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Abstract.-Recently, J. J. Pella
showed how the Kalman filter could be
applied to production modeling to esti­
mate the size and productivity of fish
stocks from a time series ofcatches and
relative abundance indices. We apply
these methods to the Deriso-Schnute
delay-difference equation. The Kalman
filter approach incorporates process
and measurement error naturally in
the model description. When the pro­
duction model is the delay-difference
equation, the error structure is particu­
larly attractive because process error
can be interpreted as simply the vari­
ance ofrecruitment, and measurement
error as the variance of the relative
abundance estimates. We derived prior
distributions ofinitial biomass in order
to begin the Kalman filter calculations.
Reanalysis of the data from the east­
ern tropical Pacific for yellowfin tuna,
Thunnus albacores, shows that model­
ing results can differ greatly depend­
ing on whether error is interpreted to
be process error or measurement error.
Simulation results show that nonlinear
least squares and Kalman filter esti­
mates agree well if data contain only
measurement error. In contrast, the
Kalman filter was clearly superior if
simulated data contained significant
amounts ofprocess error. The presence
ofprocess error positively biased biom­
ass estimates from both the nonlinear
least-squares and Kalman filter meth­
ods. The Kalman filter performed well
with Schnute's form ofthe delay-differ­
ence equation, even though this model
violates the assumption ofindependent
process error vectors. The Kalman fil­
ter also performed well when the vari­
ance ratio r was assumed known and
individual variances were estimated
from the data. However, it appeared dif­
ficult to estimate r as a parameter in
the maximum-likelihood estimation.
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Fishery production models are used
to model fishery population dynam­
ics when only catch (measured in
biomass units) and relative abun­
dance data are available. Originally,
only fishery catch-per-unit-of-effort
data (Schaefer, 1954; Pella and
Tomlinson, 1969) were used as rela­
tive abundance indices for fish
populations, but surveys often pro­
vide less biased abundance mea­
sures. Therefore, both time series
of fishery CPUE and survey abun­
dance indices are commonly used
estimates of relative abundance.

Production models contrast with
age-structured models, such as
ADAPl' (Gavaris, 1988) and Stock
Synthesis (Methot, 1989), that
model the population cohort in num­
bers at age and typically require
catch-at-age data. Age-structured
models allow for variation in re­
cruitment which has given this
class of model greater credence
among stock assessment scientists.
However, age data are technically
difficult to obtain, expensive, and
contain biases and variability that
can be difficult to interpret. In ad­
dition, age-structured models often
contain a large number of param­
eters, and sifting through possible
solutions when fitting multiple
sources of data can be subjective.

Because of these data require­
ments and technical problems, pro­
duction models have remained of

interest to stock assessment scien­
tists. Recent production model of­
ferings have included statistical re­
finements such as bootstrapping
(Prager, 1994), Bayesian analysis
(Hoenig et al., 1994), and the treat­
ment of statistical error (Polachek
et aI., 1993). Two of the earliest pa­
pers to consider both process and
measurement error in population
dynamics modeling were those of
Ludwig and Walters (1981) followed
by Collie and Sissenwine (1983).
The Kalman filter approach, which
allows the consideration ofboth pro­
cess and measurement error, now
appears to be becoming standard for
assessments by either production or
age-structured models (Mendels­
sohn, 1988; Sullivan, 1992; Pella,
1993; Schnute, 1991, 1994).

The methods described in this
paper meld two distinct pieces of
technology: the delay-difference
equation (Deriso, 1980; Schnute,
1985), and the Kalman filter (Kal­
man, 1960; Harvey, 1990; Pella,
1993). Collie and Walters (1991)
used the Kalman filter to predict
and update biomass estimates on
the basis of the delay-difference
equation but did not use the Kal­
man filter for parameter estimation.
The delay-difference equation has
deep roots in fishery modeling. In
fact, to a remarkable extent it can
encompass the fundamental para­
digms ofage structure, exponential
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The natural mortality rate, M, is always difficult
to know but estimates or educated guesses are usu­
ally available. The Brody growth parameters can be
estimated with nonlinear least squares on relatively
small aged samples that provide weight-at-age data
(Schnute, 1985):

1 The instantaneous natural mortality rate M.
2 Brody2 growth parameters p and ro.
3 Annual catches in biomass ct ' t=l, ...n.
4 Annual survey biomass estimates Yt' either rela­

tive (catchability unknown) or absolute (catcha­
bility known) abundance indices, with a few miss­
ing values allowed.

structured models (Deriso, 1980; Schnute, 1985).
Thus under many conditions the population dynam­
ics described by the delay-difference equation should
agree with that of age-structured models (e.g. vir­
tual population analysis). The applications of the
delay-difference equation we propose require the fol­
lowing parameter values and information:

Here, Wk+i is the observed weight ofa k+j yr-old fish,
~-l' cok' and p are parameters to be estimated, and k
is the age at recruitment. Our application of the de­
lay-difference equation requires co =CO'_1 / co, so that
OJ =OJ'_1 /OJ,. The difference between Deriso's and
Schnute's forms of growth (and hence their delay­
difference equations) is that Deriso's original equa­
tion requires unrealistically that CO'_1 =0 so that
co =O. A simple substitution in Schnute's more gen­
eral formulations of growth and delay-difference
equation results in Deriso's forms of growth and de­
lay-difference equation.

Catches and fishing effort are usually among the
first statistics collected from a fishery. Survey esti­
mates ofstock biomass sometimes come later through
significant cost and effort by fisheries management
agencies (Gunderson, 1993). If insufficient numbers
of survey estimates are available, fishery CPUE can
provide the biomass indices. However, fishery CPUE
data may bias model estimates because catchability
often changes over time. Survey data provide either
relative <catchability unknown) or absolute (catcha­
bility known) biomass abundance indices. Absolute
abundance estimates for a few years will typically

0)
Wk+i =COk-l +(COk - COk-l)(1- pl+j)/

(1- p) for j ~ o.

The delay-difference population
dynamics model

The delay-difference equation is a simple biomass­
based model that contains the core dynamics of age-

survival, and von Bertalanffy growth. The Kalman
filter (Kalman, 1960), on the other hand, originated
in engineering where it has been widely used in con­
trol theory and quality control. The basic idea of
Kalman recursive filtering (Meinhold and Sing­
purwalla, 1983) is that the current state of the sys­
tem (i.e. the current fish biomass) can be estimated
from the system's past (biomass) estimates in two
steps: a forecast step and an update step. The fore­
cast estimate is made prior to the current observa­
tion of relative abundance; the updated estimate is
made following the current observation of relative
abundance. The updated estimate of biomass is the
modeler's best estimate ofthe "true" biomass and is,
roughly speaking, a weighted average between the
forecast and observed abundance values. The up­
dated biomass estimate is used to forecast the next
biomass estimate, which then is updated with the
next observed value. The absolute and relative mag­
nitude of process and measurement error, which are
assumed normal and whose values are generally as­
sumed by the filter, largely determine the result of
the update step. If there is little process error as­
sumed by the filter, updating will not substantially
change the forecast biomass estimate.

For fishery modeling, the most salient feature of
the Kalman filter is its allowance for both process
and measurement error. In the implementation of
the delay-difference equation with the Kalman fil­
ter, process error can be interpreted as the variance
ofrecruitment,1 and measurement error as the vari­
ance ofthe estimate ofrelative abundance. Thus the
Kalman filter method allows for variation in recruit­
ment, a property that heretofore seemed to be exclu­
sive to age-structured models.

The implementation ofthe Kalman filter presented
here is due to Pella (1993), who applied the method
to a simple recruitment model ascribed to Schnute
(1991) and to the generalized production model of
Pella and 'Ibmlin80n (1969), For comparative purposes,
we also fitted the delay-difference equation with ordi­
nary nonlinear least squares, which in this case as­
sumes that data contain only measurement error;

1 A reviewer noted that process error can also arise from other
factors, such as variability in growth and survival, and other
sources that make the deterministic delay-difference popula­
tion dynamics incorrect.

2 A reviewer pointed out that "Ford" may be a better name for
these growth parameters (Ricker, 1975).
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constrain an analysis more accurately than will many
years of relative abundance indices.

Population dynamics are described by Schnute's
(1985, co >0) or Deriso's (1980, co =0) delay-difference
equation:

Bt = (1+ P)St-IBt-1 - PSt-ISt-2Bt-2 +
Re - Prost-IRe-I.

For the case when t=2,

(2)

biomass, RI is determined from Equation 4 (or con­
versely, BI can be determined from RI ). B2 can then be
projected from Equation 3, with Bo=BI and So =exp(­
M). Projections ofbiomass for t>1 requires {St' t =1, ...,
n}. These survivals St = exp(-M-Ft), are obtained by
iteratively solving the catch equations for Ft (Kimura
and Tagart, 1982):

Ct =Bt~(I-exp(-M -~»)/(M +~) (5)

B t and Rt are the population biomass and recruit­
ment biomass at the beginning oi year t, and St is
total survival during year t (note Bt includes Rt ).

The delay-difference equations allow for variable
recruitment. In the data analysis and simulations
performed in this paper the recruitment process is
assumed to have constant mean, Le. E(Rt ) = RI for
all t. The delay-difference Kalman filter method al­
lows for variable recruitment by considering variable
recruitment to be process error about the mean re­
cruitment. The nonlinear least-squares estimation
method allows only for measurement error, there­
fore the recruitment process is assumed to be strictly
constant with Rt =RI for all t.

However, both the nonlinear least-squares and
Kalman filter methods can be easily generalized to
have mean recruitment as a function of stock biom­
ass in earlier years. In this case E(Rt)=/t.Bt-k)' where
k ~ 1 (Kimura, 1988).

Estimating parameters with nonlinear
least squares

in a sequential manner (relative to t). If BI is not
virgin biomass, BI andRIare independent parameters
to be estimated. The initial projection value Bo = BI
will be used, but with So = exp (-M-FoJ iiinfunnatioll
concerningF0 is available. In either case, further pro­
jections ofbiomass can be made by using Equation 2.

In the simulations to be presented, we assume that
the initial population is a virgin biomass (Le. Equa­
tion 4 holds). This allows us to initiate the biomass
time series using the results inAppendix 1 and to fit
the simulated data without substantial model bias.
However, the fits to the simulated data with both
nonlinear least squares and the Kalman filter will
not assume virgin biomass. Instead, the delay-dif­
ference equation is fit to a time series of relative
abundance data by varying three parameters: BI,R I ,

and a catchability coefficient A.. We assume the
catchability coefficient scales the biomass projections
from the delay-difference equation {Bt}to the expected
values ofobserved relative abundance indices lYt } (Le.
E(yt) =ABt )· For nonlinear least squares, ifabundance
indicesYt have coefficient ofvariation CVt' parameters
can be estimated by minimizing

(6)

To fit the delay-difference equation with nonlinear
least squares, we must provide biomass projections
{B t}, from Equations 2 and 3, using as parameters to
be estimated, initial values (BI,RI). IfBI is assumed
to be virgin biomass and R I is in equilibrium with
BI, the expected (Le. equilibrium) recruitment line
(ERL) follows from Equation 2 (Kimura, 1985):

R1 =B1([1- pexp(-M)][I- exp(-M)]}I

[1- pcoexp(-M»).
(4)

We used a lognormal formulation because of its su­
perior numerical stability in quasi-Newton estima­
tion algorithms. Parameters were estimated in two
stages: initial estimates were found by a direct search
over a grid ofvalues for B I , R I , then refined by using
quasi-Newton methods.

The survey catchability A. can be either estimated
or fixed depending on whether Yt is thought to be a
relative or absolute index of abundance. Differenti­
ating Equation 6 with respect to A. and solving the
normal equation shows that l can be estimated by

The ERL is a straight line through the origin of the
(BI, RI) plane.

The initial parameters (BI, RI)may be parameter­
ized by either oftwo assumptions: 1) BI is virgin bio­
mass or 2) B I is not virgin biomass. If BI is virgin

so that at this stage searches for A. are not necessary.
However, the final minimization of Equation 6 with
quasi-Newton methods should be based on all three
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parameters'll =(In(B1),ln(R1),ln(A.)), because the
estimates by using Equation 7 may be suboptimal.
If the coefficient of variation is the same for all Yt'

then all CUt can be set equal to one.
We also briefly examined the possibility ofestimat­

ing nonlinear least-squares parameters by modeling
both measurement and process error:

ss= :L[(Yt -iBt )2 la~ +(Rt -R1)2 la:]. (8)

Here, R1 is the estimated mean recruitment as be­
fore, but R t t > 1, are allowed to vary. For Deriso's
form of the delay difference equation, differentiat­
ing Equation 8 with respect to Rt and setting the re­
sult equal to zero yields

where r =a: 1a~ , and P t is the delay-difference pro­
jection of biomass to year t prior to adding recruit­
ment. Estimating parameters by minimizing Equa­
tion 8 appeared unstable and was not pursued fur­
ther. This maybe because mean recruitmentR1, and
the individual recruitments Rt , both were estimated
from the data. With additional constraints, or if re­
cruitment indices were available, such an approach
might be useful.

Maximum-likelihood estimation for
the Kalman filter

We also applied the Kalman filter as described by
Pella (1993) to the delay-difference equation. Pella
(1993) credits Harvey (1990) for his own presenta­
tion, but we found Pella's presentation to be quite
adequate for applying the method. As described ear­
lier, the main reason for using the Kalman filter is
that it allows for process error in addition to mea­
surement error. The nonlinear least-squares esti­
mates of the previous section assume constant re­
cruitment and allow only for measurement error.

The state transition equation of the Kalman filter
views the delay-difference equation CEq. 2) as being
composed of both deterministic and stochastic com­
ponents. The determinisitic component of the pro­
cess assumes that the expected values ofR t and R t _1
are constant, say equal to R 1• If desired, we can also
assume virgin biomass when applying the Kalman
filter, Le. we can estimate R 1 by using Equation 4.
This is analogous to the constant nonrandom recruit­
ment model fit by nonlinear least squares. The bio­
mass prediction given by Equation 2 is in error ow­
ing to variability in recruitment. This variability is
defined to be process error. Now, even though Bt and
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A. have definite though unknown values, the abun­
dance indexYt is observed only with error, which we
define as measurement error. The Kalman filter
method provides maximum-likelihood estimates of
Bo,R 1, and A., almost the same parameters as for the
nonlinear least-squares method but for the process
and measurement error model we have just de­
scribed. Note that we estimate Bo(see below) instead
ofB1 becauseBocannot simply be defined to be equal
to B1 in the equations which initialize the Kalman
filter method. For consistency, when comparing pa­
rameter estimates for nonlinear least-squares and
the Kalman filter methods, we shall compare only
estimates ofB 1 (Le. the one year projection ofBo)'

Modeling and assumptions in addition to those of
nonlinear least squares are needed by the Kalman
filter. Because the Kalman filter is essentially a Baye­
sian procedure (Meinhold and Singpurwalla, 1983),
it requires a prior joint distribution for Bo and B_1,

In addition, in order to partition process and mea­
surement error, either the magnitude of process or
measurement error (or both) or their ratio must be
known or estimated. Nearly all of our simulations
will assume that process and measurement error
variances are known. Kalman filter estimation with­
out prior information concerning error variances
appears to be generally difficult.

Simulating datasets satisfying Kalman filter
assumptions

In this section we describe simulation of relative
abundance indices that satisfy the assumptions of
the delay-difference equation and the Kalman filter.
As stated earlier, these simulations assume virgin
biomass (Le. Equation 4 holds with Bo substituted
for B1l. This is the easiest way to avoid an initial
modeling bias in the simulation and model fits. Data
simulated in this manner will be fitted by using non­
linear least-squares and the delay-difference Kalman
filter methods without the assumption of virgin bio­
mass. To a large extent we followed the notation of
Pella (1993). Note that the "state space" of the sys­
tem is simply jargon for the unobservable true biom­
ass of the system.

Initial conditions and assumptions The initial state
of the system is defined to be

We assume that Clo is unknown but has prior distri­
bution with mean
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an =E(ao)=(~)
and with covariance matrix

(
Yo YI)Po =1:(ao) = .
YI Yo

scribed as Yt = Zat +£t, where Z = (A O),£t= et, and
et is assumed to be normally distributed with mean
zero and variance h =C1~ .

Ifexpected recruitment is to be a function of stock
biomass in earlier years, the state space project vec­
tor Ct must become a function of~ so that

Projecting the state space Given the initial condi­
tions (above), and a catch sequence (ctl, the state
space variable ~ can be projected indefinitely:

Estimators for Yo and YI are provided in Appendix 1
and only require prior estimates of p, ro, C1p and 80,

To predict a l • we assumed

So far we have described a statistical model \-;hich

If the delay between hatching and recruitment is to
be many years, then the dimension of~ must be in­
creased, so that the earlier biomass will be available
to calculate recruitment.

which represent variability in recruitment and which
are assumed to be independent by the Kalman filter.
Because TIt and Tlt+l both contain nt+1, this assump­
tion is clearly violated for Schnute's form of the de­
lay-difference equation. This trade-offbetween real­
ism in the delay-difference equation and statistical
independence required of process error will be ex­
amined further with simulation.

includes process and measurement error and which
can be used to compute a realization ofrelative abun­
dance indices, say (Yt}. In the implementation ofthe
Kalman filter given here, Deriso's form (co= 0) ofthe
delay-difference equation fully satisfies the assump­
tions ofthe model, but Schnute's (ro > 0) more realis­
tic form does not. This difference is due to the pro­
cess error vectors

To =(1+:)80

Ro =(~

The state of the system at time t=l is then al =
Toao +Co + RoTlo, where n l is assumed to be a nor­
mal random variable with mean zero and variance
C1:. For Deriso's form of the delay-difference equa­
tion, ro =0, so that the value ofno is irrelevant. How­
ever, for Schnute's form ofthe delay-difference equa­
tion we used no =0 because the data contained no
information concerning no'

so that

a'+1 =T,at +Ct + RtTlt .

The process error vectors TIt are assumed to be inde­
pendent with

E(Tlt) =(~)
and with covariance matrix

Q=(C1: 0).o C12
p

Recall that T t requires a value for 8 t by first solving
Equation 5 for Ft.

Kalman filter estimates

Ifvalues ofvariance for process and measurement er­
ror are assumed, parameters'll =(In(Bo},ln(Rt),ln(A)]
can be estimated by the method of maximum likeli­
hood. In principle, the method is very similar to that
described for calculating nonlinear least-squares es­
timates. Given a value for '1', initial values for ao, Po
can be specified as in the simulations; estimates of
biomass and its covariance matrix can then be fore­
cast (atlt- 1,p'It-l}' The value of'll, whose forecasts maxi­
mize the log-likelihood, is taken as the estimate.

Because the Kalman filter incorporates process as
well as measurement error, estimation of biomass
occurs in two steps.

Addition of measurement error Given a catcha­
bility coefficient A, the observed variables can be de-

1 Initial projections atlt-l = Tt-1at-l + Ct- 1 and
P'1t-l =T,-1P'-1T,-1 '+Rt-lQR,-I' are calculated on the



Kimura at al.: Kalman filtering the delay-difference equation

basis of the value of'¥, initial conditions, and the
data (c1' ... , ct-l)and 0'1' ... Yt-1)' Recall again that
T t_1 requires a value for St_1 that can be estimated
by first solving the catch equation (Eq. 5) for Ft_1•

!'as described earlier, if expected recruitment is to
be a function of earlier biomass estimates, then
Ct_1 must be a function of at_1•

2 If an observation ofYt exists, the initial projections
a t1t- 1 and P t1t- 1 are updated on the basis of
at =a llt- 1+ P'1t-1Z ' f,-l(Yt - Zatlt_1) and ~ =~lt-1 ­

~lt-1Z' r,-lZ~lt_1' where f, =ZP'It_1Z'+h. If an ob­
servation ofYt does not exist, further projections
can be made by using Equation 1, with a tlt_1 and
Pt It-1 used in place ofat and Pt. Therefore, Kalman
filter estimation can accommodate missing rela­
tive abundance indices provided they are few in
number.

3 The log-likelihood is calculated to be

683

• 2 1 (ro r1)Po = Po/O'm =-2 =rA,
O'm r1 ro

where A =Po /0': is dependent only on p, ro, and so'
The Kalman recursions are then carried forward just
as would have been done ifno reparametrization had
been performed. However, the covariance matrices
{PtJt- 1 and Pt} are now automatically scaled versions
{P'lt-1 = P'1t-1 / O'~ and p,. = P, / O'~}, and ft· = f, / O'~ .
The vectors at It-1 and at are unaffected by the scal­
ing which cancels in their equations. The parameter
estimates are dependent only on the value of r, not
the variance components 0': and O'~. However, O'~
can be estimated from

where n is the number ofYt observed (also a-: =ra-~).

The log-likelihood to be maximized (see Appendix 2)
then becomes

()
In I n2

In(L(y,,¥») =- n In(2n-)--Lln(f,)--L~'
2 2 t=l 2 t=l (,

where vt =Yt - Zat It-1' and ft =ZPt I t_1Z ' + h.

In(LcCy, '1'») =-i[ln(2n-) +1]-

1 n * n A2
- Lln(r, )--In(O'm)'
2 t=l 2

(10)

As with the nonlinear least-squares method, the
Kalman filter estimate of 'I' was also calculated in
two stages. First, we searched a grid of possible ini­
tial Au values, say from 0.5 to 1.5 at 0.1 intervals.
For each fixed Au value, we then estimated the con­
ditional maximum-likelihood estimate '1'* =[In(B~),

In(R;)] by a quasi-Newton method. We then picked
the ~ and '¥* having the largest conditionallikeli­
hood, and used that as an initial estimate for find­
ing the unconditional maximum likelihood estimate
q, =[In(Bo),ln(R1),ln(i)], again by using a quasi­
Newton method. The asymptotic covariance matrix
of the maximum-likelihood estimates can be esti­
mated from the inverse Hessian of minus the log­
likelihood.

Generally, our Kalman filter estimates were made
with the assumption that process and measurement
error variances were known. However, under the
Kalman filter, if r =0': /O'~ is known, then all model
parameters, including O'~ and hence 0':, can be es­
timated from the data. Following Pella (1993), we
reparameterized h =1 and

Q=(~ ~}

It can be noted that

The question arises whether r can be estimated as
just another parameter by using the method ofmaxi­
mum likelihood? Although estimation of r appears
possible in theory, our experience suggests that this
will be impractical for many data sets. The reason is
that the likelihood function appears to be insensi­
tive to r (Fig. 1).

Data analysis and simulations

We reanalyzed the data set for yellowfin tuna,
Thunnus albacares (Table 1), taken from Pella and
Tomlinson (1969) by using methods described in this
paper. Ages read from otoliths ofyellowfin tuna (Wild,
1986) indicate that length at age is nearly linear. This
implies exponential growth in weight at age, but we
shall assume linear growth inweight at age (i.e. p=1.0,
ro =0.0). Because:fish rapidly disappear from the popula­
tion at age 4 yr, we assume M =0.60. Therefore, we as­
sume constant growth with a large natural mortal­
ity rate. Analysis by Pella (1993) indicates a biom­
ass range of from 600 to 1,400 million pounds and
an annual sustainable yield of 193 million pounds.

Our data analyses (i.e. fits to the data in Table 1)

assume

Dl O'~ = 46,0': = 32,775 as reported by Pella
(1993). These values suggest that most of the error
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81 CT; =1,000 O'~ =1. Measurement error only.

Table 1
Catch (ct in million pounds) and relative abundance (Y t in
pounds per boat day) for yellowfin tuna. Thunnus albacares,
in the eastern Pacific Ocean (Pella and Tomlinson, 19691.

82 CT~ =1 O'~ =1,000. Process error only.

83 O'~ =500 0': =500. Measurement and process
error.

10,361
11.484
11,571
11,116
11,463
10,528
10,609
8,018
7,040
8,441

10,019
9,512
9,292
7,857
8,353
8,363
7,057

10,108
5,606
3,852
5,339
8,191
6,507
6,090
4,768
4,982
6,817
5,544
4,120
4,368
4,844
4,166
4,513
5.292

Relative abundanceCatch

60.9
72.3
78.4
91.5
78.3

110.4
114.6
76.8
42.0
50.1
64.9
89.2

129.7
160.2
207.0
200.1
224.8
186.0
195.3
140.0
140.0
140.9
177.0
163.0
148.5
140.5
244.3
230.9
174.1
145.5
203.9
180.1
182.3
178.9

Year

1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

Three simulations were replicated 100 times so
that we could examine the bias, variance, and root
mean square error (i.e. the square root of mean
square error) of Kalman filter and nonlinear least­
squares parameter estimates when the true param­
eter values were known. For these simulations we
assumed that the stock was initially a virgin biom­
ass (R 1 = 250, A= 1, P = 1, ro = 0, M = 0.60l, and the
catch data were generated as lognormal random de­
viates LN(c= 141.8, cv =0.2). We assumed that data
sets had only measurement error, only process er­
ror, or a mixture of both.

D2 O'~ =5,000 0': =1,000. These values suggest
that most of the error is measurement error as op­
posed to process error.

Figure i
The likelihood profile (minus In(Lc») for estimating Kalman
filter parameters as a function of the variance ratio
( r = u: /u~ )and lambda (A), showing that the likelihood
profile appeared insensitive to the value ofvariance ratio.
The assumed parameters were R} = 250, A= 1, P=I, Q) =O.
M = 0.60, So =exp(-o.60), r=1.0, variances assumed to be
u~ = 100 u; = 100, with n = 100 yr of simulated data.

Under the heading "Simulating datasets satisfy­
ing Kalman filter assumptions," we describe a de­
tailed model for simulating data that satisfy the
Kalman filter assumptions. In this paper all simula­
tions are roughly related to the yellowfin tuna dataset
(i.e. 34 yr of simulated data with similar model pa­
rameter values). To do this we specified values for
natural mortality, M, Brody growth parameters p and
ro, expected recruitment R 1, catchability A, and vari­
ances 0': and 0':" Assuming virgin biomass (Eq. 4),
values for (M, p, ro, CT~, R1 ) provide us with the mean
virgin biomass and its covariance matrix over neigh­
boring years (ao, Po)' The simulation is initialized by
generating biomass estimates, i.e. bivariate normal
random deviates having the prior expectation a oand
covariance matrix Po. These initializations assumed
So =exp (-M). Because trends in the catch data can
affect modeling results, we also simulated the catch
data by assuming that catches were lognormal (see
Kimura, 1989), In(ct ) - Mil, 02), with E(c/) =C, and
var(c/ )=CV

2C2
, with C=141.8 (average from Table

1), and cv =0.2.

is process error (i.e. variance of recruitment) as op­
posed to measurement error (i.e. error in measuring
the relative abundance index).
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In order to understand the distribution ofbias in the
estimated biomass trends, we made histograms of
the residuals Zt =B, - B, (true)for years t=l, 17, and
34, for both the Kalman filter and nonlinear least­
squares estimates.

Finally, two specialized simulations were repli­
cated 100 times:

SPI
co>O:

R l = 250,.il = 1, p = 0.75, co = 0.75,

M = 0.3, (1~ = 1, (1~ = 1,000

SP2
r fixed:

R l = 250, .il = 1, p = 1, co = 0,

M = 0.6, (1; = 500, (1~ = 500.

With these simulations the stock was assumed to be ini­
tially a virgin biomass. The purpose of simulation 8P1
was to examine how severely the correlation in process
error (TIt) induced by 8chnute's form ofthe delay-differ­
ence equation (co > 0) degrades the parameter estimates
from the Kalman filter. The purpose of 8P2 was to ex­
amine whether estimating parameters by assuming only
r = (1; / (1~ = 1.0 was known (i.e. by maximizing Equa­
tion 10), would degrade the Kalman filter estimates.

Results

Our results from reanalyzing the data set in Table 1
with variance assumptions described as D1 and D2

are shown in Figure 2. The variance assumption D1,
that of Pella (1993), is close to assuming only pro­
cess error. The result is estimated biomass trends
that are scaled but that exactly trace the relative
abundance indices (Fig. 2A). Our model fit is very
similar to that reported by Pella (1993) and indicates
that, despite great differences in the underlying state
transition models (delay-difference versus general­
ized production), the Kalman filter method, with
large process error, can provide quite similar esti­
mates ofbiomass trends. The nonlinear least-squares
fit assumes only measurement error and differs con­
siderably from the Kalman filter fit. In the analysis
with variance assumed to be D2, the Kalman filter
assumes that error is predominantly measurement
error but also contains a realistic component of pro­
cess error. The result is Kalman filter estimates of
relative abundance that are very similar to nonlin­
ear least-squares estimates (Fig. 2m.

Results from replicated simulations based on as­
sumptions 81-83 are shown in Table 2. Under the
variance assumption 81, we have only measurement
error. Under this assumption, the Kalman filter and
nonlinear least-squares methods performed similarly.
Root mean square error (RM8E) estimates, compared
with sample standard deviations of parameter esti­
mates, show that both methods have little bias but
that the inverse Hessian of minus the log-likelihood
appears to give estimates of the uncertainty of pa­
rameter estimates that are biased low (Le. are more
similar to standard deviation than RM8E). Residual
plots (Fig. 3) indicate biomass traces have symmetri­
cal error.

1

- Kalman filter I
- - Least squares I

\
\

- Kalman filter
- - Least squares

54 58 62 66 70

~

~

~ ~Ol
Olos gE
0 " / \iii

0

iil

0
g

A
0
0
• 30 3' 38 '" '6 50

Year

Figure 2
Fits to yellowfin tuna, Thunnus albacares, assuming p =I, OJ =0, M =0.60, So =exp(--o.60l, and data from the
eastern Pacific Ocean (Tablel>' (A) Kalman filter fit assuming a~ =46 a: =32,775 as in Pella (1993). (B) Kalman
filter by assuming predominantly measurement error a~ = 5,000 a: = 1,000. Nonlinear least-squares estimates
are the same in both (A) and (B); biomass is in millions of pounds.
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Table 2
Simulation result from 100 replications of the simulations described below. Time series were simulated by assuming virgin
biomass with <.R1=250, "-=1), growth parameters (p=l, OJ=Ol, so=exp(--o.60l, O'~,O': values given below, and relationships de­
scribed in Appendix 1. Catches were simulated as lognormal random variables with c=141.8, cv=0.21. Because the true B1 value
varies in each replication, an average value for each simulation is presented below. Standard errors for Kalman filter (KFI
estimates were calculated from the inverse of the Hessian of minus the log-likelihood. RMSE = root mean square error;
NLS = nonlinear least squares.

Simulation SI: O'~ =1,000 0': =1
Average true BI

Average of Kalman filter estimates
Standard deviation of KF estimates
Average standard error of KF estimates
RMSE of KF estimates
Average NLS estimates
Standard deviation of NLS estimates
RMSE of NLS estimates

Simulation S2: 0" =10" =1,000
Average true B 1 .. •

Average of Kalman filter estimates
Standard deviation of KF estimates
Average standard error of KF estimates
RMSE of KF estimates
Average NLS estimates
Standard deviation of NLS estimates
RMSE of NLS estimates

Simulation 83: O'~ = 500 0': = 500
Average true B1
Average ofKalman filter estimates
Standard deviation of KF estimates
Average standard error ofKF estimates
RMSE of KF estimates
Average NLS estimates
Standard deviation of NLS estimates
RMSE of NLS estimates

1,228
1,237

135
175
232

1,235
140
240

1,222
1,282

139
154
244

1,332
618

1,072

1,230
1,287

232
228
400

1,304
481
831

250.9
13.3
16.4
23.0

250.7
14.1
24.3

256.9
15.5
14.8
29.2

263.7
67.6

118.9

257.0
24.5
22.0
44.0

259.4
52.8
92.4

1.004
0.098
0.120
0.169
1.007
0.106
0.183

0.963
0.095
0.094
0.176
1.082
0.431
0.756

0.979
0.153
0.145
0.266
1.026
0.263
0.455

With variance assumption S2, we have only pro­
cess error. With this assumption both the Kalman
filter and nonlinear least-squares biomass estimates
are biased high (Table 2; Fig. 4). However, root mean
square errors show that the Kalman filter perfor­
mance is clearly superior to nonlinear least squares
for this case. It is interesting that simulation S2 also
shows that nonlinear least-squares estimates are not
necessarily more biased under process error but that
parameter estimates have larger variances.

Variance assumption S3 represents a combination
of process and measurement error. Results from S3
are similar to those from S2, with biomass estimates
appearing to be biased high for both the Kalman filter
and nonlinear least-squares methods (Table 2; Fig. 5),
but with RMSE clearly favoring the Kalman filter
method over the nonlinear least-squares method. It
should be noted that in simulation S2 and 83, I or 2 of

the nonlinear least-squares fits failed to converge prob­
ably owing to the inclusion ofprocess error. These simu­
lations were thrown out and the runs were repeated.

Results from simulation SPI (Table 3) indicate that
Schnute's form of the delay-difference equation can
be used with the Kalman filter, despite the violation
of the assumption that process error vectors are in­
dependent. And finally, results from simulation SP2
(Table 4) indicate that the Kalman filter parameter
estimates have smaller RMSE compared with non­
linear least-squares parameter estimates when only
the value of r =0'; /O'~ is assumed in the model fit.

Conclusions

Simulations show that with the fit ofthe delay-differ­
ence equation, the Kalman filter and nonlinear least-
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squares methods give similar results if there is only
measurement error. Bias in parameter estimates for
both methods tend to be small in this case. The Kalman
filter was superior to nonlinear least squares, as mea-

sured by RMSE, if there is only process error. Both
methods tended to give biomass estimates that were
positivelybiased, and nonlinearleast-squares estimates
were dramatically skewed to the right. Asimilar result

Table 3
Simulation result from 100 replications of the simulation described as SPI in the text. Time series were simulated by assuming
virgin biomass (Rl=250, A=1), growth parameters (p=0.75, (1)=0.75), 8 o=exp (-0.30), (a~=l,a:=l,OOO), and relationships de­
scribed in Appendix 1. Catches were simulated as' lognormal random variables with ( c=141.8, cv=0.2). Because the true B1 value
varies in each replication, an average value for each simulation is presented below. Standard errors for Kalman filter (KF)
estimates were calculated from the inverse of the Hessian of minus the log-likelihood. RMSE = root mean square error.

Simulation SPI: a~ = 1, a: = 1,000
Average true BI

Average of Kalman filter estimates
Standard deviation of KF estimates
Average standard error of KF estimates
RMSE of KF estimates

1,262
1,287

155
159
257

252.1
16.4
16.2
28.5

0.993
0.113
0.105
0.195

Kalman filler

•• •• ••
12 1=1 1. 1=17 .. 1=34

12
'0 10

.0

.•r--------------,
1=341•

,.r------._----........,

..
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..
!;;: Nonlinear leesl squares
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1=1
10
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1\
Residual Z,=8,B(lrue)

Figure 3
Histograms ofthe residual between estimated and true biomass, Z, = B, - B, (true), for simulation SI, with
a~ = 1,000, and a: = 1.0. Thp row is for the Kalman filter method; bottom row is for the nonlinear least­
squares method; columns are for years t=l, 17, and 34.
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occurred when measurement and process error were
included in the simulations, the Kalman filter and non­
linear least-squares biomass estimates were positively
biased and appeared positively skewed.

We interpret these results to mean that the
Kalman filter method provides superior performance
in terms ofRMSE but provides biased biomass esti­
mates. This is a serious problem for a stock assess-

Table 4
Simulation result from 100 replications of the simulation described as SP2 in the text. Time series were simulated by assuming
virgin biomass (R1=250, A=l), growth parameters (p =1, (i) =0), 8o=expC-o.60), 0': = 500 0': = 500, and relationships described in
Appendix 1. Catches were simulated as lognormal random variables with Cc=141.8, cv=0.2). Because the true B 1 value varies in
each replication, an average value for each simulation is presented below. KF = Kalman filter; RMSE = root mean square oferror;
NLS = nonlinear least squares.

Simulation SPI: 0': = 500 0': = 500
Averalle true B.
Aver~of KaI.iJ.an filter estimates
Standard deviation of KF estimates
RMSE ofKF estimates
Average NLS estimates
Standard deviation of NLS estimates
RMSE of NLS estimates

1,226
1318
291
502

1310
565
982

259.9
28.6
55.6

260.3
61.7

107.8

0.967
0.173
0.313
1.035
0.290
0.503

Kalman filter

12,-----.- --, '4,----.......---------, '4,.---..r--------,
1=34
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Figure 4
Histograms of the residual between estimated and true biomass, Z, = B, - B,ltrue) , for simulation S2,
with O'~ = 1.0, and O'~ = 1,000. 'lbp row is for the Kalman filter method; bottom row is for the nonlinear
least-squares method; columns are for years t=l, 17, and 34.
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ment model because it can lead to overfishing. How­
ever, simulation results also indicate that under the
presence of process error, nonlinear least-squares
methods provide biomass estimates with comparable
bias, and have much poorer RMSE properties. We
therefore conclude that the Kalman filter method
provides superior parameter estimates in the face of
process error.

Simulation results indicate that Schnute's form of
the delay-difference equation can be used with the
Kalman filter despite violation of the independent
process error assumption. Although it appears diffi­
cult to estimate r directly with maximum-likelihood
estimation, simulation results indicate that the
Kalman filter can be used to estimate biomass when
only r = 0': /O'~ is known, rather than the individual
variances.

It is important to acknowledge that simulation
results will differ if natural mortality, catch levels,
growth parameters, biomass, and recruitment, or er­
ror variances, are changed. We believe that custom-

ized simulation studies should be a routine part of
production modeling. The simulations performed in
this paper favored the Kalman filter in that the true
measurement and process error variances were as­
sumed to be known to the Kalman filter fitting algo­
rithm. Under these circumstances, the performance
of the Kalman filter method might be described as
less than fully satisfactory.

There appears to be few published simulation stud­
ies describing the performance ofproduction models
in the presence ofprocess error. Process error is par­
ticularly troublesome because errors are propagated
through the years rather than being quickly forgot­
ten as is measurement error. Our results, and those
of Polacheck et a1. (1993), indicate that parameter
estimation in the presence of process error is inher­
ently difficult for production models. However, the
process error method of Polacheck et a1. (1993) is
regression-based and may not provide fully efficient
parameter estimates. Because real data contain pro­
cess error, we feel process error must be dealt with,

Kalman filter

I. ,. ,.
,.

1=1 1. 1=17
" 1=34

,. I " "
" 1. I.I. I.
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::> Nonlinear least squaresD'e 28 •• ••u..

24 1=1 •• 1=17 •• 1=34
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Figure 5
Histograms of the residual between estimated and true biomass, Zt = Bt -B1 (true), for simulation 83,
with u;. = 500, and u: = 500. Top row is for the Kalman filter method; bottom row is for the nonlinear
least-squares method; columns are for years f=l, 17, and 34.
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at least to the extent of investigating the effects of
such errors on modeling results.

One final note. In this paper we have not empha­
sized model output beyond biomass traces and basic
parameter estimates. For example, annual estimates
offishing mortality rates and exploitation rates were
obvious byproducts of the model fits we presented.
The models presented here can be thought of as ex­
tensions to what we earlier called Stock Reduction
Analysis (Kimura and Tagart, 1982; Kimura et aI.,
1984; Kimura 1985, 1988). These papers contain vari­
ous methods of analysis that are useful for provid­
ing fishery management advice. For example, out­
put from both the Kalman filter and nonlinear least­
squares models can be treated as a constant recruit­
ment mudel, and target ABC's (allowable biological
catches) or target biomass levels can be made on the
basis of this assumption.
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Appendix 1: Time series properties of the
delay-difference equation

Ifrecruitments {Rtl are assumed to be uncorrelated with
E(Rt } =R l and VCR,} =(12, then the delay-difference equa­
tion (Eq. 2) is close to being a standard ARMA time series
model (Box and Jenkins, 1970). Let '1 = (1+ p}so'~ = -PS:,
and 9 = pOBo' Then Equation 2 can be written as
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Appendix 2: Derivation of the log-likelihood
when only the variance ratio r = a: I a:, is
known.

Source: Pella, J. J. 1995. Auke Bay Laboratory, Na­
tional Marine Fisheries Service, NOAA, 11305 Glacier
Highway, Juneau, AK 99801. Personal communication.

We start with the usual log-likelihood when variances
are assumed known

( ) nl ( 1~1 (f.) 1~ v: (1")lnL(y,'I') =--n2n'}--~n,-2~-f.'
2 2'=1 '=1'

(1')
Substituting f, = (1~f,. into (1"), we have

Defining B1=(~:9Rl}/(1-'1 -'2)' and substitutingRt =
nt + R l and B, =B, + B1 into Equation 1', yields the process

(2')

In(L(y, '1'») =-i-In(21r)-i-In«(1~}­

1 ft .1 ft v:
2 Lln(f, }-"2"2Lf.··

1=1 am I=-I t

(2")

where nt the are now white noise. Thus under the assump­
tion ofconstant growth parameters (p, OJ), constant survi~al
So, and random recruitment (Ht), the displaced process {B,}
is an ARMA time series model with the same statistical
properties of {Bt }.

The stationarity and invertibility ofthis time series can
easily be established by considering the roots of the char­
acteristic polynomials (see Box and Jenkins, 1970):

By differentiating with respect to (1~, and by setting
this result equal to zero, we obtain the estimator

1 ft 2
"2 __~EL

am - LJf..'
n '.1 t

which we substitute into Equation 2" to arrive at the func­
tion to be maximized

1-6X=0.

(3')

(4')

In(Lc(y, '1'») =-i"[ln(21r)+ 1]-

1~ • n l "2- ~ln(f, )-- n((1m)'
2 '.1 2

(3")

The stationarity and invertibility of IE,} follows from the
observation that the roots lIsa and l/(pso} of Equation 3'
and lI(pCll8o) of Equation 4' are all almost surely greater
than unity. .

Let Co =(1- 9q)1 +92
) (1;, and c1 =-90';. The autocovar­

iance terms (i.e. the YA. in standard notation) of the pro­
cess {Bt}can then be shown to be

Yo =[co + (1+ ~)'ICl/(1-~)]1[(1- ,:)-

(1+ '2)'~ /(1- '2)]'

Yl =(c1 +'lyo)/(l-~),

Y2 ='IYl +'2YO' and
Y, ='IY'-1 +'2Y'-2' fork~3.

Two interesting correlation coefficients that can be es­
timated using the Y", are

p(B"R,)=~(1~/Yo and p(B,_"B,)=Y,/Yo'


