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Abstract—The limited resources and 
high species diversity associated with 
coastal fisheries present challenges 
to their effective management. Data- 
limited approaches to assessment of 
stocks are often used in these situa-
tions, but most assessments require 
basic life history information that is 
often unavailable. We expanded a step-
wise meta- analytical approach in which 
statistical relationships between key 
life history traits are used to estimate 
parameters related to growth, maturity, 
and longevity. This approach was origi-
nally devised for 6 fish families and has 
been successfully implemented in the 
assessments of data- poor reef fish spe-
cies in Hawaii and Guam. We expanded 
this approach to groupers, wrasses, 
grunts, and sharks and, here, present 
an R package that greatly simplifies its 
implementation. Further, we tested this 
expansion by selecting a species from 
each of these taxa and compared results 
from use of the stepwise approach to 
results from life history studies. Our 
results indicate agreement between the 
probability distributions from our step-
wise approach and those from previous 
studies. Distributions from the stepwise 
simulation had higher variability but 
reasonable accuracy in estimating miss-
ing values of life history parameters. 
We also tested our approach against 
another meta- analytical life history 
approach that was recently published 
(and made available as the R pack-
age FishLife) and found our stepwise 
approach to be generally more precise 
and accurate.
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Coastal fisheries provide sustenance 
and a source of income for millions of 
people across the globe (Kronen et al., 
2010; Symes et al., 2015; FAO, 2016). 
These fisheries typically target hun-
dreds of species from different taxa, 
and this high species diversity makes 
the management of these fisheries chal-
lenging (Ault et al., 2014). In addition, 
resources for fisheries research and 
management are often lacking, result-
ing in a paucity of data that limits the 
development of well- informed man-
agement plans (Fenner, 2012;  Gilman 
et al., 2014; Hilborn and Ovando, 2014; 
Berkson and Thorson, 2015). Assessing 
these fisheries is further limited by a 
lack of long- term catch and fishing 
effort records needed to implement cer-
tain stock assessment models.

To compensate for shortcomings, 
recent stock assessment methods have 
been focused on the use of cost- efficient 

length data (Ault et al., 1998, 2008; 
Gedamke and Hoenig, 2006; Nadon 
et al., 2015; Hordyk et al., 2016; Rudd 
and Thorson, 2018; Nadon, 2019). These 
length- based methods require life his-
tory information related to growth: 
parameters of the von  Bertalanffy 
growth function (von Bertalanffy, 1938), 
the asymptotic length (L∞) and growth 
coefficient (K); natural mortality (M); 
and length at maturity (Lmat, the length 
at which 50% of individuals are mature). 
However, species- specific information 
on life history traits is missing for as 
many as 83% of exploited stocks glob-
ally (Froese and Binohlan, 2000). To 
address this issue, Nadon and Ault 
(2016) developed a stepwise stochastic 
simulation approach in which a local 
estimate of maximum length (Lmax) and 
statistical relationships between life 
history parameters are used to esti-
mate this missing information.
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Fundamental relationships between life history traits 
in fish species were first observed by Beverton and Holt 
(1959). They pointed out that M and K are typically 
related by a ratio close to 1.5, that the ratio of Lmat to L∞ 
is typically around 0.66, and that L∞ and K have a nega-
tive power relationship that has a general form of L∞~K−h, 
with a shape parameter (h), which is typically around 
0.5. These relationships are referred to as Beverton–Holt 
invariants in the literature (Charnov, 1993) and are likely 
conserved through natural selection because of their 
link with the maximization of offspring (Beverton and 
Holt, 1959; Jensen, 1996, 1997; Charnov, 2008). Results 
of recent meta- analytical studies indicate that ratios dif-
fer significantly between taxa and are therefore better 
studied within taxa (Hordyk et al., 2015; Nadon and Ault, 
2016; Thorson et al., 2017).

Relationships of life history traits are useful for the 
estimation of missing life history parameter values by 
relating ones, such as M, for which information is elu-
sive to ones, such as L∞ and K, for which values are more 
easily obtained (Pauly, 1980), or by relating Lmax to other 
length parameters (e.g., Lmat) (Froese and Binohlan, 2000, 
2003; Jarić and Gačić, 2012). The aim of these studies was 
mainly to generate missing estimates for single param-
eters, and these studies were not taxon- specific, limiting 
their utility by ignoring the complex multivariate distri-
bution between key life history parameters. As a solu-
tion, Nadon and Ault (2016) presented an approach that 
involves the use of Monte Carlo simulation draws and sev-
eral regression model steps between life history parame-
ters for 6 fish families. Their approach allows for complex 
relationships between parameters, while maintaining a 
multivariate error structure. This approach is analogous 
to the method in which a sequence of regressions is used 
for multiple imputation of missing data (Raghunathan 
et al., 2001; van Buuren, 2007; Ellington et al., 2015).

Nadon and Ault (2016) determined family- specific rela-
tionships between key life history traits after an exten-
sive literature review for 6 families of coastal fish species: 
surgeonfishes, jacks, snappers, emperors, goatfishes, and 
parrotfishes. Peer- reviewed data- limited assessments of 
stocks in Hawaii (Nadon, 2017) and Guam (Nadon, 2019) 
have already been implemented by using this approach. 
The goal of our study was to extend the approach from 
Nadon and Ault (2016) to 3 additional families of trop-
ical coastal fish species, groupers (Serranidae), wrasses 
(Labridae), and grunts (Haemulidae), as well as to sharks 
from the orders Carcharhiniformes and Lamniformes. We 
acknowledge that taxonomy is an evolving field and with 
new information can come new evidence for reclassifica-
tion. Recently, this evolution has touched groupers with 
proposals to move the subfamily Epinephelinae, including 
the genus Epinephelus, under the family  Epinephelidae 
instead of under the family Serranidae (Craig and 
 Hastings, 2007; Smith and Craig, 2007; Ma and Craig, 
2018). Although some classifications put grouper taxa 
under  Epinephelidae instead of Serranidae, for the pur-
poses of this study, we used Serranidae as the family name 
for species of  Epinephelinae and other grouper species.

Additionally, we tested this approach against those of 
life history studies and against the approach of Thorson 
et al. (2017) as applied in their R package FishLife. We 
also developed, and present here, a new R package, Step-
wiseLH, that simplifies the implementation of the step-
wise approach for all 10 included taxonomic groups. Our 
results will improve the capability to conduct stock 
assessments for these taxonomic groups in data- limited 
situations.

Materials and methods

Details of the stepwise approach

The approach presented in Nadon and Ault (2016) involves 
a series of regression models in which relationships 
between life history parameters are used to sequentially 
estimate missing values for life history parameters from 
the previously estimated parameters (Fig. 1, Table 1). Note 
that the regression models that relate these parameters 

Figure 1
Depiction of one iteration of the stepwise stochastic simula-
tion approach in which statistical relationships between key 
life history traits are used to estimate parameters related to 
growth, maturity, and longevity. The simulation starts with 
a local estimate of maximum length (Lmax), and regression 
models A–D (solid arrows) are used successively to estimate 
a parameter from the one estimated in the previous model. 
The dashed arrows represent direct parameter calculations 
made by using deterministic equations (e.g., the oldest 
recorded age [Amax] is calculated by using natural mortality 
[M]). The rest of the parameters in this depiction include 
the asymptotic length (L∞), expected length at the oldest 
recorded age (LAmax), growth coefficient (K), and length at 
which 50% of individuals are mature (Lmat).
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are not universal but specific to taxonomic groups (e.g., 
snappers). The 4 models (A–D) of statistical relationships 
between life history parameters used in the stepwise 
approach (Fig. 1) are, sequentially, as follows:

A) L∞ = b0 + b1Lmax + ε (linear function);  (1)

B) log(K) =  log(b2) + b3log(L∞) + ε  
(power function) or  (2)

log(K) = log(b2) + b3L∞ + ε (exponential function);  (3)

C) log(M) =  log(b4) + b5log(K) + b6log(Lmax)  
+ ε (power function) or (4)

log(M) =  log(b4) + b5K + b6Lmax  
+ ε (exponential function); and  (5)

D) Lmat = b7 + b8LAmax + ε (linear function), (6)

where ε =  a normally distributed error term (note: this 
error term can also be lognormally distributed 
for models A and D, if the residuals pattern indi-
cates a lognormal distribution;

b =  a model coefficient, either the slope or intercept; 
and

LAmax =  the expected length at the oldest recorded age 
(Amax).

These 4 models are used in the stepwise approach to 
generate probability distributions of the parameters L∞, 
K, Lmat, and M as follows. First, a local estimate of Lmax is 
obtained from a data set of representative lengths (note: 
we recommend using the 99th percentile of the length 
data set to avoid inclusion of an outlier Lmax value and 
bootstrapping this data set to incorporate variability in 
Lmax). Second, this Lmax value is entered into model A (also 

Table 1

List of life history parameters, with their definitions, used 
in the stepwise stochastic simulation to produce missing 
estimates of life history parameters for groupers (Serrani-
dae), wrasses (Labridae), grunts (Haemulidae), and sharks 
from the orders Carcharhiniformes and Lamniformes. All 
lengths used for these parameters are total lengths.

Parameter Definition

LAmax Expected length at the oldest recorded age 
(also known as Lλ)

Lmat Length at which 50% of individuals reach 
maturity

Lmax Longest length in a growth study or 99th 
 percentile of lengths in a population survey

L∞ Asymptotic length (expected length at 
infinite age)

K Brody growth coefficient of the von Berta-
lanffy growth function

A0 Theoretical age at which length equals zero
Amax Oldest recorded age (i.e., longevity)
M Instantaneous natural mortality rate

referred to as Lmax~L∞) to obtain the expected L∞ value at 
a given Lmax. Third, a single random L∞ value is sampled 
from the error distribution of L∞ at that specific location 
on the linear regression model. Fourth, this random L∞ 
value is used in model B to obtain the expected K value 
for this given L∞ value. A random K value is then drawn 
from the error distribution at this location. Fifth, this ran-
dom K value is entered into model C, which also includes 
the starting Lmax value, to obtain the expected M value. 
A random M estimate is sampled at this location in the 
regression model.

Next, the previously estimated random L∞, K, and M val-
ues are entered into the von Bertalanffy growth function to 
obtain LAmax, also known as Lλ in Nadon and Ault (2016):

, (7)

where A0 =  the age at length zero (a fitting parameter of the 
von Bertalanffy equation that is fixed at −0.6 in 
the stepwise approach, its overall mean value).

The parameter Amax is obtained by using the relation-
ship of longevity to M presented in Hoenig (1983) and in 
Hewitt and Hoenig (2005), under the assumption that sur-
vivorship of a cohort at the oldest recorded age (S) was 5%, 
with this formula:

. (8)

Note that when implementing the stepwise approach, 
users can calculate an M estimate under a different equa-
tion or S value and are not bound to use an S of 0.05. The 
flexibility of natural mortality estimates is discussed fur-
ther in the “Discussion” section.

Finally, the LAmax value obtained by using Equation 7 
is entered into model D to obtain the expected Lmat value, 
and a random Lmat is drawn from the error distribution 
at this location on the model D curve. This stepwise pro-
cedure is repeated several thousand times to obtain a 
multivariate probability distribution of all 4 life history 
parameters that can then be directly used in various stock 
assessment models. Uncertainty of regression model 
coefficients was included at every step by drawing a ran-
dom set of regression coefficients from a normal multi-
variate distribution, defined by the variance– covariance 
matrix associated with these regression coefficients. Val-
ues of the variance–covariance matrix are presented in 
Table 2, along with model coefficients and residual error 
distributions.

Literature review and model fit for new taxa

The previous section describes how the stepwise proce-
dure is implemented by using predictions from a series 
of 4 previously established regression models. Regression 
models used in each step are specific to individual taxo-
nomic groups (e.g., parrotfishes, snappers, or jacks). To 
create 4 new family- specific models, we first reviewed the 
literature to generate new data sets of life history traits. 
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An extensive literature review was conducted by using 
several sources and collections (e.g., FishBase, Froese and 
Pauly, 2017; the libraries at the NOAA Pacific Islands Fish-
eries Science Center and North Carolina State University;  
and general Internet search tools) to find published stud-
ies related to growth (L∞ and K), maturity (Lmat), and lon-
gevity (Amax, from which M is derived). Values of Lmax were 
obtained from the same growth studies from which values 
of L∞ and K were obtained, by taking the largest observed 
length in each study.

We originally included the following families in our 
literature review: Haemulidae (grunts), Holocentridae 
(squirrelfishes), Labridae (wrasses), Serranidae (grou-
pers), and Siganidae (rabbitfishes), as well as sharks from 
various families. Groupers and wrasses include hundreds 
of small- bodied species (i.e., <10 cm total length), with 
nonexistent life history information, that we excluded 
from our search. We excluded species of groupers from 
the genus Anthias and species of wrasses from several 
genera, such as Cirrhilabrus, Halichoeres, Labroides, 
and Pseudojuloides. These species are characterized by 
extremely small body sizes, and their growth, maturity, 
and longevity traits are unlikely to have the same rela-
tionships as the traits of larger species in the same fam-
ilies. Researchers should not use the stepwise approach 

on species from these genera, even if life history studies 
for these species are available. In addition, the only fam-
ily of sharks that had enough life history information to 
run an independent statistical analysis was Carcharhin-
idae, and almost all of the shark studies we found were 
on species from the orders Carcharhiniformes and Lam-
niformes. We therefore defined the shark group in our 
study described here as a group containing species from 
these 2 orders only.

We examined information available for 1134 species in 
these taxonomic groups, but we found published growth 
and maturity values for only 115 of those species (Table 3; 
for a list of these species and the literature used as sources 
of life history information, see Supplementary Table), 
highlighting the paucity of information available for 
assessment of these species. Because of a lack of published 
studies, we were unable to extend the approach of Nadon 
and Ault (2016) to squirrelfishes and rabbitfishes because 
only 2 and 6 species in these families had published life 
history data, respectively.

Raw data sets were generally unavailable from the 
studies in our literature review. We therefore had to rely 
on the fitted growth and maturity parameters from the 
von Bertalanffy growth function and on the logistic matu-
rity model as fit in these studies. For growth parameters, 

Table 2

Model functional form, error probability distribution, and variance–covariance matrix of regression coefficients for models A–D of 
statistical relationships between key life history parameters for 3 families of tropical coastal fish species and for sharks from the 
orders Carcharhiniformes and Lamniformes. For each taxon, the first line presents model functional forms and error distributions in 
brackets. Models are linear (L; Y=b0+b1 . . . X) and power (P; logY=b0+b1 . . . logX) functions. Error distribution types are normal (N) 
and lognormal (LN). The first line also shows regression coefficients followed by the standard deviation for each distribution, given 
as the last value in the line. The second line presents the variance–covariance matrix of the regression parameters for 1- variable 
models (b0 variance, b1 variance, and b0–b1 covariance) and 2- variable models (b0 variance, b1 variance, b2 variance, b0–b1 covari-
ance, b0–b2 covariance, and b1–b2 covariance). The models relate the following parameters: the asymptotic length (L∞), maximum 
length (Lmax), growth coefficient (K), natural mortality (M), length at which 50% of individuals are mature (Lmat), and the expected 
length at the oldest recorded age (LAmax). TL=total length.

Taxon

Model

(A) L∞ ~ Lmax (B) K ~ L∞ (C) M ~ K + Lmax (D) Lmat ~ LAmax

Haemulidae [L,N] −29.3, 1.08, 53.5 
2170, 0.0892, −4.15

[P,LN] 4.21, −0.87, 0.33  
1.86, 0.05, −0.3

[P,LN] 6.11, 0.11, −1.28, 0.39 
8.05, 0.11, 0.25, −0.47, 
−1.42, 0.0956

[L,N] 101, 0.5, 31.4 
1420, 0.00787, −3.09

Labridae [L,N] −61.3, 1.08, 53.8 
976, 0.00377, −1.67

[P,LN] 4.15, −0.94, 0.5  
1.54, 0.0453, −0.262

[P,LN] −2.61, 0.64, 0.27, 0.42 
2.7, 0.0587, 0.1, −0.28, 
−0.515, 0.06

[L,LN] 70, 0.27, 0.28 
1130, 0.0074, −2.54

Serranidae: small 
(≤100 cm TL)

[L,N] −19.7, 0.97, 60.9 
552, 0.0017, −0.9

[P,LN] 3.69, −0.83, 0.49  
0.42, 0.0104, −0.0653

[P,LN] 0.73, 0.23, −0.36, 0.35 
0.404, 0.00774, 0.0125, 
−0.0296, −0.07, 0.0065

[L,LN] 53.6, 0.49, 0.13 
193, 0.000709, −0.32

Serranidae: large 
(>100 cm TL)

[L,N] 5.11, 0.92, 95.4 
15,179, 0.0081, −10.8

– – –

Sharks [L,N] 95.9, 1.02, 217 
10,100, 0.00165, −3.65

[P,LN] 6.77, −1.15, 0.47 
1.91, 0.0327, −0.25

[P,LN] 3.65, 0.11, −0.69, 
0.21 0.59, 0.00591, 0.013, 
−0.0336, −0.0862, 0.00603

[L,LN] −17.4, 0.79, 0.12 
5080, 0.00265, −3.33

https://doi.org/10.7755/FB.119.1.9s
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we selected only estimates for males and females com-
bined. As a result, we were able to combine estimates from 
these studies more easily with data from others in which 
sex was undifferentiated. Further, sexes are not differen-
tiated in most size- composition data sets in data- limited 
situations, and growth curves that are not sex specific are 
typically needed to run simple length- based assessment 
models with such data sets. For maturity, we obtained Lmat 
for females only, given that the reproductive potential of 
a stock is almost always tied to mature female biomass 
in population models. We converted all length values to 
total lengths in millimeters; total length was the length 
measurement used in this study and by Nadon and Ault 
(2016). Conversion factors obtained from FishBase were 
used to do so. In a limited number of cases in which multi-
ple studies were available for a single species, we selected 
the most reliable source, on the basis of sample size and 
publication source.

For the parameter Amax, the age of the oldest reported 
fish in a study was selected. If multiple longevity val-
ues were available for a certain species, we selected the 
oldest recorded age as the Amax value. Values of M were 
obtained by using the approach presented in Hewitt and 
Hoenig (2005), under the assumption that 5% of a cohort 
is left at the oldest recorded age (S=0.05; see Equa-
tion 2). Note that this assumption was used to obtain 
M estimates to fit model C (i.e., M~K+Lmax). In practice, 
when using the stepwise approach, we can convert the 
M estimates output from the model back to Amax values 
and calculate a new M estimate under a different set 
of assumptions (e.g., S=0.01; Pauly, 1980; Then et al., 
2015). These options are available in the R package that 
implements the stepwise approach (see the “Discussion” 
section).

Quality control was performed on the studies found 
during the literature review by using the same guidelines 
outlined in Nadon and Ault (2016). Requirements included 
discarding any growth studies that involved length– 
frequency analysis or back- calculations. We kept only stud-
ies based on the aging of fish through the use of hard parts, 
primarily otoliths, vertebrae, and dorsal spines for sharks 
(Natanson et al., 2018; Natanson and Deacy, 2019). Finally, 
any studies that occurred in waters with mean sea- surface 
temperatures (SST) below 20°C were removed from consid-
eration because of the well- established negative correlation 
between longevity and water temperature (Pauly, 1980; 
 Jobling, 1994; Choat and Robertson, 2002). Exclusion of 
studies from regions with low temperatures was a sensi-
ble choice given that many of the families examined in our 
study are typically found in tropical waters where tempera-
tures are usually well above the threshold of 20°C. Given 
that the ranges of our taxonomic groups center on tropical 
areas, only 3 species were excluded because of temperature 
criteria (1 wrasse and 2 groupers). The models also excluded 
genera that were clear outliers in certain families.

After obtaining the new data set of life history traits and 
putting it through quality control, we visually explored the 
shape of the functional relationships between paired 
parameters (Lmax~L∞, K~L∞, M~K, and Lmat~LAmax) by plot-
ting data points in scatter plots for each new taxon (by new, 
we mean taxa added to those already included in the work 
of Nadon and Ault, 2016). We then tested the fit of lin-
ear, power, and exponential functions to these data points 
and obtained the maximum likelihood estimates for all 
parameters of models A–D by using the mle2 function of 
the package bbmle (vers. 1.0.19; Bolker, 2008; Fox, 2008) 
in the R statistical computing and programming environ-
ment (vers. 3.4.0; R Core Team, 2017).

Table 3

Summary of estimates of life history parameters and other information in the data set for 6 taxonomic groups created through a 
literature review and used in this study. Data types include the asymptotic length (L∞), growth coefficient (K), oldest recorded age 
(Amax), ratio of maximum length (Lmax) to L∞, ratio of natural mortality (M) to K, ratio of the length at which 50% of individuals are 
mature (Lmat) to the expected length at the oldest recorded age (LAmax), and ratio of Lmat to L∞. For the family Labridae, species from 
small- bodied genera were not included; for the family Serranidae, the Anthias genus was not included; and, for the shark group, 
only families from the orders Carcharhiniformes and Lamniformes were included. Standard deviations are provided in parentheses 
for ratios. All length values are total lengths.

Data type
Haemulidae 

(grunts)
Holocentridae 
(soldierfishes)

Labridae 
(wrasses)

Serranidae 
(groupers) Sharks

Siganidae 
(rabbitfishes)

No. of species considered 134 86 334 264 287 29
No. of species with growth study 14 2 12 58 23 6
No. of species with maturity study 5 2 9 32 20 6
L∞ (mm) 203–917 – 133–981 148–2006 733–4218 –
K (year−1) 0.19–1.00 – 0.07–0.89 0.06–1.39 0.04–1.01 –
Amax (years) 5–36 – 7–78 4–76 7–44 –
Lmax to L∞ 1.02 (0.11) – 1.12 (0.13) 1.10 (0.14) 0.95 (0.11) –
M to K 0.55 (0.29) – 0.68 (0.39) 0.81 (0.48) 1.53 (0.82) –
Lmat to LAmax 0.80 (0.14) – 0.48 (0.16) 0.60 (0.10) 0.78 (0.10) –
Lmat to L∞ 0.79 (0.15) – 0.48 (0.17) 0.58 (0.12) 0.70 (0.12) –
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Testing the expansion of the stepwise approach

To test our expansion of the approach of Nadon and Ault 
(2016), we compared the probability distributions of 
the values of life history parameters obtained through 
use of the stepwise approach with the probability dis-
tributions from published growth and maturity studies 
on a species in each of the new taxonomic groups. We 
selected these species on the basis of the availability 
of published values of life history parameters from in- 
depth studies and the availability of an independent 
estimate of Lmax that we obtained from visual census 
data collected during NOAA diver surveys. We selected 
the blacktip reef shark (Carcharhinus melanopterus) 
(Chin et al., 2013), the camouflage grouper (Epinephelus 
polyphekadion) (Rhodes et al., 2011), the javelin grunter 
(Pomadasys kaakan) (Al-Husaini et al., 2002), and 
the redbreasted wrasse (Cheilinus fasciatus) (Hubble, 
2003). The NOAA diver surveys are conducted every 
3 years around approximately 50 islands and atolls in 
the central Pacific Ocean (the main and Northwestern 
Hawaiian Islands, American Samoa, and the Mariana 
Archipelago). For these surveys, a stratified random 
sampling design is used to select locations around the 
islands at which to count fish by using a stationary- 
point- count approach (Ayotte et al.1). During surveys, 
divers also record approximate total lengths of sighted 
fish to the nearest centimeter; divers are consistently 
trained in this exercise.

Next, we compared the precision and accuracy of the 
estimates of life history parameters from use of the 
stepwise procedure for the 4 new taxa included in this 
study. We used the same criteria as Nadon and Ault 
(2016) to evaluate the precision and accuracy of esti-
mates made with the stepwise approach. We compared 
the widths of distributions of standard deviations (pre-
cision) and the distances between medians (accuracy) 
from the stepwise analysis with those from aging and 
maturity studies. We ran the stepwise simulation for 
these species, starting with local Lmax values obtained 
from a data set of lengths of blacktip reef sharks, red-
breasted wrasse, and camouflage grouper from NOAA 
diver surveys. We did not have an independent data 
set of lengths of javelin grunter; therefore, we used the 
99th percentile of the lengths in the original growth 
study (Al-Husaini et al., 2002) as the Lmax value for this 
species.

Finally, we evaluated the performance of the stepwise 
approach when determining a simple stock status metric, 
the spawning potential ratio (SPR) (Goodyear, 1990), by 
measuring its precision and accuracy as we did for the 
life history parameters. Spawning potential ratio is the 
ratio of spawning stock biomass (SSB) per recruit under 

1 Ayotte, P., K. McCoy, A. Heenan, I. Williams, and J. Zamzow. 
2015. Coral reef ecosystem program standard operating pro-
cedures: data collection for rapid ecological assessment fish 
surveys. NOAA, Natl. Mar. Fish. Serv., Pac. Isl. Fish. Sci. Cent. 
Admin. Rep. H-15-07, 33 p. [Available from website.]

a certain fishing mortality rate (F) divided by the same 
metric when fishing is absent:

 (9)

where Amat =  the age at maturity (derived directly from 
Lmat), until Amax;

N
–

a = the number of individuals; and
W
–

a =  the expected individual weight (derived from a 
length–weight relationship; see Equation 10) 
in each age class a, beginning from Amat.

The number of individuals in an age class is obtained by 
using the following exponential mortality equation:

, (10)

where Sa =  the knife- edge selectivity at age a (set to age 2 
for all species, to simplify comparisons).

Given that the SPR is a per- recruit metric, the number of 
fish at age 0 is simply set to 1 (i.e., Na=0=1). Values for param-
eters of the dependent relationship of weight (W) to length 
(L) (α and β, where W=α×Lβ), necessary for SPR calculations, 
were obtained from FishBase. Using the above equations, 
we calculated SPR values for all 4 test species at different 
fishing rates ranging from 0 to F>4M from values of both 
the life history studies and stepwise approach. We then com-
pared the SPR probability distributions of the test species in 
a fashion similar to that used for life history parameters. We 
calculated the SPR at different F values given the curvilin-
ear relationship between the SPR and F.

Finally, we compared the stepwise parameter esti-
mates to those from use of the alternative meta- analytical 
approach FishLife (Thorson et al., 2017). The FishLife 
approach fits a multivariate model with a taxonomic struc-
ture to generate probability distributions of life history 
parameters at different taxonomic levels (species, genus, 
family, order, and class). Using the R package FishLife 
(Thorson, 2017), we generated probability distributions 
for our 4 test species at the genus and family levels. We 
plotted these distributions with the results from use of the 
stepwise approach as well as with the published parame-
ter estimates to evaluate their accuracy. All analyses were 
conducted in R.

Results

Life history parameter models for new taxa

The parameter Lmax had a close relationship with L∞ for all 
4 taxonomic groups (Fig. 2). All 4 relationships were best 
explained by a linear function with a relatively narrow nor-
mal error distribution. The standard deviation for sharks 
was much larger than for the other 3 groups (Table 2), an 
outcome that was expected given their larger size ranges. 
Larger (>1000 mm total length) grouper species had higher 
variability associated with L∞ estimates in comparison to 
smaller species; therefore, for analysis of the L∞~Lmax 

https://doi.org/10.7289/v5sn06zt
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relationship, we divided the grouper species into 2 size 
ranges by using an Lmax break point of 1000 mm total 
length. The growth parameter K had a negative curvilinear 
relationship with the L∞ parameter (Fig. 2). A power func-
tion best matched this relationship, and a lognormal error 
distribution was used to account for the decrease in vari-
ability that occurred as L∞ values increased. A power func-
tion with a lognormal error distribution was also used to 
model M as a function of K and Lmax (Fig. 2). Most of the 
available M and K data points were toward the lower end of 
the ranges of these parameters with only a few available 
data points at high values. It is likely that these limited 
data points had an outsized influence on the model fit. A 
positive, curvilinear relationship between M and K indi-
cates slower growing fish have lower M, as was expected.

A linear model was used for all 4 relationships between 
Lmat and LAmax (Fig. 2). Parameters for sharks, wrasses, 
and groupers were modeled with a lognormal error dis-
tribution because variability increased with larger LAmax 

values, and parameters for grunts followed a normal error 
distribution. Maturity data were available for only 5 spe-
cies of grunts, and the relationship would likely benefit 
from a larger sample size. As previously reported by Nadon 
and Ault (2016), LAmax was a better predictor of Lmat than 
L∞, as indicated by the higher coefficients of determina-
tion (r2) for results from the Lmat~LAmax models (Table 4).

Comparing distributions: stepwise approach, life history 
studies, and FishLife

For the 4 test species, we compared the probability distri-
butions for key life history parameters generated by using 
the stepwise approach with those found in species- specific 
life history studies (Fig. 3). Like the results of the tests 
used by Nadon and Ault (2016), the estimates of life his-
tory parameters resulting from use of the stepwise 
approach had greater standard deviations than those from 
actual studies. The estimates from the stepwise simulation 

Figure 2
Modeled statistical relationships between life history parameters, the asymptotic length (L∞), maximum length (Lmax), growth 
coefficient (K), natural maturity (M), and expected length at the oldest recorded age (LAmax), in 4 pairs for grunts (Haemulidae), 
wrasses (Labridae), groupers (Serranidae), and sharks from the orders Carcharhiniformes and Lamniformes. Black circles indi-
cate the estimates of life history parameters obtained from studies. The solid dark gray lines are the lines of best fit, produced 
by using a linear or power model. Gray areas indicate the 95% confidence intervals of the lines of best fit. Note that model C 
(see Figure 1) also includes the Lmax parameter for most families, but only the 1-variable M~K relationships are presented here. 
TL=total length.
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were reasonably accurate (i.e., useful for management pur-
poses), generating median values within 25% of the esti-
mates from life history studies for 14 of the 16 combinations 
of parameters and species (Table 5). Across all 4 test spe-
cies, the stepwise predictions for M appear to be the most 
accurate. The blacktip reef shark was the test species with 
the most accurate results from the stepwise approach for 
all 4 parameters. The stepwise approach performed moder-
ately well for the grunts on the basis of our test species 
javelin grunter. Despite high levels of variability, the step-
wise approach appeared to be accurate for camouflage 
grouper, especially for L∞, K, and M. The Lmat value was 
estimated at 352 mm in the test life history study and at 
284 mm by using the stepwise approach, a result that can 
be explained by this species being an outlier with its Lmat 
close to 80% of its L∞ (as opposed to 60% of the L∞ for grou-
pers, on average).

Table 4

Overall coefficients of determination for the linear models 
of the relationships of the length at which 50% of individ-
uals are mature (Lmat) as a dependent variable to either 
expected length at infinite age (L∞) or to expected length 
at the oldest recorded age (LAmax) for 3 families of trop-
ical coastal fish species and for sharks from the orders 
Carcharhiniformes and Lamniformes.

Taxon Lmat ~ L∞ Lmat ~ LAmax

Haemulidae (grunts) 0.82 0.86
Labridae (wrasses) 0.36 0.46
Serranidae (groupers) 0.86 0.90
Sharks 0.91 0.95
All families 0.74 0.79

Figure 3
Probability distributions of estimates of life history parameters from life history studies (light gray areas and solid lines) 
and from use of the stepwise stochastic simulation approach (dark gray areas and dashed lines) for the 4 selected test 
species: javelin grunter (Pomadasys kaakan), redbreasted wrasse (Cheilinus fasciatus), camouflage grouper (Epinephelus 
polyphekadion), and blacktip reef shark (Carcharhinidae melanopterus). The parameters include the asymptotic length 
(L∞), growth coefficient (K), length at which 50% of individuals are mature (Lmat), and natural mortality (M). TL=total 
length.
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To test the influence of the estimates of life history 
parameters from use of the stepwise approach on stock 
status, we used stepwise parameter predictions to calcu-
late SPR distributions at F values ranging from 0 to more 
than 4 times M. The use of the stepwise approach and 
life history studies generated relatively similar median 
SPR values across the range of F, but the stepwise- 
derived SPR values were more variable, as expected, 
because of higher variability in life history parameters 
(Fig. 4). Higher variability was especially true for the 
redbreasted wrasse, given the low number of studies that 

were available for the wrasse family and the resulting 
higher uncertainty in parameter estimates from stepwise 
simulation. Averaged across all 4 test species, the abso-
lute distance between the stepwise- derived SPR values 
and those from life history studies was 0.05 when F was 
equal to M and was 0.03 when F was equal to 2 times M. 
It is worth noting that, for 3 of the 4 test species, the SPR 
curve for estimates from use of the stepwise approach 
was higher than that for study values, but it is unclear 
if this bias is an implicit one, given the small number of 
species included in tests.

Table 5

Comparison of descriptive statistics of the probability distributions of life history parameters obtained 
from published life history studies to those from the use of the stepwise stochastic simulation approach for 
the 4 selected test species: javelin grunter (Pomadasys kaakan), redbreasted wrasse (Cheilinus fasciatus), 
camouflage grouper (Epinephelus polyphekadion), and blacktip reef shark (Carcharhinidae melanopterus). 
The life history and other model parameters include the maximum length (Lmax), asymptotic length (L∞), 
growth coefficient (K), length at which 50% of individuals are mature (Lmat), natural mortality (M), spawn-
ing potential ratio (SPR) at which fishing mortality (F) was equal to M, and SPR at which F was equal to 
2 times M. The median, standard deviation (SD), ratio of the SD from stepwise simulation to the SD from 
life history studies (SD ratio), and the standardized distance between the stepwise medians and medians 
from life history studies (relative error [RE]) are presented for each parameter, except Lmax, which was a 
measured value in the study. The median Lmax values used to obtain probability distributions for the 4 test 
species are provided. TL=total length.

Parameter

P. kaakan C. fasciatus E. polyphekadion C. melanopterus

Study Stepwise Study Stepwise Study Stepwise Study Stepwise

Lmax (mm TL) – 655 – 236 – 520 – 1737
L∞ (mm TL)

Median 621 675 223 192 447 487 1840 1862
SD 5 58 13 57 9 62 127 225
SD ratio – 12 – 4 – 7 – 2
RE (%) – 9 – −14 – 9 – 1

K (year−1)
Median 0.27 0.24 0.21 0.47 0.25 0.24 0.10 0.15
SD 0.01 0.09 0.05 0.35 0.02 0.14 0.02 0.09
SD ratio – 13 – 7 – 8 – 5
RE (%) – −11 – 124 – −4 – 50

Lmat (mm TL)
Median 390 435 100 121 352 284 1300 1267
SD 5 52 4 45 6 50 35 260
SD ratio – 10 – 11 – 8 – 7
RE (%) – 12 – 21 – −19 – −3

M (year−1)
Median 0.08 0.10 0.20 0.20 0.14 0.16 0.21 0.19
SD 0.004 0.05 0.02 0.16 0.01 0.07 0.03 0.05
SD ratio – 13 – 8 – 7 – 2
RE (%) – 25 – 0 – 14 – −5

SPR F=M
Median 0.38 0.39 0.22 0.29 0.27 0.35 0.09 0.12
SD 0.01 0.09 0.04 0.15 0.02 0.11 0.02 0.08
SD ratio – 9 – 4 – 6 – 4
RE (%) – 3 – 32 – 30 – 33

SPR F=2M
Median 0.18 0.18 0.08 0.13 0.11 0.18 0.011 0.023
SD 0.01 0.07 0.02 0.11 0.01 0.08 0.005 0.033
SD ratio – 7 – 6 – 8 – 7
RE (%) – 0 – 63 – 64 – 109
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Lastly, we compared the stepwise approach with the 
FishLife meta- analytical approach (Thorson et al., 
2017). On average, the stepwise approach was more 
accurate than the FishLife approach implemented at 
both the genus and family levels for all parameters 
except K (Table 6, Figs. 5 and 6). The accuracy of the 
ratios of Lmat to L∞ was only slightly better for the 

stepwise approach. However, the accuracy of L∞, M, Lmat, 
and the ratio of M to K was significantly higher for the 
stepwise approach. For example, the Lmat medians from 
stepwise simulation were on average 11% removed from 
the study values, and the Lmat average median values 
from the FishLife approach where more than 30% 
removed from those in published studies. In terms of 
precision, the stepwise approach was more precise for 
L∞, M, and Lmat. The  FishLife distributions were slightly 
more precise for the ratios of Lmat to L∞ and of M to K 
and more precise for the K parameter (standard devia-
tions of 0.12 versus 0.17).

Discussion

Through this study, we have successfully extended the 
stepwise stochastic simulation approach to grouper, 
wrasse, grunt, and shark taxa. Our findings indicate that 
the stepwise approach could be further extended to fit 
specific management and scientific needs for additional 
families by replicating the effort in this study. The new 
models for these 4 taxa can now be used to calculate val-
ues for key life history parameters in data- poor situa-
tions and to implement stock assessment models (Nadon, 
2017, 2019). The model in which the stepwise approach 
is applied now includes 10 taxonomic groups and is 
available as the R package StepwiseLH on the GitHub 
website.

Caveats

The stepwise approach, as well as other similar meta- 
analytical approaches, carries a lot of uncertainty into 
estimates of life history parameters and is not meant to 
replace proper life history studies. These approaches are 
meant to be temporary solutions to alleviate the press-
ing needs for assessment and management of data- poor 
fish populations. Although we tried to limit the sources of 
variability in our data set as much as possible, we had to 
make several compromises to retain a sufficient number 
of data points. For example, although most of the species- 
specific values of Lmax, L∞, K, and Amax used to create our 
data set are from single studies (and therefore single 
locations), maturity studies were often conducted sepa-
rately and Lmat values can therefore be from a location 
different from the area where values of other parameters 
are from for many species. Specifically, 2 of the 5 matu-
rity studies for grunts and 12 of the 32 maturity studies 
for groupers were not conducted at the same location as 
their corresponding growth studies (although only 2 of 
20 shark maturity studies and none of the wrasse studies 
were conducted in different locations from those of their 
growth studies). This compromise may have added more 
variability to our Lmat estimates but likely did not intro-
duce any specific biases.

Additionally, the lack of data points and different model 
fitting procedures for juveniles can have an effect on the 
L∞ and K parameter estimates. We tried controlling for 

Figure 4
The spawning potential ratios at various fishing mortal-
ity rates derived by using parameter estimates from life 
history studies (dark gray areas and solid lines) and from 
use of the stepwise stochastic simulation approach (light 
gray areas and dashed lines) for the 4 selected test species: 
(A) javelin grunter (Pomadasys kaakan), (B) redbreasted 
wrasse (Cheilinus fasciatus), (C) camouflage grouper 
(Epinephelus polyphekadion), and (D) blacktip reef shark 
(Carcharhinidae melanopterus). Lines represent median 
values, and shaded areas represent 95% confidence inter-
vals. Fishing mortality rates ranged from 0 to more than 
4 times natural mortality.

https://github.com/pifscstockassessments/stepwiselh
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Figure 5
The 95% confidence intervals for probability distributions of natural mortality (M) and the growth 
coefficient (K) from use of the stepwise stochastic simulation approach (solid circular lines) and 
from use of the FishLife approach at both the genus (dotted circular lines) and family (dashed cir-
cular lines) levels for the 4 selected test species: (A) javelin grunter (Pomadasys kaakan), (B) red-
breasted wrasse (Cheilinus fasciatus), (C) camouflage grouper (Epinephelus polyphekadion), and 
(D) blacktip reef shark (Carcharhinidae melanopterus). Published values from life history studies 
(black circles) are also presented for each species, with line segments connecting the median of the 
distributions to the study value.

Table 6

Comparison of the accuracy and precision of estimates of life history parameters 
between use of the stepwise stochastic simulation approach and use of the FishLife 
approach. The reported values are the average results for all 4 of the selected test 
species. The FishLife model generated probability distributions at the genus and 
family levels. The parameters include the asymptotic length (L∞), growth coefficient 
(K), natural mortality (M), length at which 50% of individuals are mature (Lmat), 
and the ratios of Lmat to L∞ and of M to K. The accuracy metric is the standardized 
distance from the median values generated with the meta- analytical approaches 
to values from life history studies (in percentage units). Precision is reported as 
the standard deviation of each parameter (in millimeters for total lengths and on 
an annual basis for M and K). An asterisk (*) indicates that results are the most 
accurate or precise for that life history parameter among the approaches tested.

Modeling approach L∞ K M Lmat Lmat to L∞ M to K

Accuracy
Stepwise 8* 45 11* 11* 17* 36*
FishLife (genus) 58 30* 99 50 19 87
FishLife (family) 17 45 86 30 18 78

Precision
Stepwise 111* 0.17 0.08* 107* 0.13 0.46
FishLife (genus) 449 0.12* 0.14 248 0.08* 0.38*
FishLife (family) 611 0.21 0.22 340 0.10 0.42
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this issue by removing growth studies with highly nega-
tive A0 from the analysis (an indication of a lack of data 
points for juveniles needed to anchor the growth curve 
near the origin). Again, we believe removing studies with 
highly negative A0 simply adds to the overall variability 
and does not introduce any specific bias.

Another caveat is that we used the SST at the locations 
of the life history studies, and those temperatures may 
not reflect the lifelong SST exposure of highly migratory 
species. In the study described here, the difference in 
temperatures is mainly a concern for certain shark spe-
cies that may migrate between tropical and temperate 
waters. Therefore, our SST limit of 20°C may not exclude 
species that spend most of their time in SST <20°C if 
the study took place in a warmer climate. A difference in 
temperature may introduce a slight bias in M estimates, 
but it is unlikely that the tropical or temperate species 
that occur in SST above 20°C spend much time in very 
cold SST.

Further, we used the Lmax value from NOAA diver 
surveys to distance our test from the Lmax values in the 
original data set and to reduce the potential for confound-
ing test results. The only input needed for the stepwise 

approach is Lmax, and we wanted this value to come from 
an independent source. We could have used Lmax from the 
original life history study, as we did for the javelin grunter, 
but we felt this was a more independent test.

Finally, it would have been more appropriate to test our 
stepwise approach on species not included in the regres-
sion models we used to build our approach. However, we 
did not want to exclude the data from our 4 test species in 
these regression models given our low sample sizes. It is 
important to note that parameter estimates for the 4 test 
species came from the same database (FishBase) as those 
used in the FishLife multivariate models; therefore, their 
inclusion does not bias our approach comparisons in favor 
of the stepwise approach.

Sources of variability in estimates of life history parameters

There are multiple sources of variability included in the 
distributions of life history parameters from the step-
wise simulation. Some sources are directly modeled, oth-
ers are likely indirectly included as part of the overall 
residual error of each model, and some minor sources 
of uncertainty were not included. The main source of 

Figure 6
The 95% confidence intervals for probability distributions of the asymptotic length (L∞) and 
length at which 50% of individuals are mature (Lmat) from use of the stepwise stochastic sim-
ulation approach (solid circular lines) and from use of the FishLife approach at both the genus 
(dotted circular lines) and family (dashed circular lines) levels for the 4 selected test species: 
(A) javelin grunter (Pomadasys kaakan), (B) redbreasted wrasse (Cheilinus fasciatus), (C) cam-
ouflage grouper (Epinephelus polyphekadion), and (D) blacktip reef shark (Carcharhinidae 
melanopterus). Published values from life history studies (black circles) are also presented for 
each species, with line segments connecting the median of the distributions to the study value. 
TL=total length.



Erickson and Nadon: Stepwise stochastic simulation for distributions of missing life history parameter values 89

variability is interspecific genetic differences that are 
a result of natural selection. This source of variability 
was modeled explicitly by using parameter estimates 
for individual species as data points in our regression 
models. A certain amount of intraspecific geographical 
variability in both genetics and habitat conditions also 
contributes to variability in estimates of life history 
parameters. Consequently, there may be some concern 
that we pooled data from across the world and there-
fore ignored geographical differences within species. 
Unfortunately, given that published data for most spe-
cies came from only one location, it was impossible for us 
to directly control for geographical heterogeneity in life 
history parameters. Geographical differences in values 
of life history parameters for species simply add to the 
overall variability of the stepwise parameter estimates 
and should not cause any specific bias.

Another source of variability that was directly mod-
eled are regression model coefficients. Coefficient 
variability was included by randomly sampling the mul-
tivariate normal distribution, as defined by the variance– 
covariance matrix. Similarly, uncertainty in the starting 
Lmax parameter was directly included by sampling from 
a distribution or by bootstrapping raw Lmax observations. 
Furthermore, the lack of access to raw age- at- length and 
length- at- maturity data, coupled with the fact that most 
published reports from life history studies do not include 
a parameter variance–covariance matrix, prevented us 
from directly including uncertainty from fitted values 
(i.e., L∞, K, and Lmat) in our models. This source of uncer-
tainty, although not modeled explicitly, likely adds to the 
global residual error.

Finally, a few minor sources of uncertainty were not 
directly included because they are unlikely to have a major 
effect on output variability. Specifically, variability in A0 is 
hard to measure given the sensitivity of this parameter 
to juvenile age- at- length data points. In our approach, we 
simply fixed this parameter to the overall mean of −0.6. 
Further, we did not include uncertainty in the relation-
ships of fork or standard length to total length that we 
used to convert all parameter data to total lengths. Not 
including uncertainty from length conversions is unlikely 
to be a major source of error, and the studies that publish 
these conversion factors rarely provide their associated 
variability. Finally, we did not specifically include vari-
ability in the M estimates derived from Amax (Equation 8). 
The relationship between M and longevity depends on the 
assumption of S. We fixed S at 0.05 to convert our raw 
observations of Amax to M in order to model the M~K rela-
tionship. This assumption can be relaxed in the R package 
StepwiseLH by specifying an S value and generating M 
estimates under this new value. Uncertainty in the values 
of the S parameter could be included by researchers as a 
separate step by using Monte Carlo simulations on this 
parameter.

Despite the various sources of uncertainty described in 
this section, it is important to note that use of the stepwise 
approach still results in reasonably accurate parameter 
estimates, as demonstrated in our tests.

Parameter estimation

In addition to producing results from the 4 models that 
relate key life history traits, we calculated the following 
ratios: Lmax to L∞, Lmat to LAmax, Lmat to L∞, and M to K, 
all Beverton–Holt invariants. Results from compari-
son of these ratios from our study with those previously 
published indicate that the invariants differ among tax-
onomic groups in our study (groupers, grunts, wrasses, 
and lamniform and carcharhiniform sharks). Our findings 
are consistent with previous investigations of life history 
invariants that found similar variance in relationships of 
life history traits between taxonomic groups of fish (Char-
nov and Berrigan, 1991; Nadon and Ault, 2016; Thorson 
et al., 2017).

The ratio of M to K is of particular interest because 
the relationship between M and K determines the over-
all shape of a growth trajectory (Hordyk et al., 2015). In 
our study, we used the criteria from Prince et al. (2015) 
to define a ratio of M to K that was >1.0 as indeterminate 
growth and a ratio of M to K that was <1.0 as determinate 
growth. Species with determinate growth are limited to a 
maximum size after which growth mostly ceases (Lincoln 
et al., 1982), and species with indeterminate growth are 
not limited to a maximum size but typically see growth 
slow with size (Sebens, 1987). Sharks were the only group 
with a ratio of M to K that was >1.0 (1.53), indicating inde-
terminate growth. This observation for sharks is consistent 
with the findings of indeterminate growth in the literature 
(Pardo et al., 2013; Heupel et al., 2014). All other families 
in the study described here had determinate growth pat-
terns with ratios of M to K <1.0.

On average, species with indeterminate growth will 
reach only a fraction of L∞ at Amax, with an increasingly 
smaller proportion at higher ratios (Hordyk et al., 2015). 
Consequently, the ratio of M to K has a strong effect on 
the divergence between the parameters L∞ and LAmax. As 
this ratio increases, the curvilinearity of the growth trajec-
tory decreases and L∞ can increase drastically and become 
more of a fitting parameter than one related to LAmax. An 
increase in the ratio of M to K ultimately reduces the ratio 
of Lmat to L∞, while the ratio of Lmat to LAmax stays similar. 
The described interactions between life history ratios can 
also lead to L∞ being much higher than Lmax, an outcome 
that may seem surprising but is to be expected for spe-
cies with high ratios of M to K. This effect of the stepwise 
approach on the ratio of M to K was observed in our study: 
the groups with the highest ratios of M to K (groupers and 
sharks) had the greatest differences between the ratios of 
Lmat to L∞ and of Lmat to LAmax. Subsequently, as in the 
study of Nadon and Ault (2016), we used the Lmat~LAmax 
relationship as the preferred model for obtaining Lmat. 
Our decision was further validated by r2 values being 
higher when LAmax was used as the predictor than when 
L∞ was used.

To varying degrees, the relationships estimated with 
stepwise simulation in this study were similar to those 
established by Nadon and Ault (2016) with positive 
linear relationships between parameters in both the 
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L∞~Lmax and Lmat~LAmax pairs, negative curvilinear rela-
tionships between parameters in the K~L∞ pair, and a 
positive curvilinear relationship between parameters in 
the M~K pair. The apparent outlier to this trend is a less 
positive, almost linear relationship between parameters 
in the M~K pair for grunts that could be an effect of the 
small sample size (n=9) for this taxonomic group. In this 
situation, the K parameter contains limited information 
on M, but the relationship still defines the range of M 
values that is likely for grunts. A similar situation was 
found for surgeonfishes and goatfishes by Nadon and 
Ault (2016).

The shark group had a large standard deviation in the 
L∞~Lmax relationship. This difference was likely due to 
both the distribution of sizes for sharks and the decision 
to create the relationships for a taxonomic group broader 
than family. Our decision to group multiple families of 
sharks together was necessary because only one family of 
sharks, Carcharhinidae, had enough published life history 
information to generate family- specific relationships. We 
therefore extended the shark group in our study to com-
prise all families in the orders Carcharhiniformes and 
Lamniformes, which include most families of conservation 
concern, such as requiem (Carcharhinidae), hammerhead 
(Sphyrnidae), thresher (Alopiidae), mackerel (Lamnidae), 
and sand tiger (Odontaspididae) sharks. After comparing 
the relationships for only species of Carcharhinidae with 
the relationships for all species of Carcharhiniformes and 
Lamniformes, we determined that it was appropriate to 
use a model for all families in the orders Carcharhini-
formes and Lamniformes, given the current lack of data 
for species not in Carcharhinidae. As more life history data 
become available, it would be appropriate to create more 
family- specific models for other shark families. Until then, 
we believe our approach provides a reasonable option to 
assess shark stocks in data- poor situations.

The average absolute percent difference in estimates 
of the SPR and of life history parameters from use of the 
stepwise approach and from life history studies for the 4 
test species was only 19%. This level of difference is simi-
lar to the 22% average difference found by Nadon and Ault 
(2016). The differences between estimates from stepwise 
simulation compared favorably with average differences 
of 59% and 44% for genus- and family- level estimates 
from use of the FishLife approach, respectively. The model 
proved most successful in estimating L∞, Lmat, and M, with 
an average absolute difference of only 8–11% between the 
stepwise estimates and those from life history studies. It is 
not entirely surprising that it was a struggle to estimate 
L∞ and Lmat with the FishLife approach given that, in 
this approach, a local Lmax estimate is not used within an 
Lmax~L∞ relationship to restrict L∞ and Lmat estimates, as is 
done in the stepwise approach. The distributions of length 
parameter values estimated with the FishLife approach 
therefore effectively represent the range of values observed 
within a genus or family, a range that can be enormous (as 
evident in Figure 6). Wide distributions of length param-
eter values limit the utility of the FishLife approach to 
population assessment models, such as the length- based 

spawning potential ratio model (Hordyk et al., 2016), that 
can be parameterized with the ratios of M to K and of Lmat 
to L∞. However, it is important to note that even these mod-
els will require a reasonable estimate of L∞ to scale the 
length data used to fit model parameters.

In addition, note that the distribution of these ratios 
can also be output from the stepwise simulation. It was a 
struggle to use our model to predict K, for which there was 
an average percent difference of 47% between the stepwise 
simulation and FishLife model, including the 124% dif-
ference for redbreasted wrasse (K values were estimated 
with higher precision and accuracy when the FishLife 
approach was used; the K parameter was the only one for 
which  FishLife outperformed the stepwise approach in both 
metrics). These large discrepancies in estimation of the K 
parameter did not have a strong effect on SPR estimation 
error because estimates of the SPR from use of the stepwise 
approach typically were within 0.05 of the value obtained 
from the relevant life history study.

The study described here has resulted in the extension 
of our capability to conduct stock assessments in data- 
poor situations to a greater number of species. Our step-
wise approach is generally more precise and accurate than 
the FishLife approach, although more research comparing 
both approaches is certainly warranted. It is important to 
reiterate that these meta- analytical approaches are not 
meant to replace life history studies, which typically have 
well- designed spatial coverage, appropriate gear selec-
tion, large sample sizes, and peer- reviewed biological and 
statistical methods. We acknowledge that the stepwise 
approach presented here may introduce a large amount 
of uncertainty to any assessment relying on them, in com-
parison with a species- and location- specific life history 
study. The stepwise approach is meant to allow temporary 
assessments to be implemented. We highly recommend 
full integration of the uncertainty in estimates of life 
history parameters throughout any assessment. We also 
recommend that stock status and management metrics 
be viewed in a risk assessment context, in which greater 
uncertainty is directly related to more conservative man-
agement advice. Under these guidelines, predictions from 
the use of this approach have successfully been used to 
manage stocks in U.S. waters of the Pacific Ocean, pass-
ing independent expert reviews (Nadon and Ault, 2016; 
Nadon, 2019).
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