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Estimation of growth and mortality 
is fundamental in fisheries because 
stock assessment and management 
rely on these population parameters. 
Length-frequency–based methods 
become important when aging tech-
niques are either not possible or very 
expensive. Existing methods such 
as that of Beverton and Holt (1956) 
assume that recruitment is continu-
ous and constant throughout the year, 
which leads to a population with an 
exponentially distributed age struc-
ture. Existing modifications to Bever-
ton and Holt’s method comprise some 
simple recruitment patterns or distri-
butions (Ssentongo and Larkin 1973; 
Ebert 1980; Hoenig 1987; Wetherall 
et al. 1987). As pointed out by Vetter 
(1988), the existing methods for esti-
mating mortality in the literature 
have strong limitations and disadvan-
tages. In particular, they require the 
following assumptions: 

1) each individual follows the same 
von Bertalanffy growth curve; 

2) the recruitment is either con-
tinuous and constant through-
out the year (as in Beverton and 
Holt [1956] and Wetherall et al. 
[1987]) or is a pulse function (as 
in Hoenig [1987]); 

3) the total instantaneous mortality 
rate, z, is constant.
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As pointed out by Sainsbury (1980), 
it is more realistic to allow individual 
variability in growth. For example, 
using tag-recapture data, Wang et al. 
(1995) found substantial individual 
variability for the tiger prawn species 
P. semisulcatus.

Estimation of mortality relies on 
the distribution of the lengths, which 
is determined by the age distribution, 
mortality rates, and the individual 
variability in growth rates. If individ-
ual variability in growth is ignored, 
an inappropriate length distribution 
will be generated, leading to biases 
in parameter estimates. It is also 
biologically interesting to quantify 
the individual variability in growth, 
which has important implications in 
fisheries management. Although it is 
well understood that variability leads 
to increased uncertainty in estimates, 
it is less well recognized (among the 
fisheries community) that variability 
can also lead to bias. Wang and Ellis 
(1998) analyzed the effect of ignoring 
individual variability in a simplified 
context of constant recruitment and a 
single length-frequency record. They 
found that, in the presence of indi-
vidual variability, existing methods 
gave positively biased parameter es-
timates. More details about the back-
ground can be found in Ebert (1973), 
Askland (1994), and Wang and Ellis 
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Abstract—We consider estimation of 
mortality rates and growth param-
eters from length-frequency data of a 
fish stock and derive the underlying 
length distribution of the population 
and the catch when there is individual 
variability in the von Bertalanffy 
growth parameter L∞. The model is 
flexible enough to accommodate 1) any 
recruitment pattern as a function of 
both time and length, 2) length-spe-
cific selectivity, and 3) varying fish-
ing effort over time. The maximum 
likelihood method gives consistent 
estimates, provided the underlying 
distribution for individual variation in 
growth is correctly specified. Simula-
tion results indicate that our method 
is reasonably robust to violations 
in the assumptions. The method is 
applied to tiger prawn data (Penaeus 
semisulcatus) to obtain estimates of 
natural and fishing mortality. 
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(1998). See DeLong et al. (2001) for alternative ap-
proaches to length-frequency data where individual 
variability is taken into account.

In our study, we develop a new framework for analyz-
ing length-frequency data. In particular, we incorporate 
1) individual variability in growth parameters; and 2) 
an arbitrary recruitment function. The model is flexible 
enough to incorporate various sizes at recruitment and 
a fishing selectivity function. However, we did not use 
these aspects in the analysis of tiger prawn data. Some 
analytical expressions are derived for these generaliza-
tions. A maximum likelihood approach is developed for 
estimation of mortality and growth parameters. Sepa-
ration of fishing mortality from natural mortality is 
possible only when there is substantial contrast in the 
effort pattern. We also require a known recruitment 
pattern, and sampling times are spread out so that 
the length-frequency data will contain information on 
growth and mortality. Simulation studies are carried 
out to determine the performance of the method. The 
simulated data are generated from the recruitment pat-
tern of the brown tiger prawn (Penaeus esculentus) in 
the northern prawn fishery of Australia. Finally we ap-
ply the maximum likelihood method to length-frequency 
data from grooved tiger prawn data (P. semisulcatus) in 
the northern prawn fishery of Australia.

Materials and methods

The model

We assume that the growth of individuals follow a von 
Bertalanffy curve so that the length at age a (relative 
to some origin t0) is given by

 L a L e ka( ) ( ).= −∞
−1  (1)

In this study, age is always defined to be relative to t0, 
i.e. t0 is absorbed into a for the purpose of identifiability. 
We will consider estimation of (k, l∞) only because t0 is 
not estimable from length-frequency data with aging 
data. Note that this does not mean t0 is assumed to be 
0. To provide a general treatment we relax each of the 
assumptions mentioned in the introduction. First we 
relax assumption 1 by letting the maximum length, L∞, 
vary within the population. We denote the density func-
tion of L∞ as p(x), which has a mean of l∞ and a variance 
of σ 2. It is possible that recruits to the fishery have a 
range of sizes. To allow for this range we let the size 
at recruitment, L0, be a random variable with density 
function u(s). In practice, one may be able to use infor-
mation from other studies (such as subadult abundance) 
to arrive at an approximate parametric form for u(s). 

If ft(l) is the probability density function of L at time 
t, then

 f l p x L s f l L x L s u s dxdst tl
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where ft(l|L∞=x, L0=s) is the conditional probability 
density function of L at time t when L∞ is known to be 
x and the size at recruitment is s. Note the lower limit 
of the inner integral is l because L∞ cannot be less than 
an individual’s length.

Let the age (again, relative to t0) at recruitment of an 
individual be A0. From Equation 1, we have age a at 
length l is a=–k–1log(1–l/L∞) and hence the conditional 
distribution, ft(l/L∞=x, L0=s), which may be written 
as ft(l|x, s) for brevity, can be expressed by using the 
conditional distribution of age ht(a|L∞=x, A0=a0) (see 
Wang et al., 1995), as
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We now generalize assumptions 2 and 3 by introduc-
ing the intensity function of recruitment, r(t), and the 
total instantaneous mortality, z(t), which are arbitrary 
functions of time t. The total mortality would depend on 
time through the fishing mortality component F, where 
z(t)=M+F(t) and M is the constant natural mortality.

The age distribution satisfies
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This equation states that the density of individuals of 
age a is proportional to the intensity of recruitment at 
the time when these individuals were recruited, namely 
t–a+a0, multiplied by a reduction factor due to mortality 
over the intervening period. We therefore have 
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and Equation 3 becomes (after substituting for a and 
shifting the dummy variable y)
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Let us consider the case of fixed recruitment length, 
i.e., L0=l0, and define a parameter vector, β, consisting 
of (k, l∞, s), and other parameters quantifying mortality 
and catchability. Equation 2 then reduces to a single 
integral over x,
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A more convenient form for computation arises after 
changing the integration variable from the asymptotic 
length x to time since recruitment, t–a+a0,
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The expression (Eq. 7) then becomes
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In the special case of constant recruitment, i.e., r(t)=1, 
and constant mortality, z(t)=z, ft(l|β) becomes indepen-
dent of time as first obtained by Powell (1979).

Maximum likelihood estimation

Let pij(β) be the expected proportion of individuals in 
the ith length class (li–1, l) on the j th occasion, where 
i=1, 2, . . . , N; and let nij be the corresponding observed 
numbers. The value of pij(β) can be obtained from the 
density function ft(l;β) given by Equation 2. Thus
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in which fj(l;β) is the (unnormalized) density function on 
the jth occasion. Under a multinomial model, estimation 
of the parameter vector β relies on the procedure 

 maximize with respect to .n pij ij
i j

log ( )
,

β β∑∑  (11)

The sum is the log-likelihood function up to a constant 
independent of the parameters. The probability, pij, can 
be approximated as fj(li+1/2)/Σi fj(li+1/2), which is the nor-
malized value of the density function for the jth occasion 
at the midpoint of the ith length class. 

If sampling effort is known and expected catch is as-
sumed to be a known function of effort and population 
abundance, the log-likelihood function in Equation 11 
can be easily modified to incorporate effort informa-
tion. For example, if the total number of individuals on 
each occasion, nj=Σi=nij, is assumed to follow a Poisson 
model with overdispersion parameter v, the log-likeli-
hood function becomes 

 n p nij ij j i j
ji j

log ( ) log ( ) ( ) ,
,

β ν λ β λ β+ −{ }∑∑  (12)

where λj(β) is the expected total number in the sample 
on the j-th occasion and depends on effort. One way to 
model this dependence is λj(β)=φpj(β)ej, where ej is the 

sampling effort, φ is the total abundance index over all 
occasions; and pj is the expected proportion of individu-
als on the jth occasion (i.e., the relative abundance), so 
that φpj is the expected catch per unit of effort. In this 
case we can obtain the maximum likelihood estimate of 
φ as Σjnj /Σj ejpj. The probability, pj, can be approximated 
as Σi fj(li+1/2)/Σi,j fj(li+1/2). Here v is introduced to allow for 
overdispersion in the Poisson model. It plays a weighting 
role for the two terms in Equation 12, and the second 
summation can be regarded as auxiliary information. 
If nj is assumed to follow a Poisson distribution exactly, 
we have v=1.

In our simulation and tiger prawn studies we specify 
a case of fixed, known recruitment length, l0, and fj(l;β) 
is obtained from Equation 7 or 9. For definiteness we 
set the constant of proportionality implicit in these 
equations to one. 

The integrals in Equations 7 and 9 present some 
subtleties for their evaluation, so that some details 
of the numerical implementation might be of inter-
est. For the simulation study we used Equation 7. 
The integral was performed on an l-dependent grid 
of 41 and 81 quantiles of the L∞ distribution p(x) and 
then improved upon by using the Richardson extrap-
olation. Note that there is an apparent singularity 
at x=1. However, by decomposing the mortality into 
a mean and deviation term, z(y)= z +z(y)– z , we find 
that the factor involving mortality is proportional to 
(x–l)z/k. Hence the integrand is proportional to (x–l)z/k,  
and, because z/k–1>–1, the singularity is integrable 
(i.e., the integral is finite). We used a quadrature scheme 
designed for integrands of the form (x–l)ξf(x),ξ>–1, to 
perform the integral in the neighborhood of x=1.

For the tiger-prawn study we used Equation 9. The 
integral was performed on uniform grids of 41 and 81 
points over the interval τ∈(0,1.5) years and, as before, 
was improved by using the Richardson extrapolation. 
We used our knowledge that tiger prawns live for about 
18 months to determine the upper limit of integration. 
Note that despite appearances, this integral contains no 
singularity because x(τ)→∞ as τ→0), and therefore the 
factor p(x(τ))/(1–e–kτ)→0. The effort integral within the 
integrand was computed by linear interpolation between 
cumulative totals of the weekly effort. 

The prototype implementation of our maximum like-
lihood method was written in S-plus software (Lucent 
Technologies) by using the optimizer “nlminb.” However, 
to improve the performance for a large number of simu-
lations, the program was recoded in C by using Powell’s 
optimization routine with numerical derivatives (Press 
et al., 1992). The C code and some relevant reports are 
available on request. 

Results

Simulation studies

We simulated length-frequency data based on the 
recruitment pattern of tiger prawns P. esculentus in 
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Figure 1
The empirical recruitment pattern (solid line) of the tiger prawn Penaeus esculetus in the northern 
prawn fishery of Australia and the fishing effort pattern (dashed line).
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the northern prawn fishery of Australia. This pattern 
has been derived from experimental trawls in which 
the number of individuals in the lowest length class 
are counted (Wang and Die, 1996). We assume the 
recruitment and effort patterns are the same in each 
year (Fig. 1). The effort pattern (dashed line) consists of 
two constant-fishing periods: 15 May to 15 June, and 1 
August to 1 December. The unit of effort, E, depends on 
the unit of catchability, q, because the fishing mortality 
F=qE must have unit yr–1: therefore we let E=1 during 
the fishing season. Note that the proportion of the year 
that is fished is ∫E(t)dt=5/12.

The growth component of our models has l∞=40 mm 
and k=3yr–1; the instantaneous natural mortality is 
M=2yr–1; and the instantaneous fishing mortality, F, 
during the fishing season is 4yr–1 (i.e., q=4, because in 
our units, F=q). The resulting annual mortality, Z=∫z(t) 
dt=M+q∫E(t)dt=2+4×5/12=11/3. The values for mortal-
ity come from Somers and Wang (1996). We assume that 
all recruits have length 19.5 mm. The L∞ distribution 
is normal (standard deviation 4 mm) but is truncated 
at 19.5 mm. The truncated normal distribution at l0 is 
simply a conditional normal distribution conditional on 
being greater than l0.

We generate twelve length-frequency data sets, one 
for the beginning of each month. We choose a monthly 
time interval because the data from our case study in 
the next section were sampled at roughly monthly in-
tervals. In addtion, because the recruitment pattern is 
periodic it is sufficient to analyze one year of data. 

We obtain each monthly length-frequency data set 
by taking a sample of size 1000 from the theoretical 
length distribution ft(l) given by Equation 6, which 
depends on the recruitment pattern, the effort pattern, 
and the distribution of L∞. That is, for each of the 12 
time points t, we evaluate numerically the right-hand 

side of Equation 6 over a set of finely spaced l values 
(i.e., every 0.25 mm), aggregate the ft(l) to 1-mm inter-
vals and finally normalize the function by dividing by 
the sum of ft(l). This results in an array of probabilities 
for an individual’s length in each 1-mm interval. It is 
then straightforward to sample from the corresponding 
multinomial distribution.

We then obtain parameter estimates from the twelve 
months of simulated data. The process is repeated 100 
times to provide a reasonable estimate of the sampling 
variance of the parameters. In practice, (k, l∞) can of-
ten be estimated from a different study. We therefore 
consider two models. In model 1, we assume all five 
parameters are unknown, and, in model 2, we assume 
that l∞ and k are known and we estimate M, F, and σ. 
It is also common practice (e.g., Sullivan, 1992) to as-
sume that M is known and to estimate the remaining 
parameters; this is the case in our model 3.

The results are summarized in Table 1. All the pa-
rameters are quite well estimated, even for model 1. 
Estimates of both natural mortality and fishing mor-
tality are quite reliable when growth parameters are 
assumed known. There is also a modest reduction in the 
standard deviation when (k, l∞) are assumed known.

We have also tested for robustness by performing 
the estimation process on data generated from a log-
normal distribution. The results are shown in Table 1. 
For model 1 the estimates of M and F have a larger 
and opposite bias, whereas the absolute bias for Z is 
somewhat smaller. Model 2 improves the estimates 
dramatically, despite the fact that an incorrect dis-
tribution (the truncated normal) is being used in the 
model. Note that the variation in the estimates of total 
annual mortality, Z, is somewhat less than that for F 
and M; this is because F and M are highly negatively 
correlated (typically 94%). In model 3 the estimate of 
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Table 1
Mean parameter estimates and standard deviations (in parentheses) for simulated tiger prawn (Penaeus esculentus) data. The 
model assumes an underlying truncated normal L∞ distribution. The data are generated from two underlying L∞ distributions: 
the truncated normal and the lognormal. With model 1 all parameters are unassumed to be unknown; with model 2 (k, l∞) are 
assumed to be known; with model 3 M is assumed to be known.

Model k l∞ σ Z M F

Underlying truncated normal distribution
 True 3 40 4 3.67 2 4
  1 2.99 (0.05) 40.00 (0.19) 4.02 (0.08) 3.65 (0.05) 1.98 (0.15) 3.99 (0.34)
  2 3 40 4.01 (0.07) 3.65 (0.04) 2.00 (.11) 3.95 (0.28)
  3 2.99 (0.05) 40.02 (0.15) 4.01 (0.07) 3.65 (0.05) 2 3.95 (0.12)

Underlying lognormal distribution
 True 3 40 4 3.67 2 4
  1 3.02 (0.07) 39.53 (0.22) 4.28 (0.08) 3.53 (0.05) 1.51 (0.16) 4.84 (0.35)
  2 3 40 4.14 (0.07) 3.62 (0.04) 1.93 (0.11) 4.05 (0.28)
  3 2.96 (0.06) 39.92 (0.17) 4.16 (0.07) 3.57 (0.05) 2 3.76 (0.11)

F is negatively biased, but once again the standard 
deviation is reduced.

Application to tiger prawns (P. semisulcatus)

The data for this application consist of a six-year 
sequence of experimental length-frequency data from 
the trawling region around Albatross Bay in the east-
ern Gulf of Carpentaria, Australia. The data consist of 
catches of tiger prawns from 11 mm to 59 mm (carapace 
length) for each of 69 times ranging from March 1986 to 
March 1992. The catches from several stations covering 
the trawling region at each time (over a few consecutive 
days) are aggregated. Sampling was done roughly every 
lunar month. 

We use the catch data for the smaller size classes to 
obtain two types of recruitment patterns: the aperiodic 
pattern and the quasiperiodic pattern. The aperiodic 
pattern is constructed by summing over all individuals 
with length 21 mm or less for each occasion. The result-
ing sequence of plotted time points is then joined up by 
straight lines. The quasiperiodic pattern is generated 
from the aperiodic pattern by averaging corresponding 
points across years to give a single annual pattern. The 
pattern for all six years is generated from the annual 
pattern by applying, for each biological year, a scale 
factor that is found by averaging the catch over all size 
classes within the year. The start of the biological year 
is defined as the time when the annual pattern reaches 
its minimum (see Fig. 2). 

The effort pattern comes from commercial log books 
collected from fishermen for the period from 1986 to 
1992 in the area. Effort is measured in boat-days (see 
Fig. 2). There is substantial contrast in the effort both 
within years (due to seasonal closures) and across 
years. This contrast may allow us to separate fishing 
mortality from natural mortality.

The instantaneous fishing mortality F(t) is assumed 
to be qE(t). The mean total mortality Z=M+q E , where 
E  is the mean effort over the study period. Given the 
results of the simulation study, we expect the parameter 
Z may be more reliably estimated than either M or q, 
whose estimates are negatively correlated.

We further assume that the L∞ distribution is a trun-
cated normal distribution. This choice is based on the 
shape of the observed length distribution from July to 
September, the period when this distribution should 
approximate the asymptotic length distribution. The 
truncated normal distributions are then reparameter-
ized in terms of the mean l∞* and variance σ 2

* of this 
underlying normal distribution. It is more convenient to 
use these parameters than the mean l∞ and variance 
σ2 of the truncated normal distribution. Note that l∞ 
is always larger than l∞ and σ is always less than σ*. 
However, in this application the two sets of parameters 
are nearly interchangeable because over the range of 
estimated values l∞ exceeds l∞* by at most 0.5 mm and 
σ* exceeds σ by at most 0.6 mm (see Table 2). 

We define a recruit to be an individual with length l0, 
which can be chosen at discretion. We examine a range 
of candidate values of l0 between 19.5 mm and 27.5 mm, 
to find out which values provide the most suitable defi-
nition of recruitment for this data set, i.e., that which 
leads to the least violation of model assumptions.

In our application the recruitment pattern was de-
rived from size classes 21 mm or less. If we use this 
pattern at say 23.5 mm then we need to shift the pat-
tern slightly to later times. It is not apparent to what 
degree we should shift the pattern; therefore we shall 
estimate the degree of shift. We call this parameter 
the lag. We expect the lag to increase with l0. Also note 
that the derived recruitment pattern is an average over 
different size classes and hence it is an average over 
different times. The absolute timing of the pattern is 
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therefore uncertain and so the lag parameter adopts the 
role of estimating this uncertainty.

We do have sampling effort information, so that it 
would be reasonable to consider incorporating into the 
likelihood the Poisson term for the total catch as men-
tioned in section 3. Information on total catch per oc-
casion would improve estimates of mortality. However, 
preliminary analysis found that there was a mismatch 
of the expected total catch with the observed total 
catch. Therefore, it appears to be unrealistic to assume 
that the catch is proportional to the sampling effort. 
In the subsequent data analysis we use the form of the 
log-likelihood in Equation 11, which uses the shape of 
the observed distribution and takes the total catch as 
given.

We have estimated all the parameters k, l∞*, σ*, M, 
q, and the lag simultaneously (model 1). To achieve 
a better understanding of the data, we also estimate 
parameters for a range of fixed values of M (model 3). 

This is common practice in the fisheries literature (e.g. 
Sullivan, 1992). Estimates of q for corresponding values 
of M can be useful in some contexts where the outcome 
of an analysis is insensitive to the joint pairs (M, q) 
(Somers and Wang, 1996). Taking the rough values 
of Somers and Wang (1996) and Wang and Die (1996) 
as a guide, we choose the values M=1, 2, and 3yr–1. 
The utility of considering a range of values of M ap-
plies equally to considering a range of values for (k, 
l∞). Somers and Kirkwood (1991), Wang et al. (1995) 
and Wang (1998) have all reported estimates of (k, l∞) 
for this species, and we would like to incorporate this 
information. However, it is well known that estimates 
of the growth parameters are strongly correlated. We 
therefore considered a range of feasible pairs (k, l∞), 
and estimated the remaining parameters under model 
2. The fixed values we used were, for males, (2, 39.3), 
(3, 37.7), and (4, 36.1), and for females, (2, 53.1), (3, 
47.4), and (4, 41.7). These values were obtained by a 

Figure 2
(A) Quasiperiodic (solid line) and aperiodic (dashed line) recruitment patterns for female tiger 
prawns (Penaeus esculetus) in the study area; (B) quasiperiodic and aperiodic recruitment pat-
terns for female tiger prawns in the study area; (C) the weekly fishing effort pattern in the 
study area.
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Table 2
Parameter estimates for tiger prawn (Penaeus semisulcatus) data. F89 is the estimated fishing mortality in 1989. cor (M, F89) is 
the jackknifed correlation between M and F89. The last column is the objective value per unit of effort. With model 1 all param-
eters are assumed to be unknown; with model 2 (k, l∞) are assumed to be known; with model 3 M is assumed to be known.

Model M F89 Z k l∞ σ* cor (M, F89) –2log

Males: quasiperiodic recruitment
 1 4.1 2.3 5.2 9.3 33.4 4.5 –0.82 72.96
 2 2.9 0.3 3.1 2 39.3 5.1 –0.78 74.43
 2 3.7 0.6 3.9 3 37.7 4.3 –0.35 73.99
 2 3.4 2.1 4.4 4 36.1 4.3 –0.25 73.60
 3 1 2.2 2.0 5.3 32.3 4.8 — 73.05
 3 2 1.9 2.9 6.7 32.5 4.8 — 73.03

 3 3 0.0 3.0 7.6 32.3 4.8 — 73.15
Males: aperiodic recruitment
 1 1.3 1.6 2.0 5.0 32.6 4.8 –0.67 72.91
 2 2.8 0.4 3.0 2 39.3 5.8 –0.79 74.65
 2 3.7 0.1 3.7 3 37.7 4.7 –0.81 74.31
 2 3.5 0.5 3.7 4 36.1 4.5 –0.64 73.84
 3 1 1.8 1.8 4.9 32.4 4.8 — 72.93
 3 2 1.0 2.5 5.9 32.5 4.8 — 72.93
 3 3 0.0 3.0 7.0 32.5 4.8 — 73.01

Females: quasiperiodic recruitment
 1 4.2 1.7 5.0 5.6 42.2 7.1 –0.65 86.83
 2 3.9 0.3 4.1 2 53.1 8.3 –0.83 87.94
 2 4.0 0.7 4.3 3 47.4 6.9 –0.66 87.31
 2 2.7 1.3 3.3 4 41.7 7.7 –0.71 86.91
 3 1 2.6 2.2 4.1 38.8 8.3 — 87.10
 3 2 1.8 2.8 4.4 39.9 7.9 — 86.92
 3 3 1.6 3.7 5.1 40.7 7.5 — 86.87

Females: aperiodic recruitment
 1 2.6 0.9 3.0 4.9 39.2 8.2 –0.67 86.90
 2 3.9 0.1 4.0 2 53.1 13.5 –0.80 88.43
 2 4.3 0.1 4.4 3 47.4 9.7 –0.70 87.88
 2 3.0 0.8 3.4 4 41.7 8.1 –0.71 87.04
 3 1 2.1 2.0 3.6 39.3 8.4 — 87.07
 3 2 0.8 2.4 2.8 41.5 8.5 — 86.94
 3 3 0.6 3.3 5.0 39.4 8.1 — 86.91

simple linear fit to the estimates in the three papers 
mentioned above.

The estimates of M from model 1 appear more rea-
sonable for the aperiodic recruitment pattern. The cor-
relations between M and F89 (the fishing mortality in 
1989) are not as strong as in the simulation example. 
This is encouraging and indicates that there may be 
enough contrast in the effort pattern to separate fishing 
mortality from natural mortality. 

The estimates of l∞ and σ* for model 3 are not sensi-
tive to M. However k and M are quite strongly related. 
In the case of constant recruitment r(t) and mortality 
z(t)=Z, it is well known that k and Z are perfectly cor-
related, and only their ratio Z/k is able to be estimated. 
The separation of M and k therefore relies on there be-
ing adequate contrast in recruitment and effort.

For model 2 there is little difference between the two 
recruitment models. The estimates of M show moderate 
dependence on (k, l∞), but without trend. These esti-
mates are generally somewhat higher than we expect 
from prior studies. But for the natural mortality rate, 
this is the first time we have obtained estimates of M, 
which is larger than what we have assumed in previous 
stock assessments, around 2.3 per year (Wang and Die, 
1996). Estimates of F89 are too variable to be relied up-
on. All models agree reasonably on the σ* parameter.

Our model assumes recruitment at a fixed length, 
l0, which has to be chosen. In Figure 3 the parameter 
estimates for fixed (k, l∞*) are plotted against l0 for the 
quasiperiodic recruitment model. Parameter estimates 
are consistent for given l0 provided that all model as-
sumptions are satisfied. However, when l0 is too small 
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Figure 3
Parameter estimates against recruitment length l0 for real tiger prawn 
(Penaeus esculetus) data using quasiperiodic recruitment under model 2. 
The mean annual total mortality Z is equal to M+0.46F89, where F89 is 
the fishing mortality in 1989.
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or too large, there is bound to be a violation of those 
assumptions, leading to high sensitivity of the estimates 
to changes in l0. Therefore, we say the most reasonable 
value for l0 is that for which the estimates are most 
slowly varying in the immediate neighborhood of l0. 
On the basis of σ*, M and Z for males, l0=23.5 would 
be a reasonable choice. We exclude q from consider-
ation because its standard deviation is comparable to 
its magnitude (see Table 2). In addition we exclude 
the lag because we expect it to increase approximately 
monotonically with l0, as indeed it does. There is no 
clear choice for females; therefore we choose l0=23.5, 
the same as for males. This choice is consistent with 
the consideration that l0 should be somewhere between 
20 mm and 30 mm, but in the lower half of the range 
so that more data can be included in the estimation 
(because lengths must exceed l0). 

Also shown in Table 2 are jackknife estimates of 
the standard deviations. The jackknifing is done by 
dropping the length-frequency record from each occa-
sion in turn and re-estimating the parameters. From 
the over-all estimate θ̂  and the jackknife estimate θ̂ i 
from dropping the ith occasion we obtain a pseudovalue  
θ̂–(n–1)θ̂ i /n, where in our case n=69. The jackknifed 
standard deviation is simply the standard deviation of 
these pseudovalues. We also show the jackknifed corre-
lation between M and q, which is simply the correlation 
between the corresponding pseudovalues. In most cases 
there is a large negative correlation.

The fishing mortality in 1989 (the year of peak ef-
fort), F89, is simply proportional to q with constant 
of proportionality 2865, the number of boat-days of 
effort in that year. The mean total annual mortality 
Z is M+0.46F89 because the mean annual effort was 
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1320 boat-days. The mostly high negative correlations 
between M and F89 (equivalently, q) may explain why Z 
tends to have a smaller standard deviation than either 
M or F89. The results of Figure 3 can be regarded as a 
sensitivity study on the effect of changing l0. The pur-
pose of this sensitivity study is not to estimate l0 but 
rather to check that the model assumptions have not 
been violated for the given l0.

The results are fairly similar for the two recruitment 
models although there are differences: the quasiperi-
odic recruitment model gives larger F89 estimates and 
smaller σ* estimates. Our method assumes that the 
recruitment pattern is known without error; therefore 
the preferred recruitment pattern should be the one 
with less error. Let us suppose that the true recruit-
ment pattern consists of a periodic pattern with random 
variation both within years and between years. If the 
within-year variation is sufficiently large in comparison 
with the between-year variation, then the quasiperiodic 
pattern should be used. On the other hand, if the be-
tween-year variation is large, then the aperiodic pattern 
is preferred. Based on the objective values (–2log) in 
Table 2, model 2 with quasiperiodic recruitment pat-
tern and fixed k at 4yr–1 appears to be the best model 
for both males and females. 

Figure 4 shows the 40 length-frequency records for 
females with the largest total catch. Overlaid is the ex-
pected catch (given the total catch) from the model with 
(k, l∞*) fixed at (3, 47.4) for quasiperiodic recruitment 
(solid line) and for aperiodic recruitment (dashed line). 
Because the integral for the expected length distribu-
tion is singular in the neighbourhood of l0, the first few 
size classes are omitted from the estimation; only data 
with length above l0+2 are used in the estimation. The 
fit is quite reasonable for most records. It is interest-
ing to compare the performance of the two recruitment 
models. In early 1988, when recruitment occurred later 
than usual (see Fig. 2), the aperiodic model tracks the 
data more closely than the quasiperiodic model, espe-
cially in March. On the other hand, the quasiperiodic 
model fits better in October 1990, whereas the aperiodic 
model predicts higher abundance of small females be-
cause of a recuitment “blip” in September, which was 
perhaps due to sampling variation. 

Discussion

Methods such as McDonald and Pitcher’s (1979), 
ELEFAN (Pauly et al., 1981), and Sparre’s (1987) oper-
ate on multiple length-frequency data and attempt to 
identify cohorts in the frequency pattern. Essentially 
they estimate the growth parameters by tracing cohorts 
in time; then they estimate mortality by measuring the 
evolution in abundance of a cohort. For mortality esti-
mation these methods need catch-per-unit-of-effort data. 
Sparre’s method bears some similarity to ours because 
it attempts to fit the length distribution of a cohort to 
a normal distribution whose variance is a parameter to 
be estimated. Our method does not require separation 

of cohorts because samples are assumed to come from a 
length distribution which may be multimodal. Another 
advantage of our method is that it is not necessary to 
have information about sampling effort and thus may 
greatly reduce the complexity of sampling. However, our 
approach needs a known recruitment pattern.

In our application, recruitment was assumed to occur 
at a fixed length, l0, which had to be chosen. We used 
prior information to constrain l0 to lie somewhere be-
tween 20 mm and 30 mm. We then found the sensitivity 
of the estimates to changes in l0 and chose a value that 
reduced this sensitivity. This choice could be further 
refined if more accurate constraints were available from 
other sources. Alternatively, Wang and Somers (1996), 
who also used l0 to account for continuous recruitment 
in estimating growth parameters, have provided guide-
lines for choosing l0.

Deriso and Parma (1988) and Sullivan et al. (1990) 
reported methods based on stochastic growth. Sullivan 
(1992) also applied the Kalman filter approach for es-
timating population parameters. Their models differ 
from ours in the way random variation is incorporated 
in the growth model. In their models the length incre-
ment from one time step to the next follows a distribu-
tion whose mean is given by a fixed growth model. As 
Wang and Thomas (1995) have demonstrated, this is 
equivalent to assuming that the growth rate changes 
randomly from time to time. In our model each indi-
vidual follows a deterministic growth curve whose L∞ 
parameter is chosen from a random distribution. An 
individual with larger than average growth at one time 
step will have above-average growth at subsequent time 
steps. Perhaps further modeling effort could be directed 
into combining these approaches.

DeLong et al. (2001) have reported a method for es-
timating density-dependent natural mortality and the 
growth rate from length-frequency data for juvenile 
winter flounder not subject to fishing mortality. Other 
growth parameters (l∞ and the variability of k) were 
fixed by using information from other sources. Because 
their data were recorded in the latter half of the year, 
when recruitment was nearly complete, recruitment 
was not a complicated issue. In contrast, we had the 
challenge of a species that recruits all year round. The 
degree of fit in DeLong et al.’s Figure 5 is comparable 
to that in our Figure 4.

Our methods are based on distributional assumptions 
that must be tested for robustness, because, in practice, 
the l∞ distribution of real prawn populations will not 
equal any of our mathematical distributions. We have 
found that, even for our ideal model, akin to any other 
existing model, biases occur for moderate to large co-
efficients of variation when violation of distributional 
assumptions occurs. 

Our model is motivated by the trawl data from the 
tiger prawn fishery and relies on 1) known recruitment 
pattern, 2) contrast in commercial fishing effort for 
estimation of M and F simultaneously, and 3) contrast 
in sampling times. Requirement 3 is to spread sam-
pling effort so that growth and mortality information 
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are in the data. We fitted a variety of different models. 
The objective function –2log(likelihood) values in Table 
2 should be used only as guidelines and should not 
drive the analysis or be used for model selection. Tiger 
prawns are subject to very high total mortality and 
hence are short-lived species. Our method is also ap-
plicable to longer-lived species. However, for application 
to other fisheries, some modification of the model may 
be necessary to incorporate relevant information in the 
model. Simulation studies may have to be carried out 
to see how reliable the modified version is for param-
eter estimation because many factors, such as growth 
rate and commercial effort patterns, will determine if 
parameter estimates can be found or how reliable they 
are if they can be found. 

We aim to obtain growth and mortality parameter 
estimates simultaneously. However, this may be too 
ambitious, especially for short-lived species unless 
other information can be incorporated to assist esti-
mation. For instance, Ebert (1973) found estimation 
of even two parameters (natural and fishing mortal-
ity) unreliable and had to assume one of them. This 
is perhaps why natural mortality is assumed to be 
known in traditional cohort analysis. Also Askland’s 
method (1994), one of the most recent cohort-analysis 
methods, requires a known M. Nevertheless, in prac-
tice, (k, l∞) may be estimated from different types of 
data. The results based on model 2 (assuming (k, l∞) 
are known) indicate that both M and F can then be 
estimated more reliably when there is substantial 
contrast in the effort pattern. Another assumption 
is that catchability does not change over time. This 
may not be necessarily true when new technology is 
introduced into the fishery (Bishop et al., 2000). The 
assumption that growth parameters are known greatly 
reduces the complexity of estimating the remaining 
unknown parameters and improves the performance 
of the proposed methods. 

We have chosen to allow only l∞ to be random because, 
unlike tag-recapture data, the length-frequency data do 
not have multiple measures from each individual. Each 
individual is measured only once. Therefore, it might be 
problematic to allow random K and correlation between 
K and L∞. Such an attempt using length-frequency 
data may lead to misleading conclusions because the 
conclusion will be model-driven instead of data-driven. 
Parameter estimates obtained by fixing M as a constant 
are deemed more reliable.

We provided a framework for length-frequency da-
ta analysis that incorporates continuous recruitment, 
selectivity, and time-dependent fishing mortality. We 
have also provided guidelines for how to compute the 
likelihood function, which depends on rather delicate 
integrals. Such a model would be very useful for many 
fisheries because such unified models are not available 
in the literature. Our work provides a sensible case 
study. Application of our method may require incorpora-
tion of specific information in a fishery. We believe our 
model, which generalizes the traditional model and is 
somewhat complicated, has provided us with some use-

ful results for future stock assessment and evaluation 
of management strategies.
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