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Abstract.-Many tuned assessment
models. such as sequential population
analysis and nonequilibrium produc­
tion models, are cast in the form of
least-squares minimization routines. It
is well known that outliers can substan­
tially alter the results of least-squares
methods. Indeed, in the process of con­
ducting stock assessments, much time
and effort are often spent in discussing
the merits ofindividual data points and
in evaluating the impact that includ­
ing or excluding them has on the per­
ceived stock status. Unfortunately,
straight-forward statistical tests for
detecting outliers have been developed
only for univariate statistics or for the
simplest of linear models and are gen­
erally useful to test for a single outlier
only. In this paper, we apply a high­
breakdown robust regression tech­
nique, least trimmed squares. to two
assessment models using North Atlan­
tic swordfish and West Atlantic bluefin
tuna as examples. We illustrate how
robust regression can be used as an ini­
tial step in statistically detecting out­
liers before the more efficient least­
squares minimization can be used.
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Tuned stock assessment models are
statistical methods that analyze
time series of fishery catch data in
conjunction with auxiliary informa­
tion (indices of relative abundance,
fishing effort, etc.) to yield estimates
ofstock abundance and exploitation
rates over time. Such methods are
widely used today by stock assess­
ment working groups throughout
the world because they provide an
objective and statistically defensible
way to assess the status of stocks
and to derive management advice.
The two primary methods are se­
quential population analysis (SPA:
Fournier and Archibald, 1982;
Deriso et a1., 1985: Pope and Shep­
herd, 1985; Kimura, 1989; Methot,
1990: Powers and Restrepo, 1992:
Gavaris1) and nonequilibrium pro­
duction models (Pella and Tom­
linson, 1969; Hilborn. 1990; Hilborn
and Walters. 1992; Prager, 1994).
SPA's are typically age structured
and production models are not, al­
though there are exceptions to this
generalization in the references just
cited. Both types of methods, how­
ever, share the commonality of of­
ten being cast as nonlinear least­
squares minimization problems.

Despite efforts to standardize all
steps involved in a stock assessment
(from data collection, preparation of

model inputs. to running the mod­
els), stock assessments are rarely
automated and, more often than
not, generate controversy. In our
experience with different fora; a
common cause for controversy is as
follows: various data sets are pre­
sented to a working group and then
the group collectively decides on the
sets ofdata and model assumptions
to be used. The consensus selection
is typically termed the "base case."
Individual data points are then
scrutinized for exclusion from fur­
ther analyses to determine the ro­
bustness of the overall assessment
to the sensitivity changes. This par­
tial "sensitivity analysis" can. in
practice, be undesirable because
perceptions ofwhat results ought to
be like may influence which data or
data points are scrutinized and thus
generate controversy; not every
working group participant has the
same perception. The lack of an a
priori objective selection process
could lead working groups astray
(Restrepo and Powers, 1995), A so-

1 Gavaris. S. 1988. An adaptive frame­
work for the estimation of population size.
Can. At!. Fish. Sci. Adv. Comm. <CAFSACl
Res. Doc. 88/29. 12 p. Biological Station,
Department of Fisheries and Oceans, St.
Andrews, New Brunswick, Canada EOG
2XO.
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lution to this problem lies in a method that would
objectively identify-and deal with-"outliers."

Statistical tests have been developed for identify­
ing outliers (see Barnett and Lewis, 1994), but most
ofthe straight-forward approaches can only deal with
a few outliers in univariate analyses or in linear re­
gression. High-breakdown robust regression meth­
ods (Rousseeuw, 1984; Rousseeuw and Leroy, 1987)
hold promise for addressing the issue, as suggested
by several recent papers in fisheries literature (e.g.
Chen et aI., 1994; Chen and Paloheimo, 1994). The
goal of high-breakdown robust regression is to pro­
vide model estimates that are insensitive to contami­
nation (up to 50%) by outliers and thus will serve to
identify outlying observations. However, most robust
regression applications in fisheries science (Chen et
aI., 1994; Chen and Paloheimo, 1994) and in statis­
tics literature have been developed for linear prob­
lems (but, see Stromberg, 1993>' In this study we
seek to illustrate the application and usefulness of
this tool by using two nonlinear examples: a
nonequilibrium production model for North Atlantic
swordfish, Xiphias gladius, and a sequential popu­
lation analysis for West Atlantic bluefin tuna,
Thunnus thynnus. Both stocks are assessed by the
Standing Committee on Research and Statistics
(SCRS) ofthe International Commission for the Con­
servation of Atlantic Tunas (lCCAT). The analyses
presented here are illustrative and are not intended
to replace those of the SCRS.

Methods

Assessment models

Assuming a normal (Gaussian) error structure, the
typical tuned assessment method minimizes the
squared deviations (residuals, r) between observed
and predicted indices of abundance:

for m indices, each~with ni observations. The predic­
tion ofeach index, Ii! comes from a population model,
such as a surplus production model or a sequential
population analysis. Alternatively, the minimization
can be made in terms of observed and predicted
catches or in terms of observed and predicted fish­
ing effort. Note that some maximum-likelihood ap­
proaches do not make the normal error assumption
(e.g. Fournier and Archibald, 1982); we focus on those
approaches that are in a least-squares framework or
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that can be transformed to one, which include itera­
tively reweighted least squares and some forms of
maximum likelihood.

In this paper, we give robust regression examples
using two population models. A detailed explanation
of these methods is beyond the scope of this paper
and readers are referred to the citations given be­
low. The surplus production model corresponds to a
Schaeffer (logistic) form, fitted as nonequilibrium
time series by using the continuous time method pre­
sented by Prager (1994). This method estimates pa­
rameters describing the carrying capacity, rate of
intrinsic population growth, initial biomass, and
catchability coefficients that best explain observed
time series of relative abundance according to the
criterion in Equation 1. The sequential population
analysis corresponds to a tuned virtual population
analysis method known as ADAPT, an age-structured
assessment framework popular in the east coast of
North America. Details on ADAPT can be found in
Powers and Restrepo (1992,1993), Punt (1994), and
Gavaris.1ADAPT estimates age-specific fishing mor­
tality rates in the last year of data and catchability
coefficients that satisfy Equation 1, while forcing
cohorts to conform to exponential survival through
time:

where N denotes stock size in numbers, Z denotes
instantaneous total mortality, and a and yare sub­
scripts for age and year.

Data sets

The data set used with the nonequilibrium produc­
tion model is for North Atlantic swordfish as em­
ployed by ICCAT in its 1994 assessment (ICCAT,
1995). This data set consists of total landings (in
weight) for the period 1950-93 and of a single stan­
dardized longline series of catch per unit of effort
(CPUE, used as a measure of relative abundance),
spanning the period 1963-93 (Table ll. After a se­
ries of sensitivity tests, ICCAT assumed in its "base
case" analysis that the initial biomass in 1950 was a
known quantity, equal to 0.875 times the stock's car­
rying capacity. Thus, 3 parameters were estimated:
carrying capacity, intrinsic rate ofgrowth, and a con­
stant ofproportionality (q) relating the series ofreIa­
tive abundance (X) to absolute biomass units (B). The
minimization of Equation 1 was done in log scale, i.e.
/.. = In(X..) and i .. = In(qB .).u U U J.

The data for the SPA 1S for West Atlantic bluefin
tuna, also as employed by ICCAT in its 1994 base
case assessment (lCCAT, 1995>' It consisted ofcatch
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Table 1
North Atlantic swordfish, Xiphias gladius, data used for the nonequilibrium production model (from ICCAT, 1995). Relative
abundance is in Kg/l,OOO standard hooks, standardized from Canadian, Japanese, Spanish. and U.S. longliners. t =metric tons.

Year Landings It) Relative abundance Year Landings (tl Relative abundance

1950 3.646 1973 6,001
1951 2.581 1974 6,301
1952 2,993 1975 8,776 421.69
1953 3,303 1976 6,587 353.66
1954 3.034 1977 6,352 393.92
1955 3.502 1978 11,797 649.61
1956 3.358 1979 11,859 338.57
1957 4,578 1980 13,527 430.69
1958 4,904 1981 11,138 310.18
1959 6,232 1982 13,155 356.96
1960 3.828 1983 14,464 287.88
1961 4,381 1984 12,753 286.12
1962 5,342 1985 14,348 265.94
1963 10,189 1,258.10 1986 18.447 255.54
1964 11,258 467.29 1987 20,234 217.30
1965 8,652 294.86 1988 19,614 207.62
1966 9,338 273.50 1989 17,299 196.90
1967 9.084 320.22 1990 15,865 199.20
1968 9,137 269.55 1991 15,224 194.02
1969 9,138 233.95 1992 15,593 182.55
1970 9,425 274.25 1993 16.977 172.27
1971 5,198
1972 4,727

at age from 1970 to 1993 for ages 1 to 10'" (Table 2),
and of 7 indices of relative abundance assumed to
track different segments of the population (Table 3;
see Fig. 4). A number of assumptions were made and
these can be found in Appendix BFTW-2 of ICCAT
(19951. The parameters estimated were 7 constants
of proportionality relating each index of relative
abundance to absolute biomass or numbers and 4
fishing mortalities in 1993 (for ages 2, 4, 6, and 8),

We reiterate that we chose the same data sets and
model structures as those in ICCAT (1995) for illus­
trative purposes. It may be worthwhile to investi­
gate the results of robust regression techniques ap­
plied to alternative data (e.g. indices obtained with
a different standardization procedure) or to formu­
lations (e.g. different assumptions about known
quantities and other constraints).

Robust regression

ods that are insensitive to up to 50% contamination
by outliers, because they can effectively be used as
an objective method to identify outliers.

Two high-breakdown robust regression methods
are least median squares (LMS) and least trimmed
squares (LTS). LMS minimizes the median of the
squared residuals and LTS minimizes the sum of the
lowest xn squared residuals, where x is a fraction
(Jess than 1.0 to 0.5) defined by the user. The results
of an LMS regression and an LTS regression with a
50% trim are essentially very similar, although the
LTS one is statistically more efficient (Rousseeuw
and Leroy, 1987). In our initial experimentation with
fisheries assessment models, we found that the LTS
minimum was somewhat easier to find (the LMS
could sometimes not converge, indicating that a large
number of restarts may be required), Therefore, we
limited our investigation to the LTS minimization
criteria discussed below. This can be either

Several robust minimization criteria discussed in
Rousseeuw and Leroy (1987) have been applied to
fisheries data (see Chen et aI., 1994). In contrast with
the method of least squares, the goal of these tech­
niques is to moderate the influence ofoutliers in the
parameter fitting process (Eq. 1). Of particular in­
terest to us are the so-called "high-breakdown" meth-

or

m ni /2+1

LTS1 = Imin I(r2
)j:n;

i=1 j=1

m nj/2+1

LTS2 =min I ICr2
)j:ni'

i=1 j=l

(2)

(3)
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Table 2
West Atlantic bluefin tuna, Thunnus thynnus, catch at age data (in numbers) used for the sequential population analysis (from
ICCAT, 1995).

Age

Year 1 2 3 4 5 6 7 8 9 10+

1970 64.886 105.064 127,518 21,455 3,677 914 176 172 535 3,726
1971 62,998 153,364 38,360 46,074 672 1,673 2.109 1,350 1,133 5.957
1972 45.402 98,578 33.762 3.730 3,857 118 569 576 261 5,519
1973 5,105 74,311 30.482 7,161 2,132 1,451 953 1,544 555 4,444
1974 55.958 20.056 21,094 6,506 3,170 683 916 913 1,081 12.508
1975 43.556 148,027 8.328 11,963 821 547 317 671 1,651 9.472
1976 5.412 19,781 72.393 2.910 2,899 344 206 1,168 558 14.033
1977 1,274 22,419 9,717 32,139 4.946 3,633 957 513 1,109 13,532
1978 5.133 10.863 20,015 6,315 10.530 4.061 655 472 341 11,982
1979 2,745 10,552 16.288 14,916 3,448 3,494 2,612 599 557 12,283
1980 3.160 16.183 11,068 8.881 2,866 2,982 5,533 3,454 1,061 12,213
1981 6,087 9.616 16.541 5.244 6,023 3,721 2,884 3,211 2,764 10,621
1982 3.528 3.729 1,654 498 342 751 477 519 896 3.077
1983 4,173 2.438 3,268 894 866 911 1,402 1.353 1.039 5,628
1984 868 7,504 1,848 2,072 2,077 1,671 594 759 1,091 4,574
1985 568 5.523 12,310 2,814 4,329 4,019 1.024 612 698 5,603
1986 563 5,939 7,135 3,442 1,128 1,726 931 520 345 5.335
1987 1,513 13,340 9.137 5,491 4,385 2,318 1.566 1,251 1.014 3,856
1988 4.850 9,149 11,745 3.933 4,144 4,220 2.258 1,631 1,600 4,555
1989 787 12,877 1,679 3,815 1,713 2.082 2,677 1,864 1,461 5.356
1990 2.368 4,238 17,958 1,947 2,747 1,825 1,629 2,388 1,522 4,253
1991 3,327 14,533 10.761 2,924 1,650 2,166 2,347 1,946 1,915 4,485
1992 420 5.985 1,997 711 1,425 737 1.916 1,870 1,323 4,383
1993 329 1,130 5,215 3,689 2,089 1,883 1,598 2,456 1.479 2,922

where the notation }:n j indicates that the squared
residuals are sorted in ascending order from}=l to
n j ; note that n/2 +1 is actually an integer value equal
to n/2 when n j is even and equal to n/2 +1 when n j is
odd. Equations 2 and 3 are two different minimiza­
tion objectives that differ in the way they treat mul­
tiple series of relative abundance data. In Equation
2, the trimmed sums of squared residuals are com­
puted separately for each index and then added to
the objective function being minimized. Thus, the
individual indices are de facto given equal weight­
ing. In Equation 3, the trimming is done over all avail­
able data points, regardless ofwhich relative abundance
series they belong to. Thus, the LTS1 formulation forces
each available series to contribute to the objective func­
tion, whereas the LTS2 formulation could plausibly
eliminate indices that fit very poorly in comparison with
the others. An analogous distinction can be made for
the LS fit by giving either equal weight to all available
data series (as in Eq. 1) or by assigning weights to each
series in proportion to their mean squared errors. The
latter has often been accomplished by means of itera­
tive reweighting (Powers and Restrepo, 1992) or maxi­
mum likelihood (Punt, 1994),

Algorithms for high-breakdown robust regression
are notoriously computation-intensive, even in the
simplest univariate linear regression case (Rousseeuw,
1984; Rousseeuw and Leroy, 1987; Steele and Steiger,
1986). A typical algorithm for a linear robust regres­
sion with p parameters goes like this: For a large
number of times, s, select p data points, do a least­
squares regression (LS) and compute the correspond­
ing robust objective function (e.g. sum of trimmed
squares) for the complete data set. The LTS solution
is given by the parameter estimates and results in
the lowest robust objective function value. In the lin­
ear case, the value ofs is chosen such that, for a given
fraction ofdata contamination and a givenp, at least
one of the s subsamples is not contaminated
(Rousseeuw and Leroy, 1987). The choice of s in the
nonlinear case is not clearcut. However, in the lin­
ear case the values ofs grow very rapidly withp and
percent contamination; therefore many available al­
gorithms set s = 3,000 for p > 9 (Rousseeuw and Leroy,
1987). Similar values were used here for the nonlin­
ear case.

Algorithms for nonlinear robust regression are
rare, owing partly to the increased computational
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Table 3
West Atlantic bluefin tuna, Thunnus thynnus, relative abundance indices (from ICCAT, 1995). The larval index is in relative
biomass units. while all others are in relative numbers. The numbers below each index label are the ages or range of ages that
each index is assumed to represent. TL =tended line, LL =longline, RR =rod and reel, GOM =GulfofMexico, NWA =Northwest
Atlantic.

Canada Japan Japan Larval US US US
TL LLGOM LLNWA GOM LLGOM RR RR

Year 10+ 10+ 1-9 8+ 8+ 8+ 1-5

1974 1.4670
1975 1.0200
1976 0.8960 0.8134
1977 0.6700 1.7822 1.7704
1978 0.9350 1.4621 4.2341
1979 0.9380 0.5476
1980 1.5130 1.0327 1.2109
1981 2.3489 0.5610 1.4812 0.9575 0.1274
1982 2.1095 0.7121 1.1008 1.3417
1983 1.5621 0.5022 0.8977 2.4703 0.7816
1984 1.0718 0.8527 0.4750 1.0949
1985 0.5131 0.9967 1.0483 0.5366
1986 0.6157 0.5725 0.1897 0.7324 0.9995
1987 0.3991 1.1490 0.3236 1.7544 0.6933 1.2138
1988 0.6271 0.8773 1.4146 0.6842 1.3195 1.6059
1989 0.4561 0.7417 0.5803 1.0526 0.6808 1.3339
1990 0.2965 0.7754 0.3446 1.1404 0.6204 0.7331
1991 0.7523 0.2652 1.5614 0.7694 1.3277
1992 1.8813 0.4464 0.5263 0.8727 0.7968
1993 1.0675 0.2807 0.6981 0.9912
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requirements. Although the LS solutions for the lin­
ear case (as described in the previous paragraph) can
be accomplished with simple matrix manipulations,
nonlinear LS solutions require iterative computa­
tions. Stromberg (1993 I presented a multistage al­
gorithm for nonlinear regression that is similar to
the one outlined above, succeeded by a direct mini­
mization ofthe robust objective function by using the
simplex search of Neider and Mead (19651. Building
upon Stromberg's ideas, we reviewed algorithms for
an LTS1 solution to the bluefin tuna SPA. On the
basis of these results and the work of Stromberg
(1993), we adopted the algorithm below but acknowl­
edge that there are many other possible fruitful op­
tions to be explored, such as "simulated annealing"
(Corana et aI., 1987), Our algorithm uses the fact
that the simplex search of NeIder and Mead (1965)
requiresp+1 starting guesses, denoted by v vertices,
for each of the p parameters being estimated.

1 Find the LS estimate for the entire data set. The
estimates (P)LS are used as starting guesses for
step 2.

2 Repeat s times:
a) Set initial parameter guesses at random from

within 10 times the (P)LS estimates from step 1.

b) Find the LTS estimates for the complete data
set by using the starting values from step 2a.

c) Restart step 2b until the objective function (ei­
ther Eq. 2 or Eq. 3) does not change appreciably.

dl Save the parameter estimates corresponding
to the (p+1)LTS parameter sets with the lowest
objective function value.

3 Initialize the v vertices for the simplex search with
the best 1p+11 parameter sets from the s solutions
from step 2 and find the LTS estimate for the en­
tire data set. As in step 2, carry out restarts as
needed.

This algorithm is a direct robust minimization
search that is initialized s times from a Monte Carlo
grid centered around the LS solution. It is compu­
tationally intensive, but this seems necessary given
the multi-modal nature often encountered in the LTS
or LMS objective function. For this study we used s
=500. For both the swordfish nonequilibrium pro­
duction model and the bluefin tuna SPA analyses,
step 2 involved 5 restarts on average and thus made
the total number of minimizations greater than
2,500. It should be noted that this search algorithm
does not guarantee that a global minimum LTS so­
lution is going to be found. Therefore, we favor mul-
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Results

Swordfish nonequilibrium production model
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The swordfish data represent a simple example with
a single index. Nevertheless, there are several very
large deviations between the observed and predicted
index values, when the traditional least-squares (LS)
solution to the nonequilibrium production model fit
is computed (Fig. 1). Indeed. these deviations have
generated considerable debate (ICCAT, 1995 I. There­
fore, we applied the robust regression techniques of
the LTS algorithm and the trimmed LS method of
outlier detection to this example. The LTS solution
(with a 50% trim) was computed 500 times with 5
restarts each. There did not appear to be problems
of multiple minima with this example because vir-

For the LTS regression, the dispersion is similarly
computed as a robust measure of average dispersion
«(J'i for index i in Eq. 2 or (J' for all data points in Eq. 3):

Aside from biological or fishery considerations, sta­
tistical outliers are data points whose residuals,
scaled by the dispersion of errors,

Dealing with outliers

(J'=

tiple replicates and restarts so that there is some
confidence that the solution is globally minimal. At
this point we have no firm guidance about the
tradeoffs between the number of replicates (8 I and
the number of restarts other than to say that repli­
cates are probably more important than restarts. For
example 500 replicates with 5 restarts seems prefer­
able to 25 replicates with 100 restarts.

riJ
(J'

are far from the mean scaled residual. For the simple
LS minimization (Eq. 1), the overall dispersion ofthe
residuals is the mean squared error (MSE I.
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for LTS2, Eq. 3.
The constant 3.7444 is a correction factor used to

achieve consistency with normal error distributions
(Rousseeuw and Leroy, 1987). As a rule of thumb,
Rousseeuw and Leroy (1987) suggest that absolute
values ofscaled residuals larger than 2.5 can be treated
as statistical outliers. Owing to the small number of
observations in some ofour data series, we use a thresh­
old based on the t-distribution with a. = 0.01 and n-1
degrees offreedom. After obtaining the LTS estimates,
we carried out a new least-squares minimization ex­
cluding from the analyses any absolute scaled residu­
als greater than the corresponding critical value. We
refer to this final result as the "trimmed LS" solution.
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Figure 1
Biomass index values for North Atlantic swordfish using
least squares (LS), least trimmed squares lLTS), and
trimmed least squares (Trimmed LS). The top panel shows
observed and predicted index values. The bottom panel
shows the scaled residuals from the LTS fit compared with
the critical value for the outlier detection criterion (dashed
lines); solid circles are those data points considered to be
outliers and not included in the final trimmed LS solution.
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Figure 2
Predicted biomass relative to biomass at maximum sus­
tainable yield IBIBMSY' top panel> and absolute biomass
(bottom panel> resulting from LB, LTB. and trimmed LS
solutions. The left side of the graphs show the production
model estimates. The right sides of the graphs are projec­
tions made with the fishing mortality rate at maximum
sustainable yield (FMSY) and with the fishing mortality rate
in 1993 (F 93). Ascending limbs were projected by using
FMSY' descending limbs by using F 93.
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Figure 3
Trimmed squares objective function IEq. 2) plotted around
the solution for one of the parameters estimated in the
bluefin tuna sequential population assessment (catch­
ability for the U.S. rod and reel large fish index, Table 3).
The plot shows that multiple local minima can occur in
robust regression problems.

As mentioned before, a high-breakdown robust re­
gression objective function can possess multiple
minima. Figure 3 illustrates this point with the LTS1
objective function plotted around ± 50% of the final
estimate for one of the parameters, while all other
parameter values were fixed at their solution. The fig­
ure highlights the need for an exhaustive search ow­
ing to the multimodal nature ofthe response surface.

Figure 4 shows the observed indices of relative
abundance in the first column, the scaled residuals

Bluefin tuna SPA

that are lower than those in the other two methods;
however, the decline over the time series is less. Bio­
mass projections were made under two strategies: 1) a
recovery strategy in which future fishing mortality rate
was fixed at the value that would produce maximum
sustainable yield and 2) a status quo strategy in which
the fishing mortality would be fixed at the 1993 level.
The LTS and trimmed LS projections indicate that both
recovery and decline is not as rapid as that predicted
from the initial LS solution (Fig. 2).

The robust regression techniques applied here tend
to provide a better fit to the index data points in re­
cent years at the expense of the data points in the
earlier years of the series. Indeed, several of the
points identified through the outlier detection pro­
cess were those data points for which there was much
debate regarding variability and bias (lCCAT, 1995).
However, some ofthe data points identified here were
not identified by ICCAT (1995); therefore, we reem­
phasize the point that the selection ofoutliers should
be based on objective criteria.
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tually all of the 500 solutions converged to the same
value. The outlier detection criteria identified five of
the original 27 data points (19%), all of which oc­
curred before 1981 (Fig. 1). Predicted index values
with both the LTS and trimmed LS solutions were
higher than the LS predictions prior to the late 1980's
and lower than LS predictions in recent years (Fig. 1).

Predicted relative biomass values with either the LTS
or trimmed LS solutions are higher than the initial LS
solution nCCAT, 1995), particularly in the 1990's (Fig.
2) and suggest less ofa decline in the population. Abso­
lute biomass predictions with the LTS method were
generally higher than those from the initial LS solu­
tion, whereas trimmed LS solutions were lower (Fig.
2). The trimmed LS solution results in biomass levels
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Figure 4
Results from the bluefin tuna sequential population analyses using least trimmed squares (LTS> regression. The left-hand column shows the seven available indices of
relative abundance (see Table 3). The middle and right-hand side columns show the scaled residuals resulting from the minimizations with Equations 2 and 3, respec­
tively. Crossed symbols identify statistical outliers at the 1% significance level.
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Figure 5
Bluefin tuna stock size estimates for 3 groups of ages. The solid line
represents the estimates from the least-squares solution with all the
available data. as in the ICCAT assessment. The dashed lines show the
least squares estimates after removal of the data points identified as
outliers in Figure 4. Squares =after minimization with Equation 2: circles
=after minimization with Equation 3. Squares and circles overlap.

1995
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outlier (Fig. 4). But perhaps more importantly in
terms of the effect on the SPA results, the 1992 data
point for the Japanese Northwest Atlantic longline
index, is also identified as a large outlier. That is,
because ofthe convergence properties of the ADAPT
approach, the more recent data tend to have a larger
impact on the estimates of current stock status.

Figure 5 shows the estimated stock size trajecto­
ries for 3 age groupings that ICCAT assessments fo­
cus on: small fish (ages 2 to 5), medium fish (ages 6
and 7), and spawners (ages 8 and older). The solid

line without symbols represents the ini­
tial LS solution (Eq. ll, as in the 1994
ICCAT assessment. The 2 dashed lines
with symbols (virtually indistinguishable
from each other) represent the final
trimmed LS solutions, i.e. after removal
ofthe outliers identified in Figure 4. Note
that all the stock size estimates are iden­
tical in the first half of the time series,
owing to the convergence properties ofthe
SPA. Differences in 1990's stock size es-
timates before and after trimming are
most notable for small and medium blue­
fin tuna (Fig. 5). For this example, the
final trimmed LS solutions estimate
lower current stock sizes (Fig. 5) and cor­
respondingly higher current exploitation
rates (not shown).

The impact that these differences in the
estimates have on management recom­
mendations can be appreciated in Figure
6, which shows a 10-year projection ofthe
stock's spawning biomass at two levels
of constant landings considered by
ICCAT. These projections were made by
using the same assumptions as those in
the assessment (Appendix BFTW-2 in
ICCAT, 1995): essentially, that recruit­
ment is constant after a certain parental
biomass level and that the 3 most recent
recruitment values from the SPA are
poorly estimated and are replaced by the
geometric mean recruitment from past
years. The top panel in Figure 6 is a pro­
jection made by assuming 2,000 metric
tons (t) landings after 1993: the lower
panel assumes 2,660 t landings after
1993. The solid lines represent the LS
solution as in the ICCAT assessment, and
the dashed lines represent the LS solu­
tions after trimming (squares for results
from the LTS l solution and circles for re­
sults from the LTS2 solution). The pro­
jections made without removing outliers
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from the LTSl fit (second column), and the LTS2 fit
Clast column). The open symbols indicate which data
points were identified as outliers according to the t­
test criterion mentioned previously. The LTS l regres­
sion, which gives equal consideration to all index
series, identified 9 outliers (11% of the total index
data points). The LTS2 approach, which gives more
weight to the better-fitting series, identified the same
9 observations as outliers, and an additional 8 (21%
ofthe total number of data). The 1978 estimate from
the larval index stands out as a particularly large
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are optimistic and suggest a contin­
ued increase in parental biomass
even at the higher level of landings.
The projections made after trimming,
on the other hand, are less optimis­
tic. These suggest a more modest in­
crease in spawning biomass at the
2,000 t level oflandings, or a decline

.in spawning biomass after 7 years of
2,660 t landings (Fig. 6).

2004

Projection year

the LTS regression may have identified more or fewer
observations as outliers. A related point is that we
do not advocate rushing to eliminate outliers auto­
matically from stock assessments. Instead, a first
step should be to look into reasons why such obser­
vations may seem like outliers, e.g. undetected tran­
scription errors or environmental influences that
were not accounted for in the analysis. Additionally,
the outlier detection would identify candidates for sen­
sitivity analysis in an objective manner. Instead ofde­
termining data points that are influential on the re­
sults and trying to determine if those points could be
considered outliers, we are advocating the converse.

The outlier detection procedures outlined here in­
herently assume symmetry in the response surface.
Thus, it is expected that the trimmed LS technique
will provide results similar to those coming from bias
correction procedures used in bootstrapping meth­
ods (e.g. Prager, 1994>' Both methods assume that
the underlying distributions are symmetrical and
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Figure 6
Bluefin tuna spawning stock size projections at two levels of constant land­
ings: 2,000 metric tons It) ltop panel>, and 2,660 t (bottom panel). Lines and
symbols are the same as those in Figure 5. 88B =spawning stock biomass.

The robust regression methods as
applied to tuned population assess­
ment models may be helpful in sev-
eral ways. The methods can be used
as an alternative minimization cri­
terion to obtain estimates of the
population parameters. They can
also be used to identify outliers for
elimination from subsequent fitting.
In either case, much ofthe subjectiv­
ity that can enter discussions about
individual data points during work­
ing group meetings would be elimi-
nated. The latter aspect (identifica-
tion and elimination of outliers) is
especially useful because, after elimi­
nation of the outliers, one can then
go on and conduct the normal boot­
strap (Punt, 1994) or Monte Carlo
(Restrepo et aI., 1992) analyses used
to evaluate uncertainty in the esti-
mates. The robust regression methods could be used
to screen the outliers, and then the other methods
could be used to estimate variability and to project
the population status under different management
scenarios. Presently, computation time would pre­
clude incorporating bootstrap or Monte Carlo tech­
niques directly into the LTS search. Removing outli­
ers should, also, have a moderating effect on the so­
called retrospective patterns <Sinclair et aI., 1990),
some of which are caused by outliers in the indices
(ICES, 1995).

It is important to keep in mind a point of caution
when removing statistical outliers from an assess­
ment. Observations that appear to be outliers are so
in the overall context of data-model. That is, it is
possible that a data point is considered as either an
outlier or not, depending on the model formulation,
constraints, etc. For example, if the bluefin tuna in­
dices of abundance had been considered to be log­
normally distributed instead ofnormally-distributed,
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adjust the results in order to maintain that symme­
try. However, if model constraints or other features
of the model or data force the response surface to
have an underlying (but unknown) skewed distribu­
tion, then the outlier selection process outlined here
might falsely identify some data points as outliers.
Conversely, the least trimmed squares <LTS) solu­
tions make no assumptions about the shape of the
response surface. Therefore, we expect that the LTS
method could be robust to those situations where the
distribution is skewed. Nevertheless, with judicious
application, robust regression is expected to be a
useful tool for evaluating and selecting data appro­
priate for tuning stock assessment models.
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