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Abstract....tI'he application of sta
tolith ageing techniques to long-finned
squid, Loligo pealei, suggests that this
species has a life span ofless than one
year and grows more rapidly than pre
viously thought. In this study we pro
vide direct estimates ofgrowth for long
finned squid in the northwest Atlantic
based on a data set of353 animals aged
by counting putative daily statolith in
crements. We examine empirical pat
terns in length and weight at age and
estimate parameters of a general
growth model. The results indicate that
growth rate increases rapidly as squid
age and that growth in length and
weight is exponential. Although there
is substantial heterogeneity in L. pealei
size at age, sexual dimorphism is evi
dent: males grow more rapidly than do
females and achieve larger sizes. Back
calculated hatching dates show that L.
pealei spawning is not restricted to
spring through late-autumn, as previ
ously supposed. but occurs during win
ter months as well. Differences between
growth rates of squid hatched during
June-October and November-May are
suggested and lend support to the hy
pothesis that growth can be influenced
by seasonal environmental conditions.
We discuss the practical implications
of our findings for the assessment and
management of the long-finned squid
stock in the northwest Atlantic.
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The long-finned squid, Loligo pealei
(also known as the longfin inshore
squid (FAO. 1984), is a pelagic
schooling loliginid distributed in
continental shelf and slope waters
from Newfoundland, Canada tDawe
et al.. 1990>, to the Gulf ofVenezu
ela (Summers, 1983), A substantial
commercial fishery exists in the
northwest Atlantic where annual
landings averaged 17.300 metric
tons (t) during 1963-92. and to
talled 22,300 t in 1993 for an ex
vessel value of approximately $30
million (NEFSC. 1995). Recent ad
vances in the use of statolith incre
ments to age squid directly and re
cent increases in fishing effort in the
northwest Atlantic have led to a re
newed interest in the life history of
this species, and, in particular, its
growth rate.

Several estimates of the growth
rate ofL. pealei have been made by
comparing modes of length-fre
quency distributions (Verrill, 1881;
Summers, 1968, 1971; Cohen, 1976;
Mesnil, 1977; Whitaker, 1978;
Lange. 1980; Lange and Sissen
wine, 1980; Macy, 1980; Hixon et al.,
1981). These studies generally have
suggested that growth rate, mea
sured by change in dorsal mantle
length (ML), ranged from 10 to 24

mm per month, and that growth
rate was dependent upon sex,
hatching date, and season (Hixon et
al.. 1981>. Sexual dimorphism was
evident; males attained larger sizes
than did females (Summers, 1971),
Seasonal effects on growth were
also suggested; higher growth rates
occurred during summer months
and lower rates during winter
months (Mesnil, 1977 J. Latitudinal
differences in age structure and
mean size ofL. pealei have also been
proposed (Summers. 1971 J, namely
that mean size has been suggested
to be greater at higher latitudes.
These studies, combined with the
observed maximum size of approxi
mately 46.5 cm mantle length (Sum
mers, 1968), were consistent with a
maximum life span of roughly three
years in the northwest Atlantic, a
value that was assumed for stock
assessment (NEFSC, 1988).

The inferred growth rates of L.
pealei, based on length-frequency
analyses, should be viewed cau
tiously because they have not been
supported by direct ageing data
(Caddy, 1991). In general, growth
rates of squid might be expected to
vary with prey availability (O'Dor
et al., 1980), temperature (Forsythe,
1993), and population density
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(Dawe, 1988). Squid populations with protracted
spawning seasons, such as that of L. pealei (Sum
mers, 1971; Macy, 1980), can be composed ofnumer
ous broods or microcohorts that may experience dif
ferent growth and survival rates (Caddy, 1991). As a
result, length-frequency samples may consist of sev
eral microcohorts with differing growth rates. Mi
gration ofmicrocohorts with differing hatching dates
and growth rates to and from an area (e.g. Illex
illecebrosus, Dawe and Beck!; Illex argentinus,
Arkhipkin, 1993a) may also substantially influence
the size composition of a local population, and may
bias growth estimates based on length-frequency
data (Hatfield and Rodhouse, 1994). Further,
postspawning mortality of squid may also influence
local size composition ifthe sampled area is a spawn
ing ground. For these reasons, analysis of length
frequency data may be inadequate in representing
the potentially complicated pattern of individual
growth within a squid population. Therefore, it is
highly desirable to have a method to age individual
squid directly.

Statolith ageing techniques (Jereb et aI., 1991)
have recently provided useful information on the age,
growth, and population structure of several squid
species (Rodhouse and Hatfield, 1990a; Jackson and
Choat, 1992; Arkhipkin, 1993, a and b; Arkhipkin
and Nekludova, 1993; Hatfield and Rodhouse, 1994).
Ageing of squid, based on counts of fine increments
presumed to have daily periodicity, was first devel
oped for Illex illecebrosus (Lipinski, 1978) and Loligo
opalescens (Spratt, 1979) in the late 1970's. Subse
quently, studies ofseveral species have indicated that
increments within statolith microstructure are
formed daily (Dawe et eI., 1985; Hurley et aI., 1985;
Lipinski, 1986; Jackson, 1990, a and b; Jackson et
aI., 1993), although the mechanisms that regulate
increment formation have not yet been determined
(Jackson, 1994a).

The application of statolith ageing techniques to
L. pealei suggests that this species has a life span of
less than one year and grows more rapidly than pre
viously thought (Macy, 1995; Macy2). In this study
we provide estimates of growth rate for L. pealei in
the northwest Atlantic based on a data set of 353
animals aged by counting putative daily increments
on statoliths. We examine empirical patterns in

1 Dawe, E. G., and P. C. Beck. 1992. Population structure,
growth, and sexual maturation of short-finned squid at New
foundland, Canada, based on statolith analysis. ICES Coun
cil Meeting, Shellfish CommitteeIK, 33 p.

2 Macy, W. K., III. 1992. Preliminary age determination ofthe
squid. Loligo pealei, using digital imaging. ICES. Shellfish Com
mittee Council Meeting (mimeo), 9 p.
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length and weight at age and estimate parameters
ofa general growth model proposed by Schnute (1981)
by squid sex and season ofhatching. We discuss some
practical implications of our findings for the assess
ment and management ofthe stock in the northwest
Atlantic.

Materials and methods

Sampling

Data used in this growth study consisted of353 squid
collected during 1991-93. Squid samples were ob
tained from catches of a commercial fishing vesseI3
and from inshore research surveys in the northwest
Atlantic (Table 1; Fig. 1). Samples were flash frozen
and stored for subsequent analysis. Basic measure
ments of mantle length (ML) (to the nearest mm),
wet weight (g), and morphometric characters needed
to assess maturity stage according to the scheme of
Macy (1982a) were taken. Statoliths were dissected
from all animals and stored dry in plastic 96-well
immunoassay microplates. Statoliths were randomly
selected from representative size categories of squid
on the basis ofobserved length-frequency distributions
for male, female, and squid of indeterminate sex.

Statolith preparation

Statoliths were prepared by mounting them in a ther
moplastic medium (Crystal Bond, Aremco Products;
cf. Secor et aI., 1991) and by grinding both anterior
and posterior surfaces in a manner similar to that
described by Jackson (1990a). Several steps were
required to prepare a statolith for ageing (Fig. 2).
First, a small piece of mounting medium was placed
on a petrographic slide (26 x 46 mm) and melted with
a hot-air gun. The statolith was then placed in the
fluid medium with its concave anterior side down
and allowed to cool (Fig. 2B). Material was ground
from the exposed convex posterior surface (Fig. 2C)
with a graded sequence (12 ~m to 3 J.Lm) of water
lubricated abrasive films (Imperial Brand lapping
film, 3M Co.) to reveal the nucleus. Progress was
monitored throughout the grinding procedure with
a stereoscopic dissecting microscope. When the
nucleus was clearly revealed, the exposed surface was
polished with O.3-~maluminum oxide polish (Buehler
micropolish) in water on a felt lapidary pad, rinsed
with deionized water, and cleaned ultrasonically.
After the posterior face was ground, the mounted

3 FV Huntress, Deep Sea Fish Co., Point Judith, RI.
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Table 1
Sample sizes of indeterminate-sex. female, and male long-finned squid. Loligo pealei, by collection date, location, source, and
sampling gear. In the location field the map code refers to Figure 1. D.E.M. = Department of Environmental Management.

Number of squid
Collection Location Sampling
dates (map code) Source gear Indeterminate-sex Female Male Total

1991
10 Apr Block Island Sound tl) Pt. Judith Fishermen's Coop. Otter trawli 7 7 14
10 May Vineyard Sound (2) Marine Biological Lab. Otter trawl2 2 2 4
13-15 May Block Island Sound tl) Rhode Island D.E.M. Otter trawl3 1 6 7
16-18 May Narragansett Bay tl) w.K. Macy Dip net4 1 3 4
22 May Block Island Sound (1) Rhode Island D.E.M. Otter trawP 12 20 12 44
17-18 Jul Narragansett Bay (1) Rhode Island D.E.M. Otter trawP 31 8 6 45
31 Jul Narragansett Bay (1) w.K. Macy Dip net4 1 2 3
15 Oct Block Island Sound OJ Rhode Island D.E.M. Otter trawP 28 25 27 80

1992
1 Jan Hudson Canyon (3) FN Huntress Otter trawli 1 1
9 Jan Block Canyon (4 > FN Huntress Otter trawJl 5 5

31 Jan-2 Feb Block Canyon (4) FN Huntress Otter trawJl 2 2
17 Feb Block Canyon (4) FN Huntress Otter trawJl 1 1
11 Mar Wilmington Canyon (5) FN Huntress Otter trawJl 5 5
6-14 May Narragansett Bay (1) Univ. Rhode Island Otter trawlS 27 23 50
7 Oct Narragansett Bay 0) Rhode Island D.E.M. Otter trawP 4 22 14 40

1998
7 Feb Hudson Canyon (3) FN Huntress Otter trawJl 2 4 6

25 Feb-8 Mar Hudson Canyon (31,
Baltimore Canyon (6),
and Lydonia Canyon (7) FN Huntress Otter trawJl 1 22 19 40

I Mesh size not reported.
2 32-mm mesh.
3 6-mm mesh.
4 Hand-held dip net with SCUBA gear.
s 19-mm mesh. Graduate School.of Oceanography. Univ. Rhode lsland, trawl survey described in Jeffries and Johnson 119741.

statolith was reheated to soften the medium and
turned over with a pair of probes constructed of in
sect pins so that the anterior face could be ground
(Fig. 2, C (2) and m. The statolith was oriented with
the dorsal dome elevated and the anterior face was
carefully ground. When the nucleus was clearly re
vealed, the anterior face was polished and cleaned.

Because the statolith of L. pealei grows outward
from the oval-shaped nucleus in a curved manner
(Fig. 2, A and B), a second grinding and polishing of
the posterior surface (Fig. 2E) was generally needed
to reveal the entire sequence of growth increments
from the nucleus to the lateral dome (LD) margin.
Because of this curvature, no single sectioning plane
could have exposed all layers equally well. As a re
sult, the use ofthe typical two-sided grinding method

(Jackson, 1990a; Jereb et aI., 1991) would have pro
duced increments that were difficult to resolve. To
circumvent this difficulty, the posterior surface was
ground a second time (Fig. 2E> at a slightly different
angle to approximate the curved statolith growth
plane. For squid smaller than 2 cm ML, however, a
single grinding ofeach surface was usually sufficient
to reveal the statolith microstructure. After the sec
ond posterior grinding, the mounted statolith was
reheated, and a thin film of fluid medium was
smeared over the uppermost ground surface to im
prove transparency. As the medium cooled, the LD
margin was elevated so that the last-ground plane
was approximately parallel to the surface ofthe slide
(Fig. 2F); this was done to improve the clarity of sta
tolith microstructure under a 40x objective lens.
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Figure 1
Collection sites for long-finned squid, Loligo pealei, samples off the northeast coast of the
United States.

Statolith ageing
A video image processing system with high-resolu
tion monochrome video camera (MTI-Dage 65,
Newvicon) mounted on a compound microscope (Zeiss
Universal) was used to count increments (Macy,
1995). Because of the low contrast seen in L. pealei
statolith microstructure, image enhancement was
employed to identify growth marks. Statolith incre
ments were counted by using transmitted light with
the microscope stage condenser (brightfield> set to
the smallest aperture to obtain maximum depth of
field. A rotatable polarizing filter was also placed
above the field condenser to improve contrast be
tween increments. Within a prepared L. pealei sta
tolith, a series of paired bands that alternate from
light to dark is observable in the LD, beginning at
the nucleus and continuing to the LD margin. Two
fractures that radiate outward from the nucleus are
also apparent. These fractures are not the result of
statolith preparation because they are also found in
unprepared statoliths. In this study, the successive
circumferential light bands in the statolith (appear
ing black in enhanced images) were counted and will
be referred to hereafter as "growth increments."

Counting began with the first check or natal ring
(Lipinski, 1986; Natsukari et aI., 1988, Saleh-Eddine,
1991), which is a distinct oblong-shaped mark

roughly the same size (100-120 ~m) as the major
axis length of a statolith from a L. pealei embryo. Al
though prehatehing increments can sometimes be ob
served (SaIeh-Eddine. 1991; Macy, 1995>, their period
icity, ifany, is unknown. Typically, counting proceeded
along a series oftransects extending outward from the
first check across the LD to the edge. Up to six fields of
view were used to enumerate the increments.

The consistency of increment counts between the
reader of this study and another experienced reader
was evaluated post hoc by using a sample of 76 L.
pealei collected during 1994. Three statistical tests
were applied to determine the consistency between
age readings (cf. Campana et al., 1995): a linear re
gression analysis of paired counts; a paired t-test;
and a paired Wilcoxon rank test. Results of the lin
ear regression of one reader's counts on the other's
indicated that the regression slope was not signifi
cantly different from 1 (b=1.046, CTb=0.033, P=0.17)
and that the regression intercept was not signifi
cantly different from 0(a=1.655, CTa=4.697, P=0.731.
This suggested that the readers' age determinations
were consistent. Results of the paired t-test, how
ever, indicated a significant mean paired difference
of7.6 days (0=2.1, P<O.OOn. Similarly, results ofthe
Wilcoxon signed rank test indicated a significant
median paired difference (P<O.OOl> existed between
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Figure 2
(A) Schematic view of posterior face of Loligo pealei statolith
with a ventro-dorsal cross section indicated from points a to
a}" (B) Cross section [a, a1] from (AI showing the curved plane
where growth increments are counted. (CIAfter initial grind
ing removes the cross-hatched area to reveal the nucleus (1),

the statolith is turned over (2), (D) After the anterior side of
the statolith is oriented with the dorsal dome elevated and
the cross-hatched material removed (1), the statolith is turned
over again to show the posterior face (21. (E) The lateral dome
is elevated while the resin cools and the cross-hatched mate
rial is removed. IF) The polished statolith is covered with mol
ten resin and allowed to cool with the lateral dome elevated.

readers. The results of the statistical tests were
equivocal but suggested that there was a potential
bias between the readers' counts. However, the ap
parent bias was relatively small and did not suggest
that there were substantial differences between the
readers' recognition of increments.

An examination of L. pealei marked with oxytet
racycline supported the hypothesis that statolith in
crements are formed daily (Macy, 1995 I. In particu
lar, one marked squid that did grow appreciably dur
ing a 21-d period was found to have a total of21 sta
tolith increments {Macy, 1995 l. To date, the daily
increment hypothesis has been verified by statolith
marking for several squid species, including [llex
illecebrosus (Dawe et a1., 1985),Alloteuthis subulata

We applied the general growth model of Schnute
(1981) to quantify the relationship between length

Growth model

(Lipinski, 1986), Loligo opalescens (Jackson, 1994b),
Sepioteuthis lessoniana (Jackson, 1990a; Jackson et
a1., 1993), Loliolus noctiluca and Loligo chinensis
(Jackson, 1990b), Todarodes pacifkus (Nakamura
and Sakurai, 1991), Abralia trigonura (Bigelow,
1992), Ommastrephes bartramii (Bigelow and
Landgraf, 1993 l, Onychoteuthis borealjaponica
(Bigelow, 19941, and validation is in progress for
Loligo plei.4 The daily increment hypothesis has also
been verified by using laboratory-reared squid of
known age for £Oligo opalescens (Jackson, 1994bl and
for Sepioteuthis lessoniana (Jackson et aI., 1993), both
loliginids, and is considered to be the best working hy
pothesis for statolith increment formation in L. pealei
on the basis of limited marking data and by analogy
with other loliginid species.

Month of hatching was backcalculated for all
samples by subtracting the estimated age, based
on statolith analysis, from the date of sample col
lection. Samples were categorized by sex (indeter
minate, female, and malel and maturity stage (im
mature, maturing, and mature) to examine
whether size at age was related to maturity stage.
Samples were also categorized by month and year
ofhatching to examine monthly and seasonal pat
terns in size at age. Average monthly growth rates
of individual squid were computed to examine in
dividual variation in growth, where the growth
rate in length was ML (mm) divided by age
(months), and the growth rate in weight was total
wet weight (g) divided by age. Summary statistics
of the average monthly growth rate of individuals
in ML and in weight were computed for squid cat
egorized by sex, maturity stage, hatch month, and
hatch year. Variances ofgrowth rate in length and
weight were log-transformed and tested for homo
geneity by sex, maturity, hatch month, and hatch
year by using Bartlett's test for homogeneity of
variances (Sokal and Rohlf, 1981). Unplanned
multiple comparison tests appropriate for equal
variances and unequal samples sizes (Sokal and
Rohlf, 1981) and for unequal variances and sample
sizes (Games and Howell, 1976; Day and Quinn,
1989) were applied to test whether growth rate in
length and weight differed by sex, maturity stage,
hatch month, and hatch year.

4 Jackson, G. 1994. Department ofMarine Biology, James
Cook Univ., Townsville, Queensland 4811, Australia.
Personal commun.
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whereas the multiplicative error structure consisted
of a lognormally distributed term where, for each
data point,

yet) =Ymin eXP[ln( Ym~x ) t - tmin ], (4)
.Ymtn tmax- tmin

(6)

(5)

The random variables Ei were independent and iden
tically distributed standard normal random vari
ables, and the variance term 02 was a positive con
stant. These two error structures differed in how in
dividual size at age varied about the growth curve.
Use ofthe additive error term implied that the model
error in predicting individual size at age was invari
ant with respect to age. In contrast, the use of a
multiplicative error term implied that the model er
ror in predicting individual size at age was scaled
with size so that more heterogeneity could be ex
pected in size at age as age increased.

Least-squares estimates of growth parameters
under the additive error structure were computed
by minimizing the residual sum ofsquares, RA' where

where Ymin> 0 and Ymax> o.
Two possible error structures were considered for

estimating parameters of the Schnute model: addi
tive and multiplicative. The additive error structure
consisted ofan additive normal term, where, for each
data point,

In Equation 1, it is assumed that a-:t 0 and {3-:t 0 and
that Ymin > 0 and Ymax > O. A second form (case II)
sets the {3 parameter to be 0 in the differential equa
tion defining Y(t). The resulting 3-parameter model
is

and weight at age for L. pealei. This flexible model
includes asymptotic, linear, exponential, and other
growth curves as particular cases. The complete set
of size-at-age data consisted of the 353 squid that
were aged. Size data for the i th individual were de
noted as (ti'Yi)' where t i was observed age in months,
and Yi is either observed length in centimeters or
weight in grams. Additionally, tmax and tmin denoted
the maximum and minimum observed age in months
for any subset of the size-at-age data. In the most
general case, the Schnute model has four parameters:
a, {3, Ymin' and Ynw.x· The parameters a and {3 deter
mine the shape of the growth curve, whereas the
parameters"Ymin and Ymax are the predicted sizes of
the youngest and oldest individuals in the subset of
weight-at-age data. That is'Ymin = Y(tminl andymax =
Y(tma), where Yis the growth model.

There are four general forms for the Schnute growth
model. The most general form (case I) gives size (Y) at
age (t) as

Y(tl=

Y . eXP[ln( Yma:x:") 1- exp[-a(t - tmin )] ]. (2)
mm .Ymin 1- exp[-a(tmax - tmin )]

n

L[Yi - YCti' Ymin' Ymax ' a, /3)]2,
i=1

(7)

where a -:t 0 and Ymin> 0, and Ymax> O. A third form
(case III) sets the a parameter to be 0 in the differ
ential equation defining YCt), This gives

Similarly, least-squares estimates of parameters
under the multiplicative error structure were com
puted by minimizing the residual sum ofsquaresRM,

where

Ylt)=

(3) n [ ( )]2L In Yi
i=1 Y(ti , Ymin' Yma.n a, {31

(8)

where {3 -:t 0 and Ymin > 0, and Yma:x: > o. The fourth
form (case IV) sets both a and {3 parameters to be o.
The resulting 2-parameter model is

We used SAS to compute least-squares estimates of
parameters for the growth models (SAS Institute Inc.,
1989). For the additive error structure, the nonlin-
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ear regression model was given by Equation 5,
whereas for the multiplicative error structure, the
nonlinear regression model was

(9)

wherez j = In(Yi) was the log-transformed size of the
i th squid in the data set.

We estimated parameters of the Schnute growth
model for several subsets of the length-at-age and
weight-at-age data to assess the adequacy of the ad
ditive and multiplicative error structures. The good
ness of fit of the additive and the multiplicative er
ror structures was compared by testing whether the
residuals ofestimated growth curves were normally
or lognormally distributed with the Shapiro-Wilk test
(Shapiro and Wilk, 1965), In particular, parameters
for case I of the growth model were estimated for the
set of pooled-sex samples (n=353) by using the addi
tive and the multiplicative error structures. The set
was then partitioned into immature squid of inde
terminate sex (n=76), female (n=13U, and male
(n=146) samples, and parameters for case I were es
timated. We also partitioned the set into samples
with hatching dates from June to October (n=145)
and from November to May (n=208), and parameters
for case I were estimated. Last, female and male
samples were partitioned into samples with hatch
ing dates from June to October (nF=61 and n,v=76)
and from November to May <.nr 70 and n,v=70), and
parameters ofcase I were estimated. Overall, growth
curves for case I were estimated for each of 10 sub
sets of the length-at-age and weight-at-age data.

We then estimated parameters for cases II, III, and
IV of the Schnute growth model for each of the 10
subsets ofsize-at-age data using the best error struc
ture. For each subset of size-at-age data, the esti
mated growth curves were compared on the basis of
two criteria. First, an estimated growth curve was
rejected ifat least one of its parameters was not sig
nificantly different from 0 at the 5% level of signifi
cance. Second, if more than one growth curve had
significant parameters, an analysis ofvariance ofthe
residual sum of squares (RSS) for full and reduced
parameter cases was used to select the best fit on
the basis of the variance ratio described by Schnute
(1981; see also Bigelow 1994). Acomparison between
cases II and IV tested whether the hypothesis a=0
was acceptable, and a comparison between cases III
and IV tested whether the hypothesis that /3=0 was
acceptable. Cases II and III were compared on the
basis ofthe lowest RSS. For each ofthe 10 subsets of
data, one growth curve was selected as the best rela
tionship between length at age and weight at age.

F:shery' BuHetin 94i2J. i 996

Results

Month of hatching

Long-finned squid hatched during all months of the
year (Table 2). The fact that some samples hatched
during December-April indicated that L. pealei were
successfully reproducing during the winter. Given
this, our data show that L. pealei from the north
west Atlantic have the capacity to spawn through
out the year.

The frequency distribution of hatch month of L.
pealei samples grouped by collection season (Fig. 3)
indicated that several microcohorts were present
within seasonal collections. For the winter collections
(Fig. 3A), most squid were hatched during June--Sep
tember. Considerable variability in squid size was
apparent in the length-frequency distribution (ML
ranged from 6.3 to 44.0 cm [Jl=19.3, u=11.1]). Most
squid in the spring collections (Fig. 3B) were hatched
during August-November. Again, considerable vari
ability in squid size was apparent (ML ranged from
1.8 to 40.8 cm [Jl=16.6, 0=9.0]). For the summer col
lections (Fig. 3C), most of the squid were hatched
during December-March, with the exception of 17
juvenile squid of indeterminate sex from the 17 July
1991 Rhode Island Department of Environmental
Management survey that hatched during May. In
comparison to the winter and spring collections, there
was less variability in squid size within the summer
collections (ML ranged from 1.3 to 16.3 cm [Jl=5.0,
0=3.5]). Most of the squid in the fall collections
(Fig. 3D) were hatched during March-May and ML
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ranged from 1.8-20.0 cm (1l=9.1, 0=4.1). Squid size
in the fall collections was more variable than in the
summer collections and less variable than in the
winter and spring collections.

Patterns in size at age

The average monthly growth rate in ML and weight
suggested that individual growth of L. pealei was
associated with maturity stage (Table 3) because
higher growth rates were apparent for more ad
vanced maturity stages. Relatively large coefficients
of variation for the monthly growth rate indicated
that the pattern of individual growth was highly
variable, especially in terms of weight. Monthly
growth rates ofindeterminate-sex squid averaged 8.8
mm per month in ML (4.6-15.4 mm/month) and av
eraged 0.9 g per month in weight (0.1-3.0 g/montht
Monthly growth rates of females averaged 18.2 mm
per month in ML (8.8-36.6 mm/month) and averaged
9.5 g per month in weight 0.0-40.2 g/montht
Monthly growth rates of males averaged 25.9 :nm
per month in ML (9.6-64.0 mm/month) and averaged
21.4 g per month in weight (1.5-98.2 g/month). The
average growth rates in length offemales and males
were more than twice the average rates for indeter
minate-sex squid. Similarly, the average growth rates
in weight of females and males were more than 10
times the average rate for indeterminate-sex squid.
For males, the average growth rates by length and
by weight were 1.4 and 2.2 times greater than for
females. Overall, these data indicated that individual
growth was highly variable and was related to ma
turity stage and sex.
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Average growth rates were tested for significant
differences by sex and maturity stage by using un
planned multiple comparisons procedures. First,
squid were categorized as indeterminate-sex, female,
or male. With respect to maturity stage, squid were
categorized as mature if they were maturing or ma
ture; otherwise they were categorized as immature
(Table 2). Bartlett's homogeneity ofvariance test was
then applied to the sex and maturity stage groups.
The natural logarithmic transformation was applied
to the growth-rate data to stabilize variance prior to
testing for differences. The null hypothesis ofhomo
geneous variances for growth rate in length was re
jected for the samples grouped by sex (X2=
40A2»X2

0.05[2l=5.99) but was accepted for the
samples grouped by maturity stage (X2=OAO <
X20.05[ll=3.84l. The null. hypothesis of homogeneous
variances for growth rate in weight was rejected for
the samples grouped by sex (X2=9.35»X20.05[2l=5.99)
and by maturity stage (X2=26.46»X20.05[ll=3.84). Be
cause variances were inherently heterol'lcedastic and
sample sizes were unequal, the unplanned compari
son test ofGames and Howell (1976) (Day and Quinn,
1989) was applied to test for differences among group
means oflog-transformed length-at-age data catego
rized by sex. The group means of indeterminate-sex
and female squid ( IY1-YF I=0.71 >MSDo.05[I,Fl=O.14),
indeterminate-sex and male squid (I Y1-YMI =1.00 >
MSDo.05[I,MJ=0.16), and female and male squid (I YF 

YM I=0.30 >MSDo.o5[F,MJ=0.16) were significantly dif
ferent at the 5% level. For the length-at-age data
categorized by maturity stage, the 'fukey-Kramer
comparison test (Sokal and Rohlf, 1981) was used
because variances were homogeneous. The immature

Table 3
Average monthly growth rates and coefficients of variation (ev) in parentheses for long-finned squid. Loligo pealei, in length
(millimeters per month) and weight (grams per month) and average age (months) by sex and maturity stage.

Sex category and mm per month gper month Age (months)
maturity stage Average (ev) Average (eV) Average (ev) n

Indeterminate-sex
Immature 8.8 (25%) 0.9 (87%) 4.4 (35%) 76

Female
Immature 15.8 (29%) 5.8 (70%) 6.2 (14%) 88
Maturing 20.0 (24%) 11.3 (73%) 7.0 (16%) 20
Mature 26.1 (21%) 22.1 (44%) 7.5 (13%) 23

Male
Immature 16.5 (30%) 6.6 (85%) 6.2 (10%) 60
Maturing 21.3 (24%) 12.2 (64%) 6.6 (16%) 15
Mature 34.9 (31%) 35.8 (65%) 7.4 (11%) 71



Brodziak and Macy: Growth of Loligo peale;

and mature groups means were significantly differ
ent at the 5% level ( IY1- YM I=0.78>MSDo.05[l,Mj=0.08).
Because variances were heteroscedastic for the weight
at-age data grouped by sex and by maturity stage, the
Games and Howell test was applied. The group means
of indeterminates and females (I Y1-YF 1=2.47 >
MSDo.05[l,Fl=0.46), indeterminates and males (I Y 1

YM 1=3.08>MSDo.05[I,Mj=0.50), and females and males
(, YF-YM 1=0.62 > MSDo.05[F,Mj=0.40) were signifi
cantly different at the 5% level. Similarly, the im
mature and mature group means were significantly
different at the 5% level (IY1-YM '=2.13 >
MSDo.05[l,Mj=0.32). Overall, the average growth rates
in length and weight were found to be significantly
different by sex and maturity stage.

The pattern of growth of L. pealei analyzed by
month of hatching was also highly variable (Table
4). For indeterminate-sex squid, average growth in
ML ranged from 5.9 (June-hatched) to 11.2 (Septem
ber-hatched) mm/month, whereas average growth in
weight ranged from 0.2 (July-hatched) to 1.9 (Sep
tember-hatched) g/month. No seasonal pattern was
apparent in the average growth rate for indetermi
nate-sex squid. However, few samples of indetermi
nate-sex squid hatched during July to December were
available, and comparisons ofgrowth rate by season
of hatching were not possible. For females, average
growth in ML ranged from 11.1 (December-hatchedl
to 22.5 (October-hatched) mm/month whereas aver
age growth in weight ranged from 2.2 (December
hatched) to 19.5 (June-hatched) g/month. Average
growth rates were generally higher for squid hatched
from June to October when the average growth rate
in weight exceeded 10 g/month. For males, average
growth in ML ranged from 13.9 (December-hatched)
to 40.9 (June-hatched) mm/month whereas growth
in weight ranged from 3.4 (December-hatched) to 53.3
(June-hatched) g/month. Average growth rates of
males were generally highest for squid hatched from
June to October when the average growth rate in
weight exceeded 20 g/month. Overall, these data sug
gested that the highest average growth rates were
achieved by adult squid hatched from June to October.

The average growth rates by hatch month were
also tested for significant differences by using un
planned multiple-comparisons procedures where the
natural logarithmic transformation was applied to
stabilize variance. The null hypothesis ofhomogeneous
variances for the samples grouped by hatch month was
rejected for growth in length (X2=44.41»X2

0.05[llj
=19.67) and in weight (X2=75.71»X20.05[llj=19.67). A
total of 16 pairs of group means for growth rate in
length were significantly different at the 5% level
(Table 5): July-January; July-February; July
March; July-April; July-May; July-November; July-
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December; September-April; September-May; Sep
tember-December; October-January; October
March; October-April; October-May; October-No
vember; and October-December. Overall, these tests
indicated that there were significant differences be
tween growth rates of squid hatched during Novem
ber-May and July-October. Similarly, for growth rate
in weight, a total of 16 pairs of group means for
growth rate in length were significantly different at
the 5% level (Table 6): July-January; July-Febru
ary; July-March; July-April; July-May; July-No
vember; July-December; August-May; September
April; September-May; September-December; Octo
ber-March; October-April; October-May; October
November; and October-December. Overall, these
tests indicated that there were significant differences
between growth rates of squid hatched during No
vember-May and July-October.

There was no consistent pattern in growth of L.
pealei analyzed by year of hatching (Table 7l. For
indeterminate-sex squid. average growth in ML was
lowest in 1990 (8.5 mm/monthl and highest in 1992
(12.3 mm/monthl, whereas average growth in weight
was lowest in 1991 (0.7 g/month) and highest in 1992
(2.2 g/monthl. For females, average growth in ML
and weight was lowest in 1992 (16.3 mm/month and
7.2 g/month) and highest in 1990 (21.5 mm/month
and 15.2 g/month). For males, average growth in ML
and weight was lowest in 1992 (21.9 mm/month and
13.2 g/month) and highest in 1991 (27.8 mm/month
and 25.0 g/month). Overall, these data suggested that
growth rates varied by sex among years.

The average growth rates by hatch year were also
tested for significant differences by using unplanned
multiple-comparisons procedures where the natural
logarithmic transformation was applied to stabilize
variance. The null hypothesis of homogeneous vari
ances for the samples grouped by hatch year was re
jected for growth in length (X2=26.12»X2o.o5[2j=5.99)
and weight (X2=47.90»X20.05[2j=5.99). The group
means of 1990 and 1991 hatched squid were signifi
cantly different in length (I Y1990-Y1991 I =0.28 >
MSDo.05[1990,1991j=0.26) and weight (I Y1990
Y1991 , =0.93 > MSDo.05[1990.1991j=0.67), but no general
trend in growth by year was apparent.

Growth model

The additive and the multiplicative error structures
were compared by testing whether the residuals of
estimated case-I growth curves were normally or log
normally distributed. For 8 out of 10 subsets of
length-at-age data, the hypothesis of an additive
normal error structure was rejected at the 5% level.
In contrast, the hypothesis of a multiplicative log-
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Table 4
Average monthly growth rates and coefficients of variation (ev) for long-finned squid, Loligo pealei, in length (millimeters per
month) and weight (grams per month) and average age (months) by sex and month of hatching.

Sex category and mmpermonth gper month Age (months)
hatching months Average (ev) Average (eV) Average (eV) n

Indeterminate-sex
January 8.3 (27%) 0.6 (58%) 4.2 (9%) 5
February 9.6 <16%) 1.1 (57%) 4.7 (11%) 7
March 10.6 (13%) 1.4 (29%) 5.1 (27%) 10
April 8.7 (24%) 1.1 (71%) 5.6 (22%) 15
May 8.8 (26%) 0.6 (141%) 3.0 (45%1 25
June 5.9 (18%) 0.3 (43%) 4.0 (6%) 6
July 6.1 0.2 3.4 1
September 11.2 1.9 6.2 1
November 8.7 (9%) 1.3 (29%) 6.1 (2%) 3
December 8.4 (23%) 0.9 (74%) 5.3 (3%) 3

Female
January 13.2 (9%) 3.2 (27%) 6.0 (6%) 4
March 15.7 (25%) 5.6 (80%) 5.9 (21%) 16
April 17.2 (33%) 6.7 (68%) 5.8 (6%) 25
May 18.4 (30%) 8.0 (100%) 5.4 (19%) 12
June 19.5 (75%) 19.5 (128%) 7.7 (6%) 2
July 21.2 (21%) 15.9 (66%) 7.818%) 9
August 17.9 (32%) 10.9 (78%) 7.4 (10%) 15
September 19.4 (32%) 11.4 (70%) 7.2 (12%) 17
October 22.5 (31%) 14.7 (74%) 6.9 (6%) 18
November 15.7 (43%) 6.3 <130%) 6.3 (3%) 12
December 11.1 2.2 6.7 1

Male
January 19.6 (46%) 9.1 (100%) 6.0(7%) 2
February 20.5 (22%) 8.2 (12%) 6.1 (22%) 3
March 20.8 (30%) 13.0 (74%) 6.8 <14%) 19
April 17.1 (28%) 6.9(79%) 5.9 (5%) 15
May 21.9 (55%) 15.6 (141%) 5.7 (18%) 10
June 40.9 (19%) 53.3 (37%) 7.8 (11%) 8
July 35.5 (36%) 41.8 (66%) 7.6 (7%) 19
August 27.9 (53%) 25.4 (l05%) 7.4 (12%) 17
September 33.1 (27%) 29.4 (47%) 7.5 (9%) 12
October 29.6 (36%) 21.1 (62%) 6.9 (5%) 20
November 17.4 (46%) 7.8 (l57%) 6.1 (5%) 16
December 13.9 (16%) 3.4 (43%) 5.9 <12%) 5

Pooled-sex
January 12.1 (45%) 3.1 (140%) 5.2 <19%) 11
February 12.8 (45%) 3.2 <108%) 5.1 (20%) 10
March 16.8 (37%) 7.8 (106%) 6.1 (21%) 45
April 14.9 (40%) 5.2 (93%) 5.8 (12%) 55
May 14.0 (61%) 5.6 (215%) 4.2 (42%) 47
June 25.1 (72%) 29.2 (lOI%) 6.4 (31%) 16
July 30.1 (44%) 32.3 (82%) 7.5 <13%) 29
August 23.2 (53%) 18.6 (115%) 7.4 (11%) 32
September 24.6 (41%) 18.3 (77%) 7.3 (11%) 30
October 26.2 (37%) 18.1 (68%) 6.9 (5%) 38
November 16.0 (47%) 6.6(154%) 6.2 (4%) 31
December 11.8 (28%) 2.5 (66%) 5.8 (12%) 9
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normal error structure could not be rejected for any
subset of the length-at-age data. Similarly, for aU 10
subsets of weight-at-age data, the hypothesis of an
additive normal error structure was rejected at the
5% level, whereas the hypothesis of a multiplicative
lognormal error structure could not be rejected for
any subset. AB a result, the multiplicative error struc
ture was considered to be the best assumption for
modelling variability in size at age.

Although the residuals from the curves estimated
with the multiplicative error structure conformed to
model assumptions, the parameters of these curves
were imprecisely determined. In particular, the case-I
curve was rejected for each subset of length-at-age
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and weight-at-age data because there was at least
one parameter that was not significantly different
from O. Thus, the 4-parameter fonn of the Schnute
model had more parameters than necessary to char
acterize L. pealei growth.

For the length-at-age growth curves, most of the
case-II and case-III curves were rejected because
their parameters were not significant. As a result,
there were only 3 instances where comparison ofRSS
was used to select the best curve. The best curve for
pooled-sex samples hatched during June-October
was the case-II curve which was selected over the
case-IV curve because the hypothesis a=0 was re
jected <f=14.98 > 3.91=Fo.o5(l,142». The best curve

Table 5
Results of Games and Howell test ofdifferences between means of log-transformed growth rate in length by hatch month of long-
finned squid, Loligo pealei. Absolute values ofdifferences between means are given below the diagonal and corresponding values
of the maximum significant difference at the 5% level are given above the diagonal. Significantly different means are indicated
with an asterisk.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan 0.94 0.77 0.77 0.78 1.41 0.81 0.80 0.80 0.77 0.77 0.86
Feb 0.06 0.77 0.77 0.79 1.41 0.81 0.80 0.80 0.77 0.77 0.86
Mar 0.34 0.28 0.37 0.44 1.32 0.52 0.49 0.47 0.39 0.40 0.63
Apr 0.21 0.15 0.13 0.44 1.32 0.52 0.49 0.48 0.39 0.41 0.63
May 0.09 0.03 0.25 0.12 1.33 0.56 0.54 0.53 0.46 0.47 0.65
Jun 0.45 0.39 0.11 0.24 0.36 1.34 1.34 1.33 1.32 1.32 1.36
Jul 0.89* 0.83* 0.55* 0.88* 0.80* 0.44 0.60 0.60 0.53 0.55 0.70
Aug 0.62 0.56 0.28 0.41 0.53 0.17 0.27 0.56 0.51 0.52 0.68
Sep 0.70 0.64 0.36 0.49* 0.81* 0.25 0.19 0.08 0.50 0.51 0.67
Oct 0.79* 0.73 0.45* 0.58* 0.70* 0.34 0.10 0.17 0.09 0.43 0.64
Nov 0.28 0.22 0.06 0.08 0.19 0.16 0.80* 0.33 0.41 0.50* 0.64
Dec 0.01 0.05 0.33 0.19 0.08 0.43 0.87· 0.60 0.68· 0.77· 0.27

Table 6
Results of Games and Howell test of differences between means of log-transformed growth rate in weight by hatch month for
long-finned squid, Loligo pealei. Absolute values of differences between means are given below the diagonal and corresponding
values of the maximum significant difference at the 5% level are given above the diagonal. Significantly different means are
indicated with an asterisk.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan 2.85 2.38 2.41 2.52 3.94 2.47 2.42 2.42 2.37 2.41 2.61
Feb 0.18 2.23 2.22 2.37 3.85 2.31 2.28 2.27 2.21 2.22 2.48
Mar 1.14 0.96 1.02 1.49 ~.53 1.33 1.20 1.19 0.94 1.02 1.78
Apr 0.78 0.60 0.36 1.48 3.53 1.32 1.18 1.17 0.93 1.00 1.80
May 0.21 0.39 1.35 1.00 3.62 1.69 1.61 1.60 1.43 1.48 2.00
Jun 1.32 1.14 0.18 0.54 1.53 3.59 3.57 3.56 3.50 3.53 3.65
Jul 2.81* 2.43* 1.47* 1.83· 2.83* 1.30 1.47 1.46 1.26 1.32 1.90
Aug 1.94 1.76 0.80 1.16 2.18* 0.62 0.67 1.33 1.14 1.21 1.85
Sep 2.07 1.89 0.93 1.29* 2.29· 0.75 0.54 0.13 1.13 1.20 1.84
Oct 2.22 2.04 1.08· 1.44* 2.44* 0.90 0.39 0.28 0.15 0.93 1.77
Nov 1.02 0.84 0.12 0.24 1.23 0.30 1.59· 0.92 1.05 1.20* 1.80
Dec 0.23 0.05 0.91 0.56 0.44 1.09 2.39· 1.72 l.85· 1.99· 0.79
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Table 7
Average monthly growth rates and coefficients of variation (eV) for long-finned squid, Loligo pealei, in length (millimeters per
month), weight (grams per month), and average age (months) by sex and year of hatching.

Sex category and mm per month g per month Age (months)
hatching year Average (eV) Average (eV) Average (ev) n

Indeterminate-sex
1990 8.5 (16%) 1.1 (48%) 5.7(8%) 6
1991 8.5 (23%) 0.7 (89%) 4.2 (37%) 65
1992 12.3 (17%) 2.2 (20%) 5.4 <17%) 5
Totals 8.8(25%) 0.9(87%) 4.4 (35%) 76

Female
1990 21.5 (42%) 15.2 (87%) 6.7 (10%) 24
1991 18.4 (27%) 9.0 (72%) 6.5 (19%) 61
1992 16.3 (31%) 7.2 (95%) 6.5 Cl4%) 46
Totals 18.2(34%) 9.5(91%) 6.5 <16%) 131

Male
1990 27.5 (47%) 22.7 (89%) 6.9 (13%) 40
1991 27.8 (46%) 25.0 Cl02%} 6.8 <16%) 69
1992 21.9 (40%) 13.2 (94%) 6.7 (12%) 37
Totals 25.9 (47%) 21.4 Cl02%} 6.8 (14%) 146

Pooled-sex
1990 23.8 (52%) 18.3000%) 6.8 (13%) 70
1991 18.4(62%) 11.9056%) 5.8 (30%) 195
1992 18.0 (39%) 9.4 (106%) 6.6 <14%} 88
Totals 19.4 (56%) 12.5 (136%) 6.2 (24%) 353

for female samples hatched during November-May
was the case-IV curve which was selected over the
case-II curve because the hypothesis a=O was ac
cepted If=2.68 < 3.98=Fo.05(l,67». The best curve for
male samples hatched during June-October was the
case-II curve which was selected over the case-IV
curve because the hypothesis a=O was rejected
(f=5,46 > 3.97=Fo.05(1,73». For each of the 7 other
subsets oflength-at-age data, case IV yielded the best
growth curve (Table 8),

Case-IV curves were the best growth models for
length at age of pooled-sex samples (Fig. 4A) and
pooled-sex samples hatched during November-May
(Fig. 5A). In general, the case-IV growth curves are
power functions that represent unbounded acceler
ating growth with a theoretical minimum size. In
particular, case-IV curves are what Schnute termed
"Tth power" growth curves, where size (G) at age (T)

is proportional to some positive constant K>l raised
to the Tth power. That is, G cc ](I' = exp[T In(K)], so
that size increases exponentially as age increases.
In contrast, the case-II curve was chosen for pooled
sex samples hatched during June-October (Fig. 5A).
For these samples, growth in length appeared nearly
linear over the range of data, although there was

some indication of a slight decrease in growth rate
past 250 days of age.

For the length-at-age data partitioned by sex, case
IV curves were also the best growth models. with
one exception. Exponential growth in length was
evident for indeterminate-sex (Fig. 6A), female (Fig.
7A), and male (Fig. 7A) samples. Similarly, growth
in length was exponential for female samples hatched
during June-October and during November-May
(Fig. 8A) and for male samples hatched during No
vember-May (Fig. 9A). In contrast, growth in length
for males hatched during June-October was not ex
ponential (Fig. 9A) and growth rate decreased be
tween 200 and 250 days of age.

For the subsets of the weight-at-age growth data,
most of the case-II and case-III curves were rejected
because their parameters were not significant and
there were only 4 instances where comparison ofRSS
was used to select the best curve. The best curve for
pooled-sex samples was the case II curve which was
selected over the case-IV curve because the hypoth
esis a=0 was rejected (f=4.30 > 3.87=Fo.o5(1,350». The
best curve for indeterminate-sex samples was the
case-II curve which was selected over case-IV curve
because the hypothesis a=O was rejected (f=5.61 >
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Table 8
Summary of best growth curves for long-finned squid, Loligo pealei, length (em) at age (months).

Sample Growth
Data set size curve r 2 a f3 tmin Ymin tmax Y max

Pooled-sex samples 353 IV 0.97 1.6427 1.3670 9.7249 47.1939

Indeterminate-sex samples 76 IV 0.97 1.6427 1.5267 6.8993 7.3841

Female samples 131 IV 0.98 4.0739 6.1918 9.2320 21.2922

Male samples 146 IV 0.98 4.4353 5.4317 9.7249 57.8786

Pooled-sex samples 145 II 0.98 0.2867 3.4497 1.4801 9.2320 30.6814
hatched Jun-Oct

Pooled-sex samples 208 IV 0.97 1.6427 1.5796 9.7249 37.4441
hatched Nov-May

Female samples 61 IV 0.99 5.4209 8.8066 9.2320 22.5526
hatched Jun-Oct

Female samples 70 IV 0.98 4.0739 6.9978 8.6078 13.8768
hatched Nov-May

Male samples 76 II 0.99 0.8284 5.6509 6.1309 9.1335 32.5621
hatched Jun-Oct

Male samples 70 IV 0.98 4.4353 5.9896 9.7249 36.6641
hatched Nov-May

where L is mantle length in centimeters and age (d)
is measured in days (Fig. 7A). Similarly, weight-at-age
curves for female (WF) and male (WM) samples were

by sex, with one exception. Growth in weight was
exponential for female and male samples (Fig. 7B).
Similarly, exponential growth was evident for female
samples hatched during June-October and during
November-May (Fig. 8B) and for male samples
hatched during June-October and during November
May (Fig. 9B). In contrast, a case-II curve was cho
sen for indeterminate-sex squid (Fig. 6B), although
growth rate was effectively exponential for the ob
served ages. In this case, the estimated curve would
approach an asymptote outside the range ofpossible
sizes for L. pealei that lack identifiable sexual char
acteristics.

For adult squid, the estimated growth curves in
dicated sexual dimorphism. Length-at-age curves for
female (LF) and male (LM ) samples were

3.97=Fo.05(1,74»). The best curve for pooled-sex
samples hatched during June-October was the case
II curve which was selected over the case-IV curve
because the hypothesis a=O was rejected (f=18.64 >
3.91=Fo.o5(l,142». The best curve for pooled-sex
samples hatched during November-May was the
case-III curve which was selected over case-IV curve
because the hypothesis a=O was rejected (f=6.82 >
3.89=Fo.05U,205)). For each of the 6 other subsets of
length-at-age data, case IV yielded the best growth
curve (Table 9).

For the weight-at-age data, case-II growth curves
were chosen for pooled-sex samples (Fig. 4B) and
pooled-sex samples hatched during June-October
(Fig. 5B). Although these curves are sigmoidal and
eventually approach an asymptote (cf. Schnute,
1981), it is important to note that the asymptotes
are not approached within the range of data for the
estimated curves and that growth is nearly exponen
tial for the observed ages. In contrast, a case-III
growth curve was chosen for pooled-sex samples
hatched during November-May (Fig. 5B). This
growth curve is not asymptotic and consists of an
initial period of decelerated growth followed by a
period of accelerated growth after a certain size is
reached.

Case-IV growth curves were chosen for every data
set where the weight-at-age data were partitioned

LF<d) =2.3343eo.OO79d

LM(d) =0.7470eo.OI47d ,

WF(d) =1.1446eo.OI82d

WM(d) =0.1316eo.o31Id,

(10)

(11)
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Table 9
Summary of best growth curves for long-finned squid, Loligo pealei, weight (gJ at age (months).

Sample Growth
Data set size curve r2 a f3 tmiR YmiR tmax Y max

Pooled-sex samples 353 II 0.94 0.0577 1.6427 0.1813 9.7249 783.6477

Indeterminate-sex samples 76 II 0.85 0.2058 1.6427 0.1985 6.8993 11.2208

Female samples 131 IV 0.96 4.0739 10.9940 9.2320 192.8125

Male samples 146 IV 0.97 4.4353 8.7765 9.7249 1314.8945

Pooled-sex samples 145 II 0.96 0.3038 3.4497 0.3545 9.2320 365.0887
hatched Jun-Oct

Pooled-sex samples 208 III 0.92 0.1315 1.6427 0.1820 9.7249 323.5635
hatched Nov-May

Female samples 61 IV 0.97 5.4209 23.7236 9.2320 222.6014
hatched Jun-Oct

Female samples 70 IV 0.96 4.0739 14.1734 8.6078 78.0026
hatched Nov-May

Male samples 76 IV 0.97 5.6509 39.6333 9.1335 681.9745
hatched Jun-Oct

Male Samples 70 IV 0.97 4.4353 10.1822 9.7249 633.1753
hatched Nov-May

(13)

(12)

during November-May, respectively. Thus, female
growth rate in length and weight was generally more
rapid for June-October hatched squid.

Differences in growth rate between hatching sea
sons were also evident for male squid. In particular,
male growth in length (Fig. 9A) was more rapid at
younger ages (:5:225 d) for June-October hatched
squid than for November-May hatched squid. In con
trast, male growth in length was estimated to be more
rapid at older ages (>225 d) for November-May
hatched squid than for June-October hatched squid
(Fig. 9A>. However, this comparison should be viewed
with caution because the sample size of older males
hatched during November-May available for esti
mating the length-at-age curve was small. Weight
at-age curves (Fig. 9B) for male squid hatched dur
ing June-October (WMJO) and male squid hatched
during November-May (WM,NM) were

where weight (W) is in grams and age (d> is mea
sured in days (Fig. 7B). These curves gave instanta
neous daily growth rates of 0.8% and 1.5% in length
and of1.8% and 3.1% in weight for females and males,
respectively. Thus, female growth in length and
weight was generally slower than that for males.

The estimated growth curves also indicated dif
ferences in growth rate between hatching seasons
for both sexes. Length-at-age curves for female squid
hatched during June-October (LF,Jo) and female squid
hatched during November-May (LF,NM) were (Fig. 8A):

LF,Jo(d> =2.3116eo.OO81d

LF,NM(d) =3.7828eo.OO50d.

Weight-at-age curves for female squid hatched dur
ing June-October (WF,Jo) and female squid hatched
during November-May (WF,NM) were (Fig. 8B):

WF,Jo(d) =O.9820eo.OI93d

WF NM(d) =3.0617eo.OI24d.
WM,Jo(d) =O.3917eo.o268d

WM NM(d) =0.3190eO.0256d.,
(14)

These curves gave instantaneous daily growth rates
of 0.8% and 0.5% in length and of 1.9% and 1.2% in
weight for females hatched during June-October and

These curves gave in~tantaneousdaily growth rates
of 2.7% and 2.6% of body weight for males hatched
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Growth curves for pooled-sex Loligo pealei in length (AI and in weight (B).

during June-October and during November-May, re
spectively. Overall, female growth in length and
weight and male growth in weight were more rapid
for June-October hatched squid. Male growth in
length was also more rapid at younger ages for squid
hatched during June-October than for squid hatched
during November-May.

The selected growth curves indicated thatL. pealei
growth was dependent upon maturity stage, sex, and
hatching season. Indetenninate-sex squid grew more
slowly than adults whereas males grew more rap
idly than females. Further, squid hatch~d during
June-October grew more rapidly than squid hatched
during November-May.

Discussion

Growth rates obtained in this study were generally
higher than those reported in Hixon et a1. (1981,
Tables 1 and 2) but were lower than those in studies
ofcultured L. pealei. In particular, average monthly
growth rates for males reported in this study (26 mm/
month and 21 g1month) were lower than those re
ported by Hanlon et a1. (1983) who found average
growth rates of 44 mm/month and 37 g1month in a
sample of6 male L. pealei raiseu in a closed sea-wa
ter system. Additionally, Hanlon et al. (1987) reported
an instantaneous daily growth rate of roughly 2% in
ML for 10 L. pealei raised in a closed sea-water sys-
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tern whereas the estimated growth curve for pooled
sex samples in this study indicated a growth rate of
1.4%. While the lower growth rates ofwild squid were
likely due to the better growth conditions experienced
by the cultured squid, it should be noted that the
largest squid in this study, a 44-cm male, was only
2.5 cm smaller than the largest reported L. pealei5

(Summers, 1968), The fact that this 9-month-old male
could have achieved the maximum reported size ifit

5 Based on a total of55.616 length-frequency measurements. the
maximum size of L. pealei taken in the domestic commercial
fishery during 1972-91 was 45 em (Northeast Fisheries Sci
ence Center, Woods Hole, MA, unpubl. data).

grew for one more month at average male growth
rate suggested that it was unlikely that the lifespan
of L. pealei exceeded 1 year.

Although a comprehensive growth model for squid
has not yet been determined (Jackson, 1994a), we
suggest that the Schnute model is a viable choice
given its flexibility. In addition, we recommend the
methods used to select the best form of the growth
model because they provide an objective basis for
evaluating alternative forms. Even though there was
substantial heterogeneity in L. pealei size at age, the
estimated growth curves for pooled sexes indicated
that L. pealei growth in length and weight was effec-
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tively exponential, which is consistent with the find
ings of Forsythe and Van Heukelem (1987).

It is important to account for individual heterogene
ity in size at age when determining a growth curve
because the use ofmean values for size classes can ob
scure the pattern ofindividual growth (Alford and Jack
son, 1993). In this study, growth curves were estimated
by using size-at-age data for individual squid. We found
that the use of a multiplicative lognormal error term
provided an adequate statistical framework for esti
mating growth curves despite substantial heterogene
ity in squid size at age. In general, a growth curve with
a multiplicative lognormal error term will be more ap
propriate than an additive normal error termwhen size-

at-age distributions are skewed because prediction er
ror scales with size at age under the lognormal assump
tion. Regardless, it is recommended that researchers
use residual patterns to evaluate the adequacy of an
assumed error structure for estimating a growth curve.

The fact that some L. pealei were hatched during
December-April was unexpected because the pro
tracted spawning season of L. pealei in the north
west Atlantic had previously been considered to ex
tend from roughly April to November (Lange, 1982).
McMahon. and Summers (1971) found that embry
onic development of L. pealei was related to water
temperature. In their study, the average development
time required before hatching was 26.7 days for wa-
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Figure 7
Growth curves for female (dashed line and open triangles> and male (solid
line and solid triangles) Loligo pealei in length (A> and in weight (B>.

ter temperatures of 12.o-18.0°C, 18.5 days for water
temperatures of 15.5-21.3°C, and 10.7 days for wa
ter temperatures of 21.5-23.0°C. During winter, L.
pealei move offshore to the edge of the continental
shelf to avoid cooler inshore waters (~ange, 1982).
Assuming that squid hatched during December-April
encountered water temperatures of9.0-13.0°C that
are characteristic ofthe convergence zone at the edge
of the continental shelf (Bowman, 1977), it would
have taken about 1 month for them to develop to the
hatching stage. Although ouI:' results indicated that
winter spawni.ng occurred, further rese·arch wili be
needed to evaluate the relative contribution of win~
ter-hatched squid to the population's dy~amics.

Our results lend support to the hypothesis that
growth of L. pealei can be influenced by seasonal
environmental variation and month of hatching.
Empirical differences in growth rates between June
October and November-MaY,hatched squid were
apparent for both females and. males. Further, sig
nificant differences in growth rate were detected
between squid. hatched during November-May and
July-October. These·differences were also evident in
estimated growth curves. The notion that L~·pealei
growth can be influenced by hatching season and its
a!;lsociated temperature regime is consistent with the
results ofRodhouse and Hatfield (1990b) who found
!in apparent effect of seasonal environmental varia~
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Growth curves for female Loligo pealei hatched during June-october
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tion on the growth rate ofthe Argentine short-finned
squid, Illex argentinus. Using statolith ageing tech
niques, they found that older short-finned squid
hatched during cooler months apparently grew more
slowly than younger squid hatched during warmer
months. They speculated that the faster growth of
the younger cohort was due to the generally warmer
temperatures experienced by hatchlings. Similarly,
Forsythe (1993) conducted a simulation study to ex
amine the potential effects of seasonal temperature
regimes on the growth of juvenile cephalopods. He
showed that small temperature changes could have
a substantial effect on the growth of juvenile squid

under certain conditions. Overall, further research
to estimate directly the potential effect of tempera
ture on the growth rate of L. pealei would help to
quantify the potential yield from this resource on a
seasonal basis. . .

The fact that the growth rate ofL. peatei was found
to be associated with maturity stage also has poten
tial implications for the management ofthe resource.
Empirical differences in growth rate by maturity
stage were consistent for both females and males;
on average, growth rates in length and weight were
lowest for immature squid and highest for mature
squid. Significant differences iIi growth rate by length
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and weight were also detected between immature and
mature squid. In general, intensive harvest of slow
growing immature squid has the potential to reduce
fishery production through a decrease in yield per
recruit.

No clear effect ofhatch year on growth rate was de
tected in this study. However, these data were not col
lected for the purpose of examining yearly differences
in growth rates, and any annual effects were likely con
founded by the effects ofhatch month, sex, and matu
rity stage. Further research conducted with more ex
tensive multi-year collections will likely be needed to as
certain the importance ofannual effects on growth rate.

The estimated growth curves for indeterminate
sex squid indicated that their pattern of growth was
exponential as suggested by Hanlon et a1. (1987) who
examined growth rates ofjuvenile L. pealei in closed
system aquaria. Growth of indeterminate-sex squid
in weight was less rapid than that for adults and
would be predicted to slow outside the range of ob
served ages, when these juveniles would develop
identifiable sexual characteristics. In contrast,
growth of indeterminate-sex squid in length was
roughly 1.0% per day. In comparison, growth curves
for females and males indicated exponential growth
with instantaneous daily growth rates of0.8% to 1.5%
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in ML and 1.8% to 3.1% in weight. The exponential
growth ofL. pealei throughout their life cycle is con
sistent with the fact that squid have high gross
growth efficiency and are metabolic maximizers in
comparison with teleosts (O'Dor and Webber, 1986).

The difference between growth rate in weight of
indeterminate-sex squid and adults suggests that
there may be a body size above which growth rate
increases substantially. This critical size could be
related to changes in diet because L. pealei undergo
an ontogenetic shift in prey selection from crusta
ceans to fish and other squid as they grow (Vovk,
1972; Macy, 1982b; Vovk, 1985; Anderson and
Griswold, 1988). Alternatively, this difference could
be the result ofa shift from somatic to gonadal growth
as squid mature (Macy, 1995), although this seems less
likely given the substantial variability in size at matu
rity ofL. pealei (Macy, 1980>. Regardless of the cause,
understanding the implications ofthe rapid growth of
adults and its relationship to maturity stage will be
important for predicting how the population structure
will respond to exploitation. Over the longterm, it is
conceivable that intensive exploitation of an annual
semelparous species, such as L. pealei, could lead to
strong selective pressure for a smaller average size at
maturity. Such a reduction in average size at maturity
could diminish the reproductive potential of the popu
lation (cf. Murphy et aI., 1994), and this could lower
resilience to environmental fluctuations by reducing
the genetic variation in the population.

The implications of these estimates of growth for
L. pealei in the northwest Atlantic are substantial
for the assessment and management ofthis resource.
The short lifespan for this species, combined with
the rapid growth ofadults and the capacity to spawn
year-round, implies that the stock will respond rap
idly to environmental variation and fishing pressure.
As a result, monitoring the stock for in-season man
agement would likely require several assessments
throughout the year.

New management measures are being developed
for the long-finned squid stock to reflect the improved
understanding of its growth and pattern of repro
duction (MAFMC6). At present, management of the
stock is based on a level oftotal allowable catch that
cannot be exceeded (MAFMC7) and on an overfish-

6 Mid-Atlantic Fishery Management Council. 1995. Amend
ment 5 to the fishery management plan and the final environ
mental impact statement for the Atlantic mackerel. squid. and
butterfish fisheries. MAFMC. Dover, DE.

7 Mid-Atlantic Fishery Management Council. 1992. 1993-1994
allowable biological catch, optimum yield, domestic annual har
vest, domestic annual processing, joint venture processing, and total
allowable level of foreign fishing recommendations for Atlantic
mackerel, Loligo, [llex, and butterfish. MAFMC, Dover, DE.
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ing definition that has been characterized as "risky"
(Rosenberg et a1. 1994). A preliminary analysis of
some of the weight-at-age data presented in this
study indicated that the annual level of maximum
sustainable yield, based upon average recruitment
and an initial estimate ofmaximum yield per recruit,
could be roughly 36,000 t (NEFSC8). This interim
estimate was 18% lower than the estimate of44,000
t, which was based on a presumed two-year lifespan
(Sissenwine and Tibbetts, 1977) that has been used
as the maximum optimum yield for the stock
(MAFMC7). However, this estimate appears overly
optimistic because landings above 36,000 t have oc
curred only once, in 1973, when 37,600 t were landed.
Regardless, any revision of the annual level of sus
tainable yield for the stock will need to account for
the seasonal patterns of growth and spawning, the
potential discarding of juveniles, and variability in
stock-recruitment dynamics. Further, it would be
more appropriate to estimate sustainable yield and
to develop an overfishing definition on a seasonal,
rather than an annual, basis for this short-lived spe
cies. In contrast to the current quota-based harvest
ing strategy, a constant harvest-rate strategy that
includes a proportional escapement target (Bedding
ton et aI., 1990) on a seasonal basis may be a useful
management approach.

Ifthe long-finned squid stock is managed on a sea
sonal basis, revised stock assessment procedures are
likely to require rapid collection of catch and effort
data and efficient data analysis during periods of
peak fishing activity. Real-time assessment proce
dures have been used to monitor the short-finned
squid stock in Falkland Islands waters during the
fishing season to achieve proportional escapement
goals (Rosenberg et aI., 1990), and the use of a con
stant harvest-rate strategy is a potential option for
management of the long-finned squid resource. Al
though a constant harvest-rate strategy can be overly
restrictive in years ofgood recruitment and result in
a loss of yield, it can also jeopardize the stock when
recruitment is poor. Therefore, assessment proce
dures that permit in-season adjustment of the har
vest rate would likely be necessary to maintain an
adequate level of spawning biomass if management
is conducted on a seasonal basis.

As with any renewable resource, long-term man
agement ofthe long-finned squid stock will involve a
balance of the risks and benefits of harvesting the
resource. Because long-finned squid are semelparous
and likely live for less than 1 year, the risk of re-

8 Northeast Fisheries Science Center. 1994. Report ofthe 17th
Northeast Regional StockAssessment Workshop. NEFSC Ref.
Doc. 94-06, Woods Hole, Massachusetts, 124 p.
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cruitment overfishing is substantial for this stock.
Further, because growth appears to be nearly expo
nential throughout its life cycle, the risk of growth
overfishing is also considerable. On the other hand,
harvesting impacts may be difficult to evaluate un
less stock response to environmental variation, den
sity-dependence in growth and survival, and com
munity-level interactions with competitors and
predators are better understood. Owing to its short
lifespan, the immediate benefits of harvesting the
long-finned squid resource are probably best mea
sured by average seasonal yield and its variance, and
an adaptive approach to management may be needed
to ensure sufficient spawning escapement and to fos
ter efficient utilization of this resource.
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