris.
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