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Catch sampling provides data
that are basic to fisheries re­
search and is often an important
component of research budgets.
Samplers typically select fish ran­
domly, measure length, remove
ageing structures, and determine
sex for each individual. In many
schemes for sampling commercial
(e.g., Sen, 1986; Tomlinson, 1971)
and survey catches (e.g., Gun­
derson and Sample, 1980), sample
weight is needed to expand the
sample results to the total catch.
Individual weights are usually
not needed to satisfy the main
objectives. Often only the aggre­
gate weight of the sample is taken
to save time, and if at sea, to
avoid difficult logistics. While
sampling costs are easily justified
by program objectives, scientists
frequently use the data for addi­
tional research.

Investigators often use weight­
length relations to study possible
correlations between condition of
fish and environmental factors or
population density (e.g., Pat­
terson, 1992). A literature search
revealed only two previous devel­
opments of methods of estimating
weight-length relations from
samples of individual lengths and
aggregate weights (WLRAW).
Cammen (1980) used a general
nonlinear regression program
from the BMDP package (Dixon,
1983) as a WLRAW method. He w

tested the method with simulated
data and compared the results of
regression using unweighted ob­
servations t'J using observations
weighted hy the inverse of sample

198

weights, and with various esti­
mates made when individual
weights were known. Since the
data were simulated, assuming a
multiplicative error term, it would
have been more appropriate to
use the inverse of sample weight
squared for weighting. The non­
linear method produced good fits
to the simulated data, and
weighted parameter estimates
were closer to the true values
than unweighted estimates.
Damm (1987) developed two non­
linear WLRAW methods. One
method is a biased approxima­
tion, and his report indicated that
the other method did not always
produce estimates of the param­
eters.

In this note I describe a new
WLRAW method, compare it with
Cammen's method, explore error
term characteristics, and describe
bootstrap estimates of confidence
limits of estimates. The methods
of Damm (1987) were not studied
because his biased approximation
method requires as much calcula­
tion as my new method and his other
method does not always work.

Methods

The relation between expected
weight and length of an indi­
vidual fish is usually assumed to
be the power equation,

Where lV; =weight of fish; •

a = parameter,

where Wj = average weight of
fish in sample j,

nj = number of fish in
samplej,

Lij = length of fish i in
samplej,

Ej = error term for
samplej,

j = 1, ... , T,
T = number of

samples.

I assumed that error was additive
because under field conditions
much of the error was due to lim­
its to the accuracy in measure­
ment of sample weights. Because
the dependent variable in Equa­
tion 2 was a sample average, its
variance should contain a compo­
nent which is proportional to the
inverse of nj" Thus in the new es­
timation procedure, I weight each
observation by n· to stabilize the
variance. I made'the assumption
that, after weighting by sample
size, error was random and inde­
pendent ofj.

The new method treated esti­
mation of parameters of (Eq. 2) as
a separable least-squares problem
(Seber and Wild, 1989). For a trial
value of ~ (W), Y.i was calculated
for each sample,

"i

rj = (LI{J)lnj • (3)
1

With the new notation, Equation
2 becomes

(4)
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Zo is the standard deviate of the normal cumulative
distribution that corresponds to the percentile that
corresponds to 0 in the cumulative bootstrap fre­
quency distribution. Efron (1987) called Zo the bias
constant. Efron called a the acceleration constant. It
is related to the skewness of the bootstrap frequency
distribution. Efron gave the following approximation
for a:

If a and Zo are zero, then Equation 7 becomes the
percentile method that is the most frequently used
bootstrap method in the fisheries literature (e.g.,
Sigler and Fujioka, 1988).

I chose to approximate 90% confidence bands
rather than 95% or 99% bands because 90% non­
parametric bootstrap intervals tend to perform bet­
ter than intervals that cover a wider portion of the
distribution (Efron, 1988). Following the advice of
Efron, I used 1,000 bootstrap replicates.

Cammen (1980) used the general nonlinear re­
gression program of BMDP to estimate the param­
eters of Equation 2, except that he assumed that the
error term is multiplicative and used total sample
weight instead of average weight as the dependent
variable. The BMDP program uses the Gauss-New­
ton algorithm. I used the same algorithm in the
nonlinear regression program of the SAS package
(SAS Institute Inc., 1989) on a Sun SPARC2 to com­
pare parameter estimates and execution times with
the new method. Since the correct error model is not
known, I also estimated the parameters using
no ~eighting_~nd weight set to lIWj ,lIW/,
n/Mj, and n/~-, and compared asymptotic stan­
dard errors of the parameter estimates. The new es­
timation procedure is simpler than the Gauss-New­
ton approach because it searches for the least
squares by iteratively changing the value of one
parameter instead of two.

I used data collected on chilipepper rockfish
(Sebastes goodei) by a cooperative landing sampling
program of the California Department of Fish and

Ol!>l = estimate of 8whenjth sample has

a very small amount of extra

weighting (t\).

(7)
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IBS(N (z[a]») ~ (J ~ IBS(N(z[l-a])). (51

zeal is the standard deviate that corresponds to the
a percentile of the normal cumulative distribution.

IBS(P) is the value of e that corresponds to the per­
centile P of the cumulative bootstrap frequency dis­
tribution. N(Z) is the percentile of the cumulative
normal probability distribution that corresponds to
the standard deviate Z. z[a] is given by Efron
(1987) as

I then obtained an estimate of a (a') corresponding
to P' by using the standard least squares linear re­
gression with zero intercept method. I used a non­
linear least squares procedure to obtain the estimate
of ~ ( ~). This proced~re was analogous to finding
the transformation, Lt, that minimized the sum of
squares about the linear regression (Eq. 4). Using
this procedure, I estimated brackets for ensuring
that the searching range included ~ with the proce­
dure MNBRAK (Press et aI., 1989). Then I used the
iterative procedure BRENT (Press .et aI., 1989) to
obtain the final estimate. BRENT uses parabolic
interpolation to minimize the sum of squares as a
function of p-. Convergence is assumed when the
procedure does not change the value of Wmore than
a tolerance specified by the user. As previously
stated, observations were weighted by ~.to stabilize
the variance. I implemented the WLRAw method in
double precision using Sun FORTRAN for a Sun
SPARC2 work station.

Bootstrap approximations of confidence intervals
about the line were calculated for the new method.
The literature contains a variety of bootstrap meth­
ods proposed to approximate confidence intervals
(e.g., DiCiccio et aI., 1992). I used the nonparamet­
eric BCa method of Efron (1987) because it often
produces good results and is relatively easy to use.

BCa stands for accelerated bias corrected boot­
strap confidence intervals. Efron (1987) showed that,
in the parametric case, the method is approximately
correct if a transformation to a normally distributed
variable exists. The transformation does not need to
be known and the variance does not need to be con­
stant. While the correctness of the BCa has not been
mathematically proven for nonparametric cases, such
as the WLRAW, Efron (1987) stated, "...empirical re­
sults look promising." The l}Ca confidence limits of an
estimate of parameter 8, e, are
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Figure 1
Residual of average weight lkgl as a function of
expected weight (kg) for chilipepper rockfish
l8ebastes goodei) collected in samples taken from
Morro Bay during July and August 1991.
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als were multiplied by ..Jni , as expected under the
assumption that variance is proportional to the in­
verse of sample size (Fig. 2B). Also, n. produced the
lowest asymptotic standard errors orfhe parameter
estimates of the six weighting factors explored
(Table 1 l. The results shown in Table 1 and Figures
1 and 2 indicated that the additive error model with
weighting by nj was appropriate for these data.
Bootstrap estimates of standard error using the new
method were higher than asymptotic estimates us­
ing the Gauss-Newton method. The bootstrap and
asymptotic normal confidence intervals were narrow
and similar within the range of most observed av­
erage weights but diverged when expected weight
was greater than 0.75 kg even though individual
fish of larger size occurred in many of the samples
(Table 2), The bootstrap confidence intervals were
skewed at the larger sizes. However, the bootstrap
estimates of absolute bias were less than 0.01 kg
except they were -0.01 kg for 450-mm fish and -0.02
kg for 500-mm fish. All estimates of the absolute
value of a were about 0.015, which indicated that a
could have been ignored for this set of data.

The new WLRAW method performed well. Good
fits to the data were obtained and the residuals
agreed with the assumptions. Approximate confi­
dence limits indicated that precise estimates of ex­
pected weight are obtained with a small number of
samples under field conditions for sizes of fish
within the range of most observed average weights.
The method is fast when used on a work station or
on a modern personal computer. The new method is
10 times faster than using the Gauss-Newton ap-

The data from all ports consisted of measurements
from 7,687 fish taken in 186 samples. The procedure
required 1.6 seconds, compared with 18.8 seconds for
the Gauss-Newton method. The Gauss-Newton and
new methods produced parameter estimates that
were identical to six decimal places. Predicted
weights were very close to the results of Phillips
(1964), who used data from individually measured
fish. Sums of squares plotted against Windicated
that there were no local minima. Residuals were not
related to weight, indicating that the additive error
assumption is correct. Sometimes transformation of
Wto In(W) when estimating parameters of power
equations avoids problems due to curvature (Rat­
kowsky, 1983). Transformation was tried and pa­
rameter estimates were identical to the results when
Wwas not transformed. When Wwas transformed,
the procedure required more time to complete, so the
transformation was not used.

Data were available for 583 fish taken from 13
samples taken in Morro Bay, during July and Au­
gust 1991. There were no strong trends between the
residual and expected weight (Fig. 1). There was a
tendency for absolute values of residuals to be nega­
tively correlated with the number of fish in a sample
(Fig. 2A). The tendency was reduced when residu-

Results and discussion

Game and National Marine Fisheries Service to
examine utility of the WLRAW method. Samplers
collected two groups of fish from each sampled land­
ing. For each group a container that holds 22.7 kg
of fish was filled with fish regardless of species.
Then the sampler obtained total group weights to
the nearest lb (0.45 kg) for each species and the total
length of each fish was measured to the nearest mm.
I converted weights to kg. I changed lengths to deci­
meters to minimize potential scaling problems in the
computations. Before using the WLRAW method, I
combined groups within a landing because they may
not be independent.

I first used data for all months during 1991 from
all ports between Morro Bay and Crescent City,
California, to develop, test, and time the software.
Results of the test runs are described briefly in the
Results and Discussion section. More detailed re­
sults are presented for a more typical application of
the method. Investigators are more likely interested
in results from a smaller number of samples taken
from more restrictive scales of time and area than
from data sets like the one used in the preceding
example. I used data for chilipepper rockfish taken
during July and August 1991 from Morro Bay to
illustrate use of the method.
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Table 1
Estimates of standard errors of parameter esti­
mates of weight-length model for chilipepper rock­
fish (Sebasted goodei) collected from Morro Bay
during July and August 1991. The Gauss-New­
ton method was used with observations weighted
by six factors to estimate the parameters, and the
new method with nj as the weighting factor. As­
ymptotic standard errors are shown for the Gauss­
Newton method and bootstrap standard errors for
the new method. Coefficients of variation of the pa­
rameter estimates are shown in parentheses.
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Figure 2
(A) Residual of average weight (kg) as a function of
sample size for chilipepper rockfish (Sebastes
goodei) collected in samples taken from Morro Bay
during July and August 1991. (B) Residual multi­
plied by "nj as a function of sample size.

Table 2
Expected weights for chilipepper rockfish
(8ebastes goodei) collected from Morro Bay dur­
ing July and August 1991, and 90% confidence
about the line. Confidence limits were approxi­
mated using the bootstrap BCa (bootstrap) and
the asymptotic normal methods (normal). Ex­
pected weights were calculated from the esti­
mated weight-length relation (0.0091819
Length3.1758673).

Confidence limits

proach with a standard statistical package. Some of
the difference is probably due to the overhead in­
volved with using the statistical package. When
computationally intensive methods such as
bootstrapping are used, time saved by using the new
method is significant.

The widening confidence limits for expected
weights beyond the range of most observed average
weights indicated use of expected weights beyond
the observed range is extrapolation and should not
be done. This also applies to comparison of param­
eter estimates from different sets of data. If the
range of observed average weights differ much
among the data sets, comparison of parameter esti­
mates is not meaningful. Estimates of the two pa-

Normal Bootstrap
Total Expected

length weight Lower Upper Lower Upper
(dm) (kg) (kg) (kg) (kg) (kg)

3.00 0.30 0.28 0.32 0.28 0.33

3.50 0.49 0.47 0.51 0.47 0.50

3.75 0.61 0.60 0.62 0.60 0.62

4.00 0.75 0.74 0.76 0.73 0.76

4.50 1.09 1.04 1.14 0.99 1.12

5.00 1.52 1.42 1.63 1.31 1.61

rameters of the weight-length relation are highly
correlated even when individuals are weighed and
standard linear regression is used (Lenarz, 1974).
Thus, regardless of the type of data or statistical



202

procedure, I recommend comparison of weight­
length relations among data sets by comparison of
expected weights of fish at sizes within the range
of observed average weights common to all data sets
of interest.

The results of this study suggest that an additive
error term is more appropriate than a multiplica­
tive error term for modeling weight-length relations.
Most previous studies have assumed multiplicative
error, which is implied when the log-log transforma­
tion is used to estimate parameters of the model
from individually measured fish by linear regres­
sion. The multiplicative error assumption has not
been demonstrated correct even when data are
available from fish weighed individually. While good
fits to data are usually obtained under the multi­
plicative assumption, if the assumption is not valid,
statistical inferences may be erroneous. Pienaar and
Thomson (1969) assumed that the error term was
additive for their data and discussed statistical as­
pects of the assumption. Further examination of the
error term form would be interesting.

Copies of the FORTRAN code used in this study
are available from the author.
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