Application of Marine Protected Areas for Sustainable Production and Marine Biodiversity off Alaska

DAVID WITHERELL and DOUG WOODBY

Introduction

Marine protected areas (MPA’s) are an important tool for managing fisheries and other human activities in the ocean. As defined by Executive Order 13158 (Clinton, 2000), a marine protected area is “any area of the marine environment that has been reserved by Federal, State, tribal, territorial, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein.”

MPA’s have been established to meet several goals, including conservation of biodiversity and habitat, increased scientific knowledge, educational opportunities, enhancement of recreational activities, maintenance of ecosystem services, protection of cultural heritage, and managing fisheries (National Research Council, 2001; Marine Protected Areas Federal Advisory Committee, 2005). For fisheries management, marine protected areas have been implemented to control exploitation rates of target species, protect spawning and nursery areas, improve sustainable yields, reduce bycatch of nontarget species, protect benthic habitat from perturbations due to fishing gear, ensure against uncertainties, conserve genetic diversity, or to achieve other objectives (National Research Council, 2001). MPA’s are a critical element of ecosystem-based fishery management, which is being developed and promoted as the new approach to managing fisheries in the United States and elsewhere (Pikitch et al., 2004; Fluharty, 2005; Hoff et al., 2005).

Regional fishery management councils, established under the Magnuson-Stevens Fishery Conservation and Management Act, have the primary authority to develop marine protected areas that restrict fishing in Federal waters (5.6–370 km, or 3–200 n.mi. from the shoreline) of the United States. Regulations developed by the councils are subject to approval by NOAA’s National Marine Fisheries Service (NMFS), acting on behalf of the Secretary of Commerce, before they can be implemented. NMFS can also restrict fishing activities if actions taken by a regional council are insufficient to meet legal requirements for fisheries management. The International Pacific Halibut Commission has authority to enact conservation measures, including MPA’s, for the Pacific halibut, Hippoglossus stenolepis, fishery. States can also develop MPA’s in Federal waters to restrict activities of fisheries managed by the state and for those fisheries not subject to approved Federal fishery management plans.

Restrictions on fishing in state waters of Alaska (0–5.6 km or 0–3 n.mi. of the shoreline), including closure of areas to certain gear types or harvest of particular species, are enacted by the Alaska State legislature. Establishment of no-take reserves in state waters requires action of the Alaska State legislature.

Many marine protected areas have been implemented by fishery managers in the Federal waters off Alaska, and they are an important component of the precautionary management system1 established to provide sustainable fisheries in the Alaska region (NMFS, 2001b). These MPA’s are permanently designated in the Federal fishery management plans (FMP’s) and in the implementing regulations governing the crab, Chionoecetes spp., Lithodes spp., and Paralithodes spp.; scallop, Patinopecten caurinus; Pacific salmon, Oncorhynchus spp.;

1The North Pacific Fishery Management Council’s precautionary management approach is to apply judicious and responsible fisheries management practices, based on sound scientific research and analysis, proactively rather than reactively, to ensure the sustainability of fishery resources and associated ecosystems for the benefit of future, as well as current, generations. The goal is to provide sound conservation of the living marine resources, provide socially and economically viable fisheries for the well-being of fishing communities, minimize human-caused threats to protected species, maintain a healthy marine resource habitat, and incorporate ecosystem-based considerations into management decisions.

ABSTRACT—Fisheries managers have established many marine protected areas (MPA’s) in the Federal and state waters off Alaska to protect ecological structure and function, establish control sites for scientific research studies, conserve benthic habitat, protect vulnerable stocks, and protect cultural resources. Many MPA’s achieve multiple objectives. Over 40 named MPA’s, many of which include several sites, encompass virtually all Federal waters off Alaska and most of the state waters where commercial fisheries occur. All of the MPA’s include measures to prohibit a particular fishery or gear type (particularly bottom trawls) on a seasonal or year-round basis, and several MPA’s prohibit virtually all commercial fishing. Although the effectiveness of MPA’s is difficult to evaluate on an individual basis, as a group they are an important component of the management program for sustainable fisheries and conserving marine biodiversity off Alaska.
State water closures to commercial fishery harvests have been enacted by the Alaska Board of Fisheries for research purposes and to conserve fish stocks, protect habitats, reduce bycatch, and provide subsistence and recreational harvest opportunities. These closures are enacted through regulations governing invertebrate dive fisheries, scallop dredge fisheries, crab pot fisheries, shrimp, *Pandalus* spp., fisheries, and various groundfish fisheries. There are also many closures affecting nearshore Pacific herring, *Clupea pallasi*, and Pacific salmon fisheries; however, these are primarily used to regulate harvests, such as prohibiting harvests in terminal areas for salmon, and are not included in this paper.

Fisheries management in the North Pacific region (Fig. 1) has generally been successful in achieving the conservation and management objectives of the Magnuson Stevens Act and is considered to be a model for other U.S. waters (U.S. Commission on Ocean Policy, 2004). Strict catch quotas for all managed target and nontarget species, coupled with an effective monitoring program, form the foundation of the Federal fishery management program. Other management measures, including MPA's, effort limitation, rights-based programs, community development programs, and protected resources considerations combine to provide a comprehensive conservation and management program (Witherell et al., 2000). As a result of these measures, sustainable production has been maintained. Annual groundfish harvests have been in the 3- to 5-billion pound range for the past 30 years (NPFMC, 2004a). Additionally, all groundfish, salmon, and scallop stocks, and most crab stocks managed by Federal FMP’s, are considered to be above established minimum stock size thresholds (NMFS, 2004a).

This paper provides a comprehensive inventory and classification of MPA’s in Federal waters off Alaska, a brief history of their development, and an...
examination of their effectiveness to date at achieving objectives. We also provide an accounting of adjacent state water MPA’s for marine fisheries using the same classification scheme.

Methods

MPA’s have been classified many different ways. The most recent classification system was developed by the National MPA Center, established within the National Oceanic and Atmospheric Administration. The MPA Center classifies MPA’s based on six fundamental characteristics of design and management: primary conservation goal, level of protection, permanence, constancy (year-round or seasonal), scale, and allowed extractive activities as detailed in Table 1 (National MPA Center, 2005). We classified MPA’s in the Federal and state waters off Alaska using this system.

Further, we categorized the MPA’s based on their primary management objective. Adapting from the categories developed by Coleman et al. (2004) for Gulf of Mexico fishery MPA’s, we categorized the North Pacific fishery MPA’s into five groups: those primarily intended to protect ecological structure and function, establish control sites for scientific research studies, conserve habitat, protect vulnerable stocks, or protect cultural resources.

We researched the history and development of marine protected areas by examining available literature and reviewing the analytical reports and meeting records of the North Pacific Fishery Management Council (Council) and the Alaska Board of Fisheries. Additionally, we augmented these reports and records with personal observations (Witherell) as an analyst for the Council. We evaluated the effectiveness of the MPA’s from a conservation perspective by examining available reports and reviewing the most recent information (biomass trends, trends in year-class strength) on the status of the stocks, including nontarget species (e.g. NPFMC, 2004b, 2004c, 2004d).

Based on the MPA Center criteria, MPA’s are not included here if they were closed primarily to avoid fishing gear conflicts or if area-based regulations were established solely to limit fisheries by quota management or to facilitate enforcement. These include areas designated for testing trawl gear, regulatory areas and subareas, TAC allocation areas, harvest limit areas, sector allocation areas, and other types of designated marine managed areas. These sites may not meet the MPA definition of Executive Order 13158 in that they do not provide “lasting protection” for the natural or cultural resources.

Results

Area closures have long been used as a fishery management tool off Alaska, and the application of MPA’s (the current term for area closures) has evolved to meet changing management needs. Beginning in 1939, trawling for red king crab, *Paralithodes camtschaticus*, was prohibited in Cook Inlet and all waters east of long. 150°W to limit the catch of red king crab and Pacific halibut taken by foreign trawl fleets. Later, in 1961, Japan established a no-trawl zone in Bristol Bay to limit interactions between its trawl fleet and its crab pot fleet. Many other MPA’s were established off Alaska in subsequent years through international agreements with Japan, the Soviet Union, Republic of Korea, and Poland prior to implementation of preliminary fishery management plans in 1977 (Fredin2). The preliminary groundfish fishery management plans closed many areas to foreign trawling year-round and/or seasonally to protect domestic fisheries for crab, sablefish, *Anoplopoma fimbria*, and Pacific halibut from that competition. As the domestic

fishing off Alaska began to use MPAs to protect sensitive benthic habitats as their harvest was legally limited to other gear types (e.g., crabs can only be harvested with pot gear, but they are not restricted to other gear types, particularly scallop dredges and bottom trawls), and to address concerns regarding potential competition with Steller sea lions, *Eumetopias jubatus*.

The current suite of MPAs developed for fisheries in the North Pacific can be categorized into several groups on the basis of the primary management objective identified. In many cases, the MPAs achieve multiple objectives, but in this study they were categorized based on their primary objective. An inventory list of the North Pacific fishery MPAs, grouped by category, is provided in Table 2. Table 3 shows how these MPAs are classified using the system developed by the National MPA Center (National MPA Center, 2005).

Details are provided for each MPA in the following sections, which are discussed by category of the primary management objective. We provide information, where available, on 1) the background and objective for the MPA, 2) the process to designate the MPA, 3) the size and location of the MPA, 4) the estimated costs to the fishing industry to implement the MPA, and 5) an examina-
<table>
<thead>
<tr>
<th>MPA's Primarily Intended to</th>
<th>Conservation goal</th>
<th>Level of protection</th>
<th>Permanence of protection</th>
<th>Constancy of protection</th>
<th>Scale of protection</th>
<th>Allowed extractive activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect Structure and Function</td>
<td>Natural Heritage</td>
<td>No Take</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Scientific Fishing</td>
</tr>
<tr>
<td>Sitka Pinnacles Marine Reserve</td>
<td>Natural Heritage</td>
<td>Zoned With No-Right Areas</td>
<td>Permanent</td>
<td>Seasonal</td>
<td>Ecosystem</td>
<td>Scientific Fishing</td>
</tr>
<tr>
<td>Walrus Islands Closure Areas</td>
<td>Natural Heritage</td>
<td>Zoned With No-Right Areas</td>
<td>Permanent</td>
<td>Year-round/seasonal</td>
<td>Ecosystem</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Steller Sea Lion Mitigation Closures</td>
<td>Natural Heritage</td>
<td>Zoned With No-Right Areas</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Glacier Bay National Park</td>
<td>Natural Heritage</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Recreational Fishing</td>
</tr>
<tr>
<td>MPA's Primarily Intended to Improve Scientific Understanding</td>
<td>Natural Heritage</td>
<td>Uniform Multiple Use</td>
<td>Temporary</td>
<td>Seasonal</td>
<td>Ecosystem</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Chiniak Gully Research Area</td>
<td>Natural Heritage</td>
<td>Uniform Multiple Use</td>
<td>Ecosystem</td>
<td>Managed Extraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southeast Alaska Dive Fishery Control Sites</td>
<td>Natural Heritage</td>
<td>Uniform Multiple Use</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
<td></td>
</tr>
<tr>
<td>MPA's Primarily Intended to Conserve Habitat</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round/seasonal</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Kodiak King Crab Protection Zones</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Kodiak State Trawl Closure Areas</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Cook Inlet Trawl Closure</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Alaska Peninsula Trawl Closure Areas</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Scallop Beddie Closure Areas</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
<td></td>
</tr>
<tr>
<td>Nearshore Bristol Bay Closure</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Red King Crab Savings Area</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Area 516 Seasonal Closure</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Seasonal</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Pribilof Islands Habitat Conservation Area</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Prince William Sound Trawl Closure Areas</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Prince William Sound Groundfish Trawl Closure</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Outer Kenai Peninsular Groundfish Trawl Closure</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>St. Matthew Area Closure</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Eastern Aleutian Islands Trawl Closure Areas</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Aleutian Islands Habitat Conservation Area</td>
<td>Natural Heritage</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Aleutian Islands Coral Habitat Protection Areas</td>
<td>Natural Heritage</td>
<td>No Take</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Scientific Fishing</td>
</tr>
<tr>
<td>Gulf of Alaska Slope Habitat Conservation Areas</td>
<td>Natural Heritage</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Gulf of Alaska Coral Habitat Protection Areas</td>
<td>Natural Heritage</td>
<td>Zoned With No-Right Areas</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Alaska Seamount Habitat Protection Areas</td>
<td>Natural Heritage</td>
<td>No Take</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Scientific Fishing</td>
</tr>
<tr>
<td>Bowers Ridge Habitat Conservation Zone</td>
<td>Natural Heritage</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>MPA's Primarily Intended to Protect Vulnerable Stocks</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Commercial Salmon Fishery Prohibited Area</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Seasonal Trigger</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Chinook Salmon Savings Areas</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Seasonal Trigger</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Chum Salmon Savings Areas</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Seasonal Trigger</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Herring Savings Areas</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>King and Tanner Crab Bycatch Limitation Zones</td>
<td>Sustainable Production</td>
<td>Zoned Multiple Use</td>
<td>Permanent</td>
<td>Seasonal Trigger</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Snow Crab Bycatch Limitation Zone</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Seasonal Trigger</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Bogoslofof</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Ecosystem</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>State Waters Shrimp Trawl Fishing Closure Areas</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Resurrection Bay Lingcod Closure</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Sitka Sound Lingcod Closure</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Black Rockfish Closure Areas</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Demersal Shelf Rockfish Closures</td>
<td>Sustainable Production</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>MPA's Primarily Intended to Preserve Cultural Resources</td>
<td>Cultural Heritage</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Subsistence Crab Areas</td>
<td>Cultural Heritage</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Subsistence Halibut Areas</td>
<td>Cultural Heritage</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
<tr>
<td>Subsistence Sea Cucumber Areas</td>
<td>Cultural Heritage</td>
<td>Uniform Multiple Use</td>
<td>Permanent</td>
<td>Year-round</td>
<td>Focal Resource</td>
<td>Managed Extraction</td>
</tr>
</tbody>
</table>

1Includes Federal and state water areas.
showing underwater footage from submersible dives on the pinnacles) by the local biologists and managers.

The state biologists also petitioned the Council to prohibit fishing for Federally managed species (including Pacific halibut) in the pinnacle area, thereby creating a comprehensive marine reserve. The Sitka Pinnacles Marine Reserve was implemented in 2000 as Gulf of Alaska (GOA) Groundfish FMP Amendment 59 (NPFMC, 1998). Regulations prohibit the use of all recreational and commercial fishing gear (except pelagic troll gear used for salmon), and anchoring by fishing vessels within a 10.3 km² (3 n.mi.²) rectangular area encompassing the pinnacles (Fig. 2).

This MPA appears to be effective at protecting a post-spawning aggregation of lingcod, although comprehensive surveys of the lingcod population are lacking. Closure of this area is supported by the local fleet of commercial, charter, sport, and subsistence fishermen. Compliance with the MPA regulations appears to be high. Although there have been a few anonymous reports of violations to state biologists, no citations have been issued by enforcement personnel (O’Connell³).

Glacier Bay National Park and Preserve

In 1998, President William J. Clinton signed into law sweeping restrictions on commercial fishing in marine waters of Glacier Bay National Park in Southeast Alaska (Fig. 2). The law established a 449.3 km² (131 n.mi.²) MPA closed to commercial fishing (effective in 1999) and another 885 km² (258 n.mi.²) undergoing a commercial fishing phase-out. Closed areas include 216 km² (63 n.mi.²) of wilderness waters⁴ that formerly supported a productive Dungeness crab, Cancer magister, fishery and 233 km² (68 n.mi.²) in the bay’s upper reaches where tidewater glaciers have been receding. The remaining commercial fisheries for Tanner crab, Chionoecetes bairdi, halibut, and salmon will continue only for the lifetimes of the existing permit holders with a qualifying history. Fisheries for groundfish and king crab were ended, while the Tanner crab and Pacific halibut fisheries are restricted to just the middle and southern ends of Glacier Bay proper during the phase-out. Fisheries in Icy Strait and outside waters within three miles of shore continue as before.

The closures were enacted to protect park values, which were considered incompatible with commercial extraction and were not due to conservation concerns associated with commercial fishing. Recognizing the economic hardships imposed by the commercial fishing closures, the U.S. Congress approved an $8 million buy-out program for Dungeness crab fishermen and a compensation package of $23 million for other affected entities representing fishing permit holders (46.5%), crewmembers (8.4%), processors (21.1%), processor workers (1.7%), businesses (7.5%), communities that lost tax revenues (1.7%), and communities that suffered indirectly (13.1%).

Glacier Bay provides unique research opportunities on the effects of fisheries. Research in the reserve is focused on the effects of the closures on commercial fish species, including the potential efficacy of the reserves for crab and Pacific halibut that may cross reserve boundaries, and comparisons of Dungeness crab populations inside and outside of protected areas. Preliminary results indicated that, as expected, unfished areas accumulated larger populations of legal-sized male crabs (Shirley⁵). Notably not different between fished and unfished areas was limb loss, primarily the front claws, which was suspected to be an effect of handling in a commercial fishery and which affects survival, molting, and mating. In this case, the controlled experiment suggested the cause of limb loss was large predators, such as Pacific

⁴The Wilderness Act of 1964 required designation of wilderness areas on Federal public lands. In 1980, when Glacier Bay National Monument was designated as Glacier Bay National Park and Preserve, >2 million acres of land and water received wilderness designation.

Walrus Islands Closure Areas

Pacific walrus, *Odobenus rosmarus divergens*, occur throughout the Chukchi and Bering Seas, with the southernmost major haulouts occurring in northern Bristol Bay on the islands of Round Island and the Twins, as well as on Cape Pierce. These haulouts are occupied by adult males during the spring and summer months when resting between foraging trips for invertebrates throughout Bristol Bay. Although the incidental catch of Pacific walrus in groundfish fishing operations was rare, the potential disruption of animals on their haulout sites or during feeding was of concern to Federal biologists and also to Alaska natives who hunt Pacific walrus for subsistence uses.

Biologists studying Pacific walrus at these haulouts had noticed that their numbers declined over the season, coincident with fishing effort by trawl vessels targeting yellowfin sole, *Limanda aspera*, in the spring once the ice sheet had retreated. Biologists believed that sound from the vessels could potentially be disrupting acoustic communication of these animals, both in the air and water environments, and proposed a 22.2 km (12 n.mi.) boundary around haulouts to reduce acoustical disruption.

Based on an analysis of this proposal, the Council developed regulations to prohibit all vessels from fishing for groundfish species within 22.2 km (12 n.mi.) of Round Island, the Twins, and Cape Pierce in northern Bristol Bay, during the period from 1 April through 30 September (Fig. 2). It was estimated that this regulation cost the fleet up to $4 million in lost ex-vessel revenues, based on 1988 catches and prices (NPFMC, 1991). This MPA, which totals 3,087 km² (900 n.mi.²), was first established as a temporary measure in 1989 under

Figure 2.—MPA’s designed to protect ecological structure and function.
Bering Sea and Aleutian Islands (BSAI) Groundfish FMP Amendment 13, and it was implemented as a permanent measure under Amendment 17 in 1992 (NPFMC, 1991). In conjunction with the Federal action, a no-transit zone, except by permit, was established by the Alaska Board of Game for vessels within 5.6 km (3 n.mi.) of Round Island in the Walrus Island State Game Sanctuary.

The Walrus Islands closures may have substantially reduced effects of acoustic disturbance based on observations that more Pacific walrus occupy the haulouts throughout the summer now than before the closures (Seagars6). Nevertheless, it may be impossible to ascertain the impact of the MPA on the Pacific walrus population as a whole. The population had been reduced by commercial exploitation to a low in the mid 1950’s, and by the late 1970’s it had apparently recovered to pre-exploitation levels of 200,000 to 250,000 animals (Angliss and Lodge, 2002).

Steller Sea Lion Mitigation MPA’s

The western stock of Steller sea lions declined about 80% between the 1950’s and the late 1980’s, and was listed as threatened under the Endangered Species Act in 1990 by emergency rule. Multiple factors, including fishery related effects, likely played a role in the decline (National Research Council, 2003). At the time of listing, NMFS enacted several regulations to reduce direct mortality as a result of fishing, including no shooting at sea lions, a reduced incidental catch limit, and establishment of 5.6 km (3 n.mi.) radius no-entry buffer zones around all rookeries to reduce disturbance and reduce opportunities for shooting at sea lions.

In 1991, NMFS completed a consultation on proposed groundfish harvest specifications, pursuant to Section 7 of the Endangered Species Act (ESA), and concluded that the spatial and temporal compression of Gulf of Alaska walleye pollock, *Theragra chalcogramma*, fisheries could create competition for prey and thus contribute to the decline of sea lions (Fritz et al., 1995). In response, NMFS prohibited trawling within a 18.5 km (10 n.m.i.) radius of all rookeries in the Gulf of Alaska. In 1992, 18.5 km (10 n.m.i.) radius trawl closures were also implemented around all rookeries in the Bering Sea and Aleutian Islands area.

Simultaneously, the Bogoslof area was closed to walleye pollock fishing, and concerns about the redistribution of effort led to a seasonal extension of five Aleutian Islands rookeries from 18.5 km (10 n.m.i.) to 37 km (20 n.m.i.) through 15 April each year. The western stock of Steller sea lions was listed as endangered in 1997, and in 1999, trawling for pollock was also prohibited within 18.5 km (10 n.m.i.) of major haulout areas, with some closures extending out to 37 km (20 n.m.i.).

In November 2000, NMFS completed another ESA Section 7 consultation on the groundfish fisheries and concluded that proposed fisheries for walleye pollock; Pacific cod, *Gadus macrocephalus*; and Atka mackerel, *Pleurogrammus monopterygius*, would jeopardize the continued existence of Steller sea lions and adversely modify their critical habitat due to potential prey competition and modification of their prey field (NMFS, 2000). To bring the fisheries into compliance with the ESA, the Council established a large stakeholder committee to develop fishery management measures that would address the concerns about prey competition and still allow viable fisheries to be prosecuted.

The committee developed the alternative that was adopted by the Council in October 2001 and implemented by NMFS for 2002 and thereafter. Management measures adopted were gear, fishery, and area specific and provide full or partial closure to 198,940 km² (58,000 n.mi.²) of the ocean, and other measures throughout the Aleutian Islands and much of the Gulf of Alaska (Fig. 2). Implementation of this complex suite of MPAs for Steller sea lions was projected to result in losses of $2.6 million to $14.0 million in ex-vessel revenue to the harvesters and a loss of 15 to 411 full-time jobs in the harvesting and processing sectors (NMFS, 2001a).

The Steller sea lion mitigation MPA’s included no-transit zones within 5.6 km (3 n.mi.) of 37 rookeries in the Gulf of Alaska (excluding southeast Alaska) to protect Steller sea lions from disturbance. These no-transit zones, including the 5.6 km (3 n.mi.) zone around Round Island to protect Pacific walrus, are truly no-take reserves with no allowance for recreational fishing, and are the only such marine reserves in Alaska. Despite the preponderance of evidence indicating that nutritional stress is not a primary threat to recovery of Steller sea lions (National Research Council, 2003), it is likely that the no-transit zones will stay in effect until the endangered status of Steller sea lions is resolved.

In addition to mitigating potential effects of fishing on Steller sea lions, the MPAs also offer localized protection to deep-sea coral and sponge communities along the Aleutian Islands. Submersible observations have found areas with complex coral and sponge communities within the areas encompassed by the MPAs, although the absolute amount of protection to this habitat has not been quantified. Additional submersible research to understand the distribution of corals and sponges in the North Pacific is planned or ongoing (Stone7).

Scientific Research MPAs

MPAs can provide scientific control sites to distinguish natural variability from human impacts such as fishing activities (Lindeboom, 2000; National Research Council, 2001). Scientific research MPAs have been imposed in the Alaska EEZ on a temporary basis when the need arises. For example, a seasonal MPA was established in the Bering Sea west of Cape Sarichef during the years 2003–05, to test the hypothesis that intensive trawl fishing may create a local depletion of Pacific cod, an important prey item for Steller sea lions (NMFS, 2002). Although the MPA was scheduled to also be in effect for 2006, NMFS determined that the MPA was no longer necessary because the study had overwhelmingly concluded.

that there were no differences in Pacific cod abundance between the intensively trawled areas and the untrawled control areas (Logerwell).

Chiniak Gully
In 2001, scientists from the NMFS Alaska Fisheries Science Center (AFSC) began an investigation of the effects of fishing on Steller sea lion prey (walleye pollock and capelin, *Mallotus villosus*) abundance and distribution in commercial trawl fishing grounds located on the east side of Kodiak Island. The sampling design used control (unfished) and treatment (fished) areas of Chiniak and Barnabas gullies, respectively. Regulations were established to close Chiniak gully to trawl fishing from 1 August through 20 September during 2001–04. In 2005, scientists at the AFSC apprised the Council that they were interested in reestablishing the Chiniak gully research closure for 2006 through 2010 to collect additional data. In February 2006, the Council reviewed the analysis (NMFS, 2006), and recommended that this research closure be reestablished under the condition that if the study cannot occur in any of these years, or if the research is completed prior to 20 September, then the Chiniak gully should be opened for fishing as soon as possible.

Southeast Alaska Dive Fishery Research Areas
When the dive fishery management plans were developed by the State of Alaska in the 1990’s for sea cucumbers, *Parastichopus californicus*; red sea urchins, *Strongylocentrotus franciscanus*; and geoduck clams, *Panopea abrupta*, in southeast Alaska, sections of shoreline were closed to harvest as control sites for these species singly or in combination. These sites, in southern southeast Alaska, are surveyed on an annual or nearly annual basis to estimate biomass and size compositions. Comparisons of population characteristics between the control and harvest sites are made to evaluate the extent to which population changes might be due to fishing or to environmental variation. To date, the effects of fishing, relative to natural variation, have been small due to conservative quotas.

Habitat Conservation MPAs

Kodiak King Crab Protection Zones
The fishery for red king crab stocks in the Kodiak Area of the Gulf of Alaska declined sharply in the late 1960’s and, following a brief period of recovery, they declined again in the mid and late 1970’s (Zheng et al., 1996). These declines were likely due to a combination of factors including overfishing and changing oceanographic conditions (Kruse, 1996). State and Federal fishery managers sought to take whatever actions were necessary to provide recovery of this stock. Beginning in 1982, the fishery was closed, and other fisheries were displaced to limit bycatch and habitat effects of fishing. With no signs of recovery by the end of 1985, the Alaska Department of Fish and Game proposed that emergency action be taken to implement bottom trawl closures in areas around most of Kodiak Island.

Emergency regulations were implemented through June 1986, and the Council established an industry workgroup to develop a long-term solution to protect red king crabs from trawling-induced mortality, particularly during their molting period, and to protect habitat from potential impacts due to trawling. The workgroup recommendations were adopted by the Council as Amendment 15 to the GOA Groundfish FMP (NPFMC, 1986).

In 1987, three types of trawl closure areas were established on the south and east sides of Kodiak Island based on the use of areas by crab at different life stages (Fig. 3). Type I areas, totaling 3,430 km2 (1,000 n.mi.2), had very high king crab concentrations and, to promote rebuilding of the crab stocks, they were closed all year to all trawling except with pelagic gear. Type II areas, which total 1,715 km2 (500 n.mi.2), had lower crab concentrations throughout most of the year, but were closed to nonpelagic gear from 15 February through 15 June when crabs are molting and have higher bycatch mortality rates. Type III areas had been identified as important juvenile king crab rearing or migratory areas. Type III areas would be closed to trawling following a determination that a recruitment event has occurred. Originally established as a temporary measure while the stock recovered, the MPA later became established as a permanent measure for the Gulf of Alaska Groundfish FMP.

The red king crab stocks throughout the central and western Gulf of Alaska remain at very low levels, despite many management measures implemented over the years to minimize fishing mortality and conserve crab habitat. The MPA closures have been in place for nearly 20 years, yet their benefits are difficult to ascertain. They have certainly helped to control red king crab bycatch in groundfish fisheries by reducing the probability of a trawler encountering aggregations of crabs, as well as limiting any effects trawling may have on crab habitat. However, Type III closures have never been triggered due to a lack of recruitment, although pods of small red king crab juveniles continue to be observed in several bays of Kodiak Island. Adult and juvenile red king crab numbers remain low as measured by trawl surveys in and around the Kodiak trawl closure areas (Spalinger, 2005).

Cook Inlet Trawl Closure Area
Similar to the fate of many other Tanner crab and red king crab stocks in the Gulf of Alaska, the Tanner and red king crab populations in Cook Inlet declined dramatically in the 1980’s. The king crab fishery has been closed since 1984 and the Tanner crab fishery has been closed since 1991. Nevertheless, the stocks continued to decline, and surveys indicated no signs of recovery (Bechtol et al., 2002).

Although bottom trawling had never been conducted in Cook Inlet to any extent, state fishery managers felt that it would be prudent to be proactive and prevent trawling from expanding into the area, thus eliminating the possibility of bycatch or habitat impacts. In 1995, the Alaska Board of Fisheries prohibited
bottom trawling in state waters of Cook Inlet. The state proposed that the Council take complementary action for Federal waters, so the Council initiated an analysis of several alternatives to address the issue. In September 2000, the Council adopted an MPA that prohibited bottom trawling in all Federal waters of Cook Inlet (Fig. 3). This MPA was implemented in 2002 under GOA Groundfish FMP Amendment 60 (NPFMC, 2002).

The Cook Inlet Trawl Closure Area has only been in effect for a few years, and thus it is impossible to evaluate its effectiveness as an allocation or conservation measure. Recent trawl surveys have detected below-average numbers of juvenile Tanner crabs in Cook Inlet, and the red king crab stock remains at a very low level with no signs of rebuilding (Bechtol, 2005). In the absence of by-catch mortality and habitat impacts, there is little left for managers to do but wait for environmental conditions favorable for crab reproduction and survival.

Scallop Dredge Closure Areas

The weathervane scallop, *Patinopecten caurinus*, fishery has been managed by the State of Alaska since the inception of the fishery in the late 1960’s (Shirley and Kruse, 1995). In 1998, the NMFS approved the Alaska Scallop FMP, delegating most authority to the State of Alaska to manage the scallop resources in the EEZ, including establishment of MPA’s for this fishery. Concerns about crab bycatch in the scallop fishery and habitat effects due to scallop dredging prompted the Alaska Board of Fisheries to establish extensive closures to fishing with scallop dredges in state and Federal waters. Closures include Yakutat Bay; state and Federal waters south of Cordova, eastern Prince William Sound, Cook Inlet, Kachemak Bay and nearby state waters of outer Kenai Peninsula; most of the state waters surrounding Kodiak and Afognak Islands as well as a large block of Federal waters to the southwest of Kodiak; most of the state waters on the south side of the Alaska Peninsula; large bays of Akun, Akutan, and Unalaska Islands; and Petrel Bank.
in the Aleutian Islands (Fig. 3). The state has also prohibited scallop dredging in the habitat conservation MPA's (no-trawl areas) adopted by the Council and NMFS in Bristol Bay and around the Pribilof Islands.

Nearshore Bristol Bay Trawl Closure Area and Red King Crab Savings Area

The Bristol Bay red king crab population collapsed in 1981 following a huge buildup in biomass and historic high catches. The cause of the collapse remains unknown, but it has been hypothesized by different scientists to be due to several factors including overfishing, discard mortality, trawl interactions, disease or other source of natural mortality, or reduced recruitment due to climatic events (Kruse, 1996). State fishery managers closed the fishery in 1982 and 1983.

The area in Bristol Bay where red king crabs were distributed, known as the “pot sanctuary,” had been closed to foreign trawl fisheries since 1975 and to domestic trawl fisheries through the end of 1983, when Amendment 1 to the BSAI Groundfish FMP opened the area for the developing domestic trawl fisheries. This action raised concerns of state fishery managers and crab fishermen who requested that the Bristol Bay area be closed to all trawling to protect the remaining stock and their habitat from further impacts. In 1986, the Council adopted BSAI Groundfish FMP Amendment 10, which prohibited bottom trawling in central Bristol Bay where most crabs were found, encompassing about 27,440 km² (8,000 n.mi.²). Unfortunately, surveys conducted in subsequent years failed to detect signs of recovery, and fishery managers again raised concerns that additional measures were needed.

To address these concerns, the Red King Crab Savings Area was established by emergency rule in 1995 as a year-round bottom trawl and dredge closure area (Fig. 3). This 13,720 km² (4,000 n.mi.²) area was known to have high densities of adult red king crab and was thus assumed to be an important habitat area as well. Additionally, several additional options to reduce the impacts of trawling and dredging on red king crab stocks were considered by the Council, including time/area closures, bycatch limits, individual bycatch quotas, and penalties (Witherell and Harrington, 1996).

After further analysis and deliberation, the Council decided to implement an additional trawl closure area to protect juvenile red king crab and critical rearing habitat, which includes stalked ascidians and other living substrates (Ackley and Witherell, 1999). Beginning in 1997 BSAI Groundfish FMP Amendment 37 established a 65,170 km² (19,000 n.mi.²) year-round closure to all trawling (bottom trawling and pelagic trawling) in all of Bristol Bay east of long. 163°W (Fig. 3). One small area within the Nearshore Bristol Bay MPA, bounded by long. 159° to 160°W and lat. 58° to 58°43′N, remains open to trawling during the period 1 April to 15 June each year. Analysis of observer data indicated that fisheries for yellowfin sole could be prosecuted within this area and not impact crab habitat or increase crab and Pacific herring bycatch (NPFMC, 1996).

The Red King Crab Savings Area also became permanent through Amendment 37. In adopting this MPA as a permanent measure, the Council provided for a limited bottom trawl fishery to occur in the Red King Crab Savings Area south of lat. 56°10′N, an area with historically high catch rates of rock sole. To ensure that this provision would not create allocation or conservation problems, the allowance for bottom trawling would only be made in years when there is a directed fishery for Bristol Bay red king crab using pot gear. If the fishery is to be open, a red king crab bycatch limit is established for this subarea, and vessels trawling for groundfish (mainly rock sole) can fish in the specified subarea until the bycatch limit is reached.

These MPA's, in combination with favorable environmental conditions, may have assisted in the recovery of the Bristol Bay red king crab stock. Survey information suggests that sessile benthic invertebrates used by juvenile king crab may be increasing in Bristol Bay (NPFMC, 2004d). Further, the red king crab stock has increased to biomass levels associated with maximum sustainable yield, and there are many year classes present in the population (NPFMC, 2004c). The red king crab fishery reopened in 1996, and annual catches have increased steadily, such that a conservative catch limit of 8,301 t (18.3 million pounds) was set for the season beginning in October 2005.

Area 516 Seasonal Closure

In 1987, when the central area of Bristol Bay was closed to trawling to protect red king crab, managers also decided to extend the closure further west on a seasonal basis to protect red king crab when they are in a fragile molting condition. This seasonal closure area designated as Area 516, is closed to all trawling from 15 March through 15 June (Fig. 3). The central portion of the area became a year-round trawl closure in 1995, with the implementation of the Red King Crab Savings Area. The southern part of Area 516 remains open during the second part of the year, and most of the Bering Sea red king crab bycatch is taken in this area by bottom trawl vessels targeting northern rock sole, Lepidopsetta polyxystra.

Pribilof Islands Habitat Conservation Area

In 1989, the Central Bering Sea Fishermen’s Association initiated a proposal to prohibit trawling around the Pribilof Islands to protect habitat for juvenile blue king crab, P. platypus, forage fish for marine mammals and seabirds, and maintain a stable ecosystem in the surrounding waters. The blue king crab population had decreased over 90% from a peak in 1975, and the fishery was closed entirely in 1988 due to low abundance.

The Council initiated an analysis of the proposal in 1991, and the analysis was revised several times to consider other boundary configurations. Through spatial display of NMFS survey data, groundfish observer data, and commercial crab fishery data, the analysis provided an understanding of blue king crab habitat and trawl fishing effort distribution. The area that was ultimately
selected was designed to include the vast majority of blue king crabs, while at the same time, allowing the trawl fishery access to the edge of the 100 m contour, which is economically important to trawl vessels targeting walleye pollock and Pacific cod. The yellowfin sole trawl fishery was negatively affected by the closure north and east of the Pribilof Islands, but the costs of the closure to this fleet were not quantified. In 1995, the 24,010 km² (7,000 n.mi.²) Pribilof Islands Habitat Conservation Area was implemented by BSAI Groundfish FMP Amendment 21a, and the area was permanently closed to all trawling and dredging year-round (Fig. 3).

- The Pribilof Islands Conservation Area has not been successful in rebuilding the blue king crab stock, although it may have served to limit the effects of trawl fisheries on juvenile crabs and habitat. Despite the protection offered by the MPA, and closure of the crab fisheries, the Pribilof Islands stock of blue king crab has continued to decline to very low levels and is considered to be in an “overfished” condition (NPFMC, 2004c). On the other hand, the Pribilof Islands red king crab stock seems to have benefited from the trawl closure, with increased abundance since 1996 (NPFMC, 2004c).

Southeast Alaska Trawl Closure

In 1991, longline fishermen from Sitka and other local citizens proposed that all trawling (using bottom trawls or pelagic trawls) be prohibited off southeast Alaska. The rationale for this was that trawling was causing long-term damage to deep-sea corals, conservation problems for Pacific rockfish, Sebastes spp. and Sebastolobus spp., and social disruption to the local fishing industry (Behnken, 1993). In evaluating this proposal, the link between coral use by rockfish and damage to rockfish habitat as a result of trawling was unknown. Rather than prohibit trawling entirely, the Council instead adopted a rebuilding plan for Pacific ocean perch, Sebastes alutus, the primary rockfish species in the area fished by trawl gear.

Although the original MPA proposal was not adopted when brought to the Council for final decision, it was later adopted as part of the license limitation program that was implemented under GOA Groundfish FMP Amendment 41. Beginning in 1998, all trawling was prohibited in southeast Alaska east of long. 140°E (Fig. 3). This MPA, with a total area of 180,418 km² (52,600 n.mi.²), includes continental shelf, slope, and basin areas.

The value of the southeast Alaska trawl closure is difficult to evaluate. From a conservation perspective, the MPA appears to have met its objectives of conserving habitat for rockfish. Biomass of Pacific ocean perch in the Gulf of Alaska has increased dramatically in the past decade (NPFMC, 2004b). However, this increase can be primarily attributable to large year-classes produced prior to implementation of the MPA, as well as a reduced harvest rate on exploitable sized fish. From a social perspective, the MPA is viewed as successful by local southeast Alaska fishermen who predominantly target groundfish with longline gear. Interactions between fixed gear (longlines) and mobile gear (trawls) have been eliminated, and concerns about habitat degradation have been addressed. More recently, longline fishermen have begun to develop techniques to harvest species of rockfish that previously could only be harvested in commercial quantities with trawl gear (Falvey). In state waters of the eastern Gulf of Alaska (east of Prince William Sound), including southeast Alaska inside waters, groundfish trawling requires a permit issued by the Alaska Department of Fish and Game Commissioner. This requirement effectively closes state waters of the eastern Gulf to groundfish trawling with one exception: a very restricted flatfish fishery limited to beam trawls by the Board of Fisheries in 1997 and conducted in four small areas in internal waters of central southeast Alaska. The only other trawling permitted in southeast Alaska is for shrimp, Pandalopsis dispar, and Panulirus spp., with beam trawls under special conditions. The combined effect of these closures in the eastern, central, and western Gulf of Alaska is that nearly all state waters in the Gulf of Alaska are closed to bottom trawling for groundfish.

The Alaska Board of Fisheries has closed extensive areas in state waters to trawling, including areas closed in conjunction with the Federal trawl closures in Kodiak, Bristol Bay, and Cook Inlet described above. These closures are in response to proposals by the public and the Alaska Department of Fish and Game to protect habitats as well as vulnerable species. In the Kodiak area, in addition to the Type I, II, and III Federal areas and Steller sea lion closures, there are year-round bottom-trawl closures enacted in 1986 in state waters surrounding most of the island to protect king and Tanner crabs. The boundaries often follow the 3-mi. limit, except in some cases, particularly along Shelikof Strait, the boundaries extend between points of land, offering protection to embayments. On the mainland across Shelikof Strait, virtually all state waters from the mouth of Cook Inlet along the Alaska Peninsula to Unimak Pass are closed to bottom trawling. Looking eastward to the central Gulf of Alaska, the outer coastal state waters of the Kenai Peninsula from the mouth of Cook Inlet east to Cape Fairfield are closed to groundfish fishing with bottom trawls (Fig. 3).

In the central Gulf, including Prince William Sound inside and outside waters to the 3-mi. limit, bottom trawling is prohibited except for very limited fishing for sablefish. All trawling, including pelagic trawling, is prohibited in large sections of eastern Prince William Sound to protect crabs and Pacific herring gear (Trowbridge).

In state waters of the eastern Gulf of Alaska, including southeast Alaska inside waters, groundfish trawling requires a permit issued by the Alaska Department of Fish and Game Commissioner. This requirement effectively closes state waters of the eastern Gulf to groundfish trawling with one exception: a very restricted flatfish fishery limited to beam trawls by the Board of Fisheries in 1997 and conducted in four small areas in internal waters of central southeast Alaska. The only other trawling permitted in southeast Alaska is for shrimp, Pandalopsis dispar, and Panulirus spp., with beam trawls under special conditions. The combined effect of these closures in the eastern, central, and western Gulf of Alaska is that nearly all state waters in the Gulf of Alaska are closed to bottom trawling for groundfish.

In the Bering Sea, in addition to the nearshore Bristol Bay trawl closure described previously, the Alaska Board of Fisheries closed all the major embayments west of Unimak Pass to Unimak Island in the eastern Aleutian Islands to trawling. The Board also closed state

\footnote{Falvey, Dan, commercial fisherman, Sitka, Alaska. Personal commun. 2005.}

\footnote{Trowbridge, Charles, ADFG, Homer, Alaska. Personal commun. 2005.}
waters to all groundfish fishing (including trawling) around St. Matthew, Hall, and Pinnacle Islands in the Bering Sea in 2001. Notably not closed to bottom trawling are state waters in the vicinity of “cod alley” to the north of Unimak Island and all of the central and western Aleutian Islands outside of Steller sea lion protection areas.

Essential Fish Habitat Conservation Areas

In February 2005, the Council and NMFS created several new MPA’s to conserve essential fish habitat (EFH) from potential adverse effects of fishing. EFH is defined by the Magnuson-Stevens Fishery Conservation and Management Act as those waters and substrate needed by fish for spawning, breeding, feeding, or growth to maturity. A 2,500-page scientific analysis was prepared to evaluate the impacts of fishing on EFH, and evaluate alternatives to describe and conserve EFH from fishing impacts (NMFS, 2005). The analysis concluded that fisheries do have long-term effects on habitat, but these impacts were considered minimal and would not have detrimental effects on fish populations or their habitats. Nevertheless, as a precautionary measure, the Council adopted several new MPA’s to conserve EFH, and these MPA’s were implemented by NMFS in 2006, when approved by the Secretary of Commerce.

Fishery managers were concerned about the effects of fishing in areas with emergent epifauna, particularly corals and sponges that may be vulnerable to fishing impacts. Corals apparently provide protective habitat for several Pacific rockfish species, *Sebastolobus alascanus* and *Sebastes* spp., and Atka mackerel (Heifetz, 2002; Krieger and Wing, 2002), and sponges and other living substrates have been associated with a variety of demersal fish species (Malecha et al., 2005). Research had shown that bottom trawling could damage corals (Krieger, 2000), vase sponges, and other emergent epifauna off Alaska (Freese et al., 1999; Freese 2002), and that the first pass of a trawl may cause relatively more extensive damage than subsequent passes (i.e. “The first pass is the worst pass.”). Gorgonian corals were thought to be especially vulnerable, given the longevity of colonies (Witherell and Coon, 2000).

Aleutian Islands Habitat Conservation Area

To address concerns about the impacts of bottom trawling on benthic habitat (particularly on coral and sponge communities) in the Aleutian Islands, the Council and NMFS took action in February 2005 to prohibit all bottom trawling, except in small discrete “open” areas. The concept of freezing the footprint of trawling to areas historically fished, as a habitat conservation measure for the Aleutian Islands, Bering Sea, and Gulf of Alaska, was first evaluated in the Groundfish Fisheries Draft Programmatic Environmental Impact Statement (NMFS, 2001b). This “open area approach” was further developed by Council staff in early 2002 during the formulation of EFH EIS alternatives, and discussed extensively by the Council’s EFH Committee. Following the release of observer data by NMFS to the environmental group Oceana in 2002 and their subsequent analysis of the trawl haul locations and bycatch location of coral, sponges, and bryozoans, the group proposed a slightly different set of open areas for the Aleutian Islands (Shester and Ayers, 2005). With modifications to account for data deficiencies regarding trawl locations, the Council adopted this approach in February 2005 as a major component of its habitat conservation program in the Aleutian Islands area. Beginning in 2006, over 95% of the Aleutian Islands management area was closed to bottom trawling (950,463 km² or 277,100 n.mi.²), and about 4% (42,611 km² or 12,423 n.mi.²) remain open (Fig. 4).

Aleutian Islands Coral Habitat Protection Areas

Additional conservation of EFH in the Aleutian Islands is provided by another set of MPA’s, called the Aleutian Islands Coral Habitat Protection Areas. These MPA’s includes six sites with especially high densities of corals and sponges (the so-called “coral garden” areas) that were delineated based on submersible observations (Stone, 2005). Beginning in 2006, these areas were closed to all bottom contact fishing gear (longlines, pots, trawls, etc.) and should thus be considered as marine reserves with a total area of 377.3 km² (110 n.mi.²) (Fig. 4). To improve monitoring and enforcement of the Aleutian Island closures, a vessel monitoring system (VMS) was required for all fishing vessels. Additionally, a comprehensive plan for research and monitoring will be developed to improve scientific information about this area, and improve and evaluate effectiveness of these fishery management measures.

Gulf of Alaska Slope Habitat Conservation Areas

To conserve EFH in the Gulf of Alaska, bottom trawling for all groundfish species was prohibited in 10 designated areas along the continental shelf, beginning in 2006 (Fig. 5). These areas, which are thought to contain high relief bottom and coral communities, total 7,155 km² (2,086 n.mi.²). At the time of the Council’s 5-year review of EFH in 2011, the Council will review available research information regarding two of the closed areas (in the vicinity of Sanak Island and Albatross Bank) to determine efficacy of continued closure.

Habitat Areas of Particular Concern

In February 2005, in addition to mitigating potential effects of fishing on EFH, the Council took final action to designate and protect habitat areas of particular concern (HAPC). Identification of HAPC provides focus for additional conservation efforts for those portions of EFH that are ecologically important, sensitive to disturbance, exposed to development activities, or rare. To protect these areas, the Council took action to eliminate virtually all potential impacts due to fishing by prohibiting almost all fishing gear. As a result, these areas should essentially be considered no-take marine reserves. While pelagic fishing would be allowed in these areas, none is anticipated, so resource extraction will be nil in the areas (NPFMC, 2005a).
Gulf of Alaska Coral Habitat Protection Areas

In southeast Alaska, multibeam surveys and submersible observations have discovered boulder and bedrock substrates supporting dense aggregations of *Primnoa* coral. In an area about 28 km west of Cape Ommaney in southeast Alaska, submersible observations confirmed the presence of several hundred *Primnoa* colonies attached to boulders and bedrock at depths of 200–250 m (NPFMC, 2005a). Many of these colonies exceeded 1 m in height. Dense aggregations of *Primnoa* were also found at similar depths and substrates along the western flank of the “Fairweather Grounds” in the eastern Gulf of Alaska.

To highlight research areas and protect the fragile coral habitats, the Council designated these areas with *Primnoa* as HAPC (Fig. 6). The total size of these areas is 230 km2 (67 n.mi.2). All Federally managed fisheries using bottom-contact gear (longlines, trawls, pots, and dinglebar gear) was prohibited within five zones of the HAPC area, beginning in 2006. These zones, which total 46 km2 (13.5 n.mi.2), include the areas where there have been direct submersible observations documenting the presence of *Primnoa*.

Alaska Seamount Habitat Protection Areas

Seamounts are considered to be HAPC areas because they may be unique ecosystems with endemic stocks or species (De Forges et al., 2000), including corals (Tsao and Morgan, 2005), and thus particularly vulnerable to human activities such as fishing. Relatively diverse fish and invertebrate communities have been found on the top and flanks of several seamounts off Alaska (Alton, 1986; Hoff and Stevens, 2005). To protect these unique habitats and ecosystems, the Council voted to prohibit all bottom contact fishing by Federally managed fisheries on the 16 seamounts in the

Figure 4.—MPA’s proposed to conserve essential fish habitat in the Aleutian Islands area.
EEZ off Alaska named on NOAA charts: Bowers, Brown, Chirkikof, Marchand, Dall, Denson, Derickson, Dickins, Giacomini, Kodiak, Odessey, Patton, Quinn, Sirius, Unimak, and Welker seamounts. As a group, these MPA’s comprise the Alaska Seamount Habitat Conservation Zone with a total combined area of 18,278 km2 (5,329 n.mi.2) (Fig. 6).

Bowers Ridge Habitat Conservation Zone

Bowers Ridge is a submerged geographic structure that forms an arc extending north from the Aleutian Islands. The top of the ridge rises to less than 200 m from the surface near its southern end, with a deeper area to the north. Although relatively unexplored, the area is likely to include habitats for corals and other living substrates, as well as fish and crab species. As a precautionary measure, the Council voted to prohibit mobile fishing gear that contacts the bottom (i.e. dredges, nonpelagic trawls, and dinglebar gear) within this 18,131 km2 (5,286 n.mi.2) area (Fig. 6).

Vulnerable Species MPA’s

Commercial Salmon Fishery Prohibited Area

The International Convention for the High Seas Fisheries of the North Pacific was signed in 1952. Under the Convention (as amended), Japan agreed to prohibit its mothership salmon fishery from operating within 370 km (200 n.mi.) of the Alaska coast east of long. 175°E (near Attu Island). The intent of this prohibition was to keep the Japanese from competing with U.S. fishermen and minimize harvesting salmon of mixed stock origin. The United States implemented the North Pacific Fisheries Act of 1954 to codify its role in the Convention, thus prohibiting domestic fishermen from fishing for salmon with nets in the North Pacific outside of Alaska waters, except for three historical fisheries managed by the state: False

![EFH Conservation Areas](image)
Pass, Cook Inlet, and Copper River net fisheries.

The original Salmon FMP adopted this regulation, and prohibited all commercial salmon fishing in the EEZ east of long. 175°E and west of Cape Suckling (long. 144°W), with the above mentioned exceptions. Only troll gear was allowed in the EEZ east of Cape Suckling. In 1990, the Salmon FMP was revised to include the area west of long. 175°E, and prohibit all commercial salmon fishing in that area as well (NPFMC, 1990), thereby increasing the total MPA area to about 5,467,420 km² (1,594,000 n.mi.²), not including the EEZ area of the Chukchi and Beaufort Seas (Fig. 7).

Most salmon stocks originating from Alaska rivers (except in western Alaska) increased to high run sizes during the 1980’s and 1990’s. Although high-seas interception may have affected the run sizes in the 1970’s, in more recent years the primary factor influencing run sizes of Alaska salmon is thought to be environmental conditions (Adkison and Finney, 2003).

Chinook Salmon Savings Area

The incidental catch of salmon in non-salmon fisheries has long been a concern to fishery managers and state residents, particularly those in western Alaska who depend on salmon for income and subsistence. The original BSAI Groundfish FMP included provisions that prohibited the retention of salmon. In 1982, the first amendment to the plan established a bycatch limit for Chinook salmon, Oncorhynchus tshawytscha, with the available bycatch amounts apportioned to foreign nations with fishing fleets participating in the groundfish trawl fisheries. Once a nation’s limit was reached, seasonal area closures were triggered, thus prohibiting that nation’s fleet from fishing in the prescribed area. The overall Chinook salmon bycatch limit was further reduced in 1983, but the growing joint venture fleet, and later the fully domestic fishery, offset these reductions.

Figure 6.—MPA’s proposed to protect habitat areas of particular concern.
Low Chinook salmon runs in the Nushagak, Yukon, and Kuskokwim rivers in the late 1980’s and early 1990’s prompted the Council to reexamine measures to control salmon bycatch in groundfish fisheries. Spatial analysis of groundfish observer data provided information on areas that had consistently high bycatch rates of Chinook salmon. In 1995, the Council adopted BSAI Groundfish FMP Amendment 21b, that established three areas in the Bering Sea that would close to all trawling when a bycatch limit of 48,000 fish was taken (Fig. 7). The purpose of the bycatch controls for Chinook salmon was to prevent extremely high bycatch amounts that could raise serious conservation or allocation issues. With the controls in place, Chinook salmon bycatch equated to less than 2.7% of the returning adult population to western Alaska systems (Witherell et al., 2002).

In 1999, the bycatch limit trigger was further reduced to 29,000 salmon taken in the walleye pollock fishery by Amendment 58. In addition, observer data had indicated low bycatch rates of Chinook salmon in the area south of the Pribilof Islands, so this component area of the Chinook Salmon Savings Areas was removed from the MPA (NPFMC, 1999). The prospect of bycatch limits triggering area closures and resulting in forgone catches and added operational costs, provided an incentive for fishing vessels to share information and avoid areas of high salmon bycatch rates, which developed into an industry funded bycatch avoidance program (Haflinger, 2004).

Since the implementation of Amendment 58, the incidental catch of Chinook salmon in groundfish fisheries remained relatively low through 2002. In 2003, nearly 55,000 Chinook salmon were taken as bycatch, thereby triggering closures of the Chinook Salmon Savings Areas for the first time. The closures were triggered again in 2004, a year when over 62,000 Chinook salmon were
taken. It appears that these bycatch levels were likely a result of very high abundance of salmon, as indicated by strong runs of Chinook salmon in the Yukon and nearby drainages in 2003–04, with several escapements near all time highs (ADFG, 2004). Given these high bycatch levels, combined with the fact that the walleye pollock fishery now operates in a cooperative fashion and implements a real-time salmon bycatch avoidance program (Hafflinger, 2004), the Council reexamined the regulations and decided it was time to try a slightly different approach to controlling salmon bycatch.

In October 2005, the Council approved BSAI Groundfish FMP Amendment 84 to modify the existing bycatch reduction measures for Chinook salmon and chum salmon, Oncorhynchus keta. If approved by the Secretary of Commerce, Amendment 84 will allow the pollock fleet to use their rolling “hotspot” closure system to avoid salmon bycatch. The rolling hotspot system allows the participating fleet to respond quickly given indications of areas of high salmon bycatch and penalizes offenders with weekly area closures if bycatch rates are excessively high (NPFMC, 2005b). Although the regulatory salmon savings area triggers and closures would remain in effect, participants in the rolling hotspot system would be exempted from compliance with savings area closures. Continuation of this exemption would be subject to Council approval and review of the effectiveness of a rolling hotspot system.

Chum Salmon Savings Area

Western Alaska chum salmon runs declined dramatically in the early 1990’s, dropping to historically low levels in 1993. In that same year, the incidental catch of chum salmon in groundfish fisheries spiked to a record high of about 243,000 fish. Many were concerned that the trawl fisheries were impacting the salmon returns, and the Council voted to move ahead quickly with an analysis to expand observer coverage on all trawl vessels and to examine the use of area closures to control chum salmon bycatch. Analysis of groundfish observer data indicated spatial and temporal patterns of chum salmon bycatch in trawl fisheries. In April 1994, based on this analysis, the Council requested that NMFS take emergency action to close a 17,150 km² (5,000 n.mi.²) area in the southeast Bering Sea once a specified bycatch amount was attained (Fig. 7).

The emergency action was further developed into a permanent regulation, and in January 1995, the Council adopted the Chum Salmon Savings Area as BSAI Groundfish FMP Amendment 35. The Chum Salmon Savings Area is closed to all trawl fishing for the entire month of August (the time of year when bycatch had historically been the highest). In addition, the prescribed area remains closed or opens again after 1 September if 42,000 non-Chinook salmon (virtually all chum salmon) are taken as bycatch in the southwestern area of the Bering Sea.

Bycatch of chum salmon has fluctuated over the years, but until recently it had not reached the levels seen prior to the implementation of this MPA. Average annual chum salmon bycatch was 69,322 during 1990–2001 (Witherell et al., 2002), but it increased every year thereafter to over 465,000 chum salmon in 2004, triggering closures of the Chum Salmon Savings Area during 2002–04 (NPFMC, 2005b). Changes in annual bycatch amounts have been attributed to changes in chum salmon abundance, establishment of the Chum Salmon Savings Area and other regulatory changes, as well as bycatch avoidance measures and operational changes made by the fishing fleet (Witherell et al., 2002).

As previously mentioned, BSAI Groundfish FMP Amendment 84 will allow participants (i.e. the pollock fleet) in a rolling hotspot system to be exempted from compliance with savings area closures. If a cooperative chose not to participate in the system, that cooperative would be subject to the annual Chum Salmon Savings Area closures in August as well as additional closures if triggered. In addition, Amendment 84 would release the nonpollock fleet from the burden of potential closures, given their relatively low contribution to the total number of chum salmon taken incidentally in BSAI trawl fisheries (NPFMC, 2005b).

Halibut Longline Closure Area

Beginning in 1967, the International Pacific Halibut Commission (IPHC) designated IPHC Regulatory Area 4E (Bristol Bay) as a halibut nursery area and prohibited all fishing for halibut year-round within the area (IPHC, 1968). The closure extended south and east of the Pribilof Islands to the westernmost point on Unimak Island. The halibut stock in the Bering Sea had declined to very low levels in the early 1960’s, and regulations were being adopted to rehabilitate the stock (reduced fishing periods, prohibition on retention by trawls, minimum size limit, closed areas to longline halibut fishing, and closures to foreign trawl fisheries). The halibut longline closure area was known to have an abundance of juvenile halibut (Best, 1969), and tagging studies done in 1959 showed that halibut migrate from the Bering Sea to the Gulf of Alaska (IPHC, 1978).

At the time this MPA was established, Japanese and Soviet vessels were prosecuting trawl fisheries on the Bering Sea shelf targeting yellowfin sole, other flatfish, and Pacific cod, and the establishment of a halibut nursery area closure may have provided some leverage for the U.S. representatives negotiating bilateral fishing agreements with national governments of foreign fleets. Closure of areas to foreign fleets was the primary management measure used at the time, and the resources targeted by domestic fishermen (halibut, red king crab, and salmon) were of concern for U.S. negotiators (Fredin²).

The boundaries of the halibut longline closure area have been modified a couple of times since it was first established (Hoag et al., 1993). The western bound-
traditional subsistence herring fisheries, reductions and concerns for maintaining Pacific herring to the marine ecosystem had increased to 4–7% annually. Given the midwater walleye pollock fishery (particularly of the Pacific herring population taken as the stocks declined, the percentage west of Alaskan coastal villages. Further, both of which are important to many potentially affect subsistence fisheries, established for commercial fisheries and decline below minimum threshold levels. Several stocks were projected to decline below minimum threshold levels established for commercial fisheries and potentially affect subsistence fisheries, both of which are important to many western Alaska coastal villages. Further, as the stocks declined, the percentage of the Pacific herring population taken annually by trawl fisheries (particularly the midwater walleye pollock fishery) had increased to 4–7% annually. Given these changes and the importance of Pacific herring to the marine ecosystem, together with associated fishery reductions and concerns for maintaining traditional subsistence herring fisheries, the Council initiated an analysis of measures to control Pacific herring bycatch in trawl fisheries.

In September 1990, the Council adopted Amendment 16a to the BSAI Groundfish FMP, and the regulations were implemented in July 1991. The amendment established a biomass-based bycatch limit for Pacific herring and a series of time and area closures that would be triggered by attainment of the bycatch limit by trawl fisheries (Fig. 8). The bycatch limit was established at 1% of the eastern Bering Sea herring population biomass projection. The limit was further allocated among trawl fisheries, so that attainment of the limit by one target fishery would not impact other trawl target fisheries. The time/area closures established were based on spatial analysis of bycatch rates and the seasonal migration of herring, so the closure areas encompass the times and places where herring are concentrated.

The measures to control herring bycatch appear to be successful, and may have contributed to a substantial reduction in bycatch over time. In 1994, for example, 1,700 t of herring were taken as bycatch; by 2002, herring bycatch had been reduced to only 134 t (NPFMC, 2004a). Closures of the Herring Savings Areas were triggered each year from 1992 through 1995 (Witherell and Pautzke, 1997), but no closures have been triggered in recent years.

Herring Savings Areas

Most Pacific herring stocks in the Bering Sea declined following the passage of very strong 1977–78 year classes and poor production in subsequent years. Several stocks were projected to decline below minimum threshold levels established for commercial fisheries and potentially affect subsistence fisheries, both of which are important to many western Alaska coastal villages. Further, as the stocks declined, the percentage of the Pacific herring population taken annually by trawl fisheries (particularly the midwater walleye pollock fishery) had increased to 4–7% annually. Given these changes and the importance of Pacific herring to the marine ecosystem, together with associated fishery reductions and concerns for maintaining traditional subsistence herring fisheries, the Council initiated an analysis of measures to control Pacific herring bycatch in trawl fisheries.

Bycatch limits have controlled the incidental catch of king and Tanner crabs in trawl fisheries. Directed trawl fisheries, particularly those targeting flatfish species, have been closed in lucrative fishing areas when limits are attained. Closures have been triggered for at least one of the specified trawl fisheries in every year since implementation. However, in more recent years, closures have been infrequent, due in part to changes in the distribution and abundance of Tanner crab and the establishment of no-trawl MPA’s in the Bristol Bay area, along with reductions in total allowable catch limits for flatfish species.

Snow Crab Bycatch Limitation Zone

By the early 1990’s, snow crab, C. opilio, had become the mainstay species of the Bering Sea crab fleet; abundance and prices for this species had sharply increased, while the other crab species had declined. Recruitment of large snow crab, however, had dropped off by 1996, and catch limits were scaled back to 23,133 t (51 million pounds), down substantially from the 1992 limit of 151,045 t (333 million pounds). Crab fishermen claimed financial distress, and requested that the Council limit the incidental take of snow crab in trawl fisheries.

In response, the Council formed a small stakeholder committee, consisting of three crab fishery representatives and three representatives of the trawl sector, to examine available data and recommend a solution. The committee was provided a spatial analysis of survey data for snow crabs, and trawl bycatch data. Their recommendation for a trawl closure area that would be triggered by an abundance-based snow crab bycatch limit, was adopted by the Council as Amendment 40, and implemented in 1998. This area, deemed the Snow Crab Bycatch Limitation Zone, encompasses 308,700 km² (90,000 n.mi.²) (Fig. 8).

As an allocation measure, the MPA has eased the concerns of crab pot fishermen regarding the observed

bycatch of snow crab, although some have expressed reservations about “unobserved mortality” due to trawl gear interactions. Trawl fisheries have adapted to the limits, and to date have not triggered closure of the Snow Crab Bycatch Limitation Zone.

As a conservation measure, the Snow Crab Bycatch Limitation Zone appears to offer only minor benefits, as the bycatch amounts represent less than 0.1% of the population (Witherell et al., 2000). The snow crab stock has declined substantially since 1997 and is currently considered to be below the established minimum stock size threshold due to lack of recruitment (NPFMC, 2004c).

Bogoslof Area

Catch limits for walleye pollock in the Eastern Bering Sea originally applied throughout the management area, but research began to indicate that two separate stocks occupied the Bering Sea. One of these stocks, the Aleutian Basin stock, was projected to decline substantially in the early 1990’s. Research had indicated that walleye pollock in international waters of the “Donut Hole” and the Aleutian Basin portion of the U.S. EEZ were the same population and that the area around Bogoslof Island was thought to be the principal spawning area for the Aleutian Basin pollock stock (Dawson, 1989). To prevent the possibility of overharvesting pollock during the 1991 season, the Council recommended emergency action to establish the Bogoslof District with restrictive catch limits.

To further protect the Aleutian Basin pollock stock, the United States passed the Central Bering Sea Fisheries Enforcement Act in 1992 to prohibit U.S. fishermen from fishing in the Donut Hole. Unfortunately, the stock continued to decline, and by the end of the year, all the countries involved in harvesting pollock (United States, Russia, China, South Korea, Japan, Poland) had agreed to voluntarily suspend fishing in the Donut Hole in 1993 and 1994. In 1994,
all these parties signed the “Convention on the Conservation and Management of Pollock Resources in the Central Bering Sea” to prohibit fishing for walleye pollock until the stock reached a threshold of 1.67 million t. The Convention further specified that the pollock biomass in the Bogoslof area is deemed to represent 60% of the Aleutian Basin pollock biomass. In other words, when the Bogoslof area pollock biomass exceeds one million t, a fishery would be allowed in the Donut Hole.

No pollock fishing has been allowed in the Bogoslof District since it became established in 1992 by BSAI Groundfish FMP Amendment 17. As part of the Steller sea lion protection measures implemented beginning in 2002, all fishing for walleye pollock, Pacific cod, and Atka mackerel was prohibited in the Bogoslof area (Fig. 8). Despite the closure and prohibition on walleye pollock fishing, the Aleutian Basin pollock stock biomass remains at very low levels (NPFMC, 2004b).

State Waters Groundfish Closures

Several groundfish closures in state waters of the Gulf of Alaska were enacted to protect species vulnerable to overexploitation. These include lingcod populations that have proven vulnerable to intense fishing pressure near coastal communities. Two areas were closed to lingcod fishing in the Gulf of Alaska by the Alaska Board of Fisheries in 1997: Resurrection Bay near Seward and most of Sitka Sound (Fig. 9). In a proactive move in 2003, the Alaska Board of Fisheries also closed Sitka Sound and a series of four latitudinal strips on the outer coast of the eastern Gulf of Alaska to commercial harvest of black rockfish, *Sebastes melanops*, where a commercial fishery was developing (Fig. 9). The purpose of this closure was to maintain older year classes, particularly of females that have been shown elsewhere to produce larvae with higher rates of survival (Berkeley et al., 2004). For this
species, the state has management jurisdiction in the EEZ and these closures include Federal and state waters. The Alaska Board of Fisheries also closed Sitka Sound to commercial harvest of demersal shelf rockfish in 1987, as well as areas in the vicinity of Ketchikan (in 1989) and near the towns of Craig and Klawock (in 1991). These closures were to protect heavily exploited populations from directed commercial fishing (O’Connell13). The effects of the state groundfish closures are difficult to assess. The lingcod and demersal shelf rockfish closures likely have had some conservation benefits, although these benefits have not been quantified. The closures have also had some allocation impacts as the resources within these areas were reallocated to recreational users. In the case of the black rockfish closures, the economic effect on commercial fishermen was minimal because the closures were enacted at a time when the fishery in Southeast Alaska was not highly developed.

Shrimp Trawl Closures

The Alaska Board of Fisheries has closed several areas in state waters of the Gulf of Alaska to commercial trawling for shrimp, largely to protect shrimp stocks from excessive exploitation but also to prevent bycatch of crabs and other species. These areas include part of Tenakee Inlet in southeast Alaska, Lituya Bay, and Yakutat Bay, as well as eastern sections of Prince William Sound, and all of Cook Inlet (Fig. 9).

Cultural Resources MPA’s

Elsewhere in the United States, cultural resource MPAs are typically shipwrecks, often with historical significance. Alaska has a plethora of sunken vessels, estimated at over 3,000 (McMahon14); however, and more uniquely, Alaska has significant subsistence use of marine resources with MPAs designated to conserve some of these uses. Although these MPA’s developed for subsistence objectives may not fully meet the MPA Center criteria for MPAs (the primary focus is generally allocation rather than conservation) they are included in this paper because they do have conservation benefits related to preventing depletion of marine resources in local areas. Additionally, they provide access to and sustainable use of cultural resources.

Subsistence Crab Area

The King and Tanner Crab FMP prohibits commercial crab fishing within 18.5 km (10 n.m.i.) of King Island, Little Diomede Island, and Saint Lawrence Island. The objective of this MPA is to allocate the nearshore crab resources to local people (primarily Alaska Natives) of these islands who take them for subsistence use. The prohibition on commercial fisheries in this area reduces the potential for discard mortality and the risk of localized overexploitation of crabs in these nearshore areas. Research has shown that the shallow waters (<40 m) around Saint Matthew Island contain high densities of ovigerous female blue king crab; presumably nearshore areas are also important for other populations of blue king crab in the northern portion of their range (NPFMC, 2000).

Subsistence Halibut Regulatory Areas

Areas have been set aside to reduce competition for halibut and ensure access to the halibut resource by local subsistence users. By 1997, increased fishing effort and halibut removals from Sitka Sound by commercial and charter fleets were causing increased competition for halibut and thus creating difficulties for personal use and subsistence fishermen (i.e. the local people who harvest halibut and other fish for food). To address this problem, the Alaska Board of Fisheries appointed a task force of community representatives to prepare a local area management plan. The plan was developed with the objective to reserve access to halibut in Sitka Sound for the fishermen who were not as able to fish outside the Sound, namely the nonguided anglers, and the personal use and subsistence fishermen. In 1998, the Council adopted the plan, and prohibited halibut fishing by all commercial fishing vessels in Sitka Sound, except that vessels ≤10.7 m (35 ft) and charter fishing vessels could fish within the area during June, July, and August. During the remainder of the season, commercial fishing vessels ≤10.7 m (35 ft) are prohibited from harvesting more than (0.91 t) 2,000 lbs. of halibut within Sitka Sound per fishing trip.

In 2001, the Council adopted a halibut subsistence fishery program to legalize the harvest of halibut by Alaska Native and rural Alaskans (both Natives and non-Natives living in rural communities) throughout the state for personal consumption and traditional barter and trade. The program allows harvest of halibut with longline gear, and up to 20 halibut per day can be harvested in most areas. To address concerns about localized depletion of halibut from increased fishing pressure (due to easy access via the road system), the state and Council adopted regulations to prohibit halibut subsistence harvest in most of Cook Inlet waters. This area was already subject to high fishing pressure for halibut from anglers fishing from private and charter vessels. Although subsistence fishermen are restricted within the Cook Inlet area, they are granted new opportunities throughout the remainder of the State’s coastal areas.

Subsistence Sea Cucumber Areas

Seventeen areas in state waters of southeast Alaska, including bays or sections of inlets, were closed to commercial harvest of sea cucumbers in 1990 to provide opportunities for subsistence users (Fig. 10). This action was taken following a dramatic increase in commercial sea cucumber landings when the fishery was first developed (Woody et al., 1993). Closed areas were created in most of the region’s fishery management districts. Some of these protect high density sea cucumber habitats, especially in southern southeast Alaska, and were located near subsistence communities. These closures were enacted prior to full development of the commercial fishery in those areas; hence, the economic and social impacts were minor, as status quo was maintained.

Discussion

Marine protected areas have been a useful tool to Federal and state fishery managers in Alaska seeking to meet specific goals, such as limiting bycatch of special species, limiting the interaction with marine mammals, and protecting sensitive seafloor habitat from potential damage due to fishing activities. Many of the MPA’s were designed to meet multiple objectives. In total, there are currently over 40 named MPA’s, many of which include multiple sites. Taken together, the MPA’s encompass virtually all Federal waters off Alaska. Most of the MPA’s include measures to prohibit a particular fishery or gear type (particularly bottom trawls) within the area on a year-round basis.

In combination with the MPA’s established in Federal waters, the numerous and extensive areas in state waters closed to trawling, dredging, or other gear types (Woodby et al., 2002) provide substantial protection for marine resources and their habitats off Alaska. These areas include a wide variety of management measures from limited restrictions on particular fisheries to no-transit zones where all vessels, including fishing vessels, are prohibited from even entering within 5.6 km (3 n.m.i.) of all Steller sea lion rookeries along the Aleutian Islands east to Prince William Sound.

In most cases, MPA’s have successfully achieved their objectives. Sustainable production has been maintained in the groundfish fisheries, and conservation and allocation issues involving the incidental catch of vulnerable species have been addressed. The success of MPA’s at achieving habitat conservation is more difficult to evaluate. Because almost no research has been done to measure benthic changes before and after MPA implementation, we are left to rely on population responses to assess impacts. In some cases (e.g. the Bristol Bay Trawl Closure Area), the positive effects on

Figure 10.—MPA’s designed to protect subsistence opportunities for sea cucumbers.
stocks can be attributed to some extent on MPA regulations. In other cases, such as the Pribilof Islands Habitat Conservation Area, the signals are mixed. The current environmental regime appears to be preventing full recovery of the Pribilof blue king crab stock, whereas the Pribilof red king crab stock has increased to high levels (NPFMC, 2004c).

Before new MPA’s are implemented, cumulative impacts need to be fully considered. Regulations that prohibit or restrict fishing activity in one area are likely to result in additional fishing effort in the remaining open areas, potentially creating other problems. The court-ordered closure of Steller sea lion critical habitat to trawling in 2000, for example, resulted in an increase in by-catch of salmon (Witherell et al., 2002). Other potential effects of implementing additional MPA’s include more complex regulations, additional operating costs, and reduced operating flexibility for fishermen.

Evaluation of MPA’s after they have been implemented is essential for monitoring performance and to be responsive to new information (Coleman et al., 2004). Several MPA’s off Alaska have been reevaluated after implementation, and adjustments made to make them more effective. For example, the Bristol Bay closure area was reevaluated in 1995 relative to its ability to protect juvenile king crab and their habitats, and adjustments were made in the boundaries of the area to encompass the full range of known young-of-the-year habitat (Witherell and Harrington, 1996). In 1999, the Council modified the Chinook Salmon Savings area boundaries after spatial analysis showed that areas of high by-catch rates had changed over the years. More recently, several MPA’s in the Gulf of Alaska designed for Steller sea lion protection were modified in response to updated research.

Research is also required to fully evaluate the effectiveness of existing MPA’s. For example, the Steller sea lion mitigation MPA’s clearly provide some conservation benefits to deep-water coral and sponge assemblages in the Aleutian Islands, but the level of protection has not been quantified. Ongoing direct observations using submersible transects may help provide estimates for coral conservation in the Aleutian Islands (Woodby et al., 2005). Similar research should be done in the other closure areas to evaluate the effectiveness of the existing MPA’s at meeting their objectives, and to ascertain other ecological effects of implementing MPA’s.

Compliance with MPA regulations off Alaska appears to be very high due to a combination of factors, including strong enforcement presence, an industry-funded onboard observer program, satellite tracking of positions with vessel monitoring systems (VMS), and the availability of alternative fishing opportunities. The U.S. Coast Guard patrols the North Pacific with planes, cutters, and helicopters, and provides regular feedback to the Council on enforcement presence (e.g. number of C-130 flights, cutter days) and offers advice relative to the enforcement aspects associated with MPA’s early in the development process. NOAA Enforcement agents also report on violations, including MPA violations. To date, however, very few intentional violations of MPA regulations have been reported.

Compliance is also affected by the presence of onboard observers. The NMFS comprehensive observer program for the groundfish fisheries requires that all vessels larger than 38.1 m (125 ft) (length overall) carry an observer, and vessels 18.3 m (60 ft) to 38.1 m (125 ft) carry an observer 30% of their fishing time. Vessels participating in scallop fisheries and in Bering Sea crab fisheries carry observers as well. Although the observers’ primary duties are to measure total catch and discards, they do record vessel positions, and their logbooks can become the basis for prosecution.

VMS is now widely used to monitor fishing vessel positions off Alaska. Regulations require that vessels fishing for walleye pollock, Pacific cod, and Atka mackerel carry an operating VMS at all times. Because nearly all trawl vessels fish for one of these species during the year, and many of the longline vessels fish for Pacific cod, most of the fleet potentially affected by MPA regulations can be monitored by VMS tracking. Lastly, because alternative productive fishing grounds, in most cases, can be found in areas outside of existing MPA’s off Alaska, there is reduced incentive for violating the regulations.

The MPA’s off Alaska were implemented for specific purposes over time, rather than as part of a comprehensive strategy to establish a network of MPA’s as apparently envisioned by Executive Order 13158. The MPA Federal Advisory Committee notes that a national system of MPA’s would provide an opportunity for individual MPA’s implemented under various jurisdictions to produce benefits that extend beyond individual MPA’s, such as improved conservation of broadly distributed species whose life cycles span multiple jurisdictions, conservation and enhancement of biodiversity, and protection of ecologically significant processes (Marine Protected Areas Federal Advisory Committee, 2005). As noted in this paper, the current suite of MPA’s off Alaska likely provides these benefits to some degree.

Although no-take marine reserves have been promoted as an ocean conservation tool by many in the scientific and environmental community (Allison et al., 1998; Agardy, 2000; Roberts et al., 2005), fishery managers in Alaska generally have not found a need for such restrictive MPA’s, except in special situations to address habitat conservation or marine mammal disturbance issues. Unlike many other areas of the world, the existing management program for Alaska fisheries addresses the objectives for implementing no-take marine reserves as identified by the National Research Council (2001). The ecosystem-based approach utilized off Alaska provides insurance against uncertainty, prevents overexploitation, limits fishing effort, and protects habitats (Witherell et al., 2000). Moreover, extensive unfished areas of the continental shelf, slope, and basin region serve as de facto marine reserves.

Some scientists and environmentalists assert that fully protected marine reserves should be immediately applied as a primary management tool (Lubchenco et al., 2003), covering 20% or more of all biogeographic regions and habitats.
(Roberts et al., 2003). We believe that such sweeping measures may not be practical or necessary in all situations. A network of extensive no-take reserve areas, encompassing 20% to 50% of available habitats within each management region off Alaska, was evaluated and considered to mitigate the possibility of the fisheries having a detrimental biological and ecosystem impact, but the network of marine reserves was rejected as unnecessary given the precautionary management program for Alaska groundfish fisheries using more traditional tools (NMFS, 2004b). Although the analysis noted that implementation of such extensive no-take marine reserves, together with quota reductions, may provide positive effects on biodiversity and ecosystem processes, the social and economic impacts to fishery participants and coastal communities would have been devastating (NMFS, 2004b).

Without scientific studies to provide evidence that additional no-take reserves are needed off Alaska to further conserve biodiversity, proposals to implement no-take marine reserves solely for this reason may be viewed with skepticism. Field studies off Alaska to understand the effects of no-take marine reserves on biodiversity and ecosystem processes should be a research priority, and these studies should be developed and conducted in a cooperative manner with fishery participants. Should these studies find that no-take marine reserves enhance long-term sustainability of fish stocks, we would anticipate that fishery managers and the Alaska fishing industry would not only accept, but also actively seek implementation of this management tool.

Acknowledgments

Figures were prepared by Cathy Coon of the North Pacific Fishery Management Council, with assistance from Lee Hubert of the Alaska Department of Fish and Game. We thank Dave Fluharty, Jon Kurland, and anonymous peer reviewers for their helpful comments and suggestions to improve the paper.

Literature Cited

Marine Protected Areas Federal Advisory Committee. 2005. Protecting America’s Marine environment: A national strategy for marine protected areas Federal Advisory Committee on establishing and managing a national system of marine protected areas, Natl. Oceanic Atmo-

Errata

On page 3, the paper noted that, in 1961, Japan established a no-trawl zone in Bristol Bay. This closure was actually first established in 1959.

On page 11, the western boundary of the Nearshore Bristol Bay Trawl Closure Area was identified as long.163°W; the correct boundary is long. 162°W.

We thank Mr. Braxton Dew for noting these corrections. *D. Witherell and D. Woodby*