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Abstract–Stock-rebuilding time iso­
pleths relate constant levels of fishing 
mortality (F), stock biomass, and man­
agement goals to rebuilding times for 
overfished stocks. We used simulation 
models with uncertainty about FMSY 
and variability in annual intrinsic 
growth rates (ry) to calculate rebuilding 
time isopleths for Georges Bank yellow­
tail flounder, Limanda ferruginea, and 
cowcod rockfish, Sebastes levis, in the 
Southern California Bight. Stock-re­
building time distributions from sto­
chastic models were variable and right­
skewed, indicating that rebuilding may 
take less or substantially more time 
than expected. The probability of long 
rebuilding times increased with lower 
biomass, higher F, uncertainty about 
FMSY, and autocorrelation in ry values. 
Uncertainty about FMSY had the great­
est effect on rebuilding times. Median 
recovery times from simulations were 
insensitive to model assumptions about 
uncertainty and variability, suggesting 
that median recovery times should be 
considered in rebuilding plans. Iso­
pleths calculated in previous studies 
by deterministic models approximate 
median, rather than mean, rebuild­
ing times. Stochastic models allow 
managers to specify and evaluate the 
risk (measured as a probability) of not 
achieving a rebuilding goal according 
to schedule. Rebuilding time isopleths 
can be used for stocks with a range of 
life histories and can be based on any 
type of population dynamics model. 
They are directly applicable with con­
stant F rebuilding plans but are also 
useful in other cases. We used new 
algorithms for simulating autocor­
related process errors from a gamma 
distribution and evaluated sensitivity 
to statistical distributions assumed for 
ry. Uncertainty about current biomass 
and fishing mortality rates can be con­
sidered with rebuilding time isopleths 
in evaluating and designing constant-F 
rebuilding plans. 

Manuscript accepted 12 Febraury 2002. 
Fish. Bull. 100:519–536 (2002). 

Stock-rebuilding time isopleths and 
constant-F stock-rebuilding plans 
for overfished stocks 

Larry D. Jacobson 
Steven X. Cadrin 
Northeast Fisheries Science Center

National Marine Fisheries Service

166 Water Street

Woods Hole, MA 02543

E-mail address (for L. D. Jacobson): Larry.Jacobson@NOAA.gov 

Stock-rebuilding plans proposed for (Fig. 1, and Thompson, 1999) reduces 
overfished stocks are best evaluated by FThreshold from the FMSY level linearly to 
stock-specific simulation analysis (e.g. zero as biomass declines from BThreshold. 
PFMC1). However, general approaches In cases where BMSY and FMSY can not 
are also valuable because many stocks be estimated, reasonable proxy values 
are overfished (NMFS, 1999) and (e.g. one-half unfished biomass or F0.1) 
default or generic rebuilding plans can are typically used instead. 
be used without extensive analyses for The goal for most rebuilding plans 
each species (e.g. PFMC2; Applegate et under the SFA is to achieve the target 
al.3). In this article we show how stock- biomass level (BMSY or an acceptable 
rebuilding time isopleths can be used proxy level) in ten years or less. Even 
to design, evaluate, and monitor prog- with zero fishing mortality, ten years 
ress of “constant F ” and other types may not be sufficient to rebuild some 
of rebuilding plans. Constant-F stock- overfished stocks. In such cases, the 
rebuilding plans maintain fishing mor- Guidelines for National Standard 1 al­
tality at a fixed level until the stock is low a rebuilding time period no longer 
rebuilt, and are relatively simple and than one mean generation time (Re­
easy to analyze. The isopleth approach strepo et al., 1998) plus the expected 
is easy to use as both a general and time to recovery in the absence of fish­
stock-specific tool. ing mortality (DOC, 1998). 

The U.S. Sustainable Fisheries Act 
(SFA) mandates rebuilding plans for 

overfished stocks (DOC, 1996, 1998). 

1 PFMC (Pacific Fishery Management Coun­

cil). 1999. The coastal pelagic species

Federally managed stocks are consid- fishery management plan, Amendment 8,
ered overfished when stock biomass is 405 p. Pacific Fishery Management Coun­
less than the biomass threshold (BThresh- cil, 7700 NE Ambassador Place, Portland, 

old) defined in the Fishery Manage- OR, 97220-1384.


ment Plan (FMP). National Standard 2 PFMC (Pacific Fishery Management Coun­

cil). 1999. Status of the Pacific Coast1 (DOC, 1998) for the SFA indicates groundfish fishery through 1999 and rec­

that BThreshold should be the greater ommended acceptable biological catch for 
of one-half of BMSY (the theoretical 2000 stock assessment and fishery evalua­
biomass level for maximum sustained tion, 230 p. Pacific Fishery Management 

yield, MSY) or the minimum biomass Council, 7700 NE Ambassador Place, Port­
land, OR, 97220-1384.

from which rebuilding to BMSY could 3 Applegate, A., S. Cadrin, J. Hoenig, C.
be expected to occur within ten years Moore, S. Murawski, and E. Pikitch. 
if the stock is exploited at FThreshold. 1998. Evaluation of existing overfishing 
Typically, FThreshold = FMSY (the theo- definitions and recommendations for new 
retical fishing mortality rate for MSY) overfishing definitions to comply with the 

when current biomass is at or above Sustainable Fisheries Act, 179 p. New 
England Fishery Management Council,

BThreshold, and FThreshold < FMSY at lower 50 Water Street, Mill 2, Newburyport, MA 
biomass levels. A common approach 01950. 
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Figure 1 
Isopleths for median rebuilding times based on a deterministic logistic 
population growth model (model type 1) for Georges Bank yellowtail 
flounder with FMSY=0.3. Also shown are a common harvest control rule, 
and the biomass-F trajectory during 1996–99 for Georges Bank yellow­
tail flounder. The harvest control rule specifies a maximum (threshold) 
F as a function of stock biomass level. The biomass-F trajectory shows a 
time series of F and biomass estimates from virtual population analysis 
(VPA, Cadrin5). 
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Stock-rebuilding time isopleths 

Cadrin (1999) calculated theoretical recovery times for 
Georges Bank yellowtail flounder (Limanda ferruginea) 
and used rebuilding time isopleths to depict trends in stock 
biomass in relation to fishing mortality. Calculations were 
based on a deterministic logistic population growth model 
with a range of constant annual fishing mortality rates 
(F̃=zero to FMSY) and a range of initial biomass levels less 
than the target level (B0=zero to BMSY). Recovery time was 
the number of years required for stock biomass to increase 
from an initial overfished biomass level (B0<BThreshold) to 
the biomass target BTarget=BMSY, assuming a constant 
annual fishing mortality rate. Rebuilding time isopleths 
were formed by connecting points of initial biomass and

˜constant fishing mortality (B0, FB0
) with the same recovery 

time (Fig. 1). For example, beginning at the initial biomass 
˜level B0<BTarget, any constant fishing mortality rate FB0 

on 
the 10-year isopleth would theoretically rebuild the stock 
to BTarget in ten years. In contrast, any constant-F value 

˜ < FB0 
(below or to the right of the isopleth) would rebuild 

˜the stock sooner and any constant F values > FB0 
(above 

or to the left of the isopleth) would rebuild the stock later. 
Rebuilding time isopleths were used to develop overfish­
ing definition options for nine overfished New England 
groundfish stocks (Applegate et al.3). 

In this article, we calculate stock-rebuilding time iso­
pleths based on stochastic population dynamics models 
and characterize statistical distributions (mean, median, 
and percentiles) of stock-rebuilding times under different 
assumptions about uncertainty and process error (pro­

cess errors are uncertainty in population dynamics due 
to natural variability in growth, recruitment, and other 
biological factors, Hilborn and Walters, 1992). Like Cadrin 
(1999), we use logistic population growth models, but our 
analysis includes uncertainty about FMSY and autocorre­
lated process errors in production. We analyze rebuilding 
times for two stocks (cowcod rockfish, Sebastes levis, and 
Georges Bank yellowtail flounder) with different life histo­
ries, levels of FMSY, and autocorrelation in production pro­
cess errors (the calculations are examples only and not for 
use by managers). We also describe how stock-rebuilding 
time isopleths from deterministic and stochastic models 
can be used to develop and evaluate rebuilding plans and 
to monitor their progress. 

Materials and methods 

Following Prager (1994), we used the continuous time ver­
sion of the logistic population dynamic model in simula­
tion calculations.4 In particular, for the logistic population 
growth parameter ry (subscripted to represent the value in 
year y) carrying capacity K, by= ry/K, and ay= ry-Fy≠0: 

aya B ey y  . (1)By+1 = 
ay + byBy (e

ay − 1) 

4 SAS simulation program code available from the senior author. 
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Table 1 
Six types of simulation models used to estimate rebuilding time isopleths. Model types include all of the meaningful combinations 
of uncertainty about FMSY and variance and autocorrelation in production process errors. 

CV for Variance Autocorrelation 
Model uncertainty in process in process 
type FMSY (%) errors (%) errors (ρ) 

1 Zero 0 zero No uncertainty about FMSY; deterministic production 

2 0 zero Uncertainty about FMSY; deterministic production 

3 Zero from stock zero No uncertainty about FMSY; stochastic production; 
assessment no autocorrelation 

4 20 from stock zero Uncertainty about FMSY; stochastic production; 
assessment no autocorrelation 

5 Zero from stock from stock assessment No uncertainty about FMSY; stochastic production; 
assessment with autocorrelation 

6 20 From stock from stock assessment Uncertainty about FMSy; stochastic production; 
assessment with autocorrelation 

in Description 

20 

When fishing and the intrinsic rate of increase exactly bal­
ance (ay= ry–Fy=0): 

B 
By+1 = y . (2)

1 + b By y  

Note that biomass declines (By+1<By) when ry–Fy= 0 be­
cause ry is a maximum value defined in the limit as bio­
mass approaches zero (Eq. 1). 

Following Beddington and May (1977) and May et 
al. (1978), natural variation in population growth rates 
was included in our analysis by adding process errors to 
simulated ry values. We hypothesized that the intrinsic 
rate of population increase was more important than car­
rying capacity in simulating population growth rates at 
low biomass levels, and in rebuilding overfished stocks. 
We focused on stochastic variation in ry because it likely 
varies annually (e.g. due to variation in recruitment and 
growth). We could hypothesize reasonable lower bounds 
which included negative values; and variability in ry could 
be reasonably described in statistical terms (e.g. mean, 
variance, and autocorrelation) based on available data. 
Carrying capacity (K) was assumed constant over time 
because no information about potential covariance in ry 
and K was available. 

In the deterministic logistic population model, FMSY=r/2 
and BMSY=K/2 (Schaefer, 1954). For the sake of simplicity, 
we assumed K=1 so that BTarget=BMSY=0.5 and biomass By 
was measured in relation to K (e.g. By=K=1 at carrying 
capacity). It was useful to express biomass in relation to K 
because estimates of ratios like Bt /BMSY (=2Bt /K) are often 
more precisely estimated than either biomass By or carry­
ing capacity K (Prager, 1994) and because the approach 
makes results easier to apply to other stocks. 

We used six types of logistic population growth models 
(Table 1) based on a wide range of initial biomass (B0), 
two levels of uncertainty about FMSY, variance in process 
errors (stock dependent), and autocorrelation in process 
errors (also stock dependent). The number of years (an 
integer) required for the stock to rebuild to 0.95BMSY was 
recorded in each simulation run. Recovery in the simula­
tion model was at 0.95BMSY, rather than BMSY, because 
biomass in the deterministic logistic production model at 
F=FMSY approaches asymptotically (but never reaches) 
BMSY (this convention had negligible effect on results). 
Stochastic simulation model results were derived from 
2000 individual model runs (the maximum length of each 
run was 2000 years) starting from each point in a grid of 
31 values of F (i.e. 0, FMSY /30, 2FMSY /30, ..., 29FMSY /30, 
FMSY) and 35 values of initial biomass (i.e. B0 = 0, δ × 10–3, 
δ × 10–2, δ × 10–1, δ, 2δ, ..., 30δ, where δ =0.9999 × 0.95 × 
BMSY/K/30). 

We calculated distributional statistics including the 
mean, median (Q50%), and various quantiles (e.g. Q90% 
for the ninety-percent quantile) for recovery times from 
all runs at each point in the grid of F and initial biomass 
levels. We then plotted isopleths (contours) for the dis­
tributional statistics. For example, to produce 10-year 
median rebuilding time isopleths, we calculated median 
recovery times for each point in the grid of F and initial 
biomass, and then drew contours (isopleths) by connecting 
points with 10 year median rebuilding times to identify 
fishing mortality rates that, if held constant, would give a 
50% probability of rebuilding from the initial biomass to 
the target in ten years. We smoothed the isopleths in plots 
by using LOESS (locally weighted regression smoothing) 
regression (Cleveland and Devlin, 1988; Cleveland et al., 
1988) to remove variation caused by the contouring algo­
rithm and coarse grid of fishing mortality and biomass 
starting points. 
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Uncertainty 

Uncertainty in estimates of FMSY is likely larger than 
typically measured by variance estimates in assessment 
models because uncertainties in catch, the assumed natu­
ral mortality rate, somatic growth, and other factors are 
generally not included in stock assessment model variance 
calculations. In simulation runs including uncertainty, we 
used 

ˆFMSY, s = FMSY + εs , (3) 

ˆwhere FMSY,s was used in simulation s, FMSY was the “best” 
estimate, and εs was drawn from a normal distribution 

ˆ
ε = CV2 F2with mean zero and variance σ2 

MSY.The CV (20%) 
assumed in our simulation runs implies that the true FMSY 
is within ±40% of the best estimate with about 95% prob­

ˆability. We truncated FMSY,r values at ±50% FMSY to avoid 
implausibly small (including negative) or large FMSY,r 
values. These ad hoc bounds seemed reasonable because 
they were slightly larger than the 95% confidence interval 
implied by the CV for uncertainty (±40%). 

Our assumptions about uncertainty in FMSY are crude 
but seem reasonable based on our experience and by 
analogy to uncertainty about natural mortality rates (M), 
which are sometimes used as a proxy for FMSY (Clark, 
1991). In assessment work, a stock with an assumed 
natural mortality rate M=0.2/yr, for example, might have 
a “subjective” uncertainty range of about ±40% (i.e 0.12– 
0.28/yr). It seems reasonable to assume that uncertainty 
about M and FMSY would be similar. 

Process errors 

We modeled process errors as potentially autocorrelated 
random changes in the intrinsic population growth 
parameter (ry). Previous analyses used independent or 
autocorrelated random errors in realized annual produc­
tion rates (dBy/dy, Sissenwine, 1977; Gleit, 1978; Shep­
herd and Horwood, 1980; Ludwig, 1981; Sissenwine et 
al., 1988), or independent random errors in recruitment 
(e.g. Getz, 1984), next year’s biomass (Bt+1, Ludwig et al., 
1988), or surplus production (Doubleday, 1976). Produc­
tion process errors may be independent in some cases but 
were autocorrelated for both of our example stocks (see 
“Results” section). 

Our analysis, like Sissenwine et al.’s (1988), includes au­
tocorrelated errors because they affected rebuilding times 
in preliminary model runs, are biologically plausible and 
widely recognized (favorable and unfavorable conditions 
for production seem to persist for more than one year in 
many stocks), and because correlated errors were obvious 
in production model fits for Georges Bank yellowtail floun­
der and cowcod rockfish. In contrast to previous studies, 
we estimated variances and autocorrelations for stochas­
tic ry values in our simulation models from available data. 
In addition, our simulation models used lower bounds for 
ry based on the natural mortality rate. 

We used the gamma distribution (Johnson et al., 1994, 
Appendix 1) to describe process errors in the produc­

tion model because it is flexible, asymmetrical (like our 
estimates of production process errors for cowcod rock­
fish), and (in the three-parameter form) accommodates 
negative ry values. We devised a simple way to simulate 
autocorrelated process errors from a distribution nearly 
identical to a gamma distribution used to simulate uncor­
related process errors. This makes comparisons between 
runs with and without autocorrelation easier. Sissenwine 
et al. (1988) also used a gamma distribution for produc­
tion process errors because simulated state variables in 
logistic models (with constant catch and Gaussian process 
errors on the realized production rate dBy/dy) have distri­
butions that resemble a gamma distribution (Dennis and 
Patil, 1984). 

The first step in modeling production process errors was 
to obtain empirical estimates of variance and autocorrela­
tion. Based on stock assessment results, surplus produc­
tion in each year (Py) was computed with the following 
equation: 

Py+1 = By+1 − By + Cy , (4) 

where Cy = catch data was catch; and 
By = estimated biomass at the beginning of year y. 

The discrete time version of our logistic model with pro­
cess errors is 

 By Py = ryBy  1 − 
K  . (5) 

Solving for ry gives 

P K  
r = y ,

y B K  − By ) (6)y ( 

where By should be no larger than, say, 95% K to avoid 
unrealistic values of ry that are calculated when positive 
production is observed in stock assessment results at bio­
mass levels near or above estimates of K. As shown in the 
“Results” section, empirical estimates of variance σ2 and 
autocorrelation (ρ) for ry values were relatively insensi­
tive to assumptions about K. The variance of observed 
ry values includes both process and measurement errors 
and is an upper bound estimate for the variance due to 
process errors only. In other words, results of our simula­
tion analyses may overstate the importance of production 
process errors in rebuilding overfished stocks because our 
variance estimates may be too large. 

We used –M (where M is the instantaneous natural 
mortality rate assumed in the stock assessment) as a 
lower bound on  ry in simulations. Negative ry values are 
common in some stocks (e.g. 36% and 17% of years for 
anchovies [Engraulis spp.] and sardines [Sardinops and 
Sardina spp.], Jacobson et al., 2001) because stocks can 
decrease in biomass from one year to next with no fishing 
and because negative values are occasionally seen in real 
data sets (e.g. Myers et al., 1999). If process errors are ig­
nored and M is constant, then 



Jacobson and Cadrin: Stock-rebuilding time isopleths and constant-F stock-rebuilding plans for overfished stocks 523 

Table 2 
Summary statistics and gamma distribution parameters for annual process errors in the intrinsic population growth rate (ry) 
for Georges Bank yellowtail flounder (Limanda ferruginea), estimated from stock assessment results (Cadrin5 in the main text). 
Parameters α and β were estimated with fixed γ = –M by maximum likelihood. According to Cadrin,5 the carrying capacity is 
K=99,000 metric tons (t) (95% confidence interval 84,500–103,000 t). 

Parameter K=84,500 t K=99,400 t K=103,000 t 

Number By values ≤95% K 25 25 
Sample mean 0.58 0.65 0.58 
Sample variance 0.036 0.037 0.036 
Autocorrelation ρ 0.34 0.34 
α 15.7 15.7 
β 0.0498 0.0499 
γ = –M –0.2 –0.2 
Mean 0.65 0.58 
Variance 0.039 0.039 
Mode 0.61 0.53 

25 

0.33 
17.5 

0.0488 
–0.2 

0.58 
0.039 
0.53 

ry = Gy + Ry − M (7) 

where Gy = the instantaneous rate of somatic growth; 
and 

Ry = an instantaneous rate for recruitment (in 
units of biomass). 

Somatic growth and recruitment may be density depen­
dent but are usually positive (Gy≥0 and Ry≥0). Thus, ry=–M 
is possible in the extreme case of zero growth and zero 
recruitment. 

Production process errors were simulated by drawing 
random numbers from a three-parameter gamma prob­
ability distribution (Johnson et al., 1994, Appendix 1). 
Runs with autocorrelated process errors used one of two 
algorithms based on gamma distributions with adjusted 
parameter estimates (Appendix 2). 

Georges Bank yellowtail flounder 

Cadrin5 used virtual population analysis (VPA, cali­
brated by using survey data) to estimate stock biomass 
for Georges Bank yellowtail flounder during 1973–98. In 
the same assessment, a surplus production model (ASPIC 
[stock-production model incorporating covariates], Prager, 
1994) was used to estimate K=93,700 metric tons (t) 
(80% bootstrap confidence interval 87,700–97,000 t) 
and FMSY=0.30/yr (80% bootstrap confidence interval 0.27– 
0.32/yr). 

Cadrin’s stock assessment5 and our production calcula­
tions indicate that Georges Bank yellowtail flounder is 
a moderately long-lived (maximum observed age 14 yr, 

5 Cadrin, S. X. 2000. Georges Bank yellowtail flounder. In 
Northern demersal working group: assessment of 11 northeast 
groundfish stocks through 1999. In Northeast Fisheries Science 
Center Reference Document 00-05, p. 45–64. Northeast Fisher­
ies Science Center 166 Water Street, Woods Hole, MA, 02543. 

assumed M=0.2 /yr), relatively productive (r=0.58–0.65) 
stock with some autocorrelation (ρ=0.33–0.34) in pro­
duction process errors (Table 2). Empirical, and gamma 
distributions fit by maximum likelihood and the method 
of moments had similar means and variances (Table 2). 
Surplus production and biomass are related for Georges 
Bank yellowtail flounder, with Py reduced at the low By 
levels (Fig. 2A). Variability in estimated ry values indicate 
autocorrelation in process errors (Fig. 2B). The distribu­
tion of ry values (Fig. 2C) was skewed to the left and there 
were no negative values. Gamma distributions fitted by 
maximum likelihood and the method of moments (Appen­
dix 1) were similar in shape (Fig. 2C). In simulations for 
yellowtail flounder, we used FMSY=0.30 (from ASPIC) with 
σ r 

2 
y 
= 0.037 and ρ= 0.33. 

Cowcod rockfish 

Butler et al.6 (see also Butler et al.7) estimated K=3400 t 
(95% CI 2800–4000 t) with a delay-difference biomass 
dynamic model for cowcod rockfish in the Southern Cali­
fornia Bight. Annual biomass estimates from the same 
source were used to calculate surplus production during 
1951–97 when the stock was fished down from about 3200 t 
to 240 t (about 7% of virgin biomass). 

Butler et al.6 and our production calculations indicate 
that cowcod rockfish are a long-lived (maximum observed 

6 Butler, J. L., L. D. Jacobson, J. T. Barnes, and H. G. Moser. 
2002. Manuscript in revew. Biology and population dynam­
ics of cowcod rockfish (Sebastes levis) in the southern California 
Bight. 

7 Butler, J. L., L. D. Jacobson, J. T. Barnes, H. G. Moser, and R. 
Collins. 1999. Stock assessment of cowcod. In Appendix 
to the state of the Pacific Coast groundfish fishery through 
1999 and recommended acceptable biological catch for 2000 
stock assessment and fishery evaluation, p. Vi–113 (section 
5). Pacific Fishery Management Council, 7700 NE Ambassa­
dor Place, Portland, OR, 97220-1384. 
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Figure 2 
(A) Surplus production estimates Py and 
biomass estimates By for Georges Bank 
yellowtail flounder during 1973–97. The 
biomass estimates and parabolic curve 
fitted to production estimates are from 
Cadrin.5 (B) Time series of annual intrin­
sic rate of growth (ry) parameter value 
estimates from Equation 6. (C) Probability 
distributions for ry values used in simula­
tions for Georges Bank yellowtail flounder. 
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Figure 3 
(A) Surplus production estimates Py and 
biomass estimates By from Butler et al.6 

for cowcod rockfish during 1951–97 in the 
Southern California Bight. The parabolic 
curve fitted to production estimates (Py) 
shows trends only and is not recommended 
for management purposes. (B) Time series 
of annual intrinsic rate of growth (ry) 
parameter value estimates from Equation 
6. (C) Probability distributions for ry values 
used in simulations for cowcod rockfish. 
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age 55 yr, assumed M=0.055/yr), relatively unproductive 

stock (ry=0.027–0.037). Cowcod rockfish are much less pro- no clear relationship between surplus production and bio­

ductive than Georges Bank yellowtail flounder because mass, but Py was lowest at the highest and lowest By lev­

of their long lives and slower growth and because adult els and autocorrelation in production process errors was 

habitat is limited to steep rocky areas in relatively deep obvious (Fig. 3A). The distribution of ry values (Fig. 3B) 

water (90–500 m, Butler et al.6). Production process errors was skewed to the right and there were no negative val­

show a high level of autocorrelation (ρ=0.83–0.94, Table ues. Gamma distributions fitted by maximum likelihood 

3). Means, variances and autocorrelations for ry were not and the method of moments (Appendix 1) were similar in 

very sensitive to assumptions about K (Table 3). There was shape (Fig. 3).
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Table 3 
Summary statistics and gamma distribution parameters for annual process errors in the intrinsic population growth rate (ry) for 
cowcod rockfish (Sebastes levis), estimated from stock assessment results (Butler et al.6). Parameters α and β, were estimated with 
fixed γ = –M by maximum likelihood. K is the carrying capacity in the logistic population dynamics model. According to Butler et 
al.,6 K=3400 metric tons (t) (95% confidence interval 2800–4000 t). 

Parameter K=84,500 t K=99,400 t K=103,000 t 

Number By values ≤95% K 31 47 
Sample mean 0.037 0.039 0.027 
Sample variance 0.00059 0.00050 
0.00021 
Autocorrelation ρ 0.83 0.89 
α –0.055 –0.055 
β 17.7 36.1 
γ = –M 0.0052 0.0023 
Mean 0.039 0.027 
Variance 0.00047 
0.00019 
Mode 0.034 0.025 

47 

0.94 
–0.055 
19.0 
0.0049 

0.037 
0.00048 

0.032 

With K=3400 t (Table 3), r = 0.039 which suggests FMSY = 
0.0185/yr. This crude estimate is less than implied by the 
simple calculation r = 2FMSY = 0.11 based on the proxy 
FMSY = M = 0.055/yr, possibly because the natural mor­
tality rate overestimates FMSY for cowcod (Deriso, 1982). 
ASPIC estimates were similar (FMSY = 0.018/yr with an 
80% bootstrap confidence interval 0.00082–0.039/yr) to 
estimates based on ry. In simulations for cowcod, we used 
F̂ MSY=0.018 (from ASPIC), σ2 

ry 
= 0.00050 and ρ=0.9. 

Simulation model runs indicated that cowcod are very 
unlikely to rebuild to BMSY in ten years. The mean gen­
eration time for cowcod is about 35 years (calculated as 
described by Restrepo et al., 1998). Simulations indicate 
that the mean time for rebuilding the stock with zero F is 
approximately 40 years (30–50 years, depending on model 
type). In accord with National Standard 1 Guidelines, 
it may be reasonable to develop plans with the goal of 
rebuilding the cowcod stock in 75 years or less. We there­
fore calculated and plotted 75-year, rather than 10-year 
rebuilding time isopleths, for cowcod rockfish. 

Sensitivity analyses 

We conducted three sensitivity analyses for each stock 
to determine if the choice of statistical distribution for 
stochastic rs,y values influenced rebuilding times in simu­
lations. Sensitivity analyses used uncorrelated process 
errors and no uncertainty in FMSY (model type 3). The 
first sensitivity analysis run for each stock was a non­
parametric bootstrap (Efron, 1982) with rs,y values drawn 
randomly with replacement from the observed values (Eq. 
6). The second and third sensitivity analyses run for each 
stock were parametric bootstraps with rs,y values drawn 
from a normal or lognormal distribution with the same 
mean (µ) and variance (σ 2) as the observed values (Tables 
2–3, Figs. 2–3). To avoid bias in runs with the lognormal 

distribution (Beauchamp and Olson, 1973), log-trans­
formed rs,y values were drawn from a normal distribution 
with mean ln(µ)–τ2/2 and variance τ 2=ln(CV2+1), with 
CV= σ/µ (Jacobson et al., 1994). For convenience in pro­
gramming, rs,y values in normal and lognormal runs were 
sampled with replacement from a fixed pool of 200 random 
numbers drawn from the proper statistical distribution at 
the outset of the simulation. 

Results 

Mean rebuilding times were longer than median rebuild­
ing times in stochastic simulations (run types 2–6) for yel­
lowtail flounder and cowcod rockfish because distributions 
of recovery times were skewed to the right (Figs. 4–5). 
Skewness (and the extent to which mean recovery times 
exceeded median recovery times) was more pronounced at 
lower starting biomass levels, at higher F levels, where 
there was more uncertainty about FMSY and autocorrela­
tion in process errors. 

Skewed distributions for rebuilding times affected the 
shape of rebuilding time isopleths (Figs. 6–7). For all sto­
chastic models of yellowtail flounder and most stochastic 
models of cowcod rockfish, isopleths for mean and median 
rebuilding times were widely separated. In addition, iso­
pleths were asymmetrical. For example, the distance 
between median and Q90% isopleths was greater than the 
distance between Q10% and median isopleths. Separation 
of isopleths and asymmetry were greatest for model type 
6 which had correlated process errors and uncertainty 
about FMSY. 

In simulations for both stocks, uncertainty about FMSY 
had a greater effect than process error on the shape and 
separation between isopleths for Q10%, median, mean, and 
Q90% rebuilding times. For example, in both stocks, there 
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Figure 4 
Distribution of simulated recovery times for Georges Bank yellowtail flounder from six types 
of logistic population growth models (type 1 deterministic, others stochastic, see Table 1) with 
FMSY=0.30/yr, CV for uncertainty in FMSY= zero or 20%, variance for production process errors zero 
or 0.037, and autocorrelation in process errors ρ=zero or 0.33. Results are for 2000 model runs 
starting from an initial biomass of B/BMSY =0.19 and constant F=0.18/yr. 
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was more asymmetry and separation between isopleths 
(Figs. 6–7) for model type 2 (no process errors and with 
uncertainty about FMSY) than for model type 3 (uncorre­
lated process error with no uncertainty about FMSY). 

The fishing mortality rate that gave a median recovery 
time of ten years for yellowtail flounder (or 75 years for 
cowcod rockfish) was generally higher than the fishing 
mortality rate that gave a corresponding mean recovery 
time from the same initial biomass level (Figs. 8–9). Simi­
larly, the F that gave a mean recovery time of ten or 75 
years was generally higher than the F that gave the corre­
sponding Q90% recovery time. There were some exceptions 
for cowcod at high F and initial biomass levels in runs 
with uncertainty in FMSY (run types 2, 4, and 6) due to a 
few runs with very long rebuilding times. The very long 
rebuilding times in runs for cowcod with uncertainty were 
due to F in excess of the simulated true FMSY. 

Isopleth shape may be important in interpreting simu­
lation results. For example, isopleths for 10-year median 
rebuilding times in all models for yellowtail flounder were 
steep for F in the range 0–0.2/yr (Figs. 8–9). Therefore, 
according to example model results, the probability of 
recovery in ten years is at least 50% for Georges Bank 

yellowtail flounder at biomass values ≥0.05 K, as long as 
fishing morality rates are less than 0.2/yr. 

Seventy-five year stock-rebuilding time isopleths for cow­
cod rockfish were sensitive to assumptions about the distri­
bution of production process errors but 10-year isopleths for 
yellowtail flounder were not (Figs. 10–11). We hypothesize 
that differences among statistical distributions ry assumed 
in simulations were magnified for cowcod by long (e.g. 75 yr) 
rebuilding times (see “Discussion” section). 

Rebuilding isopleths for cowcod based on ry values from 
a gamma distribution had higher F, at a given biomass, 
than rebuilding isopleths based on the distribution of ob­
served ry values (Fig. 11). In other words, results based on 
the gamma distribution suggest a more productive cowcod 
stock, presumably because the distribution of ry values for 
cowcod had more mass than the gamma distribution over 
low ry values (<0.03/yr, Fig. 3). 

Discussion 

Managers should consider using median rebuilding time 
goals, in addition to mean or other quantiles, in develop-
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ing and evaluating rebuilding plans. This recommenda-
tion is based on a narrow technical consideration, i.e. 
that median recovery time calculations are less sensitive 
to model assumptions. A median rebuilding time plan is 
risk neutral in the sense that the probability of rebuilding 
times less than intended is the same as the probability of 
rebuilding times longer than intended (i.e. both 50%). Of 
course, rebuilding plans based on median rebuilding time 
goals will be more liberal in terms of short-term catch 
(i.e. have higher F) and have longer rebuilding times 
on average than plans based on mean or, for example, 
Q90% rebuilding time goals. In summary, a manager who 
is willing to accept a 50% chance of rebuilding times 
greater that desired and who is concerned about model 
uncertainties, might choose a median rebuilding time 
approach.

A potential advantage in using percentiles other than 
the median is that managers can specify risk levels in try-
ing to rebuild stocks. For example, managers could choose 
and evaluate rebuilding plans based on a Q90% isopleth to 
insure at least a 90% chance of rebuilding in specifi ed time 
period. However, Q90% isopleths may be sensitive to model 
assumptions.

Approaches to using rebuilding time isopleths without 
relying on uncertain estimates of rebuilding time distribu-
tions (e.g. mean or Q90%), are an important area for future 
research. Cadrin (1999) used deterministic rebuilding 
time isopleths with the tenth percentile of the estimate 
for r. Isopleths for median rebuilding time might be used 
with lower bounds on confi dence intervals for B0 and B0/K 
or upper bounds on current F, FMSY, or F/FMSY. Estimates 
of uncertainty in these parameters are often available 
(Prager, 1994) and can be incorporated in an ad hoc fash-
ion. For example Butler et al.6 suggest that B1998/K for 
cowcod rockfi sh is 7% (CV about 30%) and that the F in 
1998 was 0.085/yr (CV 34%). A risk-averse manager might 
implement a rebuilding plan that reduces that FThreshold to 
a point on the 75-year rebuilding time isopleth that lies 
above the lower boundary of a 95% confi dence interval for 
biomass. Similarly, a risk-averse manager might select a 
rebuilding plan that reduces FThreshold to account for the 
upper bound on uncertainty in estimating F.

Uncertainty in FMSY is an important factor to consider 
in rebuilding plans as F increases from low levels towards 
FMSY. Expected rebuilding times increase at high F be-
cause F may exceed true FMSY (assumed known but with 

Figure 5
Distribution of simulated recovery times for cowcod rockfi sh in the Southern California Bight from 
six types of logistic population growth models (type-1 deterministic, others stochastic, see Table 1) 
with FMSY=0.0.018 /yr, CV for uncertainty in FMSY= zero or 20%, variance for production process 
errors zero or 0.037, and autocorrelation in process errors ρ=zero or 0.9. Results are for 2000 model 
runs starting from an initial biomass of B/BMSY =0.19 and constant F=0.011/yr. 
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Figure 6
Isopleths for mean, median, mode, Q10%, Q90%, and Q99% ten-year stock-
rebuilding times simulated with six model types (Table 1) for Georges 
Bank yellowtail fl ounder. Isopleths for all statistics and one type of 
model are shown in each panel. Model types 2, 4, and 6 include uncer-
tainty in FMSY.

error) in a high proportion of cases (Figs. 8–9). Fortunately, 
process errors and autocorrelation may reduce this prob-
lem because stock growth rates increase in some years so 
that the true FMSY exceeds the manager’s estimate. 

Stock-rebuilding times calculated with deterministic 
models approximate median rebuilding times from sto-
chastic models. For example, rebuilding times in Cadrin 
(1999) calculated with a deterministic model for Georges 
Bank yellowtail fl ounder are very close to median rebuild-
ing times from our stochastic models. From our results, 
we hypothesize that rebuilding time isopleths for other 
species (Applegate et al.3) based on Cadrin’s (1999) deter-
ministic model should also be viewed as approximations to 
isopleths for median rebuilding times.

Our simulation analyses indicate that rebuilding times 
for overfi shed stocks (with a range of life history charac-

teristics, initial biomass levels and fi shing mortality rates) 
tend to be skewed and can be highly variable (Figs. 4–5). 
Hence, rebuilding in any specifi c case may be quicker or 
take much longer than expected, particularly if expecta-
tions are based on deterministic models that approximate 
median rebuilding times. For example, probabilities of re-
building times twice as long as the goal for Georges Bank 
yellowtail fl ounder (10 yr) and cowcod (75 yr) were 4% and 
8% and probabilities of rebuilding times half as long were 
40% and 1%.

Modeling choices

Stochastic models are necessary when estimates of mean 
rebuilding times or quantiles other than the deterministic 
approximation to the median are needed. Rebuilding time 
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Figure 7
Isopleths for mean, median, mode, Q10%, Q90%, and Q99% 75-year stock-
rebuilding times simulated with six model types (Table 1) for cowcod 
rockfi sh in the Southern California Bight. Isopleths for all statistics 
and one type of model are shown in each panel. Model types 2, 4, and 6 
include uncertainty in FMSY.

isopleths from deterministic model type 1 were quite dif-
ferent from isopleths (other than for median rebuilding 
times) from stochastic models.

Rebuilding time isopleths can be used with any type of 
population dynamics model. We used the logistic popula-
tion growth model in this paper because it is clearly linked 
to BMSY and FMSY, incorporates density dependence, is easy 
to apply to a wide range of stocks (with varying amounts of 
information), and computationally effi cient. However, re-
building time isopleths could have been calculated by us-
ing Cadrin’s5 age-structured model for Georges Bank yel-
lowtail fl ounder or Butler et al.’s6 biomass dynamic model 
for cowcod rockfi sh. Age-structured models might be best 
for calculating rebuilding time isopleths if the rebuilding 
time frame is relatively short and estimates of abundance 
are available for several incoming year classes because 

age-structured models account for transient conditions 
(e.g. recruitment and growth patterns) that are important 
in the short term.

Age-based projections were used to test the expected 
performance of rebuilding targets for six New England 
groundfi sh stocks (NDWG8). The original rebuilding 
targets were derived from fi ve-year rebuilding time iso-
pleths calculated with a deterministic logistic growth 
models, but the targets incorporated estimation uncer-
tainty by assuming the tenth percentile of the estimate 

8 NDWG (Northern Demersal Working Group). 2000. Assess-
ment of 11 northeast groundfi sh stocks through 1999. North-
east Fisheries Science Center Reference Document 00-05, 175 p.
Northeast Fisheries Science Center, 166 Water Street, Woods 
Hole, MA, 02543.
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Figure 8
Isopleths for mean, median, mode, Q10%, Q90%, and Q99% ten-year stock-
rebuilding times simulated with six model types (Table 1) for Georges 
Bank yellowtail fl ounder. Isopleths for one statistic and all six model 
types are shown in each panel. Isopleths of mean and modal rebuilding 
times in results for models with uncertainty in FMSY (model types 2, 4, 
and 6) may be distorted (fl at) at relatively high fi shing mortality levels 
because fi shing mortality exceeds the simulated true FMSY in some 
simulations, so that the simulated stock may never rebuild.

of r (Cadrin, 1999; Applegate et al.3). For the six stocks, 
starting biomass in 1999 ranged from 25% to 93% of BMSY 
and estimates of FMSY ranged from 0.5 to 0.8. Estimated 
rebuilding times averaged 3.5 years (ranging from 1 to 7 
yr) for 50% probability of attaining BMSY (NDWG8). There-
fore, the age-based simulations indicated that isopleths 
based on deterministic biomass dynamic models generally 
performed well for overfi shed New England groundfi sh 
stocks. Brodziak et al. (2001) analyzed stock-recruit data 
and concluded that “(1) time horizons for rebuilding will 
be uncertain, owing to recruitment variability, (2) some 
productive stocks (haddock, yellowtail fl ounder) have seri-
al correlation in recruitment and this may either enhance 

or diminish chances for stock recovery.” Thus, results 
with surplus production models, age-structured models, 
and stock-recruit analyses highlight the fundamental 
similarities between a wide range of modeling approaches 
(Sissenwine and Shepherd, 1987).

The best choice of stochastic simulation model for devel-
oping and evaluating rebuilding plans will depend on the 
situation. Sainsbury (1993) concluded that models incor-
porating simple assumptions about population dynamics 
were more appropriate for evaluating performance of con-
trol rules than models with more complex assumptions. 
PFMC1 used a simple model incorporating environmental 
effects on recruitment with useful results. However, Bell 
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Figure 9 
Isopleths for mean, median, mode, Q10%, Q90%, and Q99% 75-year stock­
rebuilding times simulated with six model types (Table 1) for cowcod rock­
fish in the Southern California Bight. Isopleths for one statistic and all 
six model types are shown in each panel. Model types 2, 4, and 6 include 
uncertainty in FMSY. Isopleths of mean and modal rebuilding times in 
results for models with uncertainty in FMSY (model types 2, 4, and 6) may 
be distorted (flat) at relatively high fishing mortality levels because fish­
ing mortality exceeds the simulated true FMSY in some simulations so that 
the simulated stock may never rebuild. 
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and Stefansson9 and Patterson (1999) used more complex 
simulation models with success. 

Distributional assumptions 

Simulation analyses (Figs. 10–11) indicate that the 
choice of statistical distribution for simulating process 
errors in model parameters (e.g. ry) may be important, 

9 Bell, E. D., and G. Stefansson. 1998. Performance of some 
harvest control rules. NAFO (North Atlantic Fisheries Orga­
nization) SCR Doc. 98/7, 1–19. Northwest Atlantic Fisheries 
Organization, 2 Morris Drive, P. O. Box 638, Dartmouth, Nova 
Scotia, B2Y 3Y9, Canada. 

particularly when rebuilding times are long (e.g. those for 
cowcod rockfish) due to low stock productivity, low stock 
biomass, unproductive stock dynamics, or autocorrelation 
in process errors. The choice of statistical distributions for 
simulating ry involves choosing between theoretical distri­
butions supported by theory (e.g. autocorrelated gamma 
distribution with negative values bounded below at –M) or 
bootstrap distributions of observed values. The program­
ming and work required to experiment with alternative 
distributions is not overwhelming and we recommend 
sensitivity analyses in cases where distributional assump­
tions may be important. 

Theoretical distributions for stochastic parameters are 
flexible because many types of distributions are available, 
most can be modified to include autocorrelation, most can 
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Figure 10
Mean, median, mode, Q10%, Q90%, and Q99% ten year stock-rebuilding 
time isopleths for Georges Bank yellowtail fl ounder, simulated with 
model type 3 (no uncertainty about FMSY and uncorrelated ry values). 
Stochastic ry values were from a gamma distribution (same as Figs. 
6 and 8), normal distribution, lognormal distribution, or bootstrap of 
observed ry values. All distributions had the same mean and variance.

be modifi ed to include negative or extreme values not 
evident in short observed time series, and most can give 
the same mean, variance and autocorrelation levels as 
estimated from available data. However, as in the case of 
Georges Bank yellowtail fl ounder and cowcod, the shape 
of theoretical and observed distributions may not match 
closely (Figs. 2–3). 

In comparing theoretical and observed distributions 
for model parameters (e.g. Figs. 2–3), it is important to 
remember that most observed distributions are based on 
relatively few observations (Table 2). Furthermore, ob-
served values may be autocorrelated (ρ=0.33 for Georges 
Bank yellowtail fl ounder and ρ=0.94 for cowcod rockfi sh, 
Tables 2–3). High levels of autocorrelation reduce the 

“effective” number of observations dramatically so that 
observed values may provide a poor estimate of the shape 
of their distribution (Bartlett, 1946; Bayley and Ham-
mersley, 1946). For example, Equation 16 in Bayley and 
Hammersley, with estimated autocorrelations (lags of 
1–13 years) for Georges Bank yellowtail fl ounder, gives an 
effective sample size n*=17 (compared to n=25 ry values). 
For cowcod rockfi sh (with autocorrelations for lags 1–17), 
n*=11 (compared to n=47 ry values). Thus, autocorrela-
tion in ry values may reduce the effective sample size and 
information used to estimated the shape, mean and vari-
ance of statistical distributions for ry values by about 32% 
for Georges Bank yellowtail fl ounder and 77% for cowcod 
rockfi sh.
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Developing, monitoring, and 
evaluating stock-rebuilding programs

Once the management goal, desired probability of achiev-
ing the stock-rebuilding goal, and the time frame for 
rebuilding are identifi ed (e.g.10-yr median rebuilding time 
to a BMSY target), the simplest way to use stock-rebuilding 
time isopleths in designing a rebuilding plan is to choose 
a constant-F̃B0

 level from the appropriate rebuilding time 
isopleth, based on a current estimate of B0. Cadrin (1999) 
has provided an example of this approach.

Stock-rebuilding time isopleths can be used to monitor 
the progress of any rebuilding plan although interpreta-
tion is clearest with constant-F values (Cadrin, 1999). 
For example, the point defi ned by current biomass and F 
for Georges Bank yellowtail fl ounder in the second year 

(1997) of a hypothetical fi ve-year rebuilding plan begin-
ning in 1996 should lie near or within the 3-year rebuild-
ing time isopleth (Fig. 1). If the point lies far outside the 
3-year isopleth, then managers could be sure that the 
rebuilding plan was behind schedule.

Evaluating harvest control rules 
as stock-rebuilding programs

It may be necessary to evaluate harvest control rules that 
allow F to vary with biomass (e.g. the common harvest 
control rule in Fig. 1) as a rebuilding plan. Rebuilding 
isopleths provide guidance in this situation because they 
can be used to reject some harvest control rules based on 
a single necessary criterion. However, the test is weak 
because a harvest control rule that passes the test may or 
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Figure 11
Mean, median, mode, Q10%, Q90%, and Q99% 75-year stock-rebuilding time 
isopleths for cowcod rockfi sh, simulated with model type 3 (no uncer-
tainty about FMSY and uncorrelated ry values). Stochastic ry values were 
from a gamma distribution (same as Figs. 7 and 9), normal distribution, 
lognormal distribution or bootstrap of observed ry values. All distribu-
tions had the same mean and variance.
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may not be sufficient as a rebuilding plan. In this context, 
it is important to remember that rebuilding time isopleths 
are constructed based on the assumption of constant fish­
ing mortality rates during the rebuilding program. More 
complicated rebuilding plans, that allow F to vary accord­
ing to changes in biomass or other factors, are best evalu­
ated by stock-specific simulations. 

The test is based on the notion that control rules that al­
low F levels above the stock-rebuilding time isopleth for bio­
mass levels above B0 are unlikely to rebuild the stock with 
desired probability in the desired time frame. Therefore, as 
a minimum requirement for meeting rebuilding time goals, 
harvest control rules used as rebuilding plans should lie on 
or under the corresponding rebuilding time isopleth for all 
biomass levels above B0. Consider a hypothetical overfished 
stock for which there is a ten-year median rebuilding time 
goal. Assume that a harvest control rule proposed as a 
rebuilding plan has the typical shape (i.e. F increases or 
stays the same as biomass increases, as in Fig. 1). If the 
control rule lies above the isopleth for some critical biomass 
level between B0 and BMSY, then the rule will allow fishing 
mortality rates that are generally too high to meet manage­
ment goals once biomass reaches the critical level. 

The example of Georges Bank yellowtail flounder 

Georges Bank yellowtail flounder (Fig. 1) can be used to 
illustrate how rebuilding time isopleths might have been 
used to evaluate stock-rebuilding plans for hypothetical 
implementation during 1996 and how stock-rebuilding 
time isopleths can be used to monitor progress in rebuild­
ing overfished stocks. The discussion is hypothetical, 
however, because the examples evaluate management 
approaches that have not been used in rebuilding the 
stock. In reality, managers kept F for Georges Bank yel­
lowtail flounder during 1996–99 nearly constant at a level 
well the below the 10-year isopleth, and the Georges Bank 
yellowtail flounder stock was almost rebuilt to the BMSY 
target level in 1999 after only four years (Fig. 1). 

Based on this example, the harvest control rule in Figure 
1 would have been marginal for use in a hypothetical medi­
an ten-year stock-rebuilding plan for Georges Bank yellow­
tail flounder starting in 1996, because the rule lies slightly 
above the 10-year isopleth for biomass levels of 47% BMSY. 
The harvest rule might have been rejected outright as a 
five-year rebuilding plan because the rule lies well above 
the 5-year rebuilding time isopleth. The rebuilding trajec­
tory for Georges Bank yellowtail flounder (Fig. 1) shows 
that the five-year rebuilding plan, which began in 1996, 
was on schedule during 1996–98 because fishing mortality 
and estimated biomass were within the 5-year, 4-year, and 
3-year isopleths during successive years. 

The Georges Bank yellowtail flounder example provides 
an important final lesson about uncertainty in actual re­
building times, even if statistical distributions of potential 
rebuilding times are characterized accurately. During 
1996–99, the stock was managed at a relatively constant 
F level that was well above the entire 4-year median 
rebuilding time isopleth (Fig. 1). Despite the relatively 
high F level, Georges Bank yellowtail flounder reached a 

biomass level near BMSY in 1999, after four years. We attri­
bute this fortunate chain of events to stochastic variation 
in process errors stemming primarily from recruitment 
and growth of the strong 1997 year class (Cadrin5). 
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Appendix 1—Independent process errors 

We simulated independent production process errors 
using a three-parameter gamma probability distribution 
(Johnson et al., 1994). The gamma probability density 
function for independent (no autocorrelation) ry values in 
one simulation (denoted as s) was 

α , −1 −(rs y  −γ )/βs, 
,( , s ,P rs y  |α βs ,γ ) = 

(rs y  − γ ) 
α 

s y  e , (1)
βs

s Γ( )αs 

where Γ(αs) is the gamma function and the parameters of 
the gamma distribution are αs > 0, βs > 0 and γ. 

The expected (mean) value for ry values from the three­
parameter gamma distribution is βs αs + γ and the variance 
is βs 

2αs. The parameter γ defines a minimum value for the 
distribution of ry values; therefore we set γ = –M (see text). 
There were too little data to directly estimate the lower­
bound γ for either of the species in our analysis because 
years with negative production occurred infrequently for 
stocks in our analysis. The three-parameter gamma dis­
tribution has a single mode at γ + βs(αs–1) if αs >1. When 
αs ≤1, the probability distribution function declines mono­
tonically as ry increses from the minimum value at ry =γ. 
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The mode for empirical ry values in our study was always 
larger than –M so that αs was larger than one. 

Maximum likelihood estimates of the parameters α and 
β for each stock (conditional on the assumption γ = –M) 
were obtained iteratively in a spreadsheet by maximum 
likelihood with observed ry values as data. In simulations, 
we used the simpler method of moments to calculate gam­
ma distribution parameters. Given γ = –M and estimates 
of the mean (µ) and variance (σ 2) for  ry values from real 
data, the method of moments solves the two equations 
µ=(Bα+γ) and σ 2= αβ2 for the two unknowns α and β. In 
particular β=σ 2/(µ–γ) and α=σ 2/β2. The maximum likeli­
hood approach and method of moments gave similar pa­
rameter estimates for real data sets (Figs. 2–3) suggesting 
that the method of moments was acceptable for simula­
tions. In what comes later, maximum likelihood parameter 
estimates from data (α ˆˆ, β, γ = –M) are distinguished from 
simulated values calculated by the method of moments 

˜(α̃s, βs, γ = –M). 
In each simulation run, the assumed “true” value of 

FMSY,s was used to calculate rs = 2FMSY,s. In simulation 
runs with no process error the simple calculation rs,y = rs 
was used. In runs with process error, rs, was the mean of the 
distribution of stochastic rs,y values (see below). 

For runs with independent process errors (no autocor­
relation), annual logistic parameter values rs,y were drawn 

˜from a gamma distribution with parameters ( α̃ , β , γ) cal­
culated by the method of moments from the mean rs and 
variance σ2 

ry
 estimated from empirical data. 

Appendix 2—Autocorrelated process errors 

This appendix describes two algorithms for generating 
autocorrelated production process errors from gamma 
distributions. The algorithms are based on first-order 
autoregressive and moving average error structures used 
in time-series analysis (Nelson, 1973). The shapes of origi­
nal uncorrelated gamma distributions and new, correlated 
probability distributions for both algorithms appeared 
identical in plots. 

Algorithm 1 was for autocorrelations (ρ) in the range 
zero to 0.5: 

r , = ds y  + θds y−1, (1)s y  , , 

where rs,y = was the logistic population growth parameter 
for year y in simulation run s, and the moving 

average parameter (θ) was 

θ = −1 + ρ− 1 4 2
, 

2ρ 
(2) 

with θ in the range (0,1). The random numbers ds,y in 
algorithm 1 were drawn from a gamma distribution with 
parameters: 

α = α (1 + θ 2) 
(3)¨ ˜ s s (1 + θ)2 

˜ ˜ (1 + θ)βs = βs (1 + θ 2) 
(4) 

¨and γ =–M. The adjusted parameter values (α s, β̈ 
s, γ) make 

the mean and variance of autocorrelated rs,y values from 
algorithm 1 the same as for an independent series drawn 

˜α βs ,γ (seefrom a gamma distribution with parameters ( ̃  s , 
Appendix 1). 

Algorithm 2 was for autocorrelations (ρ) in the range 
(0.5, 1): 

L 

, 1∑ ds y− −  j 

r = j=1 , 
(5) 

s y, L

where the random numbers ds,y were drawn from gamma 
¨ ˜distributions with parameters α s,r = α s,r/L, L an integer >3,

β̈ s,r = βs,rL, and γ. The adjusted parameter values make the 
mean and variance of the autocorrelated and independent 
rs,y values the same. 

The autocorrelation in algorithm 2 is ρ= (L–1)/L. For 
simulations, we chose the smallest value of L that gave 
an autocorrelation that was at least as large as the value 
desired. Extremely high autocorrelations (e.g. ρ>0.9) can 

¨ ˜ ˜give α s,y = α s,y/L ≤ 1 when α s,r is near L. This was a minor 
problem in some cases because gamma distributions for 
ds,y, and autocorrelated values of rs,y, have no mode when 
α̈ s,y ≤ 1. We avoided this, where necessary, by setting the 

¨maximum value of L to 10 (ρ=0.90) and constraining α s,y ≤ 1 
in simulations. 


