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Abstract.-A simple dynamic
pool model (the "base model">, de
fined by a linear weight-at-age rela
tionship and a Cushing (convex
power) stock-recruitment relation
ship, results in an explicit solution
for the fishing mortality rate corre
sponding to maximum sustainable
yield FMSl"' This solution's sensitivity
can be examined by comparing it to
solutions derived under alternative
model specifications. Four such
modifications are considered here: 1)
replacing the Cushing stock-recruit
ment equation with an equation of
the Beverton-Holt form; 2) general
izing from linear growth to a flexible
form of von Bertalanffy growth; 3)
allowing the ages of recruitment to
the fishery a

f
and the mature stock

am to diverge; and 4) allowing for a
finite maximum age in the stock. Ex
act polynomial solutions for FMSl" are
derived for each specification (except
the fourth). and the potential bias
introduced by use of the base model
is examined for each. In all cases.
the solution to the base model is
within 10% of the solution to the al
ternative model under a range of pa
rameter values.
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Some fishery models can be solved
analytically (i.e., by mathematical
manipulation of the equations>, while
others can be solved only numerically
(i.e., by the brute force of computer
simulation>. One advantage of ana
lytic models is that the generality of
their solutions is more straightfor
wardly addressed. For example. it is
easy to show that the stock size as
sociated with maximum sustainable
yield (MSY> in a Schaefer (1954)
model is always one-half the pristine
stock size; this property follows di
rectly from the assumption of logis
tic growth upon which the model is
based. Such generality is more diffi
cult to demonstrate for simulation
models, however. For instance, if a
particular simulation showed that
MSY was obtained at a stock size
equal to one-half the pristine level,
there would be no way to tell whether
this result was general, except by re
peated trial and error with different
values for the input parameters.

Another example of an analytic so
lution is the one obtained by Thomp
son l1992> for the fishing mortality
rate at MSY IFMSI') in his simple ~y

namic pool model. Because this solu
tion is an analytic one, it is com
pletely general in the sense that it
will hold whenever the underlying as
sumptions of the model hold, regard
less of parameter values. Of course,
the underlying assumptions may not
hold in a particular instance. which
raises the question: How sensitive is
the solution to those assumptions?
The purpose of this paper is thus to
examine the sensitivity of Thomp-

son's (1992) solution relative to the
underlying assumptions of that
model. This will be accomplished by
developing four reasonable modifica
tions to the base model proposed by
Thompson and by examining the
range of errors that might likely be
encountered if the base model were
employed in situations where one of
the modifications would have been
more appropriate.

Review of the base model

Thompson (1992, see also Jensen.
1973> defined a simple dynamic pool
model as one that reflects the follow
ing assumptions: 1) cohort dynamics
are of continuous-time form; 2) vital
rates are constant with respect to
time and age; 3) fish mature and re
cruit to the fishery continuously and
at the same invariant l"knife-edge")
age; 4> mean body weight at age is
determined by age alone; 5> the stock
lor population I consists of the pool of
recruited individuals; 6> maximum
age is infinite; 7) the stock is in an
equilibrium state determined by the
fishing mortality rate; and 81 recruit
ment is determined by stock biomass
alone. Within the framework pro
vided by these assumptions, particu
lar models are distinguished by the
forms assigned to the weight-at-age
and stock-recruitment functions.

AP, an example, Thompson (19921
developed a particular simple dy
namic pool model than can be solved
explicitly for FMSY' In terms of biom
ass per recruit, the model is basically
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the same as that of Hulme et al. (1947). where body
weight is assumed to be a linear function of age (e.g.,
Richards, 1969):

where M is the instantaneous rate of natural mortal
ity, F'=FIM, BeF') is the equilibrium stock biomass
obtained under a relative fishing mortality rate of F',
b(F',ar) is the equilibrium biomass at a=ar obtained
under a relative fishing mortality rate ofF', and

which can be interpreted in this model as the pristine
ratio of growth to recruitment (Thompson. 19921.

Thompson (992) extended the model described in
Equation 2 by incorporating a stock-recruitment rela
tionship of the convex power form suggested by Cushing
(971):

(8)

(7)

1

K"+ 1
K"-1

q= K"+2

A common rule of thumb is that F~s}' should equal 1
(Alverson and Pereyra, 1969; Thompson, 1992). The
locus of parameter values for which this rule holds
precisely is given by

Another behavior of interest is the ratio of BW;'SI')
to B<O). Here. this ratio has a lower limit of (K"-ll/
(4K") (at q=O) and an upper limit of lie (at q=l).

The base model presented in Equations 1-6 can be
modified in a number of ways. Although such modifi
cations may make it more difficult to obtain an ex
plicit solution for FMSY' they may also provide some
guidance as to the generality of the base model's be
havior. Four modifications will be considered here:
1) replacing the Cushing stock-recruitment equation
with an equation of the form suggested by Beverton
and Holt (1957); 2) generalizing from linear growth to
a flexible form of von Bertalanffy (1938) growth; 3)
allowing the ages of recruitment to the fishery af and
the mature stock am to diverge; and 4) allowing for a
finite maximum age in the stock. For each modifica
tion (except the fourth), polynomial solutions for F;"s}',
F:,ox, and the locus at which F;"sy = 1 will be derived,
and the upper limit to the ratio BlF;"sy)/BCO) will be
presented. The potential bias introduced by use of the
base model will also be examined graphically for each
modification.(4)

(1)

(3)

(
a-a)w(a) = W

r
__r ,

ar-aQ

where a represents age, ar is the age of recruitment, ao
is the age intercept, weal represents individual weight
at age, and W r is the weight at recruitment.

For a given recruitment level, stock biomass in the
model is given by

B(F') =(bW',ar ») (I + K" + F') (2)
. \ M \ (1 + F')2 ,

where p and q are constants and O:S;q:S;1. In the limit
ing case of q=O, recruitment is constant, while in the
other limiting case of q=l, recruitment is proportional
to biomass.

Substituting Equation 4 into Equation 2 and rear
ranging terms gives the following equation for equilib
rium stock biomass:

Beverton-Holt recruitment
The choice of stock-recruitment relationship can have
an appreciable impact on the resulting estimate ofFMSI'

lKimura, 1988). For comparative purposes, the stock
recruitment relationship of Beverton and Holt (1957)
can be substituted for the Cushing form used in the
base model. It will prove convenient to parametrize
the Beverton-Holt equation as follows:

Multiplying both sides of Equation 5 by MF' then
gives the equation for sustainable yield, which is maxi
mized at

(9)

F' -(q+llK"+I+v'(q+l)2K "2+(6q-2)K"+I_1
MSY= 2q , (6)

b(F'.a ) = Q BIF')
r PBlF') + 1 '

where Q represents the slope of the curve at the origin
and P represents the ratio between the slope at the
origin and the height of the asymptote.

Substituting Equation 9 into Equation 2 and solv
ing for B(F') gives

where F~s}' = FMs}'IM.
In the special case where q=O, Equation 6 reduces to

the solution for F:lRx (=Frno/Ml:

BeF') = (1-)( QO + K" + F') -1\
P Ml.1 + F')2 ~ ,

lIO)
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which is the analogue to Equation 5 for the Beverton
Holt recruitment case.

Q' = (_F~~~sl':....+_1_)3 _
F~sY + 1 -lF~sY - l)K"

(151

where Q' = Q/M.
It is possible to solve Equation 11 explicitly for F~sY.

For the case where K">1,

Polynomial solution

Multiplying Equation 10 through by MF', differentiat
ing with respect to F', and setting the resulting ex
pression equal to zero gives the following polynomial
solution for F~sY:

(17)

<161

4/("

Q' < K'·J -1

The relative fishing mortality rate described by Equa
tion 16 need not be unrealistically high. For example,
it will be less than F~a.T whenever the following rela
tionship holds:

Another difference between this model and the base
model is that here F~sY reaches zero at Q'=l!(K"+U,
whereas F~s}' in the base model does not reach zero
until q=l. Still another difference is that here the up
per limit to the ratio B(F;"sy)IBIO.1 is 0.5, contrasted
with lie in the base model. In both models, this limit
is reached as F~sl' approaches zero.

Finally, the behavior of this modification differs from
that of the base model in that extinction is possible
here, owing to the Beverton-Holt curve's finite slope at
the origin. Extinction occurs here at

Q' + ..)(4/(" + Q')Q'
---=------=--~---1.

2

(12)

For the case where K"=l,

The parameter Q' functions inversely to q in the
sense that Equations 11-14 reduce to Equation 7 as
Q' approaches infinity (the F~ax case), whereas Equa
tion 6 does so as q approaches zero. As Q' increases,
F~sl' increases monotonically, whereas F~sl' decreases
with increasing q in the base model.

As with the base model, Equations 11-14 contain
F~sY = 1 as a special case. Here this is obtained when
Q' = 4 or when K" approaches infinity. This contrasts
somewhat with the base model, where keeping F~s}' at
a constant value of 1.0 required an inverse relation
ship between q and K". However, it should be pointed
out that F~sY= 1 is a very special case in the Beverton
Holt form of the model, since this turns out to be the
only constant value of F~sl' that does not imply some
sort of relationship between Q' and K". In fact, a di
rect relationship between Q' and K" is required for all
constant values ofF~sy > 1, as described below:

(18)q=

Bias resulting from the assumption of
Cushing recruitment

Assuming that the stock-recruitment relationship follows
the Cushing form when it actually follows a Beverton
Holt form can lead to a biased estimate of FMSY' 'Ib com
pare stock-recruitment curves, Kimura (1988) observed
that a two-parameter function can be defined by any
two points on the curve. In his example, Kimura used
hypothetical stock-recruitment "observations" at the pris
tine biomass level and at one-half the pristine biomass
level. Kimura conjectured that recruitment might be
reduced to about 90% of the pristine level when biom
ass has been reduced by 50% relative to its own pris
tine level, a suggestion which has been endorsed by
others (e.g., Clark, 1991). Given the other parameters
used in his example, Kimura found that the FMSl" value
under a Beverton-Holt stock-recruitment relationship
was much less than the value under a Cushing rela
tionship fit to the same two stock-recruitment points.

However, there is no reason to believe a priori that
a Cushing relationship is necessarily less conservative
than a Beverton-Holt relationship in terms of its asso
ciated FMS}' value. Note that Equation 6 can be solved
explicitly for q as a function ofK" and F'MSl' as follows:

K" + 1 - (K" - l)F~sl'

(14)

(13)F;"sy = (2Q')1/3 - 1.

For the case where K"<l,

, "l-K")Q' ~ 1 -I
FMSy =2 3 cos~3) cos

n-i")Q]) -1 .
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A general growth function

The linear growth function used by Thompson (1992)
may be viewed as a special case of the following more

Alternatively, the lower intersection can also be de
fined in terms of relative recruitment (as opposed to
relative biomass). To cause Cushing and Beverton-Holt
curves to intersect at (B(O),b(O,a,) and at some frac
tion 0 of b<o,a,), set

and p as in Equation 20.
Biases resulting from placement of the lower inter

section at 50% and 10% of B<O) are compared in Fig
ure 2, A and B, respectively. Note that use of the 50%
value las in Kimura's [1988] example) causes large
and uniformly positive biases in the base model's esti
mate of FMSY' On the other hand, use of the 10% value
constrains bias to the +1- 10% range over a large por
tion of parameter space.

Biases resulting from placement of the lower inter
section at 90% and 50% of b<O,a,) are compared in
Figure 2, C and D, respectively (the 50% reference
point has been suggested by Mace1 and Myers et a1.2).

As with the relative biomass reference level, use of
Kimura's (1988) relative recruitment reference level
(90%) causes large and uniformly positive biases in
the base model's estimate of FMS}' over a large portion
of parameter space. On the other hand, use of the 50%
value constrains bias to the +1- 10% range over a siz
able region.

As Figure 2 illustrates, then, there is reason to be
lieve that the form of the stock-recruitment curve
(Cushing or Beverton-Holt) may not be particularly
important in terms of the resulting estimate of FMS}' so
long as the candidate curves intersect at a fairly low
level. In other words. fishery managers need not al
ways view an estimate of FMsr as being critically de
pendent on the form of the stock-recruitment curve.

(21)
InlO)

q = 1- -----------
In(8) -In[(1- m(K" + llQ' + 6]

Substituting Equation 12, 13, or 14 into Equation
18 thus gives the q value that sets FMSY under a
Cushing stock-recruitment relationship equal to FMSY
under a Beverton-Holt relationship. Assuming that both
stock-recruitment curves are parametrized to pass
through the same pristine stock-recruitment point
(B<O),b(O,a.,»), this q value implies a second intersec
tion at some lower biomass level. It turns out that this
lower level is always less than about 20% of B<O) (Fig.
1A) and greater than about 20% of blO,a.,) IFig. 1B). In
other words, Kimura's (1988) placement of a lower
intersection at 50% of B(O) would always cause the
Cushing model to overestimate FMS}' Placing the lower
intersection at a biomass level less than 20% of B<O),
however, might result in either an over- or under
estimate.

For example, one rule of thumb (Clark, 1991) holds
that FO.l lthe fishing mortality rate that reduces the
slope of the yield-per-recruit curve to one-tenth of the
slope at the origin), F35% (the fishing mortality rate
that reduces the level of spawning biomass per recruit
to 35% of the pristine level> and M should be approxi
mately equal. In the base model, this rule of thumb
holds exactly at K"=1.5 (Thompson, in press). In the
base model with Beverton-Holt recruitment, then,
FMSy=Fo.l=F.1.5'1<=M at Q'=4 and K"=1.5. These param
eters imply a stock-recruitment curve in which recruit
ment is reduced from b(O,a,) by exactly 1/11 when bio
mass is reduced to 50% of BIO), and in which
recruitment is reduced from b<O,a,) by exactly 50%
when biomass is reduced to 1/11 ofB(OL

In the base model with Cushing recruitment, on the
other hand, FMsy=Fo.l=F35",,=M at q=217 and K"=1.5, im
plying a stock-recruitment curve in which recruitment
is reduced from bIO,a,) by about 18% when biomass is
reduced to 50% of B(O), and in which recruitment is
reduced from bIO,a,) by about 50% when biomass is
reduced to 1/11 of B<O), Thus, in the "rule of thumb"
case, the form of the stock-recruitment curve ICushing
or Beverton-Holt) has virtually no impact on the re
sulting estimate of FMS}' so long as the curve passes
through IB<O),b<O,a,)) .and lB<O)/11,b<o,a,1/2).

More generally, to cause Cushing and Beverton-Holt
curves to intersect at <B<O ),b<O,a,)) and at some frac
tion p ofB<O), set

Inlp[(K"+lIQ'-l] + 1) -lnlQ'1 -In(K''+11
q = 1- (19)

Inlp)

and

= t-.!!L)(IK" + l)Q' _l)l-q
P \K" + 1 P .

(20)

'Mace, P. M. 1993. Relationships between common biological refer
ence points used as thresholds and targets of fisheries management
strategies. Dep. Commer., NOAA, Nat\. Mar. fish. Serv.. 1335 East
West Highway, Silver Spring, MD 20910.
"Myers, R. A., A. A. Rosenberg, P. Mace. N. Barrowman, and V.
Restrepo. 1993. In search of thresholds for recruitment overfishing.
Dep. Fisheries and Oceans, St. John's, New Foundland. Unpub\.
manuscr., 14 p.



722 Fishery Bulletin 91 (4), 1993

(23)
(

a -a )"w(a) = W
r

0 ,

ar-ao

number of general growth functions, including
those of Richards (1959, see also Fletcher, 1975),
Savageau (1980>, and Schnute (1981). Schnute
described his parametrization of Equation 22 as
"generalized von Bertalanffy growth" (although
he did not restrict n to integer values). When
n=3, Equation 22 corresponds to the common
("specialized") von Bertalanffy (1938) curve, and,
when n=1, the "monomolecular" curve of Piitter
(1920) and Brody (1928) is obtained.

In the limit as K approaches zero, Equation 22
gives an nth-degree polynomial in age:

82 3 4 5 6 7
Scaled recruitment parameter 0'

0.00 L-_--'-_----'__-'--_-'-__'-_-'-_---'-_--l

o

=0.25r--------------.-----------,

~ A
~ 0.20

Glc::
:; 0.15.;:
Q.

"0 0.10
c::
o
:;..g, 0.05

e
ll.

where K is Brody's growth coefficient, K' = K /M, and n
is a positive integer. In different parametrizations,
Equation 22 corresponds to (or is a special case of) a

which has been used to describe growth (though
not always in weight) by Mendelsohn (1963),
Dethlefsen et al. <1968>, Knight <1968>, Rafail
(1972), Roff (1980), Geoghegan and Chittenden
(1982), Standard and Chittenden (1984>, and
Chen et al. (19921. Equation 1 thus represents
the special case of Equation 22 where K ap
proaches zero and n=1.

Polynomial solution

The polynomial solution for this model is parti
tioned into two cases (K=O and K>O> and derived
in the Appendix.

When K=O, the solution for F~ax can be written
as a polynomial of degree n, and the solution for
F~Sl' can be written as a polynomial of degree
n+1. When K>O, the solution for F;,ax can be writ
ten as a polynomial of degree 2n, and the solu
tion for F~sY can be written as a polynomial of
degree 2n+1. As with the base model, the solu
tion in either case indicates that maintaining an
F'MS1' value of 1.0 requires an inverse relation
ship between q and K" (which, as in the base
model, can be written explicitly). Likewise, the
upper limit to the ratio B(F~Sl·)/B(o) is the same
as in the base model (lie) in both cases.

The polynomial solution can be manipulated
easily to· show how it varies across the range of
possible K', q, and K" values. For example, sev
eral limiting values of F:',ax and F~sY are shown

in Table 1.

Bias resulting from the assumption of
linear growth

Assuming that growth is linear when it actually fol
lows a generalized von Bertalanffy form can lead to a

(22)

2345676
Scaled recruitment parameter 0'

Figure 1
Location of the zero-bias intersection of the Cushing and Beverton
Holt stock-recruitment curves. Horizontal dashed lines represent
limiting values, obtained in the limit as FMS'; goes to zero. Proceed·
ing from left to right along a given horizontal dashed line, the curves
which intersect the line correspond to K" values of 2.0, 1.5, 1.0, and
0.5, respectively. Given values of the composite parameter K" and
the scaled Beverton-Holt recruitment parameter Q', fixing the lower
intersection of the recruitment curves at the point identified by the
appropriate locus in this figure causes the base model to give the
same value for FMSt' as the Beverton-Holt modification. (A) Zero-bias
intersection defined in terms of relative stock biomass. Points below
and to the left of the curves result in negative bias, while points
above and to the right of the curves result in positive bias. IB) Zero
bias intersection defined in terms of relative recruitment. Points
below and to the right of the curves result in negative bias, while
points above and to the left ofthe curves result in positive bias.
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(
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Figure 2
Isobias loci obtained when the base model is used to approximate the Beverton-Holt modification under four calibration methods.
(A) Isobias loci obtained when the lower intersection of the Cushing and Beverton-Holt stock-recruitment curves is fixed at 50% of
pristine biomass. Loci corresponding to biases in F,;'SI' of 30% Ib=0.31. 40% Ib=OAI, and 50% Ib=0.51 are shown. IB) Isobias loci obtained
when the lower intersection of the Cushing and Beverton-Holt stock-recruitment curves is fixed at 10% of pristine biomass. Loci
corresponding to biases in F~'SI' of -10% Ib=-O.ll. 0% Ib=OI. and +10% (b=+O.ll are shown. (C) Isobias loci obtained when the lower
intersection of the Cushing and Beverton-Holt stock-recruitment curves is fixed at 90% of pristine recruitment. Loci corresponding to
biases in F,;'SI' of 30% Ib=0.31. 40% (b=OAI. and 50% Ib=0.51 are shown. ID) Isobias loci obtained when the lower intersection of the
Cushing and Beverton-Holt stock-recruitment curves is fixed at 50% of pristine recruitment. Loci corresponding to biases in F,~SI' of
+10% Ib=+O.ll, 0% (b=OI. and -10% (b=-0.11 are shown.

biased estimate of FMSI" One way to compare the two
types of curve is to require that they intersect at lOr

and that they imply the same pristine biomass-per
recruit level. In the base model, stock biomass per
recruit is obtained by multiplying Equation 2 through
by wJbIF',a). When Equation 22 or 23 is used to rep
resent growth, stock biomass per recruit is given by
Appendix Equation 5 or Appendix Equation 11. When
growth curves are forced to intersect at lOr and pris
tine biomass per recruit levels are equated, the follow
ing parametrization is defined:

!C'=ll-e-K'/K,")-,,(I. l-llkIZle-kK'/K'" )-1, (24)
k=O kK' + 1

where l'k) is the binomial coefficient (Appendix) and
Ie is the estimated value of K" used to define the
linear growth relationship (assuming that M and u..
~re the same under both weight-at-age relationships,
K" is distinguished from K" by the fact that the age
intercepts of the two curves differ-Equation 3.>.

Substituting Equation 24 for K" in Equation 6 gives
F;ISI' in the base model when the linear growth func
tion is fit in the manner described above. This F.~tsr

value can be either higher or lower than the value
given by the solution derived in the Appendix. For the
case where n=3, Figure 3 shows the range of +/- 10%
bias for four values of K", along with the loci of zero
bias. Note that at low values of K" le.g., 0.5), the two
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Table 1
Limits on F:QX and F.~sr under generalized von BertalanfTy growth.

K'=O K'~oo

LimitsonF:"'"
F' _1K" F~ax -+ 00-+ 00 max -Ii

F:nax --+ 00 K" = lim ~ K' ) 1 K" ~oo
K'~O In(nK'+11 =~

Limits on Fils)'
, l-q , l-q

Ie' ~oo FMsr = -- FMsr=--
n+q q

K"=O
. l-q , l-q

FMsr = -- FMS\'= --
q q
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F;"s}' values tend to be close over a large portion
of parameter space, but that as K" increases, the
base model's estimate of F;"sy is more likely to be
significantly biased.

Divergent ages of recruitment
and maturity
As defined by Thompson (1992), all simple dy
namic pool models assume that fish recruit to
both the fishery and the mature stock at a single
age aT' However, in more complicated dynamic
pool models, it is common for the age (or size) of
recruitment to the fishery to be treated as a man
agement variable.
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Figure 3
Isobias loci obtained when the base model is used to approximate the generalized von BertalanfTy modification under four values of the
composite parameter Kln=3 in all cases). Solid curves indicate loci of zero bias in F;"s\" The dashed curve to the left of the solid curve in
each panel indicates the locus of +10% bias, while the dashed curve on the right indicates the locus of -10% bias. lAl Isobias loci for
K"=0.5.lB) Isobias loci for K"=1.0. leI Isobias loci for K"= 1.5. lDI Isobias loci for K"=2.0.
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To accommodate this change, the Cushing stock
recruitment relationship (Equation 4) has to be re
written to specify that only the mature biomass BmW')
contributes to recruitment:

where

(lIK") =(K,[) ( 1 + K;~ ) -K"-l.
r K" -e 1~ rm _-_

e ., K~

(30)

where K'[ = 1/[M1ar- ao)], after Equation 3.

Equation 2 can be rewritten to express total fishable
biomass as

(32)
IK'[ + 2) (K'[ + 1)

q=l------
4(lIK'[) + (K'[ + 2)2

The solution for F:nax in this model is the same as in
the base model IEquation 7).

Equation 31 contains F~'SI' = 1 as a special case,
obtained when the following relationship holds:

(11- q)[(lIK'[)(l-K'[)+l]-l)F'Msl+

(l--q)[(l(K'[)(3-K'[)+2K'[+3]-3K'[-2)F~sl+
(31)

(l--q )[(lIK'[)(3+K'[)+K?+4K'[+3]-2K?-3K'[-1)F~Sl'-+

ll--q)[(l(K'[)(l+K'[)+K?+2K'[+l] = O.

Just as the base model required an inverse relation
ship between q and K" in order for F~sY to equal 1.0
(Equation 8), this model requires an inverse relation
ship between q and K,[. Likewise. the upper limit to
the ratio BIFMsy)IBIO) is the same as in the base model
(lie ).

Multiplying Equation 29 through by MF'. differenti
ating with respect to F', and setting the resulting ex
pression equal to zero gives the following polynomial
solution for F~sY Iwhich collapses to Equation 6 when
K'[ =K:,):

(25)

B/F') + (bIF',ar))f!. + K'[ + F\ (26)
M \ (l+F')2 r

=(b(F',am )) rf1 + 1 )
M l\ M(a.. - ao)

where K:. = lI[M(a.. - ao)]. after Equation 3.
Total mature biomass can then be expressed as

Polynomial solution

Age at recruitment exceeds age at maturity In the
case where ar exceeds am, recruitment to the fishery
and to the mature stock are related as follows:

(28)

=(blF',am )) E+K" - ~( - ;)(I:' K"~~+BJF')M m -e K"+ m r'
r

Age at maturity exceeds age at recruitment Another
possible modification is to allow am to exceed af. This
requires rewriting Equation 27 as follows:

(33)

The previous expressions for recruitment (Equation
25) and equilibrium fishable biomass (Equation 26)
can be applied without modification. However. because
the entire mature stock is subject to both fishing and
natural mortality, the previous expression for equilib
rium mature biomass IEquation 28) is simplified to

= blP',a.. )(1 + K:,) - bIF',ar) 11 + K,) + B,cF'1.

M

Equations 25-28 constitute a set of four equations
in four unknowns [b(F',a.,), blP',am ), B,W'). and B..IF')].
Solving simultaneously gives

1 K" F' 1 K" F' q

B;'F') = ~~)( (;+]:.)2 )[(~)t t1+~)2 )+(l(K,jl~ • (29)
B (F') =~IF',am':\f!:+ K:, + F\

m r M Jr (1 + F')2 J (34)
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Solving Equations 25, 26, 33, and 34 simultaneously
gives

The fact that F' appears in the exponent in Equation
35 complicates the solution for F;"sy somewhat, increas
ing the degree of the polynomial solution to four:

BIF') - f.l!-)f.1+Kr+F')rfL)I!+K::'+F') X
I' - \M \ (l+F')2 l\M \ (l+F')2

(
K" ) -u + F', (J - ..!..)] ..!..._, e 1[..-:' Ai l-q.

K"m

(35)

The results for the case where at<am are similar,
except that here Equation 6 tends to overestimate
rather than underestimate F;"s}' Loci of +10% bias are
shown in Figure 4B for four values of K';". Parameter
combinations below a particular curve and above the
horizontal line K'{=K';" result in an F;"sl' estimate that
is within 10% of the value given by Equation 31. Again,
the base model's solution is fairly sensitive to K'f when
K:, is low (e.g., K:,=0.5), while at higher values (e.g.,
K:,>1), the base model's solution is less sensitive.

(...1- L) F' 4 ~K" K" 3 (....!... 1....\ 1~ F' 3K';,,-K'f q MSI'+ L( f+ m+ ) K:,-K'f}+]q A-ISl'+

~K'fK~n + 2K'f+ 2K:, + 3) (~';,,- ijq +

(2K';" + 3)q + K;:- 1] F;"'S1'2 + (36)

r(K'f + 1)(K;~ + 1)(~. - ~.) q + (K'f + 3)(K:, + 1)q +l m f

K'fK';" - K:, - 2]F;"sy - (K'f + 1)(K:, + 1I(1-q) = O.

The solution for F~ax is the same as in the base
model (Equation 7).

Equation 36 contains F;"sy= 1 as a special case, ob
tained when the following relationship holds:

K:, + 2 (371

q = (K;+2XK;;,+2)hL- i'f)+K{(K;:,+1)+3K';,,+4 .

As with the base model (Equation 81, the above ex
pression implies an inverse relationship between q and
K'f. Likewise, the upper limit to the ratio B(F;"sl')IBIO)
remains the same (lie l.

Bias resulting from the assumption of a,=am

When a,>am , Equation 6 tends to underestimate F;"SI"
Loci of -10% bias are shown in Figure 4A for four
values of K:,. Parameter combinations above a par
ticular curve and below the horizontal line K'f = K';"
result in an F;"s}' estimate that is within 10% of the
value given by Equation 31. Note that the base model's
solution is fairly sensitive to Kr when K;~ is low. For
example, when K';,,=0.5, almost any value of K'f<K.:,
will result in Equation 6 underestimating F;,sl' by more
than 10%. At higher K';" values (e.g., K:,>1), the base
model's solution is less sensitive.

Finite maximum age

As defined by Thompson (1992), all simple dynamic
pool models exhibit mortality and growth rates which
are independent of age (above the age of recruitment I.
This implies that there is no maximum age. However,
in more complicated dynamic pool models, it is com
mon to specify a maximum age above which all re
maining fish die in knife-edge fashion. As noted by
Fletcher (1987), misspecification of maximum age
can introduce significant bias into some models. When
the base model is modified so as to exhibit a finite
maximum age (ama,), Equation 5 will tend to overesti
mate true equilibrium stock biomass, which can be
written as

[
p {!(" + 1 + F'

B(F'I = tM) \ (l + F')2 -

(K" + 1 F')( K") -U+F·'(-2.... ~~~_lmax + __ K" - A-I l-q (38l
(1 F')2 K e ... ,+ max

where K:..x=lI[M(amax - ao)], after Equation 3. The dif
ference inside the exterior parentheses in Equation 38
is proportional to the difference between two calcula
tions of stock biomass per recruit in a population with
infinite maximum age, where the first calculation be
gins the integral (over age) at age ar and the second
begins at age am• x ' Subtracting the second term from
the first adjusts for the assumption of a maximum age
at a=amax'

Because of the presence of F' in the exponential
term in Equation 38, it is not possible to solve for F,~/sl'

explicitly in this modification.

Bias resulting from the assumption of infinite
maximum age

Note that as K;,a.• becomes small (e.g., as am"x becomes
large), the proportion surviving to the maximum age
(the exponential term in Equation 381 goes to zero and
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Conclusion
Four modifications to the base model presented
by Thompson (1992) have been considered
(Beverton-Holt recruitment, generalized von
Bertalanffy growth, divergent ages of recruitment
and maturity, and finite maximum agel. The first
three modifications all increase the degree of the
polynomial solution for FMSY (Table 2), while the
fourth modification renders a polynomial solu
tion impossible.

In order to make the Cushing stock-recruit
ment form of the model comparable to the
Beverton-Holt form, an acceptable approximation
can often be made by equating the pristine stock
recruitment points and placing the other lnon
zero) intersection of the stock-recruitment curves
at a fairly low level (e.g., at 10% of the pristine
biomass level or at 50% of the pristine recruit
ment level).

In order to make the linear growth form of the
model comparable to the generalized von
Bertalanffy growth form, an acceptable approxi
mation can often be made by equating the weights
at recruitment and the pristine biomass-per
recruit ratios.

When the ages of recruitment to the fishery
and to the mature stock diverge sufficiently or
when the maximum age in the stock is sufficiently
low, the base model can produce a significantly
biased estimate of FMSY' Except for the case in
which the age of recruitment to the fishery pre
cedes the age of recruitment to the mature stock.
though, it is helpful to note that the base model
always errs on the conservative side.

In conclusion, it appears that simple models
(at least the base model considered here) may
often perform adequately even when the true dy
namics of the system follow more complicated
formulae. This tends to confirm the results of
studies by Silliman (971), Roff (983). and

Ludwig and Walters (1985), who also found that simple
models could perform at least as well as more complex
versions in a variety of situations.
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when the age of recruitment to the fishery is greater than the age of
recruitment to the mature stock. IB) Loci of +10% bias in Fi.JSI·
obtained when the age of recruitment to the fi!'hery is less than the
age of recruitment to the mature stock.

2.0

0.0
M ~ ~ M U ~ ~ U ~ ~ w

Cushing recruitment parameter q

...
.! 1.6
GI

~...
III
Q. 1.0

.l!!••o
Q.
E 0.6
o
o

Equation 38 collapses to Equation 5. However, at any
positive value of K~,ax, Equation 5 will tend to overesti
mate the true value ofBIF') to some extent. Conversely,
Equation 6 will tend to underestimate the true value
of F~s~" Figure 5 shows loci of -10% bias in Equation
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curves result in a bias ofless than 10% (absolute value l.
For example. a stock with M=0.2. ao=-I. and a",ax=24
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n+1
2n+1

3

Degree

Beverton-Holt stock-recruitment

Modification

Generalized von Bertalanf(y growth
K=O
K>O

Table 2
Degree of polynomial solutions for F'MSI' under various
modifications.

Divergent ages of recruitment and maturity
a,>am 3
at<am 40.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cushing recruitment exponent q

oL-_-'--_-'-__..J.�_~I_~I_ _" ___'__ ___L_~

0.0

Figure 5
Loci of -10% bias in F;"SI' obtained when the base model is used to
approximate the modification in which the maximum age in the
population is finite. Points above and to the left of the curves corre
spond to a bias ofless than 10% (absolute value), while points below
and to the right of the curves correspond to a bias of greater than
10% (absolute value).
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IA5)

The coefficients of the polynomial expansion of Ix)"
are given by Stirling numbers of the first kind, written

I. = (a-a)"BPRIF') = /lI
r

r e-MII + F"lIa -a,' da
Q, ar - ao

lAS)B F '· _ ~PBPR<F'») _1_
( ) _ I-q .

lVr

In general, stock biomass in any simple dynamic
pool model with Cushing recruitment can be written
as the following function of biomass per recruit:

Sl.n, k) = (-!,) t (_1)lk -A' (k) A". (A3)
k. A=O A

"-It (n-1+A)( 2n-k )sIn, k) = L 1-1)A S(n-k+A, Al. (A4)
A=O n-k+A n-k-A

Polynomial solution for a generalized
growth function

K=O Beginning with the simpler case where K=O
(Equation 23l, stock biomass per recruit can be
written

with In)k defined as zero for k<O or k>n.
The number of combinations (i.e., permutations with

out regard to order) of n objects taken h at a time is
given by the binomial coefficient

(n) lnlk n! (A2"
k = k! = k! (n - h)! ' ")

with (;) defined as zero for h<O or k>n.
The number of ways in which an n-element set can

be partitioned into k subsets is given by Stirling num
bers of the second kind, written
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Appendix

Substituting Appendix Equation 5 IA5) into Appen
dix Equation 6l.A6), multiplying thro'l1gh by Mr, and
differentiating gives the following expression:

Some combinatoric terms

In order to incorporate Equations 22 or 23 into the
model, it is helpful to define a few concepts taken from
combinatorial theory (the notation used here follows
Riordan [1980]). First. the number of permutations of
n objects taken h at a time is given by

nl
(n1k = ,

(11 -h)!
(AI)

dYIF') ( pB<F'jQ ) ,.
(IF'" = 11- q) 11 + F'}n+ 2 X

(~ [l.n)kK"k 1.1- kF') (1 + F')II-k]_

q ~ [lnlkK"h (1 + F')n+ I-h]).

<A7l
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The solution to Equation A7 can be written as a poly
nomial of degree n+1 as follows:

lAS)

[ . ] )n+l-k "k ' i ' n + 1~( i )(n)kK q FMsr -qF MSI' = O.

Equation A12 can be rewritten as

d~<J.') = z(F') [ i ((-It(Zle-kK'/K"[l1--q)X
k=O IA14)

(kK' + 1) - qF'] (I!k (mK' + 1 + F')2»)l
The term enclosed in large square brackets in Equa

tion A14 can be expanded to polynomial form. Pro
ceeding in steps, first note that

In the special case where q=O, Equation AS gives
the following polynomial solution for F;.ax:

.-1 .-1n (mK' + 1) = L (-1)rnsl n, n-m) K'rn.
rn=O m=O

(A15)

Equation A7 can be solved explicitly for q. The locus
at which F~fS}.=l is given by

(except for CIo,.= n!), Equation A15 can be extended to

(A17)

(A1G)
rn

(lk,.. = L 1-1)m+Aln -k)Asln -A.n-m)
A=O

Letting

Next, let

lA9)

lAW)
(

1/ [ (K") k] )L kln)k 2
1 1 k=O

q = (2) -. [ . (!C),] .
LIn) k 2
kzO

Note that Equations 6-S constitute the special cases
of Equations A8-A10 where n=1. 13 ( n-m)

k, I... = (lk. m 1 • (A1S)

/(>0 When growth follows the form of Equation 22.
stock biomass per recruit can be written

r - (1-e-K1a - a I-K'/K")'
BPR(F') =Ja, W, \ 1 _ e-~'II"- ) e-Ml1

+ rlla - a,' da

in which case Equation A17 can be extended to

(All)

f. lV, )(. (-1 )k(Z)e--kK'/K")
=\M(l-e-1C/K'Y ~ kK' + 1 + F' .

Substituting Equation All into Equation AG, multi
plying through by MF', and differentiating gives the
following expression:

Then, let

i j

'Yi,j, k=L ( L 13k, I. ,.f3k, i-l.j-m ) ,
/=0 m=minIO,j-n I

in which case Equation A19 can be extended to

(A20)

Letting

Finally, the solution to Equation A14 can be written
as a polynomial of degree 2n+1 as follows:

lA22)

~[2~ (~ 1 k ) k -kK'/X") K"~ ~ ~~ (- ) lZ ( 'Yi.j-I.k + 'Yi,j, k Je J -

2n-l n

( 2. (2. (-l)klZ)lk'Yi,j_l. k + 'Yi,j, k +
j=O k=O

dY(F') MBlF' (1 ( F )~ = ) - • (-l)k('je-kK'/K" .
(1 )~ k .><

-q kkK' 1 F'k=O + +

)

(A12)

1/ (_l)klZle-kK'/IC' •
L-----::.....--
k=O lkK' + 1 + F')2

zIF') = MBlF') (A13)
• (_l)k(')e-kK'/K" 1/ '

n-q)( L kK' kIF' )n (kK'+1+F')2
k=O + + k=O
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In the special case where q=O. Equation A22 gives
the following polynomial solution for F:na..:

731

Equation A14 can be solved explicitly for q. The lo
cus at which F;'sy=l is given by

i [1-l)k(k>e-kK'/K
"( n l.mK'+2)2)lkK+1"l]

k=O m""q = (A24)±[(_1)k(Zle-kK'/K"( n (mK'+2?)lkK+2)]
k=O mok


