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Genetic diversity in salmon species 
is thought to be maintained through 
high homing fidelity, which limits 
gene f low between spawning sites 
(Ricker, 1972; Quinn and Dittman, 
1990). As a general rule, populations 
that are geographically close tend to 
be genetically similar, creating natu-
ral clusters of similar populations. 
Identification of genetically similar 
salmonid populations is important 
for fisheries management initiatives 
directed at conserving genetic diver-
sity (Riddell, 1993; Waples et al., 
2001). Consequently, managers are 
faced with the challenge of defining 
the number and size of these genetic 
groups. Furthermore, determining 
valid groupings of populations at a 
fine scale allows managers to make 
informed decisions regarding harvest 
levels and population-enhancement 
strategies. For British Columbia Chi-
nook salmon (Oncorhynchus tshaw-
ytscha) populations, genetic markers 
have been used to determine genetic 
distance between populations and to 
provide considerable power for defin-
ing regional stock structure (Teel et 
al., 2000; Beacham et al., 2006a). 

Clustering or grouping data are 
useful in many disciplines; as a re-
sult there is a wide assortment of 
methods available for representing 
data, measuring proximity between 
data elements, and grouping elements 
(e.g., Jain et al., 1999). For Pacific 
salmon, population-specific allelic fre-
quencies are ascertained from spawn-
ing ground samples by using genetic 
markers at a number of loci. From 
these allelic frequencies, a metric of 
overall genetic difference between 
populations is used to estimate pair-
wise genetic distances. Three com-
monly used distance measures are 
Nei’s distance, DS (Nei, 1987), Nei’s 
modified Cavalli-Sforza chord distance 
DA (Cavalli-Sforza and Edwards, 
1967; Nei et al., 1983), and Weir and 
Cockerham’s (1984) estimator of Fst, 
the coancestory coefficient θ. Once a 
distance measure is selected, a prox-
imity matrix is created which shows 
genetic distance between each pair of 
populations.

Clustering is often used to group 
populations, either by merging small 
clusters into larger ones (agglomera-
tive) or by splitting larger clusters 
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Abstract—A new method of finding 
the optimal group membership and 
number of groupings to partition 
population genetic distance data is 
presented. The software program Par-
titioning Optimization with Restricted 
Growth Strings (PORGS), visits all 
possible set partitions and deems 
acceptable partitions to be those 
that reduce mean intracluster dis-
tance. The optimal number of groups 
is determined with the gap statis-
tic which compares PORGS results 
with a reference distribution. The 
PORGS method was validated by a 
simulated data set with a known dis-
tribution. For efficiency, where values 
of n were larger, restricted growth 
strings (RGS) were used to bipar-
tition populations during a nested 
search (bi-PORGS). Bi-PORGS was 
applied to a set of genetic data from 
18 Chinook salmon (Oncorhynchus 
tshawytscha) populations from the 
west coast of Vancouver Island. The 
optimal grouping of these populations 
corresponded to four geographic loca-
tions: 1) Quatsino Sound, 2) Nootka 
Sound, 3) Clayoquot +Barkley sounds, 
and 4) southwest Vancouver Island. 
However, assignment of populations 
to groups did not strictly ref lect the 
geographical divisions; fish of Barkley 
Sound origin that had strayed into 
the Gold River and close genetic simi-
larity between transferred and donor 
populations meant groupings crossed 
geographic boundaries. Overall, stock 
structure determined by this parti-
tioning method was similar to that 
determined by the unweighted pair-
group method with arithmetic aver-
ages (UPGMA), an agglomerative 
clustering algorithm.
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Figure 1
Location of the 18 sites on the west coast of Vancouver Island where Chinook salmon (Oncorhynchus 
tshawytscha) populations were sampled. Numbers correspond to stock codes in Table 1. The same 
population was sampled for Somas River (12A) and Robertson Hatchery (12B). Shapes around loca-
tion numbers denote an genetic affiliation with one of the four regional groups: Quatsino Sound 
(diamonds), Nootka Sound (squares), Clayoquot+Barkley aounds (circles), and southwest Vancouver 
Island (triangles).

into smaller ones (divisive). A number of algorithms 
are available to decide which small clusters are 
merged or which larger clusters are split (e.g., Swof-
ford et al., 1996; Jain et al., 1999). Groupings can be 
depicted as a branching tree or dendrogram where 
branch length is scaled to represent genetic distance. 
A drawback with the hierarchical approach is that 
the result is sensitive to initial groupings, which 
are not permitted to change once an assignment has 
been made. Furthermore, arbitrary tie-breaking ac-
tions, either in the original proximity data or dur-
ing agglomeration, can cause instability in the tree 
structure (van der Kloot et al., 2005). Consensus from 
multiple tree constructions by bootstrapping across 
loci provides a measure of robustness of the appar-
ent dominant tree structure (Felsenstein, 1985). A 
majority-rule consensus tree can provide a phylogeny 
with groups that occur in a majority of the bootstrap 
samples. However, the incorporation of variation from 
consensus trees appears to have limited quantitative 
application, and the optimum cluster number is not 
obvious. 

This article provides a new method for partitioning 
genetic distance data by finding the optimal group 
membership and number of groupings. We validate 
the method using simulated data. To demonstrate the 
utility of this partition method, we applied it to genetic 

distance data calculated from samples taken from 18 
Chinook salmon populations along the west coast of 
Vancouver Island, British Columbia (Fig. 1). The group-
ings determined by this method were evaluated with 
respect to known transfers of broodstock and histo-
ries of stock enhancement. Furthermore, results from 
both the simulated and Chinook salmon data sets were 
compared to results from a commonly used clustering 
method for genetic data.

Materials and methods

Pairwise cost function

A pairwise cost function used in the field of pattern rec-
ognition (Roth et al. 2003) minimizes the sum of mean 
intracluster distances. Minimized intracluster distance 
appears most desirable in grouping populations where 
two or more populations assigned to the same group 
contribute to total cost. Other clustering algorithms 
have been proposed which emphasize separation, com-
binations of compactness and separation, or conductivity 
measures (Buhmann, 2002).

Given row (i) and column ( j) indices of an (n×n) dis-
similarity matrix D of populations with k groups, the 
pairwise cost function (CF) is
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For each population a binary assignment variable 
indicates group membership such that group member-
ship (l) is assigned to each group (ν) in an (n × k) binary 
matrix (M), where
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The optimal assignments of M̂  are obtained through 
cost-function minimization (↓CF) and visiting all com-
binations of group memberships. Unlike other cost func-
tions (Hofmann and Buhmann, 1997), there is no pen-
alty for increased numbers of partitions; thus adding 
more partitions will always reduce the cost where the 
output is nonconvex and CF → 0 as k → n. A nonpenal-
izing cost function was implemented so that the gap 
statistic (discussed later) could be used for determining 
the optimal number of groupings. Adding partitions 
creates more and smaller groups while lowering mean 
intracluster distance (the sum of all pairwise distances 
divided by the number of populations). Meanwhile, add-
ing more groups increases the sum of the mean intra-
cluster distances.

Implementation of the search algorithm

Testing all group memberships at different cluster sizes 
can generate large numbers of combinations. Structure 
detection through partitioning is considered a com-
binatorial optimization problem because visits to all 
combinations are computationally intensive. There is no 
guarantee of finding the optimal solution in a reason-
able amount of time because the number of computa-
tions grows rapidly with increasing data (Puzicha et 
al., 1999). We describe two search methods that have 
been used for these data: simple random search and 
complete search.

Simple random search, a random set-partition as-
signment of the binary matrix, is an obvious way to 
visit combinations of group memberships, where i = 1 
to n such that

 M i rand v( , _ ) .= 1  (3)

Alternatively, all n × k combinations can be visited as a 
complete list of set partitions where, for example, three 
populations can be partitioned into the form

ABC AB|C AC|B A|BC A|B|C.

Set partitions are the union of nonempty disjoint subsets 
called blocks, where restricted growth strings (RGS) 
(strings of numbers used as a convenient way to repre-
sent partitions) were used to generate all blocks (Knuth, 
2005). We called visits to all partitions while minimizing 
the cost function (Eq. 1), partitioning optimization using 

restricted growth strings (PORGS). The number of ways 
n populations can be partitioned into these nonempty 
sets is called the Bell number (Rota, 1964; Cameron, 
1994). The total number of set partitions is the nth Bell 
number, and the number of set partitions for each k is 
determined by the Stirling number of the second kind 
(Cameron, 1994). 

Set partitions determined by RGS were used to con-
figure the binary matrix to assign group membership. 
Although RGS can visit all possible partitions, they 
can also be used to generate partitions with “at most” 
r blocks (Knuth, 2005). This reduced search space al-
lows bipartition (bi-PORGS) (r=2) such that an opti-
mum split can be determined one partition at a time. 
Information from prior group membership is used to 
restrict future searches, where

 M(i, ν) =1 for i = 1 to l, where ν = 1 or 2. (4)

A nested search occurs when all subgroups are sorted in 
descending order, and block combinations are selected 
when the cost function is minimized. Computational 
search time is reduced with the bi-PORGS method, thus 
allowing partitioning of larger sets of data.

The gap statistic

The objective of this analysis was to find an optimum 
number of groups, as well as the optimum partition 
solution, for k groups. Although there is no one criterion 
for deciding how many groups should be chosen to best 
represent the data, one guiding principle is that the 
appropriate number occurs when additional groups do 
not substantially change within-cluster dispersion. The 
gap statistic reveals within-cluster dispersion with that 
expected under an appropriate reference null distribu-
tion with methods of Tibshirani et al., (2001) such that

 Gapn(k) = E*
n{log(↓CF)} – log(↓CF), (5)

where ↓CF =  the observed values from the minimized 
cost function for each k; and 

 E*
n{log(↓CF)} =  the log of the expected values from the 

reference distribution for each k. 

The gap statistic is largest when the observed values 
fall the farthest below the reference curve. The esti-
mate of the optimum number of groups will be the 
value where additional groups do not increase the gap 
statistic. The expected values for the reference dis-
tribution are generated by taking the mean PORGS 
values from bootstrapping the proximity matrix. Essen-
tially, the mean values from the bootstrapped matrices 
remove the stock structure component from the refer-
ence data.

Simulated data

Simulated data were used to validate the PORGS method 
by comparing the known distribution of data points with 
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optimal partitions and group membership obtained from 
the model. 

To simulate genetic distance data, ten populations 
were assumed to be randomly located along a horizontal 
line, where i = 1 to 10 for a population P(i) selected at 
random (Fig. 2A).

 0 < P(i) < 1. (6)

A proximity matrix of i rows and j columns of simulated 
data was constructed from the distances d between two 

Figure 2
Partitions of simulated genetic distance data. (A) Populations P1–P10 are located randomly along a line 
from zero to one; (B) simulated proximity data were generated by using line distance between populations 
P1–P10; (C) results of the partitioning optimization using restricted growth strings (PORGS) analysis of 
simulated data, showing hierarchical group membership for k groupings and corresponding minimized cost 
function (CF) values; black, gray, and white represent status of the populations for a given cluster number. 
Black and white represent populations involved in partitions for a particular value of k, whereas gray 
populations were not involved; (D) expected CF values from the reference distribution and observed values 
plotted against number of groups k for the simulated data; and (E) the gap statistic plotted against number 
of groups, showing k=3 as the optimum number of groups with the simulated data for 10 populations. 
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populations (Fig. 2B) such that the values of each matrix 
element were

 d(ij)=|P(i) – P( j)|. (7)

Using the PORGS method, we partitioned the proxim-
ity matrix into optimal group membership for k = 1 to 
n groups by minimizing the cost function (Eq. 1; Fig. 
2C). Ten bootstrapped variants of the proximity matrix 
were treated similarly, and the mean of the bootstrapped 
values provided a reference distribution to compare with 
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the observed values of the original proximity matrix by 
using the gap statistic (Eq. 5; Fig. 2, D and E). 

Genetic data for Chinook salmon  
from the west coast of Vancouver Island

Next we applied PORGS to genetic data derived from Chi-
nook salmon populations. Tissue or scale samples were 
taken from Chinook salmon during times of broodstock 
collection and spawner enumeration along the west coast 
of Vancouver Island (Fig. 1). Genomic DNA was isolated 
from samples taken at 18 sites since the early 1970s 
(Table 1) and polymerase chain reaction analysis was 
conducted to amplify 12 microsatellite markers (Ogo2, 
Ogo4, Oke4, Oki100, Ots100, Ots101, Ots104, Ots107, 
Ots2, Ots9, Omy325, and Ssa197) by standard methods 
(Beacham et al., 2006a). All samples were combined over 
years except for one sample from the Robertson Creek 
Hatchery which was used to test the temporal stability of 
the microsatellites for population differentiation. Above 
the confluence with Sproat River, the Somas becomes 
Stamp River. Robertson Creek Hatchery lies on Stamp 
River downstream from Great Central Lake. The sample 
collected from Somas River in 1973 was considered to be 
the same stock as that represented by the sample from 
Robertson Creek Hatchery taken in 1996 and 2003. 

Table 1
Chinook salmon (Oncorhynchus tshawytscha) sampling data by region, stock code, population, years sampled, and annual and 
total sample size used in the bi-partitioning optimization using restricted growth strings (bi-PORGS) analysis. (H) indicates 
major hatchery facilities.

Region Stock code Population Years sampled Annual n Total n

Quatsino Sound  1 Marble 1994, 1996, 1999, 2000  58, 98, 149 202 507
  2 Colonial 1999, 2004  40, 18 58
Nootka Sound  3 Zeballos 2002, 2004   4, 30 34
  4 Tahsis 1996, 1999, 2002, 2003  72, 87, 104 47 310
  5 Conuma (H) 1988, 1996, 1997, 1998  47, 214, 143 52 456
  6 Tlupana 2002, 2003  34, 32 66
  7 Gold 1983, 1985, 1986   9, 13, 71 93
  8 Burman 1976, 1985, 1986, 1989,    8, 20, 2, 35 19, 56, 35 34, 51, 13 273 
   1990, 1991, 1992, 2000,  
   2002, 2003 

Clayoquot Sound  9 Tranquil 1996, 1999 209, 133 342
 10 Kennedy 1992, 2005  49, 190 239

Barkley Sound 11 Nahmint 1996, 2001, 2002, 2003,   27, 56, 51 124, 135 346 
   2004 
 12A Somas 1973  155 155
 12B Robertson (H) 1996, 2003 155, 183 338
 13 Thornton 1992, 1999, 2000, 2001  37, 147, 150 184 518
 14 Toquart 1999, 2000  70, 17 87
 15 Sarita 1996, 1997, 2001 112, 157, 146 415

Southwest  16 Nitinat (H) 1989, 1996, 2003  53, 153, 140 346 
Vancouver Island
 17 San Juan 2001, 2002  80, 116 196
 18 Sooke 2004  58 58

The Robertson Creek Hatchery stock was founded from 
Somas River fish collected from 1972 to 1976. and from 
additional broodstock collected from the river since then 
(Table 1, stock codes 12a and 12b). 

For this analysis, we used Weir and Cockerham’s 
(1984) co-ancestory coefficient θ, a widely used measure 
of genetic differentiation (Waples and Gaggiotti, 2006). 
A pairwise estimate of θ was calculated from data on 
multilocus genotypic distance between populations by 
using FSTAT software (Goudet, 1995). 

History of Chinook salmon brookstock  
from the west coast of Vancouver Island

The west coast of Vancouver Island has three major 
hatcheries, Robertson Creek, Nitinat River, and Conuma 
River, which began enhancement of Chinook salmon in 
1972, 1990, and 1979, respectively (Cross et al., 1991). 
Juveniles from these hatcheries have been transplanted 
into several river systems (Table 2). Robertson Creek 
Hatchery provided the founder stock for Thornton Creek 
Hatchery with transfers from brood years 1982–84. 
Since then, the hatchery-supported run has been perpet-
uated by returns to Thornton Creek. The Nitinat River 
Hatchery has transferred Nitinat River Chinook salmon 
to Toquart River (broods 1990–97 and 1999–2001) and 
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Table 2
History of transfers of Chinook salmon (Oncorhynchus tshawytscha) from the west coast of Vancouver Island, showing for each 
recipient population whether there was an indigenous stock, the enhancement status since transfers, the donor population, and 
the brood years transferred from donor to recipient sites.

Recipient Indigenous  Donor Brood years
population stock Enhancement status population transferred

Colonial Yes Not enhanced Marble 1987–1989, 1991,1993,1998
Thornton No Enhanced: river returns only Robertson 1982–1984
Toquart Yes  Robertson 1989–1990
  Enhanced: river returns only Nitinat 1990–1997, 1999–2001
Sooke Yes Enhanced: transfers plus river returns Nitinat 1980–1984, 1987–1997,  
    1999–2006
Zeballos Yes Enhanced: river returns only Conuma 1990–1998, 1999–2003

to Sooke River (brood years 1980–2006, except 1995, 
1986, and 1998. Both Toquart River and Sooke River had 
existing Chinook salmon runs before hatchery releases, 
but populations were at a low abundance before trans-
fers began. In addition, Marble River stock has been 
transferred to Colonial Creek, Goodspeed River (not 
sampled), and Coal Harbour, as well as various seapen 
release locations in Quatsino Sound. Other populations 
were either enhanced on-site or reared in a hatchery 
before being returned to the natal stream for release. 
For example, the Sarita River stock was reared in the 
Nitinat Hatchery, then returned to the Sarita River.

Comparison of PORGS method  
with standard genetic methods

To compare results obtained by the PORGS method with 
those from a standard hierarchical approach to cluster-
ing genetic data, the unweighted pair-group method 
using arithmetic averages (UPGMA) was applied to both 
the simulated and Chinook salmon data sets to generate 
a tree with PHYLIP software (Felsenstein, 1989). The 
UPGMA approach uses successive agglomeration with 
average-linking (Sneath and Sokal, 1973).

Results

When PORGS was applied to the simulated data, the 
first partition (k=2) occurred between P4 and P5 (Fig. 
2C). The next partition occurred between P7 and P8; 
with k = 4, P10 was separated from the P7–P9 grouping. 
The last two populations to split were P5 and P6. The 
values of the optimized cost function decreases mono-
tonically as the number of groups k increased (Fig. 2D). 
The expected data from the reference distribution (boot-
strapped proximity matrix) also decreased monotonically 
(Fig. 2D); but followed a less concave curve than that 
for the observed data. The optimum k value occurred 
where the observed data fell the farthest below the 
expected curve, at k = 3 (Fig. 2E), which corresponded 
to the groupings P1–P4, P5–P7, and P8–P10 (Fig. 2C). 

According to the relative positions of these populations 
along the line in Figure 2A, the group memberships 
and optimum number of groups determined by PORGS 
appears reasonable. These data were re-analyzed by 
using the bi-PORGS method, which generated the same 
cluster groupings as PORGS.

These groupings are also consistent with the results 
depicted by an UPGMA tree (Fig. 3A). Figure 3A shows 
a vertical dashed line drawn to intersect branches that 
correspond to the three main clusters identified in the 
PORGS analysis. The UPGMA tree shows P10 with 
the longest branch length and P5–P6 with the shortest 
branch length, corresponding to both population loca-
tion along the line (Fig. 2A) and the results from the 
application of the PORGS method (Fig. 2C).

The structure of the Chinook salmon data was evi-
dent when populations were sorted as an anti-Robinson 
matrix (Fig. 4; Robinson, 1951). In Figure 4 the small-
est dissimilarity values appeared close to the main 
diagonal, resulting in a grouping of the most similar 
populations. Four main clusters were apparent, and 
the two Quatsino Sound populations, Marble River and 
Colonial Creek, were the most distinctive of all the 
populations (θ>0.04). Three other groups lay along the 
main diagonal, where θ<0.02, corresponding to northern 
(Nootka Sound), central (Clayoquot+Barkley sounds), 
and southwest Vancouver Island. The Toquart River and 
the Sarita River populations, although geographically 
part of Barkley Sound, clustered with southwest Van-
couver Island populations. The Gold River population 
straddled the northern and central populations. The 
most genetically similar samples (θ=0.002) were those 
from Somas River in the early 1970s and those from the 
more recently sampled Robertson Creek hatchery.

Using the Chinook salmon data set, we were un-
able, in an initial attempt, to find an optimum solution 
from random set partitions. Although some partitions 
occurred only a few times, others were more common 
(Fig. 5). After 5.0 × 108 iterations, no cluster combina-
tions were evaluated where block sizes were less than 
2 or greater than 16. The expected number of occur-
rences for each k (Stirling number of the second kind) 



51Candy et al.: Dividing population genetic distance data by partitioning optimization

Figure 3
Dendrograms derived from (A) simulated genetic dis-
tance data clustered by the unweighted pair-group 
method using arithmetic averages (UPGMA) and from 
(B) genetic distance data for 18 populations of Chinook 
salmon (Oncorhynchus tshawytscha) from the west coast 
Vancouver Island clustered by using the co-ancestory 
coefficient θ. The dotted lines indicate corresponding 
groupings determined by bi-partitioning optimization 
using restrictive growth strings (bi-PORGS).
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indicated that considerably more iterations would be 
required to visit all set partitions. 

Compared with random set partitions, PORGS re-
duces the number of cost function evaluations by elimi-
nating redundant cluster combinations. However, if 
PORGS passes through all set partitions of the Chinook 
salmon data set, it would generate 5.8 × 1012 evaluations 
of the cost function (19th Bell number). Compared to the 
simulated data, where n=10, the Chinook salmon data 
set requires a much larger search (Fig. 5). Evidently, 
the number of combinations grows rapidly with an in-
creasing number of populations, but not as fast as n 
factorial. (Knuth, 2005). An exhaustive search would 
still take a long time to execute, even with recent ad-
vances in computer processing speed. However, with 
bi-PORGS, the largest bipartition occurred for the first 
cluster with n=19 members, where 262,142 evaluations 
were generated. 

During the bi-PORGS analysis for each value of k, the 
cost function minimizes the mean intracluster distance, 
then sums the means across all clusters. Because we 
were using the co-ancestory coefficient, θ, as a distance 
measure for the Chinook salmon data set, minimized 
cost function was referred to as the “mean sum theta” 
(Σθ ). For k=1 to 19, bi-PORGS values (↓CF) represent 
optimal membership for each of these groups (Fig. 6A). 
The two most northerly Chinook salmon populations, 
Marble River and Colonial River (within the Quatsi-
no Sound grouping), formed the first bipartition when  
(Σθ = 0.23) .  When k = 4 (Σθ = 0.11) the remaining 
single cluster divided into 1) Nootka Sound, 2) 
Clayoquot+Barkley sounds, and 3) southwest Vancou-
ver Island groups. Next, San Juan separated from the 
southwest Vancouver Island group,and the Quatsino 
group of Marble River and Colonial River split at k=6 
(Σθ =0.076). When eight groupings were optimized (Σθ = 
0.046) the Robertson-Creek–derived populations sepa-
rated from Gold River and Nahmint River populations, 
as well as the Clayoquot Sound populations; and Sarita 
River populations split from the southwest Vancouver 
Island populations. The Burman River population split 
from the Nootka Sound populations at k=10 (Σθ =0.029), 
and Clayoquot Sound populations (Tranquil River and 
Kennedy River) separated from the Barkley Sound 
populations (Gold River and Nahmint River). At k=12  
(Σθ =0.019) Thornton Creek split from Robertson Creek 
and Somas River, and the Gold and Nahmint Rivers 
split apart. At k=14 (Σθ =0.011) Sooke River split from 
the Nitinat River and Toquart River populations, and 
Tranquil River and Kennedy River populations split. 
The last few remaining splits separated Tahsis River 
and Conuma River, Nitinat River and Toquart River, 
and finally Somas River and Robertson Creek popula-
tions (Fig. 6A).

As with the simulated data, the relationship be-
tween the number of groups and bi-PORGS evalua-
tions decreases monotonically with increasing values 
of k (Fig. 6B); however, unlike the simulated situation, 
there appears to be more than one optimal point. The 
gap statistic indicates that the first optimum num-
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Figure 4
Dissimilarity matrix of θ values for genetic distance data derived from Chinook salmon (Oncorhynchus tshawytscha) populations 
from the west coast of Vancouver Island. Values of θ where θ= 0 are shown as white, θ < 0.02 as light gray, θ < 0.04 as dark 
gray, and θ ≥ 0.04 as black. Populations that show genetic affiliation but are outside the geographic region are denoted by < >.
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Figure 5
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ber of groups occurs at k = 4, corresponding to four 
geographic locations: Quatsino Sound, Nootka Sound, 
Clayoquot+Barkley sounds, and southwest Vancouver 

Island (Fig. 6C). At this point, additional groups do 
not cause the observed data to continue to drop sub-
stantially below the reference distribution. When k=9, 

a second peak in the optimum groupings oc-
curred which corresponded to the partitioning 
of Barkley Sound and Clayoquot Sound popula-
tions, similar groupings were derived from the 
UPGMA tree; the vertical line in Figure 3B 
indicates the corresponding number of groups 
and group membership as determined by bi-
PORGS. The four regional groups, Quatsino 
Sound, Nootka Sound, Clayoquot+Barkley 
sounds, and southwest Vancouver Island, each 
formed a cluster on the UPGMA tree; however, 
the optimum number of clusters is not obvious. 
The dendrogram appears to show greater genet-
ic distance between the populations of Marble 
River and Colonial River than between popula-
tions of Nootka Sound and Clayoquot+Barkley 
sounds. Overall, the partition and agglomera-
tive methods produced similar results.

Discussion

This article provides a new method for clustering 
genetic distance data by partitioning optimally 
with RGS, where acceptable partitions reduce 
intracluster distance. For this analysis, we used 
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Weir and Cockerham’s (1984) co-ancestory coefficient 
θ. A number of alternative distance measures could be 
tested with this method, but an examination of these 
measures is beyond the scope of this article. Also, deter-
mination and comparison of the optimal number of 

groupings directly from the multilocus genotypic data 
(e.g., Pritchard et al., 2000), instead of from the distance 
measures used here, would provide useful. 

Unlike other clustering methods, PORGS does not 
have to embed distance data in vector space (i.e., mul-
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Figure 6
Clustering of genetic distance data for populations of Chinook salmon (Oncorhynchus tshawyts-
cha) from the west coast of Vancouver Island. (A) Hierarchical group membership corresponding 
to minimized cost function (CF) by using bi-partitioning optimization using restrictive growth 
strings (bi-PORGS). Populations that show genetic affiliation but are outside the geographic 
region are denoted by < >. (B) Observed and expected values from the reference distribution 
plotted against k groups for the Chinook salmon data. (C) Gap statistic showing that the first 
optimum grouping occurs at k=4 and the second optimum grouping occurs at k=9. Black, 
gray, and white represent status of the populations for a given cluster number. Black and 
white represent populations involved in partitions for a particular value of k, whereas gray 
populations were not involved.
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tidimensional scaling); therefore, the underlying struc-
ture of the distance data remains intact, and resultant 
clusters can be compared between sets of populations. 
Successive increases in cluster numbers automatically 
lead to a hierarchical representation of the group struc-
ture. The gap statistic determines optimal number of 
groupings. In this example, k=4 was the first optimum 
number of groupings for Chinook salmon populations 
from the west coast of Vancouver Island. Except for 
populations impacted by straying fish and transferred 
fish, these groupings correspond to four geographic ar-
eas: Quatsino Sound, Nootka Sound, Clayoquot+Barkley 
sounds, and southwest Vancouver Island. Similar group-
ings were identified by agglomerative clustering seen in 
the UPGMA tree.

It was determined that random set partitions do not 
prevent visits to the same group memberships; therefore 
redundancy in cost function evaluations wastes process-
ing time. Random search proves ineffective, except for 
very small n, because the prohibitively large number of 
iterations requires an unreasonable amount of time to 
find an optimal solution. However, an exhaustive search 
of the data space provided by a simple random search or a 
pass-through of all set partitions ensures that a globally 
optimized solution is found. By a globally optimal solu-
tion, we mean that no smaller cost function evaluations 
are possible for each k from a particular data set. Depend-
ing on available computational speed and the number of 
populations, PORGS can require an unreasonable amount 
of time. An alternative approach reduces the search by 
sequentially splitting into groups (bi-PORGS method) and 
evaluating subgrouping combinations to minimize the 
cost function. But like other hierarchical clustering meth-
ods, the nested search approach (bi-PORGS) means that 
prior cluster groups cannot be undone; therefore finding 
the optimal values may not always be possible. However, 
for the simulated data, PORGS and bi-PORGS methods 
produced the same results, indicating a globally optimal 
solution is possible with the nested search. The faster 
search method with bi-PORGS may forgo the guarantee 
of an optimal solution, but it can tackle larger problems, 
with the limitation being the number of populations in 
the first bipartition.

For large, coastwide data sets, a nested search re-
quires bipartitioning a large number of populations 
simultaneously. Sparse data sets or optimization heuris-
tics, such as thouse derived from deterministic anneal-
ing and mean field approximation, may be necessary 
when an exhaustive search is not possible (Puzicha et 
al., 1999). However, regional groupings could be recog-
nized where each region could be run independently. 
This “divide and conquer” method requires that the 
subproblems be naturally disjoint, and that divisions be 
appropriate and of manageable size (Kirkpatrick et al., 
1983). Ultimately, given the same set of genetic markers 
and distance measures, researchers will have a means 
of establishing groupings of varying size but represent-
ing similar levels of intracluster genetic variation.

Analysis of coded-wire tag data has indicated that 
straying Chinook salmon occur at a higher frequency 

between nearby spawning sites (e.g., Quinn, 1993; Can-
dy and Beacham, 2000). Consequently, geographic dis-
tance between populations may be a good approximator 
of gene flow in salmon species; however, inferring barri-
ers to migration on the basis of geographical or physi-
cal features alone can be misleading (Waples, 1991). 
The Gold River Chinook salmon population stands out 
by not conforming to the general rule of concordant ge-
netic and geographic distance. According to geographic 
distance alone, Gold River Chinook salmon should be 
most genetically similar to Burman River Chinook 
salmon because less than 10 km separate the mouths 
of the two river systems. However, cluster analysis indi-
cates that Gold River fish are most genetically similar 
to Barkley Sound fish, 125 km to the south (Fig. 1). 
Because the nearby Burman River population remains 
clustered with the Nootka Sound group, straying Bark-
ley Sound fish must be extremely precise; apparently 
remaining in the Gold River only to spawn. 

A number of factors could contribute to this restricted 
straying between Barkley Sound and the Gold River. 
Olfactory imprinting on waters near natal streams dur-
ing out-migration is known to be important for success-
ful homeward navigation (Harden Jones, 1968; Quinn, 
1984). Consequently, the presence of pulp mills at the 
heads of both Muchalat (Gold River) and Alberni (So-
mas River) Inlets, and their effects on water chemistry, 
may increase straying between these two systems. Both 
systems lie at the head of long inlets, where the Gold 
and Somas Rivers have similar inlet and stream ori-
entation. Also, both are lake-headed systems, possibly 
resulting in similarly modified river temperatures and 
flow regimes. Finally, approach to natal stream may be 
important for determining stray patterns. During the 
return migration to spawn, Barkley Sound, Chinook 
salmon heading south must first pass Nootka Sound, 
which provides an opportunity for these fish to eventu-
ally stray into the Gold River. The Gold River tissue 
samples collected in the early to mid-1980s, along with 
recent recoveries of thermally marked Robertson Hatch-
ery fish in the Gold River, indicate that straying into 
the Gold River has likely occurred for quite a number 
of years.

Populations receiving transfers (Toquart, Thornton, 
and Sooke Rivers; Table 2) remain grouped to their re-
spective donor stocks rather than to nearby populations, 
indicating that transfer history also plays an important 
role in establishing regional stock structure. The initial 
transfer of Robertson Creek fish to the Toquart River 
is not apparent from the bi-PORGS analysis, where 
Toquart River grouped with the second transfer source, 
Nitinat River. If native stocks existed in Toquart and 
Sooke Rivers before transfers into these systems, their 
continued existence there is not evident from the pres-
ent study. However, populations with mixed ancestry 
may be better analyzed with individual-based cluster-
ing methods (Pritchard et al., 2000; Corander et al., 
2003). The remaining two southwest Vancouver Island 
populations, where no transfers have occurred, remain 
quite distinctive.
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Besides the history of transferred populations, other 
factors may determine genetic stock structure. Time 
of return to spawning grounds may provide a nat-
ural barrier to gene flow, preventing geographically 
superimposed populations from becoming genetically 
similar (Hendry and Day, 2005). Founder effects may 
play a role in shaping population structure, especially 
after recent colonization (Ramstad et al., 2004). Al-
though multiyear sampling should address this prob-
lem, sampling error could be indistinguishable from 
allelic frequencies that are changed by some perturbing 
force. Indeed, small effective population size, where few 
related individuals are breeding, will hasten genetic 
drift (Waples, 1990). As a consequence of our inability 
to understand all mechanisms controlling gene flow, 
Waples (1991) warns against drawing inferences based 
on physical characteristics of the habitat without sup-
porting biological information that links habitat differ-
ences to adaptations.

Little genetic variation with respect to population 
differentiation appears to have occurred in Robertson 
Creek over 23–30 years. Assuming that a majority of 
Robertson Creek fish return as four-year-olds (Healey, 
1991), these years represent six to eight generations of 
Chinook salmon. The stability of microsatellite mark-
ers has been reported elsewhere for Atlantic salmon 
(Salmo salar) over a time frame of three to five gen-
erations (Tessier and Bernatchez, 1999). Furthermore, 
the genetic variation between populations with mic-
rosatellite markers was found to be 19 times greater 
than the interannual variation for sockeye salmon 
(Oncorhynchus nerka; Beacham et al., 2006b). 

Microsatellites provide highly stable, reliable ge-
netic markers for comparisons of genetic variation 
across the range of a species and are thus becoming 
an important tool for the management and conserva-
tion of genetic diversity of Pacific salmon species. Al-
though genetic characters detected with these mark-
ers are neutral with respect to natural selection, it is 
likely that they are indicators of local adaptation in 
other encoding parts of the genome (Waples, 1991). 
Fine-scale grouping of genetically similar popula-
tions allows managers to make informed harvest and 
enhancement decisions. As was evident with Chi-
nook salmon from the west coast of Vancouver Island, 
strictly geographically based assumptions regarding 
the level of genetic relatedness between populations 
can be incorrect.
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