
Norm G. Hall
Western Australian Marine Research laboratories
Perth, Western Australia 6020, Australia

Laurie J.B. Laurenson
School of Biological and Environmental Sciences, Murdoch University
Murdoch, Western Australia. 61 50. Australia

Ian C. Potter*
School of Biological and Environmental Sciences, Murdoch University.
Murdoch, Western Australia. 6 J50, Australia

Comparisons between generalized
growth curves for two estuarine
populations of the eel tailed catfish
Cnidoglanis macrocephalus

*Send reprint requests and correspondence
to the second author.

Manuscript accepted 11 April 1994.
Fishery Bulletin 92:880-889.

results were based on pooled data
for all fish and, thus, did not verify
that this applied equally to each of
the sequential translucent zones.
Moreover, since the data for males
and females were pooled, it was not
possible to determine whether the
growth rates ofthe two sexes in this
system were the same.

A variety of different forms of
growth equations can be calculated
from 1) the lengths at given ages
and 2) back calculations of body
length at each annulus, using the
relationship between body length
and otolith radius. Both calcula
tions use a predetermined "birth
date" for the species. The effective
ness of using length-at-age data
relies on obtaining representative
samples of all age classes. Back
calculations are particularly useful
when certain age classes have not
been sampled effectively but may
produce biased estimates of the
lengths of younger fish, i.e. Lee's
phenomenon (Ricker, 1975). Fur
thermore, the lack ofindependence
of the multiple measures for
lengths at annulus formation ob
tained for a single fish by this
method may introduce a statistical
bias.

The aims of our study were 1) to
validate that each ofthe sequential
translucent growth zones on
otoliths ofC. macrocephalus in Wil
son Inlet and the Swan Estuary
correspond to an annulus and 2) to
construct growth curves for each
sex in both populations, using both
lengths offish at age ofcapture and
back-calculated lengths. These
curves were then used to compare
a) growth between sexes within
each estuary, b) growth between
estuaries, and c) growth calculated
using lengths at age and back-cal
culated lengths.

of Western Australia were previ
ously the main contributors to the
fishery for this species (Laurenson
et aI., 1992), this role has now been
assumed by Wilson Inlet on the
southern coast ofthe state (Lauren
son, 1992; Laurenson et aI., 1993b).
In contrast to the Swan and Peel
Harvey estuaries, Wilson Inlet is
seasonally closed and, because ofits
more southerly location, does not
reach as high a temperature in the
summer (c.f. Loneragan et aI., 1989;
Potter et aI., 1993).

Fish are commonly aged by
counting the number of annuli on
hard structures, such as scales,
otoliths, vertebrae, or spines (e.g.
Beamish and McFarlane, 1983;
Casselman, 1987). However, prior
to carrying out such counts, it is
important to validate that each of
the sequential growth zones is
formed annually (e.g. Beamish and
McFarlane, 1983; Beckman et aI.,
1989; Collins et aI., 1989; Hyndes
et aI., 1992). Although Nel et a1.
(1985) showed that the translucent
zones in the asterisci of C. macro
cephalus from the Swan Estuary
tended to be formed annually, their

The eel tailed catfishes (Plotosidae)
are distributed throughout the
Indo-west Pacific region and com
prise approximately 30 species.
Just over half of these species are
found in Australian waters (Hoese
and Hanley, 1989). The estuarine
catfish or cobbler, Cnidoglanis
macrocephalus Gunther, is one of
three plotosid species that are
found in the marine and estuarine
waters of the southwestern region
of Australia (Kowarsky, 1976;
Hutchins and Swainston, 1986).
Cnidoglanis macrocephalus can
complete its life cycle in estuaries
as well as in coastal marine waters
(Laurenson et aI., 1993a), suggest
ing that the populations ofthis spe
cies in each of the different estuar
ies represent separate demes, a
view supported by the results of
electrophoretic studies (Ayvazian et
a1.,1994).

Cnidoglanis macrocephalus is
the most valuable of several teleo
sts fished commercially in Western
Australian estuaries (Lenanton
and Potter, 1987). While the perma
nently open Swan and Peel-Harvey
estuaries on the southwestern coast
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Materials and methods

Collection of fish

Juvenile and adult Cnidoglanis macrocephalus were
collected by seining at eight sites, gillnetting at nine
sites, and otter trawling at six sites located through
out the basin ofWilson Inlet between September 1987
and April 1989 (see Fig. 1 in Potter et a1. [1993] for
location ofthis estuary and the sampling sites). Some
of the sampling by each method was carried out
monthly, while the rest was undertaken bimonthly
(see Potter et aI., 1993). The seine was 41.5 m long
(stretched mesh =51 mm in wings and 9.5 mm in
pocket), while the gill net consisted of six 30-m con
tiguous panels, each with a different stretched mesh
size, Le. 38, 51, 63, 76, 89, or 102 mm. The stretched
mesh in the wings and codend ofthe otter trawl were
51 and 25 mm, respectively. Seine netting and otter
trawling were carried out during the day, while gill
netting was undertaken overnight. A small number
oflarval and post-larval C. macrocephalus were also
collected in night-time plankton tows (Neira and
Potter, 1992) and from their nests by dip net (Lauren
son et aI., 1993a).

Sampling in the Swan Estuary employed winged
funnel traps between August 1982 and April 1983
(see Nel et aI., 1985). Fish were also taken in a seine
and otter trawl similar to those used in Wilson Inlet
and with gill nets containing panels with the same
mesh sizes as those employed in Wilson Inlet, but
with additional panels of 13- and 25-mm mesh.

Validation of translucent zones as annuli
and otolith measurements

The first 10 males and 10 females of C. macro
cephalus caught in each panel ofthe gill nets at each
site in Wilson Inlet on each sampling occasion, to
gether with all fish caught in seine nets, were kept
for ageing. All fish caught in otter trawls, except for
a small number that were retained for tagging ex
periments, were also used for ageing. The total length
and wet weight ofeach fish were recorded to the near
est 1 mm and 0.1 g, respectively. Each C. macro
cephalus was sexed, except in the case ofsmaller fish
kca. 100 mm) where the gonad could not be distin
guished as either ovary or testis. The small, round
asterisci and the larger, elongate lapilli otoliths were
removed from fish and stored dry in envelopes.

Because preliminary examination showed that
translucent zones were more clearly detectable in the
lapilli than asterisci of C. macrocephalus from Wil
son Inlet, lapilli were used for ageing this species in
Wilson Inlet. The lapilli were placed in a bath of
methyl salicylate and viewed under reflected light

against a dark background with a dissecting micro
scope. The number of translucent zones on each
otolith was recorded. Because the outermost opaque
region of the otolith was not sharply defined, it was
difficult to obtain consistent measurements of the
distance between the outer translucent zone and the
edge of the otolith. The mean monthly trends shown
by the width of this marginal increment did not fol
Iowa very consistent pattern and therefore could not
be used to establish that the outer zones on these
otoliths were formed annually (see Maceina et aI.,
1987; Hyndes et aI., 1992). To provide an alternative
method for validating that each of the translucent
zones corresponded to an annulus, the percentage of
lapilli with a clearly defined translucent zone at the
periphery ofthe otolith in each month was calculated
separately for otoliths with one, two, three, four, and
five or more inner translucent zones (e.g. Crozier,
1989; Beckman et aI., 1990).

The difficulty in obtaining consistent measure
ments ofthe marginal increments in the lapilli of C.
macrocephalus from Wilson Inlet was not encoun
tered with the asterisci ofthis species from the Swan
Estuary (Nel et aI., 1985). The measurements of
asterisci and total lengths of C. macrocephalus from
the Swan Estuary were obtained from the raw data
used by Nel et a1. (1985), When two or more translu
cent zones were present, the relative values for the
marginal increment were obtained by expressing the
distance between the outer edge of the outermost
translucent zone and the edge ofthe otolith as a per
centage of the distance between the outer edges of
the two outermost translucent zones. When only one
translucent zone was present, the relative values
were expressed as a percentage of the distance be
tween the outer edge of the outermost translucent
zone and the nucleus. The mean relative marginal
increments are subsequently referred to as mean
marginal increments. The distances between the
nucleus of the otolith and the outer edge of each
translucent zone and the outer edge of the otolith
were measured to the nearest 0.05 mm along the long
axis oflapilli and asterisci otoliths from Wilson Inlet
and Swan Estuary, respectively.

Calculation of growth curves

The relationships g(x) between the natural loga
rithms of total length (Y) and lapillus radius (x) ofC.
macrocephalus in Wilson Inlet, and between the
natural logarithms of total length and asteriscus
radius of this species in the Swan Estuary, were de
scribed by a third order polynomial of the form y = a
+ bx + cx2 + dx3, where a, b, c, and d are constants.
Back calculations of fish length at the formation of
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each annulus followed a body proportional hypothesis (Francis, 1990), using the equation L; = L exp[g<ln(Si»
- g(ln(S))], where L; is the estimated total length at the formation of the ith annulus, L is the total length at
capture, Si is the radius of the ith annulus, and S is otolith radius.

Lengths at age and back-calculated lengths were used to construct growth curves using the traditional form
of the von Bertalanffy equation, L t = L ..O- exp[-k(t - to)])' where L t is the mean body length offish of age t, L ..
is the asymptotic mean length offish in the population, to is the theoretical age at which the length offish is
zero, and k is the growth coefficient. Since the von Bertalanffy curves failed to describe adequately the full
range of data (see Discussion), the more flexible growth curve equation derived by Schnute (1981) was fitted
to the data. There are four possible forms of this equation, depending on the values ofthe parameters a and b,
whereYl andY2 are the lengths ofthe fish at the specified ages T1 and T2 (i.e. ages 1 and 4, which bounded the
majority of the data set in this application).

Case 1: a:;f:O,b:;f:O L [, (' ,1-exp(-al'- T,I)r
t= Yl+ Y2-Yl\-exp(-a(T2-T

1
»)

Case 2: a:;f:O,b=O L [I ( y., J 1- exp (-a (t - T1») ]= y exp og -"- .
t .1 Yl 1-exp(-atT2-TI ») ,

[ T, fbCase 3: a =O,b:;f: 0 L = y b + (yb _ yb) t - I •
t 1 2 1 T. -T '

2 1

Case 4: a=O,b=O Lt =Yl exp [lOg (" Y2) ;-_~ ].
.Yl 2 I

When a >0 and b = 1, the generalized growth curve
is equivalent to the traditional form of the von
Bertalanffy growth curve, with a = k. The resultant
form of the generalized growth equation was deter
mined by the parameters a and b that resulted in
the minimum sum of squared deviations. Data were
fitted by using a nonlinear least squares method,
employing the nonlinear (NLIN) procedure of SAS
(Ihnen and Goodnight, 1987). All back calculations
and curve fittings were carried out separately for
each sex in both populations. Juveniles, for which
the sex could not be determined, were included in
calculating growth curves of both sexes from length
at-age data. Calculations of all curves assumed a
birth date of 1 December in Wilson Inlet and 1 No
vember in Swan Estuary (Laurenson et aI., 1993a),

Each growth curve, fitted by using the traditional
form of the von Bertalanffy growth equation, was
compared with the corresponding generalized growth
curve by using a likelihood ratio test, an approach
adopted with several other fish species (Kimura,
1980; Kirkwood, 1983; Cerrato, 1990; Hampton,
1991; Buxton, 1993). The generalized growth curves
ofboth sexes in Wilson Inlet and Swan Estuary based

on lengths at age and back calculated lengths, were
compared by using the same likelihood ratio test,
which involved determining the improvement of fit
obtained by using the two separate curves, rather
than a common curve. This involved 1) comparing
the curve for males with that for females in each sys
tem, using first lengths at age and then back-calcu
lated lengths; 2) comparing the curves for each sex
in Wilson Inlet with that for the corresponding sex
in Swan Estuary, using first lengths at age and then
back-calculated lengths; and 3) comparing the curves
calculated from lengths at age with those obtained
from back-calculated lengths, first for males in each
system and then for females in each system.

Results

Mean monthly percentages of otoliths from Wilson
Inlet with a peripheral translucent zone and one, two,
or three inner translucent zones followed similar
seasonal trends (Fig. 1). The percentage of such
otoliths rose sharply in early spring and fell to close
to zero in the late spring or early summer where they
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Figure 1
The percentage of lapilli of the eel tailed catfish
Cnidoglanis macrocephalus from Wilson Inlet pos
sessing a clearly defined peripheral translucent zone
in each month. Data are presented separately for
otoliths in which there are one to five or more inner
translucent zones. Black rectangles on the x-axis
represent summer and winter months, white rect
angles the autumn and spring months.
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Figure 2
Mean relative marginal increments for
asterisci otoliths of the eel tailed catfish,
Cnidoglanis macrocephalus from the Swan
Estuary. Recalculated from the data used
by Nel et a1. (1985). Data are presented
separately for otoliths in which there are
one to four or more translucent zones. Stan
dard errors are given when sample size was
~3. Black rectangles on the x-axis represent
summer and winter months. white rect
angles the autumn and spring months.

remained through the following summer, autumn, and winter months. Although data for otoliths with both
four and five or more translucent zones were less abundant, they followed a similar trend (Fig. 1). The mean
marginal increment on otoliths with one, two, and three translucent zones from Swan Estuary fell to a mini
mum in the spring and rose progressively during the ensuing summer and early autumn, before levelling off
in the late autumn and winter (Fig. 2). While the number of otoliths with four or more translucent zones was
small, the trend shown by the marginal increment on these otoliths is similar.

A cubic polynomial equation, using logarithm (natural) transformed data, provided the best description of
the relationship between otolith radius and total fish length in both Wilson Inlet and Swan Estuary, when
lapilli and asterisci otoliths were used, respectively (Fig. 3).

The equations were as follows:

Wilson Inlet
Males:
Females:

y =5.700 + 1.38& - 0.19lx2 - 0.315x3 (R2 =0.935, P < 0.001, n =462)
y =5.708 + 1.374x - 0.235x2 - 0.317x3 (R2 =0.926, P < 0.001, n =876>
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Swan Estuary
Males:
Females:

y =6.152 + 0.951x - 0.875x2 - 0.40Ox3 (R2 =0.931, P < 0.001, n =499)
y =6.174 + 1.171x- 0.479x2 - 0.23Ox3 (R2 =0.931, P < 0.001, n =568)

Examination of the otoliths suggests that the curvi
linearity at the upper end ofthese relationships (Fig.
3) is due to the otoliths of larger fish tending to
thicken rather than lengthen.

The lengths of fish of a given age class were highly
variable (Figs 4 and 5). For example, the lengths of
female fish that were about four years old in Wilson
Inlet ranged from 478 to 631 mm and those that were
about three years old in the Swan Estuary ranged
from 351 to 591 mm. The predicted lengths offish,
derived from generalized growth curves, were greater
when lengths at age rather than back-calculated
lengths were used for fish of ages 1 and 2 (Table 1).
The high values for R2 for the generalized growth
curves, derived from both lengths at age and back
calculated lengths, show that these curves fit the data
well (Table 2). The oldest male and female C.
macrocephalus caught in Wilson Inlet were 123/4

years old (718 mm, 1885 g) and 93/4 years old (670
mm, 1738 g), respectively. The corresponding values

for fish from the Swan Estuary were 5 years (582 mm,
1142 g) and 63/4 years (683 mm, 1880 g), respectively.

The use of common curves in the cases of both
lengths at age and back-calculated lengths for each
of the two sexes in each system accounted for 89 to
94% of the observed variance. By assuming that a
difference exists between the growth curves of the
two sexes in each system and with each of the two
methods, the fit was improved by only 0.003% for
back calculated data for the Swan Estuary and 0.3%
for length at age data for Wilson Inlet.

Applying likelihood ratio tests, the length-at-age
growth curves for males and females differed signifi
cantly in both the Wilson Inlet (P<O.OOl) and Swan
Estuary populations (P<0.05). Back-calculated
growth curves calculated for the two sexes also dif
fered significantly (P<O.OOl) in Wilson Inlet but not
in Swan Estuary.

The use of a common curve for each sex by using
both lengths at age and back-calculated lengths for

Wilson Inlet Swan Estuary
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Figure 3
Relationships between the natural logarithms of total length (x) and lapilli ra
dius (y) of the eel tailed catfish Cnidoglanis macrocephalu.s from Wilson Inlet
and the Swan Estuary. Broken lines represent the best fit for a linear regres
sion, the solid lines the best fit for the cubic polynomial equation.
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Figure 4
Growth curves obtained from lengths at age and back-calcu
lated lengths ofthe eel tailed catfish Cnidoglanis macrocephalus
from Wilson Inlet with the method of Schnute (1981). Mean ±1
standard error of the mean of back-calculated lengths at each
age are given.
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Growth curves obtained from
lengths at age and back-calcu
lated length data for the eel tailed
catfish Cnidoglanis macrocepha
lus from the Swan Estuary with
the method of Schnute (1981).
Mean ±1 standard error of the
mean of back-calculated lengths
at each age are given.
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Table 1
The total lengths (mm) at sequential ages of the eel tailed catfish Cnidoglanis macrocephalos in Wilson Inlet and
Swan Estuary, predicted from generalized growth curves (Schnute, 1981) calculated from lengths at age (LAA) and
back-calculated lengths (BeL),

Wilson Inlet Swan Estuary

Male Female Male Female Male Female Male Female
Age LAA LAA BCL BCL LAA LAA BCL BCL

1 203 180 156 158 239 225 185 184
2 335 324 293 298 356 353 324 323
3 436 449 436 448 447 456 436 440
4 513 541 543 556 525 538 527 531
5 573 603 605 613 594 603 601 598
6 619 643 636 638 654 647
7 655 668 650 648 694
8 682 684 657 652
9 703 693 660 653

10 720 699 661

Table 2
The parameters of the generalized growth curves fitted to lengths at age and back-calculated lengths for the eel
tailed catfish Cnidoglanis macrocephalus in Wilson Inlet and Swan Estuary'Yl andY2 are lengths (mm) at reference
ages 1 and 4 and a and b are the parameters of the growth equation.

Location Yl Y2 a b R2 n

Wilson Inlet Lengths at age Female 180 541 0.51 0.20 0.90 916
Male 203 513 0.26 1.04 0.92 502

Back-calculated lengths Female 158 556 0.96 -0.99 0.94 2354
Male 156 543 0.82 -0.71 0.96 1102

Swan Estuary Length at age Female 225 537 0.25 0.90 0.91 517
Male 239 525 0.02 1.75 0.85 447

Back-calculated lengths Female 183 530 0.37 0.53 0.90 615
Male 184 527 0.20 1.04 0.85 426

the populations in the two systems accounted for 90
to 94% ofthe observed variance. The additional vari
ance explained by assuming a difference between the
growth curves for each sex in each system improved
the fit to the four data sets by 0.3 to 0.6%. The growth
curves estimated for males from lengths at age and
from back-calculated lengths in Wilson Inlet differed
significantly from those estimated for males in Swan
Estuary using the corresponding types of data; the
same was true for females (p<o.oon

The percentage of the variance explained by the
common curves derived from lengths at age and back
calculated lengths for each sex in each system ranged
from 81% for males in the Swan Estuary to 94% for
both males and females in Wilson Inlet. The percent
age of the variance explained by assuming that the
growth curves determined from lengths at age and

back-calculated lengths are different was improved
by 0.8 and 0.2% respectively for males and females
from Wilson Inlet and by 4.2 and 1.6% respectively
for males and females from the Swan Estuary. The
length at age and back-calculated growth curves for
males in Wilson Inlet and Swan Estuary differed sig
nificantly; the same applied for females (P<0.001).

Discussion

The present study of the lapilli of C. macrocephalus
in Wilson Inlet is the first to demonstrate in a plotosid
that each of the otolith's first four translucent zones,
and probably all other translucent zones, are formed
annually. Furthermore, re-analysis ofthe data ofNel
et a1. (1985) has shown that this also applies to the
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asterisci in C. macrocephalus from the Swan Estu
ary. The importance of confirming that each succes
sive translucent zone is formed annually is demon
strated by the results obtained by Hyndes et ai.
(1992) for whole sagittae of Platycephalus specula
tor in Wilson Inlet. In that species, mean monthly
marginal increments showed a very clear seasonal
trend when individual marginal increments on all
unsectioned otoliths were pooled, irrespective of the
number of translucent zones. However, they did not
show conspicuous trends when the data for the mar
ginal increments on unsectioned otoliths with two,
three, four, and five or more translucent zones were
each plotted separately. In other words, when mar
ginal increment data for all otoliths were pooled, the
pronounced seasonality exhibited by the mean mar
ginal increments on otoliths with one translucent
zone ofP. speculator had an overwhelming influence
on the data set.

The von Bertalanffy growth curve did not suffi
ciently describe the growth ofC. macrocephalus from
Wilson Inlet; the lengths were consistently greater
than the mean length at ages 7 and above and showed
increasing divergence with age. This was far less of
a problem in Swan Estuary where older fish were
less abundant. The generalized growth curve pro
vided better fits to the data than the von Bertanlanffy
curve for males and females in both systems, when
both lengths at age and back-calculated lengths were
used. Furthermore, likelihood ratio tests showed that
this improvement was significant in three ofthe four
cases for the population in Wilson Inlet. Such im
provement is consistent with the observation that
when there is an acceleration ofgrowth early in life,
the von Bertalanffy growth curve does not provide
as adequate a fit as the Schnute, Gompertz, or
Richard's curves CSchnute, 1981; Campana and
Jones, 1992).

While the presence among younger fish of smaller
back-calculated lengths than mean lengths at age
(Table 1) would be consistent with Lee's phenomenon
(Ricker, 1975), it could also have been brought about
by the low numbers of younger fish in the samples.
The fits of the common curves constructed for each
sex in Wilson Inlet from lengths at age and back
calculated lengths were improved by only 0.2% for
females and 0.8% for males when separate curves
were used. However, this was not the case for fish in
the Swan Estuary, where the sum of squares was
improved by 1.6% for females and by as much as 4.2%
for the males. The differences in improvement in fit
in the two systems probably reflects the fact that,
while the 0+ age class in the Swan Estuary was
caught in greater numbers, it tended to be represented
in samples by the larger members of this age class.

The improvement offit obtained by using separate
growth curves was small, both in comparisons be
tween males and females in Wilson Inlet and Swan
Estuary and in comparisons between corresponding
sexes in the two systems. This applied to curves con
structed both from lengths at age and back-calcu
lated lengths. In none of these cases was the sum of
squares .improved by more than 0.6%. However, al
though the differences between the curves for each
sex in each system and for the corresponding sexes
in the two populations were small, and even though
the lengths varied considerably at a given age, the
curves were still statistically different with a likeli
hood ratio test (usually P<0.001). These differences
probably reflect the influence of the large number of
data points used to construct the growth curves.

The small magnitude of the differences between
these growth curves is demonstrated by the fact that
at age 4, the lengths of males and females in Wilson
Inlet and the Swan Estuary, predicted from the gen
eralized growth curve, generally differed by less than
3%, irrespective ofwhether the curve was constructed
from lengths at age or back-calculated lengths. Thus,
although there were usually highly statistically sig
nificant differences between curves, the actual dif
ferences between the curves for the two sexes in each
population and between the corresponding sexes in
those populations are almost certainly oflimited bio
logical significance.

In conclusion, the growth of C. macrocephalus in
Wilson Inlet was similar to that in the Swan Estu
ary. This similarity occurred despite the fact that
water temperatures in the latter system were over
5°C higher in the summer (c.f. Loneragan and Pot
ter, 1990; Potter et aI., 1993). Wilson Inlet is eutrophic
and therefore more productive CLukatelich et aI.,
1987) and consequently contains a greater abundance
of the large deposit-feeding benthic invertebrates l

that make a major contribution to the diet of C.
macrocephalus (Nel et aI., 1985; Laurenson, 1992).
Therefore the similarity between the growth rate of
C. macrocephalus in Wilson Inlet and the Swan Es
tuary may reflect a compensation for lower water
temperatures by greater prey abundance.
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