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Abstract—Abundance indices from 
fishery- independent surveys are pre-
ferred in stock assessments for their 
robust scientific designs that minimize 
uncertainty and bias. When sampling 
does not adhere to the design, research-
ers employ techniques such as impu-
tation or standardization to improve 
accuracy and reduce bias. We examined 
2 methods for adjusting for incomplete 
sampling within the Coastal Trawl 
Survey (CTS) of the Southeast Area 
Monitoring and Assessment Program—
South Atlantic for 3 species commonly 
encountered in survey sampling, the 
Atlantic croaker (Micropogonias undula-
tus), bluefish (Pomatomus saltatrix), and 
white shrimp (Litopenaeus setiferus): 
design- based imputation of missing 
data and standardization through the 
delta- generalized- linear- model approach. 
Additionally, we determined the effect 
of modifying the seasonal component of 
the survey design through retrospective 
simulation. For all 3 species, standard-
ization improved precision in annual 
abundance estimates relative to val-
ues estimated with the design- based  
method. When a stratum missed in sam-
pling overlapped with an area or time 
of high variability for a species (e.g., 
2019), standardization did not improve 
precision over the design- based method. 
Results from examination of the effects 
of dropping entire seasons, because of 
funding or logistical challenges, indicate 
that rotating which season is dropped 
was the best approach to balancing 
characteristics of each species. Over-
all, we recommend the standardization 
approach for accounting for missing 
data within the CTS time series.
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Generally, the purpose of fishery- 
independent surveys is to provide pop-
ulation data to stock assessments to 
reduce uncertainty in stock statuses 
and management measures informed 
by the stock assessments (Walters and 
Pearse, 1996). Reduction in uncertainty 
relies on fishery- independent surveys 
having robust scientific designs that 
are not influenced by management 
or fishing practices (Cochran, 1977; 
Williams and Carmichael1). To reduce 
assessment uncertainty, considerable 
effort has been applied to developing 
best practices for minimizing error in 
abundance indices derived from sur-
vey data (Walters, 2003; Maunder and 
Punt, 2004; Shelton et al., 2014). Addi-
tionally, much work has been done 
to address bias in index calculation 
due to spatial variability in sampling 
or fishing and to ensure that effort 
is defined appropriately (Campbell, 
2004, 2015). Precision can be gained in 

1 Williams, E. H., and J. Carmichael (eds.). 
2009. South Atlantic fishery indepen-
dent monitoring program workshop final 
report, 85 p. South Atl. Fish.  Manag. 
Counc. and Natl. Mar. Fish. Serv., South-
east Fish. Sci. Cent., Beaufort, NC. 
[Available from  Southeast Fish. Sci. 
Cent., Natl. Mar. Fish. Serv., 101 Pivers 
Island Rd., Beaufort, NC 28516.]

fishery- independent surveys either by 
increasing sampling effort or by using 
a stratified- random sampling design 
to optimize effort allocation (Xu et al., 
2015). However, the realities of fund-
ing, weather, and vessel reliability 
and availability more often than not 
result in decreased or incomplete 
sampling effort decreasing precision 
of a survey. In particular, changing 
environmental conditions and fund-
ing concerns that affect completion of 
surveys are highly pervasive issues 
among surveys, and many survey 
programs are facing hard decisions 
regarding reducing effort while still 
providing comparable time series. In 
the absence of increased precision 
from a priori design, researchers may 
turn to analytical tools.

Stock assessment models often rely 
on the inclusion of catch rate time 
series (either fishery- independent or 
fishery- dependent) that are propor-
tional to population abundance (gener-
ally referred to as indices of abundance) 
(Francis, 2011). Often it is assumed 
that these time series are proportional 
to stock size (Hilborn and Walters, 
1992; Arreguín-Sánchez, 1996; Quinn 
and Deriso, 1999), on the basis of the 
sampling design, stability of catchabil-
ity, and consistency in trends among 
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indices of abundance (Quinn and Deriso, 1999). For an 
index of abundance to reflect stock size trends, the data 
must be collected according to a robust scientific design 
consistently through time. When deviations from the 
design occur, those deviations should be accounted for in 
some way. Standardizing catch data increases the accu-
racy of estimates (Walters, 2003; Maunder and Punt, 2004) 
and allows accounting for incomplete sampling during the 
time series. Typical statistical standardization techniques 
(e.g., generalized linear models or generalized additive 
models) provide the opportunity to quantify the effects of 

either sampling or environmental characteristics on esti-
mates of abundance and to essentially correct those esti-
mates for deviations in sampling or environmental 
conditions (Wilberg et al., 2009).

Off the Atlantic coast of the southeastern United 
States, fish, elasmobranch, and invertebrate species in 
nearshore, coastal waters are surveyed through fishery- 
independent sampling of the Southeast Area Monitor-
ing and Assessment Program—South Atlantic’s Coastal 
Trawl Survey (SEAMAP-SA CTS). Sampling of trawlable 
habitats through the CTS began in this region (Fig. 1) in 

Figure 1
Map of study area showing the stratum boundaries and locations of stations of the 
Coastal Trawl Survey of the Southeast Area Monitoring and Assessment Program—
South Atlantic where Atlantic croaker (Micropogonias undulatus), bluefish (Pomatomus 
saltatrix), and white shrimp (Litopenaeus setiferus) were sampled from 1990 through 
2019. Numbers are those assigned to strata. Stations are located in trawlable habitat 
from 4.6 to 9.1 m off the Atlantic coast of the southeastern United States.
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1986, and since 1990 the CTS has monitored abundance 
trends in shallow depths (<9.1 m) using a standardized 
stratified- random sampling design. Each year, the num-
ber of stations allocated for sampling is determined by 
available funding, but the spatial and temporal portions 
of the survey design have remained consistent over time. 
This consistency makes it possible for estimates based on 
catch rate time series from this survey to serve as indices 
of abundance for stock assessments.

Historically, the rates at which stations were missed 
were low, and the missed stations were generally spread 
out among strata instead of entire strata being missed. 
More recently, however, the CTS has experienced chal-
lenges to sampling all of the stations allocated for sam-
pling as a result of the increased frequency of weather 
conditions unsuitable for sampling (including prolonged 
periods of winds and sea states above sampling cut- offs 
and major hurricanes), damaged gear (caused by debris 
from river run- off following hurricanes and major rain 
events), logistical challenges (including low tidal ampli-
tude preventing departures), and mechanical failures 
making the aging vessel unavailable for sampling. In 
some seasons during 2018 and 2019, these challenges 
meant that entire strata were not sampled. Given these 
challenges, it has become more likely that annual abun-
dance estimates based on survey data from years with 
completely unsampled strata or high numbers of unsam-
pled stations will not be proportional to true abundance 
or will not index the same portion of the population as 
estimates based on data from other years with more com-
plete sampling of strata.

Herein, we present catch and effort time series for 
3 species of management interest commonly encountered 
in CTS sampling: the Atlantic croaker (Micropogonias 
undulatus), bluefish (Pomatomus saltatrix), and white 
shrimp (Litopenaeus setiferus). These species have a 
variety of distributions (spatially and temporally) (senior 
author, unpubl. data), and incomplete sampling may 
affect abundance estimates in different ways. In light of 
recent difficulties completing CTS sampling, we present 
annual abundance for these species in 2 ways, a nominal, 
design- based estimate and a standardized estimate, to 
assess if these time series need correcting through stan-
dardization because of incomplete sampling. In addition, 
we provide results of our examination of the effects of 
sampling and environmental covariates on the standard-
ized estimate of abundance to identify potential drivers 
of abundance and the need for correction for each spe-
cies. Because the challenges for completing survey sam-
pling as designed are expected to continue, changes to 
the survey design, such as dropping a sampling season, 
are under consideration. To determine the effects of these 
potential design modifications on abundance estimates, 
we also conducted retrospective simulations on the stan-
dardized indices of abundance for all 3 species. On the 
basis of these analyses, we provide a recommendation on 
which estimate is most appropriate for use as an index 
of abundance and on whether there is a preferred design 
modification strategy.

Materials and methods

Study design and gear

Sampling for the CTS, a fishery- independent research 
program, was conducted by the South Carolina Depart-
ment of Natural Resources (SCDNR) in coastal Atlantic 
waters off the southeastern United States between Cape 
Hatteras, North Carolina, and Cape Canaveral, Florida 
(Fig. 1). Consistent sampling methods were in place from 
1990 through 2019 and were used to target the full spa-
tial range in each of 3 seasons: spring (April and May), 
summer (July and August), and fall (September and 
November). Trawl surveys were conducted at randomly 
selected stations from a pool of stations within 24 strata 
based on latitude and depth (Fig. 1) between the inshore 
4.6- m depth contour and the offshore 9.1- m depth contour. 
To reduce variability of the data, the method of allocat-
ing stations was changed in 2001 from proportional allo-
cation (based on the total surface area of each stratum) 
to optimal allocation (Thompson, 1992), with higher effort 
allocated to strata with historically higher variability and 
with the number of stations allocated within each stra-
tum determined anew each year. The total number of allo-
cated stations per season has ranged between 78 and 112, 
depending on funding and other survey priorities, but the 
spatial footprint of the survey has remained consistent.

Sampling was conducted during daylight hours 
(between 1 h after sunrise to 1 h before sunset) on board 
the R/V Lady Lisa, a 22.9- m wooden- hulled, double- 
rigged St. Augustine shrimp trawler owned and oper-
ated by the SCDNR Marine Resources Division, by using 
a pair of 22.9- m mongoose- type Falcon trawl nets (Beau-
fort Marine Supply Inc.2, Beaufort, SC) without turtle 
excluder devices (Willis et al., 2015; Zimney3). The body 
of the trawl net was constructed of #15 net twine with 
47- mm stretch mesh, and the codend was constructed of 
#30 net twine with 41- mm stretch mesh. At each station, 
the pair of nets were towed for 20 min, excluding wire- 
out and haul- back times, with a target speed of 1.3 m/s, 
relative to the bottom.

The catch from each net was processed independently 
and assigned a unique collection number. The contents of 
each net were sorted to species (with limited exceptions 
sorted to genus or family only), and the total biomass and 
number of individuals were recorded. When trawl nets 
contained high volume catches, selected species were 
removed (e.g., endangered species and species that posed 
a risk to staff during handling), the remaining net con-
tents were placed into shrimp baskets and weighed, and 
a randomly selected basket was sorted and processed as 
described above. Abundance and biomass data for each 

2 Mention of trade names or commercial companies is for identi-
fication purposes only and does not imply endorsement by the 
National Marine Fisheries Service, NOAA.

3 Zimney, A. 2021. SEAMAP-SA Coastal Trawl Survey data and 
sample collection methods. Southeast Data, Assessment, and 
Review SEDAR78-WP01, 4 p. [Available from website.]

http://sedarweb.org/sedar-78-wp01-sa-coastal-trawl-survey-data-and-sampling-collection-methods
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species were then used to estimate the total abundance 
and biomass of each species in the full catch by using the 
ratio of the weight of subsampled catch placed in baskets 
to the total weight of the full catch. When large numbers of 
an individual species occurred in the processed catch, all 
individuals of that species were weighed, and then a hap-
hazardly selected subsample was counted (subsamples 
were approximately 30–60 individuals). The total number 
of individuals of a species in the catch was then estimated 
by using the ratio of the weight of the processed species 
subsample to the total species weight.

Hydrographic data, measurements of surface and bot-
tom temperature and salinity, were logged at each sta-
tion, with a Van Dorn water sampler (Eijkelkamp North 
America Inc., Wilmington, NC) in 1990–1992, an SBE 19 
SeaCAT Profiler CTD in 1993–2005 and 2017 ( Sea-Bird 
Scientific, Bellevue, WA), or an SBE 19plus SeaCAT 
 Profiler CTD in 2006–2019 (V1 or V2, Sea-Bird Scientific). 
From these CTD casts, we extracted the deepest measure-
ment of temperature and salinity, as long as it was within 
1 m of the bottom, to use in analyses (hereafter, these mea-
surements are referred to as bottom temperature and bot-
tom salinity).

Data and nominal abundance estimation

The data available for use in abundance estimation 
included a unique collection number, date of deployment, 
season, tow duration (in minutes), stratum, station, lati-
tude, longitude, depth, bottom temperature, bottom salin-
ity, and the number of individuals and aggregate weight 
of each species captured. Data from the paired nets were 
pooled for analysis to form a standard unit of effort at 
each station sampled (a trawl tow). Estimates of abun-
dance were expressed as the number of individuals per 
hectare. Estimated area swept by a net was calculated by 
multiplying the expected average width of the net open-
ing (13.5 m), based on Stender and Barans (1994), by the 
distance in meters trawled and dividing the product by 
10,000 m2/ha. Then, the estimated area swept for each 
of the paired nets was combined. If area swept could not 
be accurately estimated (e.g., if a U- turn was executed to 
avoid entanglement with a gill net), data for that tow were 
omitted from analyses.

From 1990 through 2019, sampling was conducted at 
8403 of the 8568 allocated stations, and 24 strata were 
fully missed (Table 1, Fig. 1): 1 stratum (21) in fall 1990, 
2 strata (65 and 67) in spring 2013, 4 strata (37, 39, 65, and 
67) in spring 2018, 7 strata (29, 57, 59, 61, 63, 65, and 67) 
in fall 2018, 3 strata (63, 65, and 67) in spring 2019, and 
7 strata (21, 23, 25, 27, 63, 65, and 67) in fall 2019. Where 
entire strata were missed, the average long- term nominal 
abundance was calculated for each species in each stratum 
and season and imputed for the missing value as the nom-
inal abundance. In total, 58 trawl tows were excluded from 
analyses (Table 1). Nine tows were excluded because the 
area swept could not be accurately estimated, and 14 tows 
were eliminated because the tow duration was not equal 
to 20 min, indicating deviation from normal operations. 

Additionally, 35 tows were excluded from standardization 
because covariate information was missing.

Annual nominal abundance (A) was calculated by deter-
mining the sum of the number of individuals (individuals) 
caught per hectare (area swept) and dividing it by the total 
number of tows (t) for a given combination of stratum (st), 
season (se), and year (y):

∑=
=

A
individuals

areaswept
t .y

t,st,se,y

t,st,se,y
t 1

t
st,se,y

 

(1)

The nominal index of abundance was then normalized by 
dividing the annual nominal abundance by the overall mean 
abundance for the full time series, producing a value of rel-
ative abundance for each year. These values provide refer-
ence points for individual years in relation to the time series, 
with a value of 1 being the long- term mean.

In recent years (2015–2019), sampling for the CTS has 
not been completed at all of the allocated stations for the 
reasons described in the “Introduction.” Consequently, 
entire strata have been missed in some seasons primarily 
in the outer ranges of the study area where longer windows 
of suitable weather conditions are needed for travel and 
sampling (Table 1). Where an entire stratum was missed 
during a season, the long- term average nominal abundance 
was calculated for each stratum and season and imputed 
as a proxy for the nominal abundance of the missed stra-
tum for use in Equation 1 (Little and Rubin, 1987; Walters, 
2003). The long- term average was used rather than the 
average for the most recent years because using only data 
from recent years could have introduced bias if a stratum 
was sampled unusually early or late in a season (timing 
can vary by up to 6 weeks) or was missed in several of the 
recent years, as occurred for strata 65 and 67, for example.

Standardization with delta- generalized linear models

Because of incomplete seasonal and regional sampling cov-
erage, annual abundance was standardized among years 
through the “delta-GLM” method (Lo et al., 1992; Dick, 
2004; Ballenger et al.4), in which the standardized abun-
dance is produced by using the product of predicted val-
ues from 2 generalized linear models (GLMs). In the first 
GLM, species presence and absence is the response vari-
able, sampling or environmental covariates are included, 
and the binomial error distribution is used. In the second 
GLM, only data from the tows for which the species of 
interest were present are used, and the number per hect-
are is the response variable. Sampling and environmental 
covariates are also included in this second model, and this 
positive GLM is fitted with either the gamma or lognormal 
error distribution. Both gamma and lognormal error dis-
tributions were considered for the positive GLM because 
preliminary analyses found that both error distributions 

4 Ballenger, J., T. Smart, K. Kolmos, and M. Reichert. 2013. Trends 
in relative abundance of gray triggerfish in waters off the SE 
US based on fishery- independent surveys. Southeast Data, 
Assessment, and Review SEDAR32-DW04, 77 p. [Available from 
website.]

https://sedarweb.org/documents/s32dw04-trends-in-relative-abundance-of-gray-triggerfish-in-waters-off-the-se-us-based-on-fishery-independent-surveys
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Table 1

The number of stations allocated for sampling each year, the number of stations at which survey tows were completed, 
the survey strata with missed stations, and the number of stations with available data that were included in analy-
sis for standardization of indices of abundance for Atlantic croaker (Micropogonias undulatus), bluefish (Pomatomus 
saltatrix), and white shrimp (Litopenaeus setiferus) sampled during the Coastal Trawl Survey of the Southeast Area 
Monitoring and Assessment Program—South Atlantic off the Atlantic coast of the southeastern United States from 
1990 through 2019. Percent positive rates, the percentage of tows with species present, are given for each species in 
each year. An asterisk (*) indicates that a stratum was missed in at least one season in the given year.

Year

No. of 
stations 
allocated

No. of 
stations with 

complete 
sampling Strata with missed stations

No. of 
stations 

with data 
used

Percent positive rate (%)

Atlantic 
croaker Bluefish

White 
shrimp

1990 234 231 21*, 61 227 65.2 43.2 50.2
1991 234 233 61 231 64.5 36.8 47.6
1992 234 234 – 232 56.0 40.1 37.5
1993 234 234 – 233 50.2 30.0 39.9
1994 234 234 – 233 53.2 32.6 43.8
1995 234 234 – 232 59.1 47.8 51.7
1996 234 234 – 229 58.5 45.3 48.3
1997 234 234 – 232 43.8 30.5 47.2
1998 234 234 – 232 64.4 33.5 57.9
1999 234 234 – 233 44.6 35.6 55.8
2000 234 234 – 234 44.9 37.2 54.7
2001 306 306 – 295 63.0 46.9 44.6
2002 306 306 – 301 45.9 23.9 49.2
2003 306 306 – 304 63.1 46.1 43.5
2004 306 306 – 304 54.9 36.9 46.7
2005 306 306 – 301 58.5 28.8 39.5
2006 306 306 – 303 54.8 20.7 45.6
2007 306 306 – 305 54.2 27.8 55.6
2008 306 306 – 304 53.3 36.3 62.1
2009 336 336 – 335 60.9 40.9 51.6
2010 336 336 – 335 50.1 40.0 40.3
2011 336 336 – 336 59.8 38.1 44.9
2012 336 336 – 336 69.9 33.3 64.0
2013 306 295 63, 65*, 67* 294 83.1 39.7 62.4
2014 306 306 – 306 70.9 38.9 43.8
2015 336 329 35, 63, 65 329 71.4 35.0 50.2
2016 336 331 29, 33, 35, 39 330 70.0 31.5 64.2
2017 306 294 21, 31, 35, 59, 61, 63, 67 293 71.8 22.1 65.6
2018 306 228 21, 23, 25, 27, 29*, 31, 33, 35, 

37*, 39*, 41, 51, 53, 55, 57*, 
59*, 61*, 63*, 65*, 67*

228 78.9 23.2 60.5

2019 306 258 21*, 23*, 25*, 27*, 29, 31, 61, 
63*, 65*, 67*

258 84.9 24.0 69.0

Total 8568 8403 8345 61.1 34.8 51.3

fit data from the CTS for several species relatively well. 
Additionally, although other zero- inflated models have 
been used for standardization, the design of the CTS works 
well with the delta-GLM framework, and other models do 
not provide large improvements in variability for common 
species such as those examined here (Smart and Zimney5). 

5 Smart, T., and A. Zimney. 2021. Spanish mackerel indices of abun-
dance in U.S. South Atlantic waters based on the  SEAMAP- SA 
fishery- independent Coastal Trawl Survey. Southeast Data, 
Assessment, and Review SEDAR78-WP02, 22 p. [Available from 
website.]

Both error distributions were compared with the Akaike 
information criterion (AIC) in identical base models, and 
the one with the lowest AIC value was chosen as the model 
to use for analysis (Akaike, 1973).

Year, season, stratum, bottom temperature, and bottom 
salinity were included as model covariates. Season was 
defined as spring, summer, and fall as described earlier. 
Stratum was previously defined in the first paragraph of 
the “Materials and methods” section and in Figure 1 and 
served as a proxy for location (latitude and longitude). 
Observed values of bottom temperature and bottom salin-
ity were binned by using quantiles, with 5 bins for bottom 

https://sedarweb.org/documents/sedar-78-wp02-spanish-mackerel-indices-of-abundance-in-u-s-south-atlantic-waters-based-on-the-seamap-sa-fishery-independent-coastal-trawl-survey/
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temperature (<20.2°C, 20.2–23.0°C, 23.1–26.5°C, and 
≥26.6°C) and 2 bins for bottom salinity (<34.9 and ≥34.9). 
The data for these covariates were binned rather than left 
continuous for consistency with accepted index formula-
tions for the CTS in recent stock assessments (Smart and 
Boylan6). The addition of these covariates also is consis-
tent with recent standardization techniques used in many 
recent assessments in the region. The delta-GLM for all 
species started with the same base model:

Ay = Pr(y, se, st, temp, sal) × Ap(y, se, st, temp, sal), (2)

where Pr =  the likelihood of a species being present in year y,  
season se, stratum st, bottom temperature 
temp, and bottom salinity sal; and

Ap =  the abundance of a species when it is present 
in year y, season se, stratum st, bottom tem-
perature temp, and bottom salinity sal.

No interaction terms were included in the delta-GLM for-
mula for consistency with recent accepted index formula-
tions (Smart and Boylan6; Smart and Zimney5). Results of 
preliminary data analysis indicate no obvious interactive 
trends for any individual species examined in this study, 
and no multicollinearity was found for covariates included 
in the equation.

The covariates included in the final delta-GLM models 
(both the binomial GLM and positive GLM) were chosen 
by using AIC with backward selection, with the excep-
tion that year was always included in each model to allow 
an annual abundance value to be produced. The effect 
of covariates on standardized abundance estimates for 
each species was determined by using separate analy-
ses of variance (ANOVA) for both the presence of a given 
species and the abundance of that same species esti-
mated with model covariates as fixed factors. The final 
delta-GLM standardized abundance index for each spe-
cies is the product of the mean responses from the linear 
predictors of year and any selected covariates from the 
2 GLMs. Jackknifing was used to determine coefficients 
of variation, standard error, and standard deviations for 
each delta-GLM analysis. Residual and quantile- quantile 
(Q-Q) plots were used as diagnostic tools to determine 
the fit of the models. All analyses were performed in R, 
vers. 4.1.1 (R Core Team, 2021).

The delta-GLM used in this study was based primarily 
on code adapted from Dick (2004). As with the nominal 
index, the delta-GLM standardized index was normalized 
by dividing the annual standardized abundance by the 
overall mean standardized abundance for the time series, 
with a value of 1 being the mean for the time series. Nom-
inal abundance calculations and delta-GLM analysis were 
performed for 3 species of management interest: the Atlan-
tic croaker, bluefish, and white shrimp. Because these spe-
cies also have generally been commonly caught in tows 

6 Smart, T. I., and J. Boylan. 2013. King mackerel index of abun-
dance in coastal US South Atlantic waters based on a fishery- 
independent trawl survey. Southeast Data, Assessment, and 
Review SEDAR38-DW-11, 39 p. [Available from website.]

over the full length (1990–2019) of the CTS time series, 
their distributions and abundances lend themselves to the 
analyses outlined herein. Over the period of the CTS time 
series, the Atlantic croaker was often the most abundant 
species caught during CTS sampling annually, having 
widespread spatial and temporal distributions. Bluefish 
primarily were caught in northern strata in spring and 
fall. Given the recent sampling challenges during these 
seasons, estimates of the abundance of bluefish have the 
potential to be heavily affected by incomplete sampling. 
The white shrimp was another widely distributed species, 
largely occurring from northern Florida to central North 
Carolina.

In addition to comparison of design- based and stan-
dardized indices, the effects of several potential survey 
design modifications were investigated for each species. 
Design modifications under consideration are primarily 
focused on dropping a season from sampling in any given 
year. Potential scenarios for this design change are per-
manently dropping a season (3 scenarios: spring, summer, 
or fall), rotating the season that is dropped each year, or 
randomly selecting a season to drop each year. We retro-
spectively applied these 5 scenarios to the raw data for 
the 3 species during the period 2014–2019 to investigate 
the effect of the design for years when sampling coverage 
was severely incomplete (i.e., in 2018 and 2019) or was 
complete or mostly complete (i.e., in 2014–2017). Once 
these scenarios were applied to the raw data, we ran the 
delta-GLM analysis again for the full time series and 
examined the standardized abundance estimates and 
variability for all 5 scenarios and for the current survey 
design that includes all seasons.

Results

All covariates (year, season, stratum, bottom temperature, 
and bottom salinity) were selected for inclusion by using 
the AIC for both the binomial and positive delta-GLMs for 
the Atlantic croaker, bluefish, and white shrimp. For all 
3 species the lognormal error structure had the lowest AIC 
value, indicating that it was the most appropriate error 
distribution to be used for the positive model.

Atlantic croaker

The Atlantic croaker was the most abundant species 
caught in CTS sampling, of the 3 species examined in this 
study. It was also the most common, occurring in 61% of 
all tows between 1990 and 2019 (Table 1). Atlantic 
croaker were distributed relatively evenly, both spatially 
and temporally, throughout the study area with speci-
mens caught in all seasons and strata (Fig. 2, A and B). 
Atlantic croaker generally were more abundant in sum-
mer than in spring and least abundant in fall. Although 
this species occurred in all strata, abundance of Atlantic 
croaker increased from the southern portion of the study 
area to the northern portion. Atlantic croaker were abun-
dant in a range of bottom temperatures but were more 

https://sedarweb.org/documents/s38dw11-king-mackerel-index-of-abundance-in-coastal-us-south-atlantic-waters-based-on-a-fishery-independent-trawl-survey/


Figure 2
Nominal abundance of Atlantic croaker (Micropogonias undulatus), by (A) season, (B) stratum, (C) bottom tempera-
ture, and (D) bottom salinity, based on data from sampling off the Atlantic coast of the southeastern United States 
from 1990 through 2019, with design-based imputation of missing values. (E) Nominal and standardized relative 
abundances of Atlantic croaker estimated by using the design-based method and delta-generalized linear models, 
respectively, are provided by year. Error bars indicate the standard errors of the means. The horizontal gray line indi-
cates the long-term mean of 1 for relative abundance over the full period of the time series.
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abundant in waters with bottom salinities greater than 
34.9 than in waters with other salinities (Fig. 2, C and D).

From 1990 through 2010, nominal abundance of Atlantic 
croaker remained relatively low compared with the mean 
nominal abundance for the time series, with the normal-
ized nominal abundance below the time series mean for 
most years (Fig. 2E). After 2010, nominal abundance was 
more variable and had a general trend of values increas-
ing to levels above the time series mean (Fig. 2E).

The trend in delta-GLM standardized abundance of 
Atlantic croaker was similar to that in nominal abun-
dance, although the trend in standardized estimates 
was less variable (Fig. 2E, Suppl. Table). The excep-
tion to this similarity is that, for 2019, the predicted 
abundance of Atlantic croaker in the standardized 
index was almost twice the abundance predicted in 
the nominal index. This large difference between the 
nominal and standardized abundance values in 2019 
coincides with the only occasion when the variability 

in the standardized estimate was higher than that of 
the nominal estimate for this species, indicating that 
variability drove the disagreement between the esti-
mates produced with the 2 methods. In 2018 and 2019, 
limited sampling occurred in the northernmost strata 
where Atlantic croaker were generally more abundant 
than in other strata. The raw average nominal abun-
dance in 2019 (excluding the imputed values for missed 
strata) was the highest in the history of the CTS (359.8 
 individuals/ha) (senior author, unpubl. data), possi-
bly contributing to the standardized estimate being 
higher than the nominal estimate. In contrast, the data 
imputed for missed strata for nominal abundance were 
from years with lower abundance. All covariates were 
significant in the binomial and positive delta-GLMs 
for predicting the presence and abundance of Atlantic 
croaker (Table 2). Results from the use of diagnostics, 
such as residual and Q-Q plots, indicate reasonable fits 
for both models (Suppl. Fig. 1).

https://doi.org/10.7755/FB.120.3-4.6s1
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Table 2

Results from analysis of variance for presence and abundance of Atlantic croaker (Micropogonias undulatus), 
bluefish (Pomatomus saltatrix), and white shrimp (Litopenaeus setiferus) from standardization with binomial 
and positive delta- generalized linear models. Data used in models are from sampling of the Coastal Trawl 
Survey of the Southeast Area Monitoring and Assessment Program—South Atlantic conducted during 1990–
2019 off the Atlantic coast of the southeastern United States. The significance level is 0.05.

Covariate df Deviance
Residual 

df
Residual 
deviance F P

Atlantic croaker
Binomial model

Null 8344 11,159.10
Year 29 413.00 8315 10,746.10 <0.01
Season 2 498.71 8313 10,247.40 <0.01
Stratum 23 1188.01 8290 9059.40 <0.01
Temperature 3 11.06 8287 9048.30 0.01
Salinity 1 63.89 8286 8984.40 <0.01

Positive model
Null 5092 31,609.00
Year 29 2590.40 5063 29,019.00 19.61 <0.01
Season 2 1293.70 5061 27,725.00 142.02 <0.01
Stratum 23 4554.10 5038 23,171.00 43.47 <0.01
Temperature 3 140.80 5035 23,030.00 10.31 <0.01
Salinity 1 103.00 5034 22,927.00 22.62 <0.01

Bluefish
Binomial model

Null 8344 10,788.80
Year 29 202.78 8315 10,586.00 <0.01
Season 2 242.50 8313 10,343.50 <0.01
Stratum 23 547.31 8290 9796.20 <0.01
Temperature 3 166.85 8287 9629.30 <0.01
Salinity 1 25.37 8286 9604.00 <0.01

Positive model
Null 2906 6282.10
Year 29 330.53 2877 5951.50 7.22 <0.01
Season 2 157.77 2875 5793.70 49.95 <0.01
Stratum 23 1093.65 2852 4700.10 30.11 <0.01
Temperature 3 197.89 2849 4502.20 41.77 <0.01
Salinity 1 4.43 2848 4497.80 2.80 0.09

White shrimp
Binomial model

Null 8344 11,562.80
Year 29 251.60 8315 11,311.20 <0.01
Season 2 385.29 8313 10,925.90 <0.01
Stratum 23 1217.70 8290 9708.20 <0.01
Temperature 3 90.63 8287 9617.60 <0.01
Salinity 1 65.95 8286 9551.60 <0.01

Positive model
Null 4282 17,992.00
Year 29 1244.47 4253 16,748.00 13.29 <0.01
Season 2 1436.22 4251 15,312.00 222.40 <0.01
Stratum 23 1545.00 4228 13,767.00 20.80 <0.01
Temperature 3 46.54 4225 13,720.00 4.81 <0.01
Salinity 1 81.40 4224 13,639.00 25.21 <0.01

Bluefish

Bluefish were collected in 35% of all CTS tows from 1990 
through 2019 (Table 1). Temporally, bluefish were more abun-
dant in spring and fall (Fig. 3A). The spatial distribution of 

bluefish was primarily in the northern portion of the study 
area (strata ≥55), with the highest abundances occurring 
off North Carolina (Fig. 3B). Bluefish were more abundant 
in waters with bottom temperatures below 20.1°C and in 
waters with bottom salinities less than 34.9 (Fig. 3, C and D).
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Figure 3
Nominal abundance of bluefish (Pomatomus saltatrix), by (A) season, (B) stratum, (C) bottom temperature, and 
(D) bottom salinity, based on data from sampling off the Atlantic coast of the southeastern United States from 1990 
through 2019, with design-based imputation of missing values. (E) Nominal and standardized relative abundances of 
bluefish estimated by using the design-based method and delta-generalized linear models, respectively, are provided 
by year. Error bars indicate the standard errors of the means. The horizontal gray line indicates the long-term mean 
of 1 for relative abundance over the full period of the time series.

Nominal abundance of bluefish was generally stable 
near the time series mean without large positive or neg-
ative swings. Additionally, variability in nominal abun-
dance of bluefish tended to be low when abundance was 
below the mean and high when abundance was above 
the mean (2004–2013) (Fig. 3E). Nominal abundance 
was similar to or below the time series mean from 2014 
through 2019.

The trend in delta-GLM standardized abundance 
of bluefish was similar to that in nominal abundance, 
although with less variability, particularly when com-
pared with trends for the years of peak nominal abun-
dance: 1995, 2004, 2005, 2009, 2010, and 2013 (Fig. 3E, 
Suppl. Table). One exception is the estimate for 2001, 
which is almost twice as high with higher variability than 
that of the nominal estimate for that year. Although the 
error bars overlap, standardization also reduced the abun-
dance estimates in 2009 and 2010 relative to the nominal 
estimates for those years. All covariates were significant 

in both the binomial and positive GLMs, except for bottom 
salinity, which was not significant in the positive model 
(Table 2). Examination of residual and Q-Q plots reveals 
reasonable fits for both the binomial and positive models 
(Suppl. Fig. 2).

White shrimp

White shrimp occurred in 51% of tows (Table 1) and were 
the most abundant penaeid shrimp species caught in CTS 
sampling. White shrimp were most abundant during the 
fall, relative to the other seasons (Fig. 4A). White shrimp 
were spatially distributed throughout the region but were 
most abundant in waters of northern Florida, with smaller 
peaks in abundance off South Carolina and New River, 
North Carolina (Fig. 4B). White shrimp were most abun-
dant in bottom temperatures ranging between 20.1°C and 
26.5°C (Fig. 4C) and in waters with bottom salinities less 
than 34.9 (Fig. 4D).

https://doi.org/10.7755/FB.120.3-4.6s1
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Figure 4
Nominal abundance of white shrimp (Litopenaeus setiferus), by (A) season, (B) stratum, (C) bottom temperature, and 
(D) bottom salinity, based on data from sampling off the Atlantic coast of the southeastern United States from 1990 
through 2019, with design-based imputation of missing values. (E) Nominal and standardized relative abundances of 
white shrimp estimated by using the design-based method and delta-generalized linear models, respectively, are pro-
vided by year. Error bars indicate the standard errors of the means. The horizontal gray line indicates the long-term 
mean of 1 for relative abundance over the full period of the time series.

Nominal abundance of white shrimp was generally 
below, or relatively similar to, the mean for the time series 
from 1990 through 2003 (Fig. 4E). From 2004 through 
2019, nominal abundance of white shrimp was variable 
but with a generally increasing trend compared with the 
trend of the time series mean. Variability in nominal 
abundance generally increased as abundance increased.

The trend in delta-GLM standardized abundance 
of white shrimp was similar to that in nominal abun-
dance but with lower variability (Fig. 4E, Suppl. Table). 
Although the error bars overlap, the only notable differ-
ence between nominal and standardized estimates was in 
the abundance estimate for 2019, when the standardized 
abundance of white shrimp was higher than the nominal 
abundance. All covariates were statistically significant 
in predicting the presence (binomial model) and abun-
dance (positive model) of white shrimp (Table 2). Exam-
ination of residual and Q-Q plots reveals reasonable fits 
for both delta-GLMs (Suppl. Fig. 3).

All species

For the 3 species examined in this study, the standardiza-
tion of abundance through the use of delta-GLMs primar-
ily affected the variability in annual estimates, reducing 
the average variability in nominal values for Atlantic 
croaker by 3%, for bluefish by 90%, and for white shrimp 
by 75% (Figs. 2E, 3E, and 4E). The magnitude of the vari-
ability of abundance estimates generally changed with the 
extent of spatial and temporal distribution and percent 
positive rate (i.e., the percentage calculated as the num-
ber of tows in which a given species was collected divided 
by the total number of tows conducted per year) among 
the 3 species examined. The Atlantic croaker had the wid-
est distribution and highest occurrence of the 3 species, 
with the smallest annual nominal errors. The bluefish had 
the narrowest distribution and lowest occurrence of the 
3 species and had an average normalized nominal stan-
dard error over 2 times higher than that for the Atlantic 

https://doi.org/10.7755/FB.120.3-4.6s1
https://doi.org/10.7755/FB.120.3-4.6s4
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croaker (0.60 for bluefish and 0.26 for Atlantic croaker) and 
just slightly higher than that for the white shrimp (0.55). 
Standardization had little effect on annual abundance 
estimates, with the exception of increasing abundance esti-
mates in 2019 for Atlantic croaker and in 2001 for bluefish 
(based on error bars that do not overlap; Figs. 2E and 3E). 
The years with strata that were missed in sampling (1990, 
2013, 2018, and 2019) did not have noticeable differences 
between nominal and standardized abundance estimates, 
with the exception of 2019 for Atlantic croaker and white 
shrimp (although the latter had overlapping error bars) 
(Table 1, Figs. 2E and 4E).

The effect of scenarios of potential survey modifications 
on standardized abundance was not consistent among 
the 3 species examined in this study (Fig. 5, A–C). The 
Atlantic croaker had the most variable change to index 
values of the 3 species, with the scenario in which the 
dropped season was systematically rotated generally 
tracking most closely with the abundance index from the 
delta-GLM analysis that used the current survey design, 
which includes all seasons (Fig. 5A). The effect of each 
of the 3 scenarios in which a particular season was con-
sistently dropped on the abundance of Atlantic croaker 
depended on the year examined, likely because the annual 
abundance is informed by the mean response to the other 
seasons, which itself is inconsistent among years, seasons, 
and strata. The effect of randomly selecting a season to be 
dropped was also relatively variable for Atlantic croaker 
and resulted in noticeable deviations from the values in 
the abundance index produced in the model analysis that 
included all seasons.

All 5 scenarios had minimal effects on the standardized 
abundance index for both bluefish and white shrimp rela-
tive to the model for all seasons (Fig. 5, B and C), and this 
outcome is most likely related to the more restricted (and 
predictable) spatiotemporal distribution of abundance for 
these 2 species relative to that of the Atlantic croaker. The 
few examples of noticeable deviations from the full index 
occurred for bluefish and white shrimp under the scenar-
ios in which a single season was consistently not sampled 
and for white shrimp under the scenario in which the 
dropped season was rotated. The variability in the scenar-
ios for survey design modifications differed among species 
and years, but not in a consistent way (Table 3).

Discussion

As a long- term fishery- independent survey, the CTS pro-
vides abundance and life history data for a variety of spe-
cies of management interest. A stratified- random sampling 
design is used to conduct the CTS, with survey stations 
allocated to minimize variability in catch abundance esti-
mates. Historically, annual sampling at the vast majority 
of allocated stations was completed and sampling occurred 
in all strata. However, in recent years (i.e., 2018 and 2019), 
allocated stations and full strata were left unsampled 
because of the use of an aging vessel, mechanical fail-
ures, stagnant funding and increased costs, and prolonged 

periods of weather conditions above levels deemed safe for 
sampling. In particular, strata at the northernmost and 
southernmost portions of the survey area were those most 
likely to remain unsampled.

In this study, we investigated whether or not our 
inability to complete the full spatial scope of the survey 
in each season affected the accuracy of abundance esti-
mates by comparing nominal (design- based) and stan-
dardized (delta- GLM) estimates of abundance for Atlantic 
croaker, bluefish, and white shrimp. Surprisingly, only one 
major difference between estimates produced with these 
2 methods was observed: one for Atlantic croaker for a 
year with incomplete sampling. Other than this instance, 
there were almost no discernible differences in estimates 
of abundance for the years with incomplete sampling rel-
ative to estimates for years with complete sampling. One 
reason for the lack of differences in estimates may be the 
use of average long- term values for nominal abundances 
for years with incomplete sampling versus the use of the 
standardization technique in which average values are 
applied within each model cell to account for missing 
data. Although standardization may involve the use of 
an improved average estimate because of the inclusion 
of more covariates than the relatively simple imputation 
method used to produce the nominal estimate (Walters, 
2003), any loss of precision in an index resulting from 
decreased or lost effort can be balanced if stratification is 
incorporated into the design of a given survey and because 
of the similarity of using averages as empirical informa-
tion (Xu et al., 2015).

In the case of the CTS, the stratified- random sampling 
design has been consistent over time, allowing minimiza-
tion of loss of information when sampling was incomplete. 
This assumption that the design will balance incomplete 
sampling, however, may not remain true if completion of 
sampling continues to be eroded. It is currently unknown 
what the effect of incomplete sampling may be for species 
that are less common or less ubiquitous than the 3 species 
examined in this study.

The relationships between environmental covariates 
included in the standardization models and species abun-
dance varied among the species examined in this study. The 
association between abundance and bottom temperature 
varied among species. There was little difference in abun-
dance among temperatures for  Atlantic croaker (Fig. 2C), 
but bluefish were most associated with temperatures 
<20.1°C, likely related to their presence in the northern 
strata of the study area in the spring and fall (Fig. 3, B 
and C). Abundance of white shrimp was less influenced by 
temperature than estimates for bluefish, but abundances 
generally increased with increasing temperatures for white 
shrimp, most likely reflecting the warmer waters in south-
ern strata where white shrimp were abundant (Fig. 4, B 
and C). Salinity was less influential on species- specific 
abundance: there was no significant difference in abun-
dance of bluefish among salinity levels, Atlantic croaker 
were significantly more abundant in waters with higher 
salinities (≥34.9) than in those with lower salinities (<34.9), 
and abundance of white shrimp followed the opposite trend.
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Figure 5
Abundance estimates for (A) Atlantic croaker (Micropogonias undulatus), (B) blue-
fish (Pomatomus saltatrix), and (C) white shrimp (Litopenaeus setiferus) stan-
dardized with generalized linear models for the 5 scenarios of potential design 
modifications of the Coastal Trawl Survey of the Southeast Area Monitoring and 
Assessment Program—South Atlantic: dropping spring (April and May), summer 
(July and August), or fall (September through November), rotating which season is 
dropped, or randomly dropping a season. The full time series was used in models 
with the survey design modifications applied to sampling conducted between 2014 
and 2019 off the Atlantic coast of the southeastern United States. The black line in 
each panel indicates the standardized estimates of relative abundance produced 
under the current survey design, in which no season is dropped, with error bars for 
standard errors of the annual means. The dashed orange line in each panel indi-
cates the long-term mean of 1 for relative abundance over the full period of the time 
series (1990–2019).
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Table 3

Standard errors of standardized abundance estimates for (A) Atlantic croaker (Microp-
ogonias undulatus), (B) bluefish (Pomatomus saltatrix), and (C) white shrimp (Litope-
naeus setiferus) off the Atlantic coast of the southeastern United States between 2014 
and 2019 for the 5 scenarios of potential design modifications of the Coastal Trawl Sur-
vey of the Southeast Area Monitoring and Assessment Program—South Atlantic: drop-
ping spring (April and May), summer (July and August), or fall (September–November), 
randomly dropping a season, and rotating which season is dropped. For comparison, 
standard errors of abundance estimates produced under the current survey design, 
with no season dropped, are provided.

Year
All 

seasons Spring Summer Fall Random Rotated

Atlantic croaker
2014 57.08 47.03 58.54 109.40 27.66 47.23
2015 44.14 50.90 63.67 46.00 39.89 62.46
2016 31.67 43.37 40.72 29.07 34.23 27.66
2017 25.50 23.93 34.36 34.77 27.46 23.49
2018 63.52 68.38 127.71 50.56 129.87 125.47
2019 124.35 82.39 242.09 176.95 82.46 168.03

Bluefish
2014 0.09 0.09 0.11 0.14 0.11 0.09
2015 0.14 0.18 0.15 0.18 0.19 0.14
2016 0.07 0.09 0.09 0.08 0.08 0.08
2017 0.04 0.06 0.05 0.05 0.04 0.06
2018 0.08 0.09 0.12 0.07 0.12 0.11
2019 0.14 0.17 0.22 0.14 0.18 0.14

White shrimp
2014 1.73 2.61 1.11 2.98 1.78 2.66
2015 3.81 5.19 4.54 4.00 4.23 4.56
2016 6.83 7.54 10.74 6.80 7.08 7.16
2017 8.48 8.06 11.58 10.82 11.42 8.38
2018 3.71 5.11 4.95 3.62 4.76 4.69
2019 7.81 9.11 10.19 9.30 9.10 9.66

Population levels for Atlantic croaker are driven by 
the combination of temperature and salinity, with winter 
temperatures being primarily influential on survivorship 
and salinities above 10 potentially mitigating the effects 
of extremely low temperatures on survivorship (Lank-
ford and Targett, 2001; Hare and Able, 2007). Bluefish are 
known to overwinter between North Carolina and Florida, 
and they generally migrate northward in the spring as 
water temperatures increase and then migrate southward 
in the fall as water temperatures decrease (Wilk7; Fahay 
et al., 1999). In previous studies, the low temperature tol-
erance of juvenile bluefish was found to be 13–15°C (Hare 
and Cowen, 1996), and their growth slowed at water tem-
peratures greater than 24°C (Hartman and Brandt, 1995). 
It is possible that the binary binning of bottom salinity 
meant the relationship could not be resolved for bluefish 
or that bluefish were present at times with more variable 
salinities (e.g., variable run- off in fall due to seasonal 

7 Wilk, S. J. 1977. Biological and fisheries data on bluefish, Poma-
tomus saltatrix (Linnaeus). Natl. Mar. Fish. Serv., Northeast 
Fish. Sci. Cent., Sandy Hook Lab. Tech. Ser. Rep. 11, 44 p. [Avail-
able from website.]

rains and tropical systems). The reduced abundance of 
white shrimp above a salinity of 34.9 likely reflects their 
high abundances around large estuarine systems with 
relatively high freshwater or estuarine outflow. Results 
from previous studies support the notions that abundance 
of adult white shrimp is positively correlated with water 
temperature and negatively correlated with salinity and 
that mortality occurs at temperatures below 10°C (Joyce, 
1965; SAFMC, 1981; Diop et al., 2007; Fowler et al., 2018).

In general, standardization decreased variability relative 
to design- based estimation of abundance in 18 of 30 survey 
years (60%) for Atlantic croaker, in 12 survey years (40%) 
for bluefish, and in 16 survey years (53%) for white shrimp 
(Figs. 2E, 3E, and 4E). For all 3 species examined in this 
study, the primary variables of season and stratum in the 
design- based GLMs accounted for more of the deviance 
explained by GLMs than either bottom temperature or salin-
ity and often explained levels of deviance similar to those 
explained by year (Table 2). Both the spatial and temporal 
elements of the survey design enabled us to find that those 
species with more restricted distributions have greater vari-
ability in estimates of abundance. This pattern of small dis-
tribution and larger variability may be partially accounted 

https://repository.library.noaa.gov/view/noaa/33309
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for through the nominal estimation used in this study but 
is likely more adequately addressed by using the standard-
ization method that can incorporate other drivers such as 
environmental conditions (Figs. 2E, 3E, and 4E).

The bluefish had the most uneven spatial distribution 
of the 3 species examined and had some of the highest 
annual standard error estimates, but the white shrimp 
was the species most unevenly distributed among seasons 
and had moderate standard error estimates (Figs. 3B, 3E, 
4B, and 4E). Carruthers et al. (2011) suggested that the 
choice to impute missing data rather than to standard-
ize by using conventional GLM techniques should be 
dependent on the spatial dynamics of a population and 
the spatial grain of the missing data. This choice between 
methods is especially important if there are area and time 
interactions and the unobserved areas do not adhere to 
the mean abundance trend. Use of imputation tends to 
lead to greater bias than use of a GLM, unless the spatial 
scale of imputation is relatively fine and the imputed data 
are representative of the overall population.

In our study, we chose to impute a mean based on the full 
time series, although imputing a mean based on data from 
only recent years may have been more representative of 
more recent trends for each species. However, for bluefish, 
using stratum in the imputation method is more appropri-
ate than using larger latitudinal bins because stratum has 
the finest spatial scale consistent with the survey design 
(station cannot be used as a variable because not every 
station is sampled each year). Because of the uneven spa-
tial distribution of bluefish, future work should determine 
if the use of station for imputation is more appropriate 
than the use of stratum. One caveat to using station is 
that, because not every station is selected for sampling 
each year, the use of station may result in a decrease in 
sample sizes that inform calculations.

There were only 2 observed differences in abundance 
estimates between the nominal and standardization meth-
ods as revealed by error bars not overlapping for Atlantic 
croaker in 2019 and for bluefish in 2001. The year 2019 
was the only year of incomplete sampling during which 
the 3 northernmost strata were not sampled in both spring 
and fall. In general, these strata are also the ones that typi-
cally have moderate to high abundances of Atlantic croaker 
(Fig. 2B). Not surprisingly, for 2019, the nominal abundance 
estimate was markedly lower than the standardized value. 
The difference between the nominal and standardized 
abundance estimates is likely a result of the standardiza-
tion method better accounting for the effects of covariates 
on abundance, for the general increasing trend in 2019, 
and for the typically higher catches in these strata than 
the design- based approach, even with the average nomi-
nal abundance imputed as a proxy for the missing data. By 
comparison, there was no change in the estimates for either 
bluefish or white shrimp in 2019. Catches of white shrimp 
in survey tows in the northernmost strata were generally 
low (Fig. 4B); therefore, missing data for these strata likely 
did not have a great effect on the annual abundance esti-
mate from either calculation. Generally, the highest abun-
dances observed for bluefish occurred in the 3 northernmost 

strata and in spring and fall (Fig. 2, A and B). This consis-
tent positive relationship between stratum (latitude) and 
abundance likely allowed those consistently high catches 
to be captured in the calculations of both the nominal and 
standardized methods, resulting in very similar estimates 
for 2019. In contrast to survey effort in 2019, all allocated 
stations were sampled in 2001.

Two of the few exceptions to improvement in accuracy 
(i.e., reduced error) of the standardized abundance esti-
mates were for Atlantic croaker in 2019 and for bluefish 
in 2001. For Atlantic croaker in 2019, the estimate of 
abundance increased significantly following standard-
ization, and the error rate increased almost 3- fold. Strata 
were missed in sampling or not sampled completely in 
both spring and fall in 2019, the most variable and least 
abundant seasons in the full time series for Atlantic 
croaker, respectively. Abundance of Atlantic croaker in 
fall 2019 was higher than in any other previous fall but 
also was more variable, likely a result of not sampling in 
the northernmost strata where this species is abundant 
but the abundance is variable and of not sampling in the 
southernmost strata where this species is least abundant, 
reducing the number of strata in which there were zero 
or near zero encounters. In addition, the use of imputa-
tion in the design- based calculation did not account for 
uncertainty in the imputed estimates for multiple seasons 
and strata and, therefore, reduced variability for 2019 by 
default (Carruthers et al., 2010). In contrast, errors for all 
seasons and strata in 2019 continued to be incorporated 
when the standardization technique was used, potentially 
leading to the higher variability in estimates for that year. 
Further comparisons should examine variability of esti-
mates based on imputed data.

Regarding bluefish in 2001, there is no record of 
unusual circumstances in CTS historic data for that year; 
therefore, there may have been unusual conditions that 
were not accounted for in the current analyses. If so, these 
conditions were likely specific to bluefish because the esti-
mates for the other 2 species in 2001 were similar and had 
decreased standardized variability as expected.

Results of the exercise of retrospectively dropping sea-
sons for the years 2014–2019 indicate that the likely 
effects of major modifications to the survey would be 
species- specific (i.e., not all species abundance estimates 
remained consistent among all modification scenarios). 
Removing whole seasons did not change the pattern of 
increased abundance of Atlantic croaker in 2019 for most 
scenarios: dropping fall, dropping summer, and systemat-
ically rotating which season was dropped from analysis 
(Fig. 5A). By comparison, removing spring or randomly 
dropping seasons between 2014 and 2019, decreased the 
standardized abundance estimate for Atlantic croaker in 
2019 compared with the standardized estimate produced 
with data for all seasons. Interestingly, dropping seasons 
did not change the pattern of abundance for bluefish or 
white shrimp (Fig. 5, B and C). Both species had lower 
abundance estimates and more variability compared with 
estimates for Atlantic croaker, but with standardization 
we were able to successfully predict abundances for these 
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species even with the loss of full seasons. Therefore, there 
may be an interaction between annual abundance of each 
species, species distributions or predictability, strata or 
seasons that are sampled, and effects of standardization 
on variability and estimates of abundance that need to be 
considered before making changes to the survey design.

Fishery- independent indices of abundance generally are 
essential for most stock assessment models currently in 
use, are preferred over fishery- dependent indices, and are 
often upweighted relative to other indices because of their 
adherence to standardized designs and resistance to tem-
poral changes in catchability or sampling systems (Wilberg 
et al., 2009). For the CTS, delta-GLM indices of abun-
dance indicate that standardization decreased variability 
in annual abundance estimates for all species examined 
and potentially “corrected” data from the year in which 
sampling was most incomplete for one of the species most 
commonly encountered in the survey, the Atlantic croaker. 
On the basis of the improvements in variability alone, we 
recommend moving forward with standardization for spe-
cies for which long- term time series are available. Because 
of the advanced age of the vessel used for surveys and the 
trend of more extreme weather events, standardization 
may become even more important in future years (and for 
more species) as completion of CTS sampling is likely to 
continue to be challenging.

Given that the survey design needs to be modified to 
account for these potential constraints on sampling com-
pletion, that the effect on variability among modification 
scenarios was not informative, and that the best perform-
ing model varied among species and years (Table 3), we 
also recommend rotating the season that is not sampled, 
rather than any of the other modification scenarios exam-
ined in this study, if modifications become necessary. The 
effect of a given season on the abundance index is species 
specific, and results of this study indicate that rotation of 
the dropped season is the best approach for a multispecies 
survey if sampling effort needs to be reduced.

Conclusions

In this study, as expected, a common standardization tech-
nique (the delta-GLM method) improved estimation of vari-
ability in abundance time series from a fishery- independent 
survey over that of the simpler approach of imputation of 
average abundance values for Atlantic croaker, bluefish, 
and white shrimp. These improvements in uncertainty 
become increasingly important as costs of conducting sur-
veys increase and funding for long- term surveys stagnates, 
as has been experienced for the CTS. The results of this 
study indicate that survey programs that cannot complete 
sampling as designed in a given year could deal with that 
incompletion through techniques that involve a delta-GLM. 
We also found that, when funding is severely limited, 
rotating the season that is not sampled may be the most 
appropriate approach for multispecies surveys. For surveys 
without a seasonal structure, incorporating a time element, 
such as month, a posteriori and rotating which months are 

prioritized may be a way to cope with limited funding and 
sampling effort as well, although it would need to be exam-
ined on a case- by- case basis.

In addition, for the CTS, over 24 species currently are of 
management interest and are sampled sufficiently to pro-
duce indices of abundance. For this high variety of species, 
more work needs to be done to examine the effects of sur-
vey design modifications because the results of this study 
were not consistent among species. The delta-GLM method 
is just one of many standardization techniques that can be 
employed. Other types of models, such as those that use con-
tinuous covariates or other error structures, may be more 
appropriate or better at improving variability estimation 
than the analyses for which results are presented herein.

Resumen

Los índices de abundancia procedentes de estudios inde-
pendientes de la pesca son los preferidos en las evaluaciones 
de poblaciones debido a sus sólidos diseños científicos que 
minimizan la incertidumbre y el sesgo. Cuando el muestreo 
no se ajusta al diseño, los investigadores emplean técnicas 
como la imputación o la estandarización para mejorar la 
precisión y reducir el sesgo. Examinamos 2 métodos para 
ajustar el muestreo incompleto en la Prospección de Arra-
stre Costero (CTS) del Programa de Monitoreo y Evalu-
ación del Área sureste del Atlántico Sur para 3 especies 
comúnmente encontradas en el muestreo de la prospec-
ción, la corvina del Atlántico (Micropogonias undulatus), la 
anjova (Pomatomus saltatrix) y el camarón blanco (Litope-
naeus setiferus): la imputación de datos faltantes con base 
en el diseño y la estandarización a través del enfoque del 
modelo lineal generalizado delta. Además, determinamos 
el efecto de modificar el componente estacional del diseño 
de la prospección mediante una simulación retrospectiva. 
Para las 3 especies, la estandarización mejoró la precisión 
de las estimaciones de abundancia anual con relación a 
los valores estimados con el método basado en el diseño. 
Cuando un estrato omitido en el muestreo coincidía con 
un área o época de alta variabilidad para una especie  
(p. ej., 2019), la estandarización no mejoró la precisión con 
respecto al método basado en el diseño. Los resultados 
del análisis de los efectos de la exclusión de temporadas 
enteras, debido a problemas de financiación o logísti-
cos, indican que la rotación de la temporada a excluirse 
fue el mejor enfoque para equilibrar las características 
de cada especie. En general, recomendamos el enfoque de 
estandarización para contabilizar los datos faltantes en 
las series temporales de la CTS.
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