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Abstract—Bottom temperature is 
routinely measured as part of the 
bottom- trawl survey conducted every 
summer on the continental shelf of 
the eastern Bering Sea by the NOAA 
Alaska Fisheries Science Center. These 
data are widely used in ecosystem, 
stock assessment, and ocean modeling. 
We assessed the effect of alternative 
sampling designs and effort reduction 
on the quality of bottom- temperature 
information from the survey. Simple- 
random and stratified- random sam-
pling were simulated and compared 
with the systematic sampling of fixed 
stations in the regular grid used in the 
standard survey, with respect to the 
use of survey data in the estimation 
of bottom temperatures and related 
indices. The effort simulated ranged 
from 34% to 100% of the full effort. In 
the simulated surveys, the use of each 
of the 3 sampling designs resulted in 
values of bottom- temperature metrics 
that are close to those from the real 
survey, even with as little as half the 
effort. Lower effort resulted in larger 
and more variable prediction errors of 
the indices. The decrease in prediction 
performance is most noticeable at the 
34% effort level. Systematic sampling 
performed slightly better than simple- 
random and stratified- random sam-
pling. One reason for this difference in 
performance is that random sampling 
may have been less effective than the 
standard sampling in capturing a 
small cold pool that is characteristic of 
the current warm ocean state.
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All physiological rates of aquatic inver-
tebrate and teleost fish species depend 
on body temperatures (Brown et al., 
2004). Therefore, temperature is the 
principal driver of aquatic ecosystem 
dynamics (Kooijman, 2000; Poloczanska 
et al., 2016). The continental shelf of 
the eastern Bering Sea (EBS) is one 
of the most productive ecosystems in 
the world (Hood and Calder, 1981), 
supporting major groundfish fisheries, 
such as those that target walleye pol-
lock (Gadus chalcogrammus) (Loughlin 
and Ohtani, 1999). Bottom water tem-
perature is a key indicator of ecosystem 
state because of its pivotal role in the 
spatial distribution of groundfish spe-
cies (Eisner et al., 2020; Kotwicki and 
Lauth, 2013), predator–prey interac-
tions (Grüss et al., 2021), and demo-
graphic rates (Cooper et al., 2020).

The bottom temperature of the EBS 
is determined by an interplay between 
winter cooling, mixing due to wind and 
tide, and the spatial extent and per-
sistence of ice cover (Sullivan et al., 
2014). Bottom temperature is used 
to map the cold pool— a term typi-
cally used to refer to the layer of cold 
(<2°C) bottom water that forms below 
the pycnocline when sea ice freezes 
in the winter and extends southward 

over the middle of the shelf (at depths 
of 50–100 m) in summer in the EBS 
(Wyllie-Echeverria and Wooster, 1998; 
Stabeno et al., 2012). The size of the cold 
pool depends on the extent of sea ice 
during the previous winter. Under cli-
mate change, the area and thickness of 
sea ice are diminishing; ice forms later 
in the fall and retreats earlier in the 
spring (Overland et al., 2018; Stabeno 
and Bell, 2019). Since a warm thermal 
stanza across the Bering Sea began in 
late 2013 (NPFMC, 2016), there has 
been a series of record- breaking high 
water temperatures (Stabeno et al., 
2019), and the cold pool has retracted 
northward, to the point of disappearing 
almost entirely from the EBS in 2018 
(Rohan et al., 2022).

Bottom temperature in the EBS and 
cold pool indices are significant cli-
mate change indicators (Mueter and 
 Litzow, 2008; Kotwicki and Lauth, 
2013;  Hollowed et al., 2020;) and 
environmental covariates in ecosys-
tem and groundfish stock assessment 
( Thorson, 2019; Kearney et al., 2020; 
Rooper et al., 2021). In a cursory search 
in  Google Scholar (website, accessed 
 January 2023), about 8320 articles pub-
lished since 2010 contained the phrase 
eastern Bering Sea, and in 10% and  
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7% of those articles bottom temperature and cold pool were 
also mentioned, respectively.

The primary source of data on summer bottom tempera-
ture for the EBS shelf is the bottom- trawl survey conducted 
every summer (June–August) since 1971 by the NOAA 
Alaska Fisheries Science Center for the assessment of 
groundfish stocks (Armistead and Nichol, 1993). The sur-
vey area includes the entire continental shelf at the depths 
of 20–200 m, and a regular grid of fixed stations is used 
for systematic sampling (Fig. 1). Temperature has been 
routinely recorded with each trawl sample in the standard 
survey since 1982. Survey temperature data are used to cal-
ibrate and validate the Bering10K Modeling Suite (Capo-
tondi et al., 2019; Kearney et al., 2020). Although the cold 
pool is most commonly defined as bottom water colder than 
2°C, 0°C and 1°C have also been used in the study of the 
spatial dynamics of fish populations (Kotwicki and Lauth, 
2013; Thorson et al., 2017; Nichol et al., 2019).

Long- term ecological studies and resource surveys are 
expensive and complex to conduct. Worldwide, these 

programs are vulnerable to reductions in effort due to 
financial, logistical, or natural obstacles (ICES, 2020). 
The increasing disparity between funding allocation for 
the NOAA bottom- trawl survey and rising costs is also a 
reality that prompts considerations of effort reduction. 
Alternative sampling strategies under the constraint of 
reduced effort are often simulated to evaluate how the 
quality of survey data would be affected and whether 
program objectives could be achieved (e.g., Liu et al., 
2011; Del Vecchio et al., 2019). In this study, we simu-
lated surveys with systematic, simple- random, or 
stratified- random sampling and with different levels of 
effort, measured as the number of stations sampled, and 
compared estimation of bottom temperatures and related 
indices based on values from those simulated surveys 
with estimation based on data from the real standard 
surveys for which systematic sampling of fixed stations 
in a regular grid was used. The effort levels simulated 
ranged from 34% to 100% of the full effort of sampling 
350 stations.

Figure 1
Map showing the regular grid used in the systematic sampling of the bottom-trawl 
survey conducted every summer on the continental shelf of the eastern Bering Sea 
by the NOAA Alaska Fisheries Science Center and used in the simulations of surveys 
in this study. Trawl samples are collected at stations located approximately at the 
center of each cell, each 20 × 20 nautical miles (37 km2), in the grid. The survey area 
is divided into strata based on latitude and depth (strata are outlined with black 
lines and labeled with their assigned numbers), with the offshore boundaries of strata 
aligned with the 50-m, 100-m, and 200-m isobaths. The major islands on the shelf are 
indicated.
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Materials and methods

Observations of bottom temperature

The bottom- trawl survey on the continental shelf of the 
EBS (hereafter referred to as the survey) has a system-
atic, regular- grid sampling design consisting of 350 cells of 
20 × 20 nautical miles (nmi) (37.0 × 37.0 km) each (Fig. 1). 
The grid is divided into several strata that correspond to 
a combination of latitudinal and depth- associated bio-
physical domains that fall in 3 groups: inner shelf (depths 
<50 m), middle shelf (depths of 50–100 m), and outer shelf 
(depths >100 and ≤200 m) (Kinder and Schumacher, 1981; 
Coachman, 1986). Each stratum is assigned a number so 
that they can be referenced for management purposes 
(Fig. 1). Sampling during the survey progresses through 
the grid from the southeast corner to the northwest corner 
over an average of 57 days from late May to early August 
(Rohan et al., 2022). A standard trawl sample is taken 
from a location (or station) at approximately the center 
of each cell. The station configuration currently used for 
the survey was adopted in 1987 (Conner and Lauth, 2017). 
Bottom temperature (hereafter referred to as tempera-
ture) is recorded at each station. The various instruments 
used over the years, including an expendable bathyther-
mograph and a digital temperature- depth recorder, are 
detailed in Rohan et al. (2022). Since 1996, the instrument 
for recording temperature has been attached to the head 
rope of the trawl net.

A spatial map of summer temperatures in the Bering Sea 
is produced annually as part of the survey and is a compos-
ite of observations from the survey duration of more than 
2 months (Rohan et al., 2022). In this study, for each year 
from 1987 through 2019, temperature was simulated for 
the subset of stations that was considered the full effort: 
the 350 stations (Fig. 1) at the centers of cells, exclud-
ing the 26 stations located at the corners of cells around 
St. Matthew Island and the Pribilof Islands that are used 
in assessment of local populations of blue king crab (Para-
lithodes platypus) (Armistead and Nichol, 1993).

Simulated surveys of temperature

Spatial analyses were conducted by using popular spa-
tial packages in the R statistical computing environ-
ment (vers. 3.6.3; R Core Team, 2020): gstat (vers. 2.1-1; 
Gräler et al., 2016), raster (vers. 3.3-13; Hijmans, 2020), 
sf (vers. 1.0-12; Pebesma, 2018), and sp (vers. 1.6-0; 
Pebesma and Bivand, 2005).

A regular grid of 494 rows and 565 columns (279,110 pix-
els) and with a 2- km resolution was superimposed over the 
survey area. Observed temperature at the standard set of 
350 stations was interpolated over the grid by using ordi-
nary kriging with Stein’s Matérn autocovariance model 
(Stein, 1999), as implemented in the R package gstat, to 
produce annual temperature spatial surfaces (rasters). This 
process is the standard method for calculating tempera-
ture data products with information from the bottom- trawl 
survey in the Bering Sea (Rohan et al., 2022). The Matérn 

model was fitted to the sample variogram (smoothness=0.5; 
the sill and range automatically fitted by using gstat; 
Gräler et al., 2016). The variogram was used to interpolate 
pixel values over the raster. Only the pixels that partially or 
entirely overlapped the survey area were assigned values to 
interpolate the raster (R):

{ }=
=

=
R r ,1 l 1

N 123,274r
 (1)

where r1 = pixel l, and
Nr = the total number of pixels in R.

The raster produced from observed temperatures was 
defined as the “true” thermal state of the EBS shelf.

Several combinations of sampling design and effort 
were applied to resample the raster based on observed 
temperatures of each year in the set of years (Y ) to simu-
late surveys:

Y y{ }= … =
=

=
{1987, 1988, , 2019} ,i i 1

N 33y
 (2)

where yi = year i, and
Ny =  the total number of years in Y.

The following sampling designs were used: 1) systematic, 
regular- grid (also referred to as regular), 2) simple- random 
(also referred to as random), and 3) stratified- random with 
proportionate allocation by area of stratum (also referred 
to as stratified) (Fig. 1). For random and stratified sam-
pling, 4 effort levels (E), equivalent to 34%, 46%, 66%, and 
100% of the full effort, were simulated as follows:

E e{ }= =
=

=
{120, 160, 230, 350 stations} ,j j 1

N 4e
 (3)

where ej = effort j, and
Ne =  the total number of levels in E.

The 3 reduced regular sampling efforts that were simu-
lated were based on grid cell size: 35 nmi2 (64.0 km2) for the 
effort of 120 stations, 30 nmi2 (55.6 km2) for the effort of 163 
stations, and 25 nmi2 (46.3 km2) for the effort of 226 sta-
tions. The full regular sampling effort of 350 stations is that 
of the actual survey with the cell size of 20 nmi2 (37.0 km2). 
The expected number of stations in the simulated set with 
regular effort is practically equivalent to the sets with 
random and stratified effort based on the exact number of 
stations.

For each combination of sampling design and effort, 100 
replicate sets of different station locations were drawn 
from the survey grid with the spsample function in the 
R package sp (Bivand et al., 2013), with the replicate sets (S) 
defined as follows:

S s{ }=
=

=
,k k 1

N 100s
 (4)

where sk = replicate set k, and
Ns = the total number of replicate sets in S.

Each replicate set represents a simulated survey. Tempera-
ture values were extracted (predicted temperature) at each 
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station from the raster based on observed temperatures. 
The point values of predicted temperature are used to inter-
polate a predicted temperature raster by using the same 
aforementioned methods for generating an observed tem-
perature raster. The steps of the simulation are summa-
rized schematically in Figure 2.

Performance evaluation

The performance of the simulated surveys in replicating 
temperatures from the real annual surveys was evaluated 
on the basis of the bias (ε) and the root mean squared error 
(RMSE) of each of the predicted temperature indices by 
using these general equations:

x x∑ )(ε = −
=

1
N

ˆ , andt tt 1

N
 (5)

Figure 2
Schematic of the 4 main steps used to simulate a survey of bottom tempera-
ture on the continental shelf of the eastern Bering Sea. The steps are as fol-
lows: (A) start with temperatures observed at 350 regularly spaced stations 
of the real bottom-trawl survey from 1987 through 2019 (points indicate sta-
tions), (B) interpolate point values to generate a raster surface for observed 
temperature, (C) superimpose on the observed temperature raster stations 
simulated by using 1 of 3 sampling designs (regular, simple random [shown 
here], or stratified random) and 1 of 4 effort levels (number of stations: 120, 
160, 230, or 350) and extract predicted temperatures at those stations, and 
(D) interpolate point values to generate a raster surface for predicted tem-
perature. Values for corresponding pixels (simulated stations) in the rasters 
of predicted and observed temperature and related temperature indices were 
compared to evaluate prediction performance of the sampling designs used 
to simulate surveys.

RMSE x x∑ )(= −
=

1
N

ˆ ,t t
2

t 1

N
 (6)

where x̂t  =  the predicted temperature index for t=1, . . .,N, 
where the total number of samples, N, depends 
on the index.

The term error will hereafter refer generally to both 
bias and RMSE. The fundamental unit is the tempera-
ture value in each pixel of a raster, from which tem-
perature indices are constructed. We examined the 
following indices: mean temperatures of the whole 
shelf (shelf) and shelf stratum (stratum), total cold pool 
area, the offshore (western- most longitude) and south-
ern (southern- most latitude) extents of the cold pool, 
and the depth at the offshore extent of the cold pool. 
In addition to the common definition of the cold pool 
as bottom water with temperature <2°C (CP2), defini-
tions with temperature thresholds of <1°C (CP1) and 

<0°C (CP0) were also evaluated. These 
indices comprehensively describe the 
general thermal state of the shelf and 
the location of the cold pool for a given 
year for the purposes of ecosystem and 
fishery management (Nichol et al., 
2019; Siddon, 2021; Thorson et al., 
2017;  Uchiyama et al., 2020).

Temperature rasters

To evaluate the prediction performance 
of a single raster, the error was cal-
culated for each pixel l, and then the 
mean pixel error of the raster was 
determined across all pixels of the 
raster (N=123,274). To evaluate the 
variability among replicate rasters of 
a given combination of effort and year 
(or treatment) for each sampling design, 
the mean error of pixel l was calculated 
across the 100 replicates by using these 
equations:

∑ε = ε
=

1
N

,ij.l
s

klk 1

Ns
 (7)

where εij.l =  mean bias of pixel l for year 
i and effort j, and

εkl =  mean bias of pixel l across 
all k replicate sets; and

RMSE ∑ )(= ε
=

1
N

,ij.l
s

kl
2

k 1

Ns  (8)

where RMSEij.l =  mean RMSE of pixel l 
for year i and effort j.

The overall mean error of a given design 
and effort combination was averaged 
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across all years as follows (N=Ny×Nr=33×123,274= 
4,068,042):

∑∑ε = ε
==

1
N N

,and.j..
y r

ij.ll 1

N

i 1

N ry  (9)

RMSE RMSE∑∑=
==

1
N N

..j..
y r

ij.ll 1

N

i 1

N ry
 (10)

The standard deviation (SD) of the overall bias was deter-
mined with this equation:

SD SD ∑∑ )(ε = ε =
−

ε − ε
==

( ) ( )
1

N N 1
.ij..

y r
ij.l .j..

2

l 1

N

i 1

N ry
 (11)

Mean temperatures of shelf and stratum

Predicted and observed annual mean temperatures of 
the whole shelf and individual stratum in the EBS were 
calculated by averaging all pixelated temperature values 
within the unit (shelf or stratum) in each raster. The error 
in annual mean shelf or stratum temperature was evalu-
ated between each replicate raster based on predicted or 
observed temperatures.

Cold pool indices

The area of the cold pool was calculated as the number of 
pixels of the cold pool multiplied by the pixel size (2 km2), 
for each of the 3 definitions of cold pool based on different 
boundaries (temperature thresholds) of the cold pool (0°C, 
1°C, or 2°C). The error of the area was also expressed as a 
percentage of the observed area to evaluate their correla-
tion. The offshore and southern extents of the cold pool are 
defined as the western- most longitude, and southern- most 
latitude of the cold pool identified on the raster. The depth 
of the cold pool at the geographic coordinates of its offshore 
extent was extracted from a bathymetry raster of the entire 
part of the U.S. exclusive economic zone off Alaska. The orig-
inal raster with a 20- m resolution was compiled from 18.6 
billion bathymetric soundings obtained from the NOAA 
National Center for Environmental Information (Lewis1). 
For this analysis, the raster was resampled to a 2- km reso-
lution and clipped to the survey grid by using the Database 
Management Toolbox for raster processing in ArcMap2, 
part of ArcGIS Desktop, vers. 10.7. (Esri,  Redlands, CA).

Results

Within a sampling design, lower effort resulted in larger 
and more variable prediction errors in temperature met-
rics. Only exceptions will be mentioned hereafter.

1 Lewis, S. 2018. Personal commun. Sustain. Fish. Div., Alsk. Reg. 
Off., Natl. Mar. Fish. Serv., NOAA, P.O. Box 21668, Juneau, AK 
99802-1668.

2 Mention of trade names or commercial companies is for identi-
fication purposes only and does not imply endorsement by the 
National Marine Fisheries Service, NOAA.

Temperature rasters

Prediction errors of individual rasters and among rep-
licate sets of rasters were both low regardless of the 
combination of sampling design and effort. The overall 
mean values of pixel bias of the rasters for all combi-
nations were ≤0.01°C (SD <0.3), and the overall mean 
values of pixel RMSE of the rasters for all combinations 
were <0.3°C (SD <0.2) (Table 1). The difference in pre-
diction performance among designs for the same effort 
was small. Random sampling resulted in slightly higher 
RMSE values by magnitudes of tenths of degrees Celsius. 
Replicate rasters of predicted temperature within a treat-
ment were similar to each other and to the corresponding 
raster of observed temperature. The similarity between 
annual observed temperature rasters (Fig. 3A) and mean 
predicted temperature rasters (Ns=100) from the sur-
vey simulation with random sampling and an effort of 
230 stations (Fig. 3B) exemplifies the close visual resem-
blance of temperature rasters regardless of design and 
effort combination.

Mean temperatures

Shelf The means for bias in temperature on the entire 
shelf for all treatments were ≤±0.02°C (SD ≤0.06). The 
RMSE values in shelf temperatures for all treatments 
were <0.4°C. In almost all cases, predicted annual mean 

Table 1

Overall mean bias (ε ) and overall root mean squared error 
(RMSE) and the standard deviation (SD) of the overall 
mean bias in the prediction of bottom temperature on the 
continental shelf of the eastern Bering Sea in rasters cre-
ated by simulating bottom- trawl surveys for the years from 
1987 through 2019. The statistics summarize the variabil-
ity among replicates within a given combination of sam-
pling design and survey effort (N=123,274 pixels per mean 
annual raster×33 years=4,068,042). The 3 sampling designs 
used in simulations were systematic (regular), simple ran-
dom (random), and stratified random (stratified). Effort is 
given as the number of stations sampled to interpolate a 
raster of predicted temperature.

Design Effort

Bias

RMSEε SD

Regular 120 −0.011 0.230 0.195
Regular 160 −0.008 0.190 0.155
Regular 230 −0.006 0.147 0.113
Random 120 −0.010 0.285 0.291
Random 160 −0.008 0.243 0.244
Random 230 −0.006 0.195 0.192
Random 350 −0.004 0.147 0.141
Stratified 120 −0.011 0.253 0.237
Stratified 160 −0.009 0.212 0.193
Stratified 230 −0.006 0.165 0.147
Stratified 350 −0.004 0.121 0.103
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temperatures were lower than observed temperatures 
(negative bias). At the lowest effort of 120 stations, ran-
dom and stratified sampling resulted in errors with 
greater interannual variability. This variability was 
more obvious in the bias values, which for some years 
were of smaller magnitude (less negative) than bias val-
ues produced in treatments with higher effort (Fig. 4). 
The values of RMSE (not shown in a figure) were consis-
tently higher and more variable for treatments with 
lower effort levels but otherwise had similar patterns 
across treatments.

Stratum Predicted mean stratum temperatures were 
higher than observed temperatures (positive bias) in the 
middle- shelf strata 30, 40, and 82 (for locations of num-
bered strata, see Figure 1), the principal domain of the 
cold pool, but lower than observed temperatures in all 
other strata (Suppl. Fig. 1). The RMSE values were gen-
erally around 0.2°C. They were lowest for outer- shelf 
stratum 60 and relatively higher and more variable for 
the inner- shelf strata 10 and 20 and in middle- shelf stra-
tum 82. The RMSE for stratum 50 was anomalously high 
in 1992 (Suppl. Fig. 2), a difference that was likely 

Figure 3
Annual bottom temperature in the eastern Bering Sea for the odd-numbered years from 1987 
through 2019: (A) rasters of interpolated values based on observations recorded during actual 
bottom-trawl surveys and (B) rasters of simulated values based on the means of 100 replicate 
rasters produced by simulating random sampling of 230 stations superimposed on the observed 
temperature raster. The white lines indicate the 0°C, 1°C, and 2°C isotherms.

https://doi.org/10.7755/FB.121.3.5s1
https://doi.org/10.7755/FB.121.3.5s2
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associated with artifacts of interpolation (fragments of 
water in stratum 50 with temperatures <2°C in the ras-
ter based on observed temperatures that were not repli-
cated in the rasters based on predicted temperatures; 
Fig. 3). Random sampling resulted in errors that are rel-
atively larger than errors from the use of other designs 
at the same effort. The difference in level of errors was 
most noticeable for strata 20 and 82 at the effort of 
120 stations.

Cold pool indices

Performance was similar among sampling designs, in 
predicting total cold pool area, the offshore and south-
ern extents of the cold pool, and the depth at the offshore 
extent. Regular sampling generally resulted in slightly 
smaller errors than random and stratified sampling. Dif-
ferences were in the magnitude of tenths of a unit.

Area Prediction bias in the cold pool area as a percent-
age of the observed cold pool area was small for CP2, 
except in the simulation for 2018 (Fig. 5), when bottom 
water colder than 2°C occupied only 1.2% of the survey 
area along the northern boundary and water colder than 
1°C was not observed (Figs. 3A and 6). The RMSE as a 
percentage of the observed cold pool area had very simi-
lar patterns to the bias percentage. The bias and RMSE 

percentages were highly correlated, with coefficient of cor-
relations (r) ranging from −0.8, for both CP1 and CP2, to 
approximately 1 for CP0 (P<0.001, N=352). Excluding the 
percentage for 2018, the bias percentages across all treat-
ments were larger and more variable for the colder 
boundaries of the cold pool (0°C and 1°C) and skewed 
more toward the underestimation of the area: the range 
for CP2 was −10–4%, the range for CP1 was −30–12%, 
and the range for CP0 was −97–1%. The bias percentages 
were moderately correlated with observed cold pool areas 
(CP2: r=0.37; CP1: r=0.26; CP0: r=0.44; P<0.001, N=11 
treatments×33 years×100 replicates of simulated cold 
pool areas=36,300). In all instances, large negative biases 
were associated with small cold pool areas.

Extent and depth Bias and RMSE patterns for indices of 
cold pool location were largely similar. For any combina-
tion of sampling design and effort, mean biases in predict-
ing cold pool extent were ≤0.4°N (SD ≤0.3) and ≤±0.2°W 
(SD ≤0.5); RMSE values were ≤0.6° for both latitude and 
longitude (for bias plots, see Supplementary Figures 3–5; 
plots for RMSE are not provided because the patterns are 
similar to those for bias). The magnitude of the errors was 
associated with the cold pool boundary and the survey year 
(i.e., the thermal environment) and rarely larger than a 
fraction of a degree in longitude or latitude. The predicted 
southern extent was farther north than the observed 

Figure 4
Mean bias in prediction of the mean bottom temperature of the entire continental 
shelf in the eastern Bering Sea, by sampling design (regular, simple random, or strat-
ified random) and effort level (number of stations) for each survey year from 1987 
through 2019.

https://doi.org/10.7755/FB.121.3.5s3
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extent (positive bias) (Suppl. Fig. 3). The bias in predicting 
the southern extent of CP2 was largest for 2002 and 2003, 
for which observed temperature rasters show small, iso-
lated pools of water <2°C farther south that were detached 
from the main pool, and for 2019, for which the main pool 

was tiny with an irregular southern 
boundary (Fig. 3A). The detached pools 
did not appear in the predicted tempera-
ture rasters for the corresponding years 
(Fig. 3B); hence, the predicted southern 
extent was farther north than the ras-
ters based on observed temperatures, 
resulting in relatively large errors. The 
predicted offshore extent was mostly 
farther offshore than the observed 
extent for CP2 and CP1 (negative bias), 
but the trend was reversed for CP0, for 
which the biases were mostly positive 
(Suppl. Fig. 4).

Biases in predicting the depth at the 
offshore extent were larger (both mean 
and SD) for the warmer boundaries of 
the cold pool (Suppl. Fig. 5). For CP0 and 
CP1, the mean bias range was 1–4 m 
(RMSE: 1–4 m). For CP2, the mean bias 
ranged from −5 to −9 m (RMSE: 3–4 m) 
and was more variable annually than 
for CP0 and CP1. The largest bias of 

CP2, at about ±100 m, occurred in the simulations for 
2002 and 2016 (Suppl. Fig. 5). The mean predicted off-
shore depth was shallower than the observed depth for 
CP0 and CP1 (positive bias) but deeper than the observed 
depth for CP2 (negative bias).

Figure 5
Mean bias in prediction of the cold pool area on the continental shelf in the eastern 
Bering Sea as a percentage of the observed cold pool area, by sampling design (regular, 
simple random, or stratified random) and effort level (number of stations) for each sur-
vey year from 1987 through 2019. The cold pool is a layer of cold (<0°C, <1°C, or <2°C) 
bottom water that forms on the shelf below the pycnocline.

Figure 6
Annual observed area of the cold pool, a layer of cold (<0°C, <1°C, or <2°C) 
bottom water that forms below the pycnocline, on the continental shelf of the 
eastern Bering Sea from 1987 through 2019.
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Discussion

In this study, simulated surveys with regular, simple- 
random, and stratified- random sampling of the continental 
shelf of the EBS at the same level of effort have compa-
rable performance in predicting bottom temperatures and 
temperature- related indices. Regular sampling performed 
slightly better than the other designs; simple- random sam-
pling performed about the same as stratified- random sam-
pling. Lower effort resulted in larger prediction errors of the 
indices— on the scale of fractions of a degree for indices of 
mean temperature and cold pool location (latitude and lon-
gitude), thousands of square kilometers for cold pool area, 
and tens of meters in depth for offshore extent. Whether 
differences on that scale for an index is significant depends 
on the application. For example, the performance of ecosys-
tem models and forecasting systems may depend on spatial 
resolution, coverage, and accuracy of the observational data 
(Capotondi et al., 2019; Thorson, 2019), whereas current 
qualitative assessment of ecosystem state and trends may 
be more tolerant of uncertainties (Zador et al., 2016). Inter-
annual variability was most noticeable at the lowest effort 
of 120 stations, indicating that this level of effort may be a 
critical threshold for effort reduction.

The cold pool boundary is most commonly defined as 
water <2°C (CP2) in the literature. Kotwicki and Lauth 
(2013) suggested that water <1°C (CP1) better describes 
the temperature preferences of groundfish and crab spe-
cies in the EBS. As the benthic environment becomes 
warmer and the cold pool becomes smaller under climate 
change, colder boundaries of the cold pool may be increas-
ingly more difficult to delineate with high certainty, espe-
cially with reduced effort. It may be necessary to review 
current temperature- based indices and change them to 
indices that will more adequately depict thermal variabil-
ity in the benthic environment in the EBS. In the scenario 
of an ice- free EBS, thermal variability may have less effect 
on ecosystem dynamics.

Spatial interpolation is less accurate and generates 
larger prediction errors generally when the number of 
data points is small and not uniformly distributed (Achil-
leos, 2011). These kinds of data insufficiency may have 
caused the apparent fragmentation of the cold pool in the 
observed temperature rasters and resulted in relatively 
large errors in the estimation of the southern extent of the 
cold pool (e.g., in the simulation for 2003). Higher sam-
pling density in the vicinity where the cold pool generally 
resides (i.e., the middle shelf and the northern inner shelf) 
may be necessary to better delineate a small cold pool and 
estimate cold pool indices.

Prediction errors of the depth at the offshore extent of 
the cold pool are highly variable, and biases can be as large 
as ±100 m for CP2 and CP1. The magnitude of errors is 
small for CP0 because it is located nearshore, usually in 
depths ≤50 m. The accuracy of the estimated depth at a 
location is dependent on the resolution and accuracy of the 
bathymetry raster. The finding of relatively large predic-
tion errors in the index for the depth at the offshore extent 
of the cold pool indicates that reduced sampling may lead 

to high uncertainty in the estimation of this index. The cur-
rent methods of estimation may also be a causal factor. We 
recommend that this index be used with caution and that 
the use of other more robust indices may be preferable.

The results of this study indicate that the use of all 
3 survey designs can reproduce temperatures and indices 
of the EBS shelf from the real bottom- trawl survey, for 
which sampling of 350 stations in a regular grid was done 
systematically, even with as little as half the effort. Reduc-
ing the number of stations that are sampled has definite 
financial and likely logistical benefits. Total on- station 
time can be reduced, although the total transit time to 
cover the survey area cannot necessarily be changed. 
The current survey requires 2 months to complete with 
2 vessels (Conner and Lauth, 2017). Effort reduction may 
shorten the total survey time and enable the composition 
of a spatial temperature map that characterizes tempera-
ture for a more compressed time frame. It is not appar-
ent that the use of any of the survey designs examined 
in this study delivers distinctly better performance in the 
construction of temperature spatial maps and indices or 
achieves greater economy and efficiency in survey execu-
tion. Regular sampling appears to perform slightly better 
and has been the standard sampling design for the bottom- 
trawl survey on the EBS shelf for over 30 years. Random 
sampling may be less effective in capturing a very small 
cold pool (e.g., the cold pool in 2018).

Changing the spatial extent of the sampling effort will 
likely also change the survey schedule and the day of the 
year on which certain stations are sampled. On the basis 
of Danielson et al. (2011) and Cokelet (2016), the surface 
mixed layer would warm by an estimate of 3.0°C/d. Analy-
ses indicate that, if stations with depths <50 m in the cur-
rent grid— which presumably would be fully mixed— are 
sampled approximately a week or more earlier than their 
mean sampling day of year, cold pool indices would pro-
duce average negative (i.e., cold) biases less than −0.2°C 
for those stations; conversely, sampling later than their 
mean sampling day of year would result in a positive (i.e., 
warm) bias (Rohan et al., 2022). The effect on the tempera-
ture indices of the temporal effort shift associated with 
spatial effort reduction would need to be assessed. Rela-
tionships used in stock assessments to correct for varia-
tion in density and availability would need to be revisited 
because they are largely predicated on assumptions of the 
stationarity of temperature indices.

Conclusions

Long- term ecological studies are imperative to the under-
standing of climate- scale processes and informing man-
agement policy (Sukhotin and Berger, 2013; Hughes et al., 
2017; Harvey et al., 2020). The bottom- trawl survey on the 
EBS shelf provides an invaluable time series of fishery- 
independent biological data and environmental data 
essential for stock assessment and fisheries and ecosystem 
research under climate change (e.g., Holsman et al., 2016; 
Grüss et al., 2020). The collection of temperature data is 
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only one of many ancillary tasks of the survey. Evaluation 
of how changes in sampling design and reduction in effort 
will affect the accuracy and precision of stock assessment 
information is ongoing (e.g., Oyafuso et al., 2021).

The future direction of the survey in terms of design and 
effort will be driven mainly by stock and environmental 
assessment needs within fiscal constraints. When consid-
ering stratification and sample allocations for future sur-
veys, it is important to consider not only species distribution 
but also the distribution and importance of the tempera-
ture indices needed for these assessments. Alternatively, 
the measurement of temperature during the survey may 
be independent of the bottom- trawl sampling design if 
instruments that are not attached to the trawl gear are used. 
Temperature profiling can be achieved within a reasonably 
short time at a station or possibly even while the vessel 
is underway. If measurement of temperature is decoupled 
from trawl sampling, it may not be necessary to decrease 
temperature samples by the same amount as trawl samples 
or restrict temperature sampling only to trawl stations.

Resumen

La temperatura del fondo se mide rutinariamente como 
parte del estudio de arrastre de fondo realizado cada ver-
ano en la plataforma continental del Mar de Bering ori-
ental por el Centro de Ciencias Pesqueras de Alaska de la 
NOAA. Estos datos se utilizan ampliamente en la evalu-
ación de ecosistemas, evaluación de poblaciones y model-
ación oceánica. Evaluamos el efecto de diseños de muestreo 
alternativos y de la reducción del esfuerzo, sobre la calidad 
de la información de la temperatura del fondo obtenida en 
la prospección. Se simuló y comparó el muestreo aleatorio 
simple y el muestreo aleatorio estratificado con el mues-
treo sistemático de estaciones fijas en una rejilla regular, 
en relación con el uso de datos de prospección en la esti-
mación de las temperaturas del fondo marino y los índices 
relacionados. El esfuerzo simulado osciló entre el 34% y el 
100% del esfuerzo total. En las prospecciones simuladas, 
el uso de cada uno de los 3 diseños de muestreo resulto 
en valores de temperatura del fondo cercanos a los de la 
prospección real, incluso con tan solo la mitad del esfuerzo. 
A menor esfuerzo, los errores de predicción de los índices 
son mayores y más variables. La disminución de los resul-
tados de predicción es más notable en el nivel de esfuerzo 
del 34%. Los resultados del muestreo sistemático son lig-
eramente mejores que los del muestreo aleatorio simple 
y el muestreo aleatorio estratificado. Una de las razones 
de esta diferencia es que el muestreo aleatorio pudo haber 
sido menos eficaz que el muestreo estándar a la hora de 
captar una pequeña onda fría característica del actual 
estado cálido del océano.
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