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Abstract—The National Marine Fish-
eries Service conducts fishery stock 
assessments to provide the best scien-
tific information available for the U.S. 
regional fishery management councils. 
The assessment models applied in the 
United States are often region specific, 
although the models share similar math-
ematical and statistical attributes. How-
ever, comprehensive comparison studies 
identifying similarities and differences 
among these assessment models remain 
scarce. We developed a multi- model 
comparison framework to evaluate the 
reliability of 4 age- structured assess-
ment models that are commonly used 
in the United States: the Assessment 
Model for Alaska, the Age Structured 
Assessment Program, the Beaufort 
Assessment Model, and Stock Synthe-
sis. When applied to simulated data, all 
4 models produced reliable estimates of 
assessment quantities of interest, such 
as fishing mortality, spawning biomass, 
recruitment, and biological reference 
points. Although there were differences 
among models in the calculation of the 
initial population numbers at age and 
in the bias adjustment of recruitment, 
their effects on model outputs were 
minor when estimation models were 
configured similarly. In addition, we pro-
vide guidelines for converting unfished 
recruitment and steepness between 
2 methods of bias adjustment. We rec-
ommend that next- generation stock 
assessment models include recruitment 
bias adjustment and that more research 
be conducted to provide guidelines for 
which methods might be preferred 
under which situations.
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Fishery stock assessment models have 
been widely used by scientific and 
management communities to evaluate 
fish population dynamics and provide 
estimates of stock abundance and fish-
ing mortality rate (F) (Hilborn and 
Walter, 1992; Quinn and Deriso, 1999; 
Maunder and Punt, 2013; Lynch et al., 
2018). Over time, assessment models 
have become more comprehensive and 

more efficient to facilitate the inte-
gration of data from diverse sources 
and to use increasing computational 
power. Concurrently, the complexity 
of stock assessments has increased 
considerably, creating challenges for 
both analysts and reviewers of stock 
assessments. Given the range of stocks 
requiring assessments, using generic 
stock assessment models that are not 
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stock or region specific is common practice (NRC, 1998; 
 Dichmont et al., 2016). Indeed, many of the age- based mod-
els used for stock assessments conducted in the United 
States use software developed for generic use.

In some literature reviews, the minimum data require-
ments, output, and projection capabilities of stock assess-
ment models in the United States have been compared to 
facilitate model choice (NRC, 1998; Dichmont et al.1). In 
addition, simulation- based research has been designed to 
evaluate the performance of various models and their abil-
ity to meet the needs of fishery managers (Smith et al., 
1993; Sampson and Yin, 1998; Cadrin and Dickey- Collas, 
2015; Deroba et al., 2015). However, comparison of assess-
ment models through both side- by- side code comparison 
and simulation tests remains scarce.

Four age- structured stock assessment models are used 
most commonly in the United States. We refer to them 
as models, although in reality they are software packages 
that may be configured to represent various forms of math-
ematical models. Three of the models, the Age Structured 
Assessment Program (ASAP) (Legault and Restrepo, 1999), 
the Beaufort Assessment Model (BAM) (Williams and 
Shertzer, 2015), and Stock Synthesis (SS) (Methot and Wet-
zel, 2013), are frequently used for assessments on the East 
Coast. On the West Coast of the continental United States, 
recent assessments are primarily conducted by using SS. 
The development trajectory for the Assessment Model for 
Alaska (AMAK) (AFSC, 2015) is similar to that for the ASAP. 
Alaska fishery scientists created simple age- structured 
statistical models by using a program that implements 
automatic differentiation, AD Model Builder (e.g., Ianelli 
and Fournier, 1998; Fournier et al., 2012), but they mostly 
tailored them for the individual stock characteristics and 
types of data available. From these bespoke models, a more 
general model, the AMAK, was developed and applied to a 
number of stocks, such as walleye pollock (Gadus chalco-
grammus) in the Aleutian Islands region (Barbeaux et al., 
2019). Although there are additional models and diagnos-
tic tools that can be used to assess fish stocks (Dichmont 
et al.1), these 4 age- structured assessment models are the 
main approaches applied in the United States for “data- 
rich” stock assessments, and they share similar conceptual, 
mathematical, and statistical frameworks.

The varied development and preference among regions 
for different assessment models may be attributed to spe-
cial requirements or features of a stock assessment model 
given the availability of observed data (data collection pro-
grams vary regionally) and length of time of commercial 
fishery operations (periods of hundreds of years on the East 
Coast versus periods that began roughly after World War II 
in Alaska or more recently on the West Coast) that create 
different states of initial depletion. Additional reasons for 
different software and modeling approaches include inertia 
and continuity with past practices (or application to similar 

1 Dichmont, C. M., A. R. Deng, A. E. Punt, and L. R. Little. 2017. 
Stock assessment integration: a review. Fish. Res. Dev. Corp. 
Rep. 2014- 039, 106 p. CSIRO Publ., Hobart, Australia. [Avail-
able from website.]

stocks), region- specific training, and the presence of local 
expertise (Cadrin and Dickey- Collas, 2015). The availabil-
ity of different assessment approaches may provide flexibil-
ity, but it also requires testing to determine how different 
assumptions affect results. A first step is to test whether 
various models of a given type produce similar estimates 
when configured similarly without introducing misspec-
ifications to the models. Then identifying sources of any 
differences can inform and improve assumptions used in 
actual assessments (e.g., NRC, 1998).

Simulation testing provides a means to evaluate the 
accuracy of individual assessment models because we know 
the correct values used to generate the data. An operat-
ing model (OM) is configured to reflect hypotheses about 
true stock dynamics and is the basis for generating age- 
structured stock assessment inputs for each assessment 
model (which are referred to as estimation models [EMs]). 
The OM- EM framework to fit EMs to simulated data (with 
errors) has been used previously to assess the ability of 
assessment models to estimate stock conditions (Wetzel 
and Punt, 2011; Henríquez et al., 2016). Deroba et al. (2015) 
conducted both self- tests and cross- tests from a simulation- 
estimation framework to compare the robustness of assess-
ment models to error. A self- test fits an assessment model 
to the simulated data generated from the same assessment 
model, and a cross- test fits an assessment model to data 
generated from a different model (Chang et al., 2015; Deroba 
et al., 2015). They highlighted that the lack of robustness 
in self- tests may indicate bias and that a lack of robust-
ness in cross- tests may indicate differences in structural 
assumptions between assessment models. To avoid the bias 
introduced during the cross- test process, we attempted to 
develop an OM based on common features of the 4 EMs.

The aim of this study was to improve our understand-
ing of both the similarities and differences among 4 pri-
mary age- structured stock assessment models used in the 
United States. To our knowledge, this evaluation is the 
first in which a comprehensive comparison of source codes 
and a simulation- estimation analysis of these models has 
been conducted. This study specifically addressed the fol-
lowing 4 primary questions: What are the key features 
and source code that need to be examined before develop-
ing an OM for comparing multiple EMs? Do the EMs give 
similar and accurate estimates under a range of cases? 
What are the sources of differences in estimates, if there 
are any? What recommendations can be drawn for future 
model development after examining the similarities and 
differences of the 4 EMs in our study? Addressing these 
questions is critical for improving the understanding of 
current models and for developing next- generation stock 
assessment models (Punt et al., 2020).

Materials and methods

General framework

To compare assessment models, we conducted a comparison 
of key features in the code from the 4 EMs as well as 

http://frdc.com.au/Archived-Reports/FRDC%20Projects/2014-039-DLD.pdf
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OM- EM simulation tests to compare estimates to true val-
ues (Fig. 1). The code comparison process helps to verify 
whether the code from the 4 EMs executes the intended 
algorithms the same way and to identify common features 
from the EMs to develop an OM (Table 1, Suppl.  Material, 
Suppl. Table 1) with only those commonalities (NRC, 1998) 
(Table 2). The simulation- estimation process, which helps 
validate the accuracy of EMs, consisted of 4 main steps: 1) 

developing an OM to simulate annual fish population and 
fishery dynamics, 2) fitting the 4 EMs to the simulated 
data, 3) repeating the simulation- estimation 100 times with 
different recruitment deviations and observation errors for 
each iteration, and 4) comparing estimates from the EMs 
with the true values from the OM (Fig. 1). This process was 
repeated for 13 cases (Table 3). Comparisons were made 
among the 4 EMs within each case and across cases.

Operating model and comparison cases

The OM developed in this study was an 
age- structured model, with parameter 
values describing life history obtained 
from Siegfried et al. (2016). That study 
simulated a population on the basis of 
an amalgam of life history traits com-
mon to species found in waters of the 
Atlantic Ocean off the southeastern 
United States. In our study, the OM pop-
ulation was simulated with an annual 
time step over 30 years and a maximum 
age of 12 years (Table 1, Suppl. Material, 
Suppl. Table 1). The OM null case (case 
0) had one fishing fleet and one survey, 
with fully selected F linearly increas-
ing with time. A time- invariant logistic 
selectivity function was used for both 
the fishing fleet and the survey in the 
null case. Fishery landings and survey 
abundance index data were simulated 
yearly with observation error from 
year 1 to year 30. The annual sample 
size was 200 samples for age compo-
sition data from both the fishery and 
survey. In all cases except case 12, the 
initial equilibrium recruitment was low-
ered from the unfished recruitment level 
as determined by an initial equilibrium 
F (spawning biomass per recruit based 
on F [φF] is less than unfished spawning 
biomass per recruit [φ0], as in equation 
3.4 provided in  Supplementary Table 2). 
The addition of case 12, for which 
the initial condition was equal to the 
unfished equilibrium population (φF=φ0), 
as in equation 3.4 provided in Supple-
mentary Table 2, allowed a comparison 
of methods for simulating the initial 
population. Details of parameter defi-
nitions and equations used to describe 
the OM under case 0 are presented in 
Table 1 and in the Supplementary Mate-
rial (the code for creating the OM and 
comparing the EM results is available 
from website).

Eleven additional cases were explored 
to investigate the effects of recruitment 
variability, process error in F, patterns in 

Figure 1
Flow diagram of the processes used to compare 4 age-structured stock assess-
ment models used in the United States. Steps 1 and 2, which compose the 
code comparison process, involve identification of common features and 
source code comparison of the estimation models (EMs). Steps 3 and 4, which 
compose the simulation-estimation process, involve operating model (OM) 
development, estimation with EMs, and comparison of performance between 
the EMs. Common features, input standardization, quantities of interest, and 
performance measures are described in the “Materials and methods” section 
and in Table 1. The “true” values include actual values used as inputs for 
development of the OM and simulated true values for quantities of interest.

https://doi.org/10.7755/FB.119.2-3.5s1
https://doi.org/10.7755/FB.119.2-3.5s2
https://doi.org/10.7755/FB.119.2-3.5s1
https://doi.org/10.7755/FB.119.2-3.5s2
https://doi.org/10.7755/FB.119.2-3.5s3
https://doi.org/10.7755/FB.119.2-3.5s3
https://doi.org/10.7755/FB.119.2-3.5s3
https://doi.org/10.7755/FB.119.2-3.5s1
https://doi.org/10.7755/FB.119.2-3.5s1
https://github.com/Bai-Li-NOAA/Age_Structured_Stock_Assessment_Model_Comparison


152 Fishery Bulletin 119(2–3)

Table 1

Description and values for index variables, structural parameters, state variables, derived variables, and stochastic deviation 
used in the operating model to generate simulated data that served as inputs for the 4 age- structured stock assessment models 
evaluated in this study. Models were tested under different cases, including the null case (case 0), which has one fishing fleet and 
one survey, with fully selected fishing mortality rate (F) increasing linearly with time. Also provided are the value or expression 
in case 0 and indication of whether a parameter is estimated in the estimation model. The parameter natural mortality rate at 
age is assumed to be constant across years and age classes.

Symbol Description
Case 0 value or  
expression Estimated

Index variables
y Years {1,2,. . .,Y} and Y=30
a Ages {1,2,. . .,A} and A=12+

Structural parameters
l• Asymptotic average length (in millimeters) 800
K Growth coefficient (per year) 0.18
t0 Age at mean length of zero (in years) −1.36
θ1 Length–weight coefficient 2.50 × 10−8

θ2 Length–weight exponent 3
θ3 Slope of maturity ogive 3
a50 Age at 50% maturity (in years) 2.25
Ma Natural mortality rate at age (per year) 0.2
ra Proportion of females at each age 0.5
R0 Median- unbiased unfished recruitment (in number) 1 million Yes
h Median- unbiased steepness 0.75
x1 Fishery selectivity slope 1 Yes
x2 Fishery selectivity age at 50% selection (in years) 2 Yes
x3 Survey selectivity slope 2 Yes
x4 Survey selectivity age at 50% selection (in years) 1.5 Yes
fy Shape of the fully selected F in year y Linear increase with  

f1=0.01 and fY=0.40
Yes

ϕF Annual sample size for age composition of fishery landings 200
ϕI Annual sample size for age composition of survey 200

State variables
Ry Annual recruitment in year y (in number)
SSBy Spawning biomass in year y (in metric tons of female biomass)
Na,y Abundance at age a in year y (in number)
Ay Abundance in year y (in number)
By Biomass in year y (in metric tons)
La,y Landings at age a in year y (in number)

(Continued on next page)

F, selectivity patterns, number of surveys, and bias adjust-
ment of recruitment on performance of the EMs (Table 3). 
Because our goal was to demonstrate that the 4 EMs are 
similar at their core, we started with simple cases to com-
pare the performance of the EMs before adding in additional 
complexity. It would have been harder to interpret the dif-
ferences found in the results if more complicated cases had 
been included in the simulation. We did not implement 
these cases to evaluate how model misspecifications intro-
duced in the EMs could affect the model estimates; there-
fore, we made the correct assumptions about parameters 
(e.g., fixing them at correct values) and governing processes 
(e.g., stock–recruit relationship and selectivity pattern).

Recruitment variability level In case 0, the standard devi-
ation of annual recruitment variability (σR) in log space 

was 0.2. Two additional levels were explored to examine if 
higher recruitment variability with σR of 0.4 (case 1) and 
0.6 (case 2) affected the performance of the EMs.

Process error in fishing mortality A comparison between 
case 3 and case 0 addressed the question of whether addi-
tional process error in F affected the performance of the 
EMs. In all cases, the standard deviation of the log fully 
selected F was used for generating annual deviations in 
fully selected F. In case 0, the same set of annual devia-
tions was used for each iteration. In case 3, we randomly 
generated stochastic sets of annual deviations per itera-
tion. Case 0 did not start with stochastic sets of annual 
deviations per iteration because it can be difficult to inter-
pret differences in results if the process error in F is con-
founded with other settings or assumptions.
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Table 1 (continued )

Symbol Description
Case 0 value or  
expression Estimated

Ly Landings in year y (in metric tons)
Ia,y Survey abundance at age a in year y (in number)
Iy Survey abundance (sum across ages) in year y (in number)

yL′ Observed landings in year y (in metric tons) with noise

La,y
P Proportion at age a in year y for fishery landings

La,y
P′ Observed proportion at age a in year y for fishery landings

yI ′ Observed survey abundance in year y with noise (in number)

Ia,y
P Proportion at age a in year y for survey

Ia,y
P′ Observed proportion at age a in year y for survey

Derived variables
la Length at age a (in millimeters)
wa Weight at age a (in metric tons)
ma Proportion that reached maturity at age a
φ0 Unfished spawning biomass per recruit (in metric tons)
Za,y Total mortality rate at age a in year y
Fmulty Fully selected F in year y (year−1)

Fa
S Fishery selectivity at age a

Ia
S Survey selectivity at age a

Φa Number of spawners per recruit at age
φF Spawning biomass per recruit given F (in metric tons)
Req Equilibrium recruitment (in number)
q Catchability coefficient for survey 3.46 × 10−7 Yes

Stochastic deviation: process error
σR Standard deviation of log recruitment 0.2
Rdevy Recruitment deviations in year y Rdevy ~ N(0, σR

2) Yes
σF Standard deviation of log fully selected F 0.2
fdevy Fully selected F deviations in year y fdevy ~ N(0, σF

2) Yes

Stochastic deviation: observation error
CVL Coefficient of variation of fishery landings 0.05
ε1y Landings deviations in year y )( )(ε +~ 0, log 11 L

2

y
N CV

CVI Coefficient of variation for survey 0.2
ε2y Survey abundance deviations in year y )( )(ε +~ 0, log 12 I

2
y

N CV

Fishing mortality patterns In case 0, the fully selected F 
increased over time from a relatively low value (0.01) to a 
higher rate (Fhigh) (Fig. 2). Two additional trends in F were 
investigated on the basis of methods from Johnson et al. 
(2015) and Ono et al. (2015). In this study, the F either 
increased from a low value (0.01) to Fhigh during the first 24 
years and then decreased to a lower rate (Flow; case 4; Fig. 
2) or that F remained constant over time across 3 levels: 
Flow, the F that corresponds to maximum sustainable yield 
(FMSY), or Fhigh (cases 5–7; Fig. 2). Values of Flow and Fhigh 
corresponded to 80% of maximum sustainable yield (MSY). 
Comparing cases 4–7 with case 0 allowed an evaluation of 
whether different fishing patterns affected the magnitude of 
error in estimating parameters of interest.

Selectivity patterns A comparison between case 8 and 
case 0 was used to examine the influence on assessment 

performance of using double- logistic selectivity for the 
fishery and the survey instead of simple logistic selectiv-
ity (case 0).

Multiple surveys Comparing case 9 (which includes 2 
surveys with the same level of observation errors) with 
case 0 (which includes 1 survey) allowed an evaluation of 
whether use of an additional survey reduced error in esti-
mating quantities of interest.

Bias adjustment of recruitment For case 10, the median- 
unbiased spawner- recruit parameters were used, whereas 
for case 11 the mean- unbiased spawner- recruit param-
eters were used to conduct a bias adjustment in the OM. 
The arithmetic mean curve of recruitment that is associ-
ated with the mean- unbiased spawner- recruit parameters 
is higher than the geometric mean curve of recruitment 
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that is associated with median- unbiased spanwer- recruit 
parameters because of lognormal deviation in recruitment 
residuals (Methot and Taylor, 2011).

Bias adjustment is handled differently in the 4 EMs. 
In the BAM, a bias adjustment is applied when median- 
unbiased parameters are used to compute equilibrium 
recruitment for the spawner- recruit model (Suppl. 
Table 3) (Williams and Shertzer, 2015). In contrast, in 
SS, mean- unbiased parameters are used for the spawner- 
recruit model, and then a bias adjustment is applied when 
computing annual recruitment (Suppl. Table 3) (Methot 
and Taylor, 2011). In the AMAK and ASAP, bias adjust-
ment is not included as part of the internal machinery. 
Details of differences between the EMs are documented 
in the “Spawner- recruit parameters in bias adjustment 
of recruitment” subsection of the “Results” section and in 
Supplementary Table 3. For cases 10 and 11, σR was set 
to 0.6 to make the differences in estimates noticeable, if 
any were present. We also adjusted the estimates of MSY- 
based reference points from the AMAK and ASAP with 
the BAM bias adjustment method in case 10 to make 

estimates comparable among all 4 EMs (Suppl. Figs. 1 
and 2). We adjusted the estimates of unfished recruitment 
(R0) and steepness (h) to mean- unbiased values and then 
adjusted MSY- based reference points from the AMAK and 
ASAP in case 11 (Suppl. Figs. 1 and 2). The estimates from 
cases 10 and 11 were compared with the estimates from 
case 2 to quantify the effect of bias adjustment methods 
on EM performance.

Estimation models

Four EMs were evaluated in this study. The AMAK was 
compiled with AD Model Builder, vers. 12.1, from source 
code available on GitHub (website, accessed November 
2019). We used the executable file of the ASAP, vers. 3.0.16, 
available on the National Marine Fisheries Service Inte-
grated Toolbox website (accessed December 2019). For the 
BAM, the source code is available from the authors or in 
the appendix of a NOAA publication (Williams and 
Shertzer, 2015) and was compiled by using AD Model 
Builder. We used the executable file of SS, vers. 3.30.15, 

Table 2

Comparison of features between the 4 age- structured estimation models (EMs) evaluated in this study: the Assessment Model for 
Alaska (AMAK), the Age Structured Assessment Program (ASAP), the Beaufort Assessment Model (BAM), and Stock Synthesis 
(SS). The letter Y indicates that the feature is implemented in the EM. F=fishing mortality rate.

Feature AMAK ASAP BAM SS

Age modeled 1+ 1+ 1+ 0+/1+
Timing of spawning Real month Fraction Fraction Real month
Timing of survey Real month Real month Fraction Real month
Survey index unit Biomass/number Biomass/number Biomass/number Biomass/number
Spawner- recruit model

Standard Beverton–Holt Y Y Y Y
Ricker Y Y Y
Average recruitment Y Y Y Y

Bias adjustment of recruitment Y Y
Types of selectivity available

Free parameter approach Bound Random walk Logit Random walk/logit
Simple- logistic function Y Y Y Y
Double- logistic function Y (3 parameters) Y (4 parameters) Y (4 parameters) Y (4 parameters)
Logistic- exponential function Y Y
Joint- logistic function Y Y
Double- Gaussian function Y Y

F in terminal year Last year Last year Flexible Last year
Definition of F Flexible Apical F Apical F Flexible
Likelihoods available

Landings, lognormal Y Y Y Y
Survey index, lognormal Y Y Y Y
Age composition, standard multinomial Y Y Y Y
Age composition, Dirichlet multinomial Y Y

Priors
None Y Y Y Y
Lognormal Y Y Y Y
Beta Y Y
Normal Y Y

Reference or website (see for details of 
other features)

website website Williams and 
Shertzer (2015)

website 

https://doi.org/10.7755/FB.119.2-3.5s4
https://doi.org/10.7755/FB.119.2-3.5s4
https://doi.org/10.7755/FB.119.2-3.5s4
https://doi.org/10.7755/FB.119.2-3.5s4
https://github.com/afsc-assessments/AMAK
https://nmfs-fish-tools.github.io/ASAP/
https://vlab.ncep.noaa.gov/web/stock-synthesis
https://doi.org/10.7755/FB.119.2-3.5s5
https://doi.org/10.7755/FB.119.2-3.5s5
https://doi.org/10.7755/FB.119.2-3.5s5
https://github.com/afsc-assessments/AMAK
https://nmfs-fish-tools.github.io/ASAP
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available from the NOAA Virtual Laboratory (website, 
accessed November 2019).

The 4 EMs estimated time series of spawning stock 
biomass (SSB), recruitment, F, abundance, biomass, and 
landings in weight. Annual age composition of landings 
from the fleet and from surveys was also estimated. The 
annual F values used in the comparison were apical F val-
ues. The common output of biological reference points used 
in the comparison project included MSY, FMSY, and SSB at 
MSY (SSBMSY). The relative F (calculated as F/FMSY) and 
relative SSB (calculated as SSB/SSBMSY) for MSY- based 
reference points were also examined.

Performance measures

For each of the cases, performance of the EMs was evalu-
ated by comparing estimated values against the true val-
ues from the OM. The quantities of interest included R0, 
F in the “terminal” year (Fterminal),  SSBterminal, MSY, FMSY, 
SSBMSY, relative F, and relative SSB. To evaluate perfor-
mance related to a management application (e.g., stock 
status determination), Flimit was set to FMSY and SSBlimit 
was set to half of SSBMSY (Federal Register, 1998; Restrepo 

Figure 2
The curve of the relationship of yield and fishing mortal-
ity rate (F) and the definitions of the low F value (Flow) 
and the high F value (Fhigh) used in creation of various 
patterns of F in the operating model. The horizontal black 
line indicates maximum sustainable yield (MSY), and the 
dashed gray lines indicate 0.8MSY, which corresponds to 
Flow and Fhigh. The vertical black line indicates the F that 
corresponds to MSY (FMSY).

Table 3

Settings for recruitment variability (σR), deviations in fishing mortality rates (F), patterns of F, selectivity patterns, and 
recruitment bias adjustment in the operating model (OM) that was used to evaluate 4 age- structured stock assessment models 
under different cases. A dash denotes that the value or information is the same as that given for the null case (case 0). For 
case 0, the OM creates the same set of F deviations for a given iteration. For case 3, the OM randomly generates a unique 
set of F deviations per iteration. Flow=low F value; FMSY=F that corresponds to maximum sustainable yield; Fhigh=high F 
value; φF=spawning biomass per recruit based on F; φ0=unfished spawning biomass per recruit; R0=unfished recruitment; and 
h=steepness.

Details

Setting Case σR

F 
deviations

F  
patterns

Fishery 
and survey 
selectivity

No. of 
surveys

Bias  
adjustment

Initial 
condition

Null case 0 0.2 Same 
iteration

Increase Simple- 
logistic

1 No φF≠φ0

Recruitment 
variability

1 0.4 – – – – – –

2 0.6 – – – – – –
Stochastic F 3 – Stochastic 

iteration
– – – – –

F patterns 4 – – Roller coaster – – – –
5 – – Constant Flow – – – –
6 – – Constant FMSY – – – –
7 – – Constant Fhigh – – – –

Double- logistic 
selectivity

8 – – – Double- 
logistic

– – –

Multiple surveys 9 – – – – 2 – –
Recruitment bias 

adjustment
10 0.6 – – – – Yes (median- unbiased 

R0 and h)
–

11 0.6 – – – – Yes (mean- unbiased 
R0 and h)

–

Initial condition 12 – – – – – – φF=φ0

https://vlab.ncep.noaa.gov/web/stock-synthesis
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et al., 1998; Gabriel and Mace, 1999; Methot et al., 2014). 
The estimated values of F/Flimit and SSB/SSBlimit from the 
EMs were compared with the true values from the OM to 
verify whether the estimated stock status (i.e., overfished 
or overfishing) matched the true status.

The bias and variability of the bias of the EMs were 
determined by calculating relative error (RE) and median 
absolute relative error (MARE) for key parameters. The 
RE and MARE for each EM within a case were calculated 
as follows:

REi,j,t = (Ei,j,t − Ti,j,t) / Ti,j,t and (1)

MAREi,t = median(|REi,j,t|), (2)

where E = the estimated quantity of interest;
T = the true value from the OM;
i = the quantity of interest;
j = the iteration number; and
t = the year, if applicable.

For evaluating performance related to making stock sta-
tus determinations (i.e., using F/Flimit and SSB/SSBlimit), 
the accuracy of each model under a case equals the num-
ber of correctly identified positives and negatives divided 
by the total number of iterations.

Results

Code comparison process

Identification of common features The structure of the 
OM and cases were defined on the basis of the similar-
ities and differences found among the 4 EMs (Table 2). 
On the basis of the comparisons, we found that the com-
mon available spawner- recruit model among the EMs is 
the compensatory Beverton–Holt spawner- recruit model 
(Beverton and Holt, 1957) with lognormally distributed 
recruitment deviations. For selectivity patterns, all of the 
EMs have both a simple- logistic function and a double- 
logistic function. For the double- logistic function, the 
ASAP, BAM, and SS each require 4 parameters, and the 
AMAK requires 3 parameters. Bias adjustment of esti-
mated mean recruitments is implemented in only the 
BAM and SS. For some features (e.g., available selectivity 
patterns), some of the EMs have more options than those 
listed in Table 2. We limited the options to features avail-
able in at least 2 EMs. All available options can be found 
in the technical manual for each EM. Differences among 
other features have been summarized in Dichmont et al. 
(2016), Dichmont et al.1, and Punt et al. (2020).

Basic settings to ensure similar configurations Results of 
the comparison of formulas used in source code for key 
features indicate that analysts can manually adjust some 
basic settings to ensure that all 4 EMs are configured sim-
ilarly and to ensure that a comparison study is effective. 
For example, in the AMAK, ASAP, and BAM, the popu-
lation starts at age 1, but in SS the population routinely 
starts at age 0 and can be configured to start at older ages, 

as was done for this study. Survey index units, biomass or 
number of fish, can be used as input for the ASAP, BAM, 
and SS. In the AMAK, the default unit is biomass, but 
numbers could be used by setting all entries in the weight- 
at- age matrix to the value of 1.

Selectivity-at-age outputs can be used directly for com-
parison, but estimated selectivity parameters need to be 
further converted before being compared because they are 
modeled differently in EMs. The simple logistic selectivity 
in the AMAK and BAM share the same formula as the OM 
(i.e., equation 5.1 from Supplementary Table 1). In the ASAP 
and SS, simple-logistic selectivity is calculated as follows:

=
+ − − µ µ

1

1 e
F (a )/a 1 2

S and (3)

=
+ − − ν ν

1

1 e
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S , respectively, (4)

where Fa
S  = fishery selectivity at age;
μ1 =  age at 50% selection parameter (equal to x2 

from equation 5.1 in Supplementary Table 1, 
where x2 is age at 50% selection parameter);

μ2 =  slope parameter (equal to 1/x1 from equation 
5.1 in Supplementary Table 1);

a = ages;
ν1 =  age at 50% selection for fishery parameter 

(equal to x2 from equation 5.1 in Supplemen-
tary Table 1); and

ν2 =  slope parameter (equal to ln(19)/x1 from equa-
tion 5.1 in Supplementary Table 1).

Similarly, the BAM and SS share the same double- logistic 
selectivity formula (Equation 5), and the formula from the 
AMAK (Equation 6) and ASAP (Equation 7) are different. 
Consequently, parameter values cannot be directly compared 
between models. However, the resultant curves and selectiv-
ity at age can be compared with the following equations:
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where Fa
S′  =  fishery selectivity at age before rescaling to 

ensure that it peaks at 1;
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x1 =  first slope of the double- logistic selectivity 
function;

x2 =  first inflection point of the double- logistic 
selectivity function;

β1 =  second slope of the double- logistic selectivity 
function;

β2 =  second inflection point of the double- logistic 
selectivity function;

γ1 =  first inflection point of the selectivity 
function;

γ2 =  second inflection point of the selectivity 
function;

p1 =  distance between first inflection point and 
age at 95% selection;

p2 =  parameter to be used with p1 to get first 
inflection point of the selectivity function;

p3 =  second slope of the selectivity function;
μ1 =  first inflection point of the double- logistic 

selectivity function;
μ2 =  first slope of the double- logistic selectivity 

function;
μ3 =  second inflection point of the double- logistic 

selectivity function; and
μ4 =  second slope of the double- logistic selectivity 

function.

Spawner- recruit parameters in bias adjustment of recruit-
ment In both the models in which a bias adjustment to 
recruitment was applied, the BAM and SS, the mean- 
unbiased relationship is used for estimating MSY- based 
reference points. The FMSY from the OM was based on 
searching for the F that provides maximum equilibrium 
catch. The calculation started with computing equilibrium 
recruitment at F and involved the same equations that were 
used to calculate the initial equilibrium conditions (equa-
tion 3.4 in Supplementary Table 1). That step of calculation 
involved R0 (Suppl. Table 3), and the use of R0 in the calcula-
tion results in differences in estimated MSY- based reference 
points depending on how bias adjustment of recruitment 
was addressed in each EM. The median- unbiased spawner- 
recruit parameters from the BAM correspond to the geo-
metric mean curve of recruitment, and the mean- unbiased 
parameters from SS correspond to the arithmetic mean 
curve of recruitment (Table 4, Suppl. Table 3).

For direct comparisons, we derived a function to con-
vert combinations of median- unbiased R0 and h to mean- 
unbiased values, or to convert mean- unbiased values 
to median- unbiased values, when the Beverton–Holt 
spawner- recruit model was used. The derivation of the 
median- unbiased approach starts with calculating the 
median- unbiased R0 by using the Beverton–Holt model:

0.8

0.2 1 0.2
,

0

R0
R0hS0

R0 h h S0( ) ( )=
φ − + −

 

(8)

where S0 = unfished spawning biomass.

Given that the bias adjustment component b equals 

e /2R
2σ , the mean- unbiased R0′ that corresponds to the 

arithmetic mean curve of recruitment is determined 
with this equation:
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where S0′ = the mean- unbiased unfished SSB.
Then, following the derivations below, the bias- adjusted 

mean- unbiased S0′ can be obtained:
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When converting median- unbiased values to mean- 
unbiased values, the bias adjustment component b equals 
e /2R

2σ . Inputs of the conversion function include median- 
unbiased R0, h, and φ0. The outputs of the conversion 
include adjusted unfished SSB (S0b), adjusted unfished 
recruitment (R0b), and adjusted steepness (hb) in mean- 
unbiased levels:
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where Rnew =  recruitment when the SSB is 20% of its 
unfished level.

When converting mean- unbiased values to median- 
unbiased values, b equals e /2R

2−σ , and the inputs from the 
equation (Equation 11) need to be mean- unbiased values 
(the outputs are median- unbiased S0b, R0b, and hb). With-
out these conversions, the difference between mean-  and 
median- unbiased R0 and the difference between mean-  
and median- unbiased h gradually increased when the 
true median- unbiased h was reduced and when σR was 
increased (Fig. 3).

Simulation- estimation process

Null case (case 0) Model parameters of R0 and catchabil-
ity (q) were accurately estimated in all EMs with low bias. 
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The MAREs of R0 and q were below 10% for all EMs 
(Table 5). The median R0 over 100 iterations from the 
AMAK was generally lower compared with the estimates 
from the other EMs (cases 0–9), indicating that the AMAK 
initializes the population differently compared with the 
OM (Fig. 4). For case 12, in which the initial condition was 
simulated for an unfished equilibrium population, the 
estimated R0 from the AMAK was similar to the estimates 
from the other EMs (Fig. 4).

Under case 0, the estimated median selectivity at age 
over 100 iterations from all EMs has almost identical pat-
terns compared with the selectivity curves based on true 
values from fishery and survey sources (Suppl. Fig. 3). 
The MAREs of MSY, FMSY, and SSBMSY were below 10% 
(Table 6), and the REs indicate similar variability among 

all EMs (Fig. 5). The AMAK produced relatively lower 
MSY and SSBMSY, along with a lower estimate of R0, 
compared with the true values and estimates from the 
other stock assessment models. The REs for SSB, R, F, 
relative SSB, and relative F centered around zero over 
time and had similar variability patterns (Fig. 6, Suppl. 
Figs. 4–8). The accuracy of stock status determination was 
100% for overfished status determination, and the accu-
racy of the overfishing status was 100% in most but not 
all years (Fig. 7).

Recruitment variability level The 4 EMs accurately estimated 
model parameters, but the range of RE increased when σR 
increased. The MARE in key parameters increased when σR 
increased from the null case value of 0.2 (Tables 5 and 6). 

Table 4

Methods for bias adjustment of recruitment from 2 of the age- structured stock assessment 
models evaluated in this study: the Beaufort Assessment Model (BAM) and Stock Synthesis 
(SS). MSY=maximum sustainable yield; R0=unfished recruitment.

Parameter BAM method SS method

Unfished recruitment Median- unbiased R0 as input
Median- unbiased R0 and 

mean- unbiased R0 as output

Mean- unbiased R0 as input 
and output

Unfished biomass Based on mean- unbiased R0 Based on mean- unbiased R0
Equilibrium recruitment Mean- unbiased Mean- unbiased
Spawner- recruit parameters Median- unbiased Mean- unbiased
MSY- based reference points Mean- unbiased Mean- unbiased

Figure 3
(A) Relative difference (%) in unfished recruitment (R0) and (B) difference in steepness (h) over 
possible combinations of median- unbiased h and standard deviation of log recruitment (σR), 
both indicated by the contour lines. The differences were determined by using the spawner- 
recruit parameter conversion function. Relative difference in unfished recruitment is defined as 
100(mean- unbiased R0−median- unbiased R0)/median- unbiased R0. Relative difference in steep-
ness is defined as mean- unbiased h−median- unbiased h.

https://doi.org/10.7755/FB.119.2-3.5s6
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The range of RE in MSY- based reference points became 
wider when recruitment variability increased (Fig. 5). Fur-
thermore, the increased variability in SSBMSY induced 
a wider range of RE in relative SSB (Table 6, Fig. 6). The 
accuracy of determining overfishing status for all EMs was 
not greatly affected by changes in recruitment variability, 
and the same trends were retained over time compared with 
the accuracy trends for the null case (Fig. 7, Suppl. Figs. 7 
and 8). The accuracy of determining overfished status was 
100% over time for all EMs.

Process error in fishing mortality There were no consider-
able differences found in key parameter estimates when 
examining the effect of process error in F (case 3 versus 
case 0 in Figures 5 and 6). For all 4 EMs, RE patterns and 
estimates of key parameters were almost identical. How-
ever, the accuracy of the overfishing determination from 
case 3 fluctuated at levels under 100% for a longer period 
than that from case 0, although the true F values were not 
always close to the true FMSY (Fig. 7). This result indicates 
that incorporating stochastic sets of annual deviations in 
F induces sensitivity in the determination of overfishing, 
but the overall accuracy of the overfishing determination 
was still high with values often exceeding 94%. The accu-
racy of determining an overfished status was still 100% 
over time for all EMs.

Fishing mortality patterns The EMs produced low MARE 
in estimates of key parameters when patterns of F were 
different. The variability of RE in all 4 EMs was consis-
tently higher than in case 0 when the F pattern was a 

constant Flow, indicating that the estimates had greater 
bias when there was not much contrast between initial F 
and the later period of constant F (case 5 versus case 0 
in Table 6 and Figures 5 and 6). When there was a fair 
amount of contrast in F across time, the MARE among 
the 4 models remained similar in trends and magnitude. 
Although accuracy in determining an overfished status 
was 100% for all EMs, the accuracy in determining over-
fishing status was consistently lower compared with that 
for other cases when F fluctuated around FMSY (case 6 in 
Figure 7).

Selectivity patterns When both the fishing fleet and sur-
vey had double- logistic selectivity, the estimated median 
selectivity at age over 100 iterations from all 4 EMs was 
close to the true selectivity at age. The estimates of key 
parameters from all EMs were accurate compared with 
the true values from the OM (Table 5). The range of RE 
in key estimates became wider when the fishery and sur-
vey had double- logistic selectivity (case 8 versus case 0 
in Table 6, Figure 6, and Supplementary Figures 3–8), 
especially in the early years. For years when fishing was 
not near FMSY, the overfishing status determination was 
100% accurate, and the overfished status determination 
was 100% accurate over all years.

Multiple surveys The differences in key parameter esti-
mates between case 9 and case 0 were not considerable 
(Fig. 5). However, the range of RE in SSB, recruitment, F, 
relative SSB, and relative F became narrower after an addi-
tional survey index with the same level of observation error 

Table 5

Median absolute relative error (%) for the model parameters unfished recruitment (R0) and 
catchability of survey abundance index (q) from each simulated case used to compare the 4 
age- structured stock assessment models used most commonly in the United States: the Assess-
ment Model for Alaska (AMAK), the Age Structured Assessment Program (ASAP), the Beaufort 
Assessment Model (BAM), and Stock Synthesis (SS).

Case

R0 q

AMAK ASAP BAM SS AMAK ASAP BAM SS

Case 0 3.05 3.87 3.86 3.88 1.60 1.67 1.68 1.63
Case 1 5.69 5.72 5.68 5.80 2.27 2.26 2.24 2.19
Case 2 8.10 8.63 8.60 8.79 2.14 2.14 2.14 2.14
Case 3 2.81 2.68 2.67 2.72 1.92 1.99 1.98 1.93
Case 4 3.25 3.20 3.18 3.18 1.77 1.87 1.87 1.83
Case 5 4.45 4.30 4.28 4.20 4.09 3.88 3.85 4.11
Case 6 3.40 3.73 3.71 3.57 1.99 1.99 2.02 2.05
Case 7 3.97 3.53 3.17 3.12 1.96 2.15 2.04 2.11
Case 8 4.15 3.94 3.84 3.72 3.56 3.44 3.88 3.42
Case 9 3.15 2.97 2.95 2.98 3.17 1.79 1.79 1.80 (survey1)
Case 9 3.15 2.97 2.95 2.98 3.28 1.61 1.62 1.73 (survey2)
Case 10 7.83 9.08 9.26 9.28 1.86 1.95 1.92 1.88
Case 11 7.13 8.77 8.74 8.81 2.06 2.04 2.06 2.01
Case 12 3.04 2.96 2.95 2.67 2.20 2.19 2.22 2.14
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was included in case 9 (Table 6, Fig. 6, Suppl. Figs. 4–8). 
Results were as expected, given that there was no reduction 
in bias but an increase in precision. The accuracy of deter-
mining overfishing and overfished status shared similar 
trends compared with case 0 (Fig. 7).

Bias adjustment of recruitment The accuracy of parameter 
estimates was high if, in the EMs, the conversion function 
was used before estimation when a bias adjustment of 
recruitment was incorporated in the OM. Median relative 
errors were close to zero for MSY- based reference points 
when the conversion function was used in the BAM and SS 
(Fig. 5). With ad hoc adjustment (i.e., after estimation) in 
the AMAK and ASAP, the median relative errors in MSY- 
based reference points were reduced (Fig. 5, Suppl. Figs. 1 
and 2). Estimated SSB, recruitment, and F remained highly 
accurate over time (Fig. 6). The trends in accuracy of stock 
status determination were similar to the trends from case 0 
(Fig. 7).

Discussion

Similarity of estimates from the 4 models

In this study, the 4 stock assessment models, or EMs, pro-
duced similar estimates, an outcome that can be attributed 
to the fact that the models share similar mathematical 
and statistical attributes. Prior to our study, this suppo-
sition was expected to be true but was unverified. Under 
cases that are associated with different recruitment vari-
ability levels, process error in F, diverse patterns of F, var-
ious selectivity shapes, and multiple surveys, the median 
relative errors in key parameters remained low, and the 
variability of the REs were similar among the EMs. Of the 
5 cases described here, the level of recruitment variability 
caused the most change in RE patterns. The range of REs 
in all 4 EMs became wider when recruitment variability 
increased and remained stable over other cases. Further-
more, the temporal trend in the accuracy of overfishing 
and overfished status determination was the same among 
the 4 EMs.

These findings indicate that the 4 EMs produce simi-
lar estimates when the same data are analyzed and the 
EMs are configured similarly. Nevertheless, the results 
would differ if different options of features are used for 
different EMs, depending on the stock- specific data and 
issues that assessment analysts must face. In practice, 
stock assessment analysts may make different configu-
ration choices given the same data and the same model. 
We encourage analysts to clearly document the assump-
tions made in an assessment, especially when the anal-
ysis involves comparisons among multiple models. In 
addition, model misspecification may result from differ-
ent assumptions about parameters, governing processes, 
and statistical properties that can have a substantial 
effect on stock assessment results and subsequent man-
agement advice (Piner et al., 2011; Maunder and Piner, 
2015). More simulation- estimation studies could be done 
to quantify the effect of model misspecification on model 
estimates.

The fundamental differences in mathematical and sta-
tistical attributes found in this study could also serve as a 
starting point for diagnostics that can be used to identify 
the source of variation. In addition to confirming similar 
estimates, we identified that different approaches of com-
puting initial numbers at age induced differences in esti-
mates, especially those associated with R0 and MSY- based 
reference points. Estimates among the 4 EMs also differed 
if bias adjustment of recruitment was not addressed care-
fully. The effects of the initial numbers at age setup and 
recruitment bias adjustment on EM performance are dis-
cussed in detail in subsequent sections. We also noticed 
that determining the overfishing status was not 100% 
accurate across time because, in the binary classification 
applied in our study, the overfishing determination was 
based on the maximum likelihood estimate. Use of the 
estimated model uncertainty interval may better capture 
the true overfishing determination. Aggregating this 
binary determination over years from one EM and using 

Figure 4
Box plots of true and estimated unfished recruitment (R0) 
from 4 age- structured estimation models under (A) case 0 
and (B) case 12. The models, evaluated in this study for 
use in stock assessments, include the Assessment Model 
for Alaska (AMAK), the Age Structured Assessment Pro-
gram (ASAP), the Beaufort Assessment Model (BAM), and 
Stock Synthesis (SS). The horizontal gray dashed line rep-
resents the true R0 under the 2 cases. For case 0, which is 
the null case, initial equilibrium recruitment was lowered 
from the unfished recruitment level as determined by an 
initial equilibrium fishing mortality rate. For case 12, the 
initial condition was equal to the unfished equilibrium 
population. The upper and lower parts of each box repre-
sent the first and third quartiles (the 25th and 75th per-
centiles), and the thick horizontal line is the median. The 
whiskers extending above and below the box correspond to 
1.5 times the interquartile range.
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Table 6

Median absolute relative error (%) in maximum sustainable yield (MSY), fishing mortality rate that corresponds to MSY 
(FMSY), spawning stock biomass at MSY (SSBMSY), SSB, recruitment (R), fishing mortality rate (F), relative SSB, and relative 
F for each case used to compare the 4 age- structured stock assessment models evaluated in this study: the Assessment Model 
for Alaska (AMAK), the Age Structured Assessment Program (ASAP), the Beaufort Assessment Model (BAM), and Stock 
Synthesis (SS).

Case

MSY FMSY SSBMSY

AMAK ASAP BAM SS AMAK ASAP BAM SS AMAK ASAP BAM SS

Case 0 3.25 4.10 4.07 3.84 1.04 1.04 1.04 1.04 3.13 3.91 3.95 3.92
Case 1 5.47 5.83 5.80 5.77 1.04 1.04 1.04 1.04 5.69 5.68 5.62 5.67
Case 2 7.90 9.02 8.97 9.08 1.04 1.04 1.04 1.04 8.17 8.48 8.42 8.78
Case 3 3.06 2.76 2.74 2.81 1.04 1.04 1.04 1.04 3.03 2.67 2.76 2.65
Case 4 3.41 3.17 3.12 3.20 1.04 1.04 1.04 1.04 3.33 3.28 3.16 3.30
Case 5 4.57 4.43 4.42 4.09 1.04 1.04 1.04 1.04 4.63 4.28 4.37 4.08
Case 6 3.13 3.39 3.36 3.44 1.04 1.04 1.04 1.04 3.32 3.66 3.63 3.51
Case 7 4.06 3.55 3.40 3.28 1.04 1.04 1.04 1.04 4.08 3.32 3.26 3.10
Case 8 4.07 4.02 3.98 3.62 1.22 1.22 1.22 1.22 3.96 3.78 3.79 3.75
Case 9 3.22 3.24 3.23 3.24 1.04 1.04 1.04 1.04 3.14 3.00 2.88 2.92
Case 10 7.68 9.70 9.75 9.50 0.98 0.98 0.98 0.98 7.99 9.52 9.50 9.27
Case 11 7.19 9.10 9.12 9.17 0.98 0.98 0.98 0.98 6.83 8.55 8.56 8.77
Case 12 3.09 3.01 2.97 2.57 1.04 1.04 1.04 1.04 3.13 2.92 3.05 2.59

Case

SSB R F

AMAK ASAP BAM SS AMAK ASAP BAM SS AMAK ASAP BAM SS

Case 0 2.11 2.11 2.12 2.07 3.82 3.80 3.80 3.81 2.74 2.67 2.67 2.63
Case 1 1.93 2.03 2.03 2.00 3.87 3.94 3.93 3.92 2.46 2.50 2.49 2.49
Case 2 2.08 2.07 2.07 2.06 4.17 4.17 4.17 4.17 2.58 2.63 2.63 2.58
Case 3 2.01 2.09 2.09 2.07 3.72 3.75 3.74 3.75 2.42 2.44 2.45 2.40
Case 4 1.75 1.77 1.76 1.76 3.83 3.82 3.82 3.80 2.34 2.35 2.35 2.27
Case 5 4.00 3.92 3.94 3.95 4.78 4.79 4.77 4.71 4.21 4.23 4.25 4.22
Case 6 2.07 2.13 2.13 2.13 3.87 3.90 3.92 3.91 2.49 2.61 2.62 2.60
Case 7 1.73 1.98 1.79 1.77 3.72 3.85 3.64 3.62 2.37 2.72 2.50 2.48
Case 8 3.62 4.93 5.95 4.18 4.15 4.20 4.25 4.15 3.45 4.66 4.92 4.04
Case 9 1.68 1.53 1.54 1.51 3.19 3.20 3.21 3.19 2.01 1.87 1.87 1.84
Case 10 2.01 2.04 2.04 2.03 4.25 4.26 4.23 4.27 2.65 2.68 2.64 2.64
Case 11 2.02 2.02 2.02 2.00 4.17 4.13 4.13 4.15 2.59 2.58 2.58 2.55
Case 12 2.01 2.05 2.05 1.95 3.81 3.79 3.79 3.86 2.61 2.61 2.63 2.47

Case

Relative SSB Relative F

AMAK ASAP BAM SS AMAK ASAP BAM SS

Case 0 3.73 4.29 4.31 4.30 2.06 2.10 2.03 2.01
Case 1 5.99 6.39 6.39 6.51 2.06 2.04 2.01 2.02
Case 2 8.19 9.83 9.75 9.95 2.16 2.22 2.12 2.17
Case 3 3.67 3.28 3.25 3.19 2.08 2.17 2.14 2.13
Case 4 3.80 3.80 3.80 3.69 1.85 1.90 1.86 1.87
Case 5 3.40 3.24 3.20 3.18 3.98 4.00 3.92 3.96
Case 6 3.68 4.44 4.45 4.31 2.21 2.38 2.26 2.27
Case 7 4.44 4.50 4.14 4.13 1.96 2.26 2.00 1.98
Case 8 3.98 5.50 5.97 4.99 3.29 4.40 4.96 3.81
Case 9 3.43 3.46 3.45 3.46 1.76 1.74 1.68 1.69
Case 10 8.25 9.73 9.71 10.14 2.06 2.06 2.06 2.09
Case 11 7.83 9.43 9.41 9.77 2.08 2.06 2.07 2.09
Case 12 3.49 3.51 3.52 3.04 2.13 2.08 2.08 2.01
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receiver operating characteristic curves may also help 
summarize the overall degree of agreement (e.g., true pos-
itive and false negative classifications, accuracy rate, error 
rate, and sensitivity) between estimates and true status 
(Connors and Cooper, 2014; Cortés and Brooks, 2018).

Examination of the value of the code comparison process

This study is unique among other model comparison stud-
ies because a code comparison process was included before 

the simulation- estimation process. Identifying common fea-
tures among the EMs and comparing source code can 
reduce contamination by parameter misspecification or 
analyst effect if the parameters are fixed in a comparison 
study. Although we estimated selectivity in this comparison 
study, during the early stage of the study, we fixed the selec-
tivity at the true values. It is important to carefully apply 
fixed values because, in the 4 models, simple logistic selec-
tivity was defined with parameters that had the same name 
(e.g., slope) but different interpretations. Otherwise, 

Figure 5
Relative error (RE) in maximum sustainable yield (MSY), fishing mortality rate that corresponds to MSY 
(FMSY), and spawning stock biomass at MSY (SSBMSY) for 4 age- structured estimation models under cases 
0–12 (C0–C12). The models, evaluated in this study for use in stock assessments, include the Assessment 
Model for Alaska (AMAK), the Age Structured Assessment Program (ASAP), the Beaufort Assessment 
Model (BAM), and Stock Synthesis (SS). The bar is equivalent to the whisker of a box plot. The left bar rep-
resents the smallest value larger than 1.5 times the interquartile range below the first quartile. The right 
bar represents the largest value smaller than 1.5 times the interquartile range above the third quartile. The 
symbols in the center represent median RE.
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differences in estimates might have been forced unwit-
tingly, because of parameter misspecification.

In addition to differences in selectivity parameterization, 
we also identified differences in how age is modeled in the 
EMs. If ages modeled in SS start with age 0 (the default) 
and not age 1, a mismatch between SS and the other EMs 

would have been induced. In this case, the mismatch would 
manifest only in scaling of recruitment to account for natu-
ral mortality at age 0. Therefore, identification of common 
features and comparison of source codes are particularly 
important in cross- testing a set of assessment models. The 
comparison framework developed (Fig. 1) and the approach 

Figure 6
Violin plot of relative error (RE) across years and iterations for spawning stock biomass (SSB), 
recruitment (R), fishing mortality rate (F), SSBratio (ratio of SSB to SSB at maximum sustainable 
yield [MSY]), and Fratio (ratio of F to F at MSY) for each of 4 estimation models under cases 0–12 
(C0–12). The models, evaluated in this study for use in stock assessments, include the Assessment 
Model for Alaska (AMAK), the Age Structured Assessment Program (ASAP), the Beaufort Assess-
ment Model (BAM), and Stock Synthesis (SS).
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to identification of common features used (Table 2) in 
this study could be applied to multi- model comparisons 
in other studies. They might also prove useful in ensem-
ble modeling, which is now gaining traction in fisheries 
science as a means to combine the estimates from multi-
ple stock assessment methods (Brodziak and Legault, 
2005; Brodziak and Piner, 2010). Ensemble modeling 
loosens the assumptions associated with selecting a sin-
gle “best” assessment model (Rosenberg et al., 2018). 
Stewart and Martell (2015) proved that ensemble 
 modeling benefits from guidelines for developing sets of 
candidate models. The steps developed in this study to 
identify common features across alternative models may 
facilitate selection of plausible models and identification 
of the sources of differences among estimates before con-
structing an ensemble.

Examination of similarity in initial numbers at age

The approach used in each EM to estimate the initial num-
bers at age depends on 3 factors: the selected initial year; 
the level of fishing, if any, that typically occurred prior to 
that initial year; and the availability of age data beginning 
with the initial year, such that the initial non- equilibrium 
age composition can be estimated. In principle, if informa-
tive age data are available across years, the EM results 
should not be dependent on the choice of the initial year 
because the estimated age composition in the initial year 
could have been alternatively estimated by starting the 
model at an earlier year and estimating the age composi-
tion for that year as projected from earlier recruitments. 
Also, when age composition data from the fleet and survey 
are available in the first year, the numbers at age for the 

Figure 7
Accuracy (%) of determining overfishing status over time for each of 4 estimation models under cases 0–12 
(C0–C12). Overfishing status is determined by dividing fishing mortality rate (F) by Flimit, which was set to 
the F that corresponds to maximum sustainable yield. The models, evaluated in this study for use in stock 
assessments, include the Assessment Model for Alaska (AMAK), the Age Structured Assessment Program 
(ASAP), the Beaufort Assessment Model (BAM), and Stock Synthesis (SS).



Li et al.: A comparison of 4 age-structured stock assessment models 165

population can be estimated directly as parameters. In all 
4 EMs, this feature of estimating the initial numbers at 
age is implemented by estimating the initial age compo-
sition as deviations from an equilibrium age composition. 
The level of recruitment that anchors the equilibrium age 
composition is calculated by using the spawner–recruit 
relationship. In other words, the initial equilibrium 
recruitment is lowered from the unfished recruitment 
level by an initial equilibrium F. However, in the AMAK, 
the initial equilibrium stock size is treated independently 
of historical fishing F because it typically is used in situa-
tions where this value would be negligible.

In this study, results from the comparison between 
case 0 and case 12 indicate that the AMAK, which does not 
specify the initial F, will scale the R0 downwards to match 
the numbers at age 1 in the initial year and, consequently, 
the EM will produce lower MSY and SSBMSY compared 
with the true values. The magnitude of RE will increase 
when initial F becomes higher.

This study was not designed to compare the perfor-
mance of EMs under different initial population condi-
tions, and the initial F and recruitment variability were 
fixed at low levels in cases 0 and 12. The initial numbers 
at age in year 1 may be quite different from those for the 
unfished equilibrium populations, especially when fish-
ing occurred many years prior to the first year of data 
or with large variability in recruitment. When fishery or 
survey composition data are available near the start of 
commercial fishing, the estimates of unfished condition 
or stock status may accurately reflect the true condi-
tions when initial equilibrium stock size is treated inde-
pendently of historical fishing F in an EM. In addition to 
having this configuration option, the ASAP, BAM, and SS 
allow the initial numbers at age to be controlled through 
different processes (Legault and Restrepo, 1999; Methot 
and Wetzel, 2013; Williams and Shertzer, 2015). Future 
work on assessment model development should consider 
which options are most accurate and efficient for comput-
ing initial numbers at age.

Spawner- recruit parameters: median- unbiased or 
mean- unbiased

The results from cases 10 and 11 have clear implications 
for bias adjustment of recruitment. First, we identified 
the fundamental differences between 2 bias adjustment 
methods (Table 4, Suppl. Table 3). In the BAM, median- 
unbiased spawner- recruit parameters are used, and in 
SS mean- unbiased parameters are used. Therefore, the 
inputs and outputs of R0 and h from the 2 models are com-
parable only after conversion, for example, by using the 
function introduced here (Equations 11–14). These find-
ings highlight the importance of clarifying in assessment 
reports and meta- analyses whether estimates of spawner- 
recruit parameters correspond to geometric mean or arith-
metic mean curves of recruitment and the significance of 
the need for developing functions for conversion of mean- 
unbiased parameters to median- unbiased parameters 
(and vice versa) for other spawner- recruit models (e.g., 

Ricker spawner- recruit model; Hilborn, 1985). In various 
studies, bias adjustment of recruitment has been imple-
mented differently, but no study has clearly demonstrated 
the strengths and weaknesses of different bias adjustment 
methods (Walters, 1990; Chen, 2004; Yin and Sampson, 
2004; Methot and Taylor, 2011; Subbey et al., 2014). We 
recommend further work on bias adjustment to derive 
conversion functions for other spawner- recruit models 
and to provide clear guidance on which estimation process 
(mean- unbiased or median- unbiased) might be preferred 
under different situations.

Second, we established that ad hoc bias adjustment of 
recruitment can be implemented in EMs that do not have 
the bias adjustment feature (Suppl. Fig. 2). The ad hoc 
adjustment affects recruitment and fishery management 
parameters, such as MSY- based reference points. In this 
study, we found that the AMAK and ASAP produced esti-
mates of R0 and MSY- based reference points that are sim-
ilar to the true values, if the estimates from those models 
were adjusted from a median- unbiased relationship to a 
mean- unbiased relationship.

Limits and future research

In addition to the specific recommendations coming from 
the issues found in this study, we think the comparison 
design could be extended to address other specific needs, 
such as quantifying the value of estimation of time- varying 
parameters as random effects (e.g., numbers at age, selec-
tivity, and F), estimation of spawner- recruit parameters, 
data weighting, spatial structure, and other attributes 
to the performance of EMs. Growth was assumed to be 
known in this study because not all EMs have the capa-
bility to estimate growth. We can further compare EMs 
with more complicated cases, such as those that involve 
estimating growth within the assessments or using lower 
quality weight- at- age data. It would also be useful to con-
duct comparisons across life history patterns (e.g., pat-
terns of long- lived versus short- lived species or patterns 
of demersal versus pelagic species), but further work on 
development of more complex OMs for simulation testing 
would be required. Punt et al. (2020) outlined essential 
features that should be considered for the next- generation 
stock assessment model, and they highlighted the impor-
tance of simulation testing in evaluation of estimation 
performance. Continued development of the OM used in 
this study through addition of essential features would 
result in an OM that can serve as an independent test 
bed to validate existing models as well as next- generation 
stock assessment models.

The comparison framework used in our study focused 
on age- structured models. Other age- structured stock 
assessment models that were not included in this study 
can be evaluated by using the comparison framework and 
creating connection files that automatically write input 
files, run the model, and save standard outputs. In addi-
tion, the comparison framework can be further applied 
to include other types of stock assessment models (e.g., 
surplus production, length- based, and catch- only models). 

https://doi.org/10.7755/FB.119.2-3.5s4
https://doi.org/10.7755/FB.119.2-3.5s5
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Having more comparison practices that involve both next- 
generation stock assessment models and existing models 
(inside and outside the United States) will enhance the 
communication among model developers and users, facili-
tate the interpretation of comparison results among mod-
els, and improve future assessments.

Conclusions

This study was designed to verify if the assessment mod-
els developed in different regions of the United States can 
produce similar estimates when given the same input 
data and configured similarly. However, it had a second-
ary objective of informing development of next- generation 
models (Punt et al., 2020). It is clear that all 4 models 
tested in this study provide similar and accurate esti-
mates of quantities of interest under the tested cases. This 
outcome was expected given that the 4 EMs share similar 
mathematical and statistical attributes and that the sim-
ulated data were very informative. Nevertheless, it was 
expected also because we carefully evaluated the conver-
sions among models to ensure that model configurations 
were similar to each other and model outputs were com-
parable. For future model comparison work or ensemble 
work, we recommend comparison of key features in source 
code before any multi- model analysis is done in order to 
identify differences in parameterization that could be 
misleading when results are compared (e.g., selectivity 
function parameters). We also recommend minimizing 
the variations of parameterizations for the same feature 
during development of next- generation stock assessment 
models. Standardized inputs and outputs for common 
parameters would allow easy comparisons of results from 
different models.

In this study, we have identified the sources of slight 
differences among model estimates under different cases. 
The differences are associated with computation of ini-
tial numbers at age and bias adjustment of recruitment. 
Improved insights on these key differences should help the 
development of next- generation stock assessment models. 
Key potential areas for future improvements include bet-
ter clarification of terminology used in assessment reports, 
use of the conversion function developed in this study to 
convert between median- unbiased and mean- unbiased 
spawner- recruit parameters in stock assessment, use of 
the conversion function in other meta- analyses to ensure 
the inputs of meta- analysis are comparable, and devel-
opment of guidance on which bias adjustment method is 
preferable under which situations.
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