ILLUSTRATIONS.

PLATES.

REVIEW OF SALMONOID FISHES OF GREAT LAKES:

Plate I. Lake trout, Mackinaw trout (Cristivomer namaycush) .. 1
II. Lake Huron herring (Leucichthys sisca huronius) ... 42
III. Bloater of Lake Michigan (Leucichthys johnanne) ... 42
IV. Blackfin of Lake Michigan (Leucichthys nigripinnis) .. 42
V. Cisco of Lake Michigan (Leucichthys hoyi) .. 42
VI. Common whitefish of Lake Erie (Coregonus albus) ... 42
VII. Menominee whitefish, round whitefish (Coregonus quadrilateralis) 42

BARNACLES OF JAPAN AND BERING SEA:

Plate VIII. (1-4) Scalpellum rubrum. (5-7) Conchoderma auritum .. 61
IX. (1) Scalpellum sternsi. (2-4) Scalpellum gonionotum. (5-7) Scalpellum weltnerianum 84
X. Scalpellum japonicum ... 84
XI. (1-3) Scalpellum japonicum biramosum. (4, 5) Scalpellum molliculum. (6, 7) Octolasmis orthogonia. (8, 9) Heteralepas, species undetermined ... 84
XII. (1-7) Heteralepas vetula. (4) Balanus rostratus apertus. (5) Balanus callistoderma. (6) Balanus rostratus. (7) Balanus rostratus apertus ... 84
XIII. (1, 2) Balanus rostratus apertus. (3-7) Balanus hoekianus. (8, 9) Balanus rostratus apertus ... 84
XIV. Balanus crenatus ... 84
XV. (1, 2) Balanus hoekianus. (3-7) Balanus callistoderma .. 84
XVI. Acasta spongites japonica .. 84
XVII. Pachyasma crinoidophilum .. 84

FOOD VALUE OF SEA MUSSELS:

Plate XVIII. (1) The sea mussel (Mytilus edulis Linneus). (2) A bed of sea mussels 1 year old ... 87
XIX. (1) Interior surface view of the mantle of a male mussel. (2) Interior surface view of the mantle of a female mussel. (3) Lateral view of a mussel with the shell and mantle of one side removed. (4) Lateral view of a female mussel with the shell and mantle of one side and the foot, gills, and abdomen removed to show the main canals of the genital system .. 128
XX. Organisms constituting the food of mussels. Diatomaceae ... 128
XXI. Organisms constituting the food of mussels. Diatomaceae ... 128
XXII. Organisms constituting the food of mussels. Protozoa .. 128
XXIII. (1) Cross section of the mantle of a female mussel March 3, 1908. (2) Cross section of the mantle of a male mussel August 20, 1907. (3) Cross section of the mantle of a male mussel June 27, 1908. (4) Cross section of the mantle of a spent female sea mussel August 16, 1908 ... 128
XXIV. (1) A mussel bed at Menemsha Pond, Martha Island, Mass., exposed at low tide. (2) Dredging for mussels ... 128
XXV. (1) A heap of mussel shells, the result of a few days' work. (2) A heap of shells from mussels which have been pickled for the New York market. 128
ILLUSTRATIONS.

Migration of salmon in the Columbia River:
Plate XXVI. (1) The two pieces of the marking button, shown separately and riveted together. (2) Pliers used in attaching marking buttons. 134

XXVII. (3) Photograph of eleven marking buttons after they were recovered from the marked fishes. (4) Photograph of converse faces of the eleven marking buttons shown in figure 3. 142

Natural history of the American lobster:
Plate XXVIII. First larval or surface-swimming stage of the lobster. 153

XXIX. Male lobster (Homarus gammarus) with symmetrical claws, and both of crusher type. 276

XXX. (1) Growth stages of lobster eggs and young, to illustrate relative sizes attained at Woods Hole, Mass. (2 and 3) Growth stages of young lobsters, continued. 320

XXXI. Fourth stage of the lobster. 340

XXXII. Sixth stage of the lobster. 344

XXXIII. Half section of lobster, cut in median plane, to illustrate general anatomy. 408

XXXIV. Transverse section of body of female lobster, in plane of gastric mill. 408

XXV. (1) Left eyestalk from above, or what was originally the anterior side. (2 and 3) Parts of corneal membrane of compound eye, composed of modified hexagonal facets of individual eyelets. (4) Left first antenna, from above. (5 and 6) Left second antenna, from upper and undersides. (7) Left mandible, from inner side. 408

XXVI. (1) Left first maxilla of adult. (2) Left second maxilla. (3) First maxilliped. (4) Left second maxilliped. (5) Left third maxilliped. (5a and 5b) Transverse sectional views of three-sided merus and ischium. 408

XXVII. (1) Right toothed forceps and cheliped of female lobster, from lower side. (2) Left cracker claw and cheliped of female from above. (3 and 4) Base of great cheliped from below. 408

XXXVIII. (1-4) Left second to fifth pereiopods or slender legs of adult lobster, from anterior side. 408

XXXIX. (1 and 2a) Left first pleopod of female and male, respectively. (2 and 2a) Left second swimmeret of female and male lobster, respectively. (3) Left third swimmeret. (4) Left fourth swimmeret from egg-bearing female of approximately same size as in preceding figure. (5) Left fifth swimmeret of series 1-3. (6) Left uropod or modified swimmeret of tail fan. (7) The same appendage reversed. 408

XL. Left crusher claw of lobster, partly dissected from upper side, to show relations of muscles, nerves, blood vessels, and skin, with principal branches of claw arteries and nerves laid bare. 408

XLI. (1) Left second pereiopod, from anterior or upper side. (2) Shell of right toothed forceps in sectional view from above. 408

XLII. (1) Right toothed forceps of lobster in seventh stage. (2) Teeth from dactyl of lobster in fifth stage. (3) Serrate margin of jaw in area marked a, figure 1, embracing series i-ii. (4 and 5) Armature of index or propodus of right toothed forceps of lobster in seventh stage and after molting to the eighth. 408

XLIII. (1) Oblique section through large claw of lobster in first larval stage. (2 and 3) Jaws of cracker claw of lobster weighing about 12 pounds. (4) Profile of seminal receptacle of female, from molted shell. (5) Skeleton of first abdominal somite of male, from behind. (6) Seminal receptacle shown in profile in figure 4, as seen from underside. 408
ILLUSTRATIONS.

Natural history of the American lobster—Continued.

Plate XLIV. (1) Immature ovary of lobster with abnormal ring on left anterior lobe for transmission of left antennal artery. (2) Reproductive organs, from right side of male. (3) Transverse section of horned pouch of seminal receptacle of female lobster. (4) Left third swimmeret of female. (5) Lobster’s egg.

XLV. (1–5) Diagrams to illustrate structure and growth of ovary of lobster from first larval stage to maturity.

XLVI. (1) From transverse section of ovary of lobster 8⅔ inches long, July 25. (2) Part of longitudinal section of first larva, at point of attachment of abductor mandibuli muscle. (3) Part of transverse section of dactyl of soft lobster, close to spines of dentate margin.

XLVII. (1) Part of section parallel to long axis of gill. (2) Diagram of transverse section of lobster’s gill. (3) Transverse section of oviduct of adult lobster immediately before egg-laying. (4) Transverse section of oviduct of adult lobster taken immediately after egg-laying.

Anatomy and physiology of the wing-shell Atrina rigida:

Plate XLVIII. (16) Drawing of specimen to show relative position and appearance of various organs.

XLIX. (17) Drawing of arteries of right side of body and of left mantle lobe, the shell, right mantle lobe, gills, and kidneys having been removed. (18) Drawing of arteries of left side of body, the shell, left mantle, gills, posterior retractor muscles of the foot, and kidneys having been removed. (19) Drawing of principal veins of right side of body, the shell, right mantle lobe, and gills having been removed.

L. (20) Semidiagrammatic drawing of a specimen, ventral side up, to show veins which enter kidneys and those which emerge from them.

Text cuts.

Review of the salmonoid fishes of the Great Lakes:

Fig. 1. Cristivomer namaycush sicowet. Sicowet.

2. Leucichthys harengus. Saginaw Bay herring.

3. Leucichthys harengus. Saginaw Bay herring.

4. Leucichthys harengus arcturus, new subspecies.

5. Leucichthys sicco. Cisco of Lake Tippecanoe.

7. Leucichthys ontariensis, new species.

8. Leucichthys artedi. Lake herring.

15. Leucichthys zenithicus. Lake Superior longjaw.

17. Leucichthys tullibee. Tullibee.

20. Coregonus stanleyi.

VIII. ILLUSTRATIONS.

Barnacles of Japan and Bering Sea:

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Scalpellum rubrum</td>
<td>63</td>
</tr>
<tr>
<td>2.</td>
<td>Scalpellum japonicum</td>
<td>67</td>
</tr>
<tr>
<td>3.</td>
<td>Scalpellum molliculum</td>
<td>69</td>
</tr>
<tr>
<td>4.</td>
<td>Heteralepas japonica</td>
<td>71</td>
</tr>
<tr>
<td>5.</td>
<td>Heteralepas vetula</td>
<td>72</td>
</tr>
<tr>
<td>6.</td>
<td>Balanus rostratus apertus</td>
<td>74</td>
</tr>
<tr>
<td>7.</td>
<td>Balanus evermanni</td>
<td>76</td>
</tr>
<tr>
<td>8.</td>
<td>Balanus hoekianus</td>
<td>77</td>
</tr>
<tr>
<td>9.</td>
<td>Balanus hoekianus</td>
<td>78</td>
</tr>
<tr>
<td>10.</td>
<td>Balanus callistoderma</td>
<td>79</td>
</tr>
<tr>
<td>11.</td>
<td>Pachylasma crinoidophilum</td>
<td>82</td>
</tr>
</tbody>
</table>

Food Value of Sea Mussels:

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Curves showing results of metabolism experiments</td>
<td>104</td>
</tr>
<tr>
<td>2.</td>
<td>Apparatus for cleaning mussels preparatory to canning or other preservation process</td>
<td>112</td>
</tr>
</tbody>
</table>

Natural History of the American Lobster:

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Giant lobster from New Jersey</td>
<td>197</td>
</tr>
<tr>
<td>2.</td>
<td>Left second pereiopod of first larva of lobster</td>
<td>226</td>
</tr>
<tr>
<td>3.</td>
<td>Sectional view of antennal segment to show statocyst</td>
<td>239</td>
</tr>
<tr>
<td>4.</td>
<td>Locked sliding joint of big claw of lobster</td>
<td>235</td>
</tr>
<tr>
<td>5.</td>
<td>Locked sliding joint of big claw of crab</td>
<td>236</td>
</tr>
<tr>
<td>6 and 7.</td>
<td>Great first and small left third claw feet of adult lobster</td>
<td>258</td>
</tr>
<tr>
<td>8.</td>
<td>Base of right great cheliped of fourth-stage lobster from below</td>
<td>260</td>
</tr>
<tr>
<td>9 and 10.</td>
<td>Right great cheliped of fourth-stage lobster from above</td>
<td>262</td>
</tr>
<tr>
<td>11.</td>
<td>Diagram to show serial arrangement of spines in the toothed forceps of lobster</td>
<td>262</td>
</tr>
<tr>
<td>12.</td>
<td>Projection of serial teeth in segment of big claw of large adult lobster represented in figure 13</td>
<td>264</td>
</tr>
<tr>
<td>13.</td>
<td>Large segment of right toothed claw from above, to show periodic teeth</td>
<td>264</td>
</tr>
<tr>
<td>14.</td>
<td>Left great claw foot of first larva</td>
<td>266</td>
</tr>
<tr>
<td>15 and 16.</td>
<td>Left and right future toothed and crusher claws of lobster in eighth stage, seen from above</td>
<td>267</td>
</tr>
<tr>
<td>17.</td>
<td>Outline of great claw tip</td>
<td>268</td>
</tr>
<tr>
<td>18.</td>
<td>Outline of corresponding part of big claw shown in figure 17, but in second larval stage</td>
<td>268</td>
</tr>
<tr>
<td>19.</td>
<td>Outline of corresponding part of great claw shown in figures 17 and 18, but at third larval stage</td>
<td>269</td>
</tr>
<tr>
<td>20.</td>
<td>Outline of corresponding part of big claw represented in figures 17 to 19, but at fourth stage</td>
<td>269</td>
</tr>
<tr>
<td>21 and 22.</td>
<td>Right and left forceps of lobster 24 mm. long, reared in captivity, and 11 months old, in eighth or ninth stage</td>
<td>270</td>
</tr>
<tr>
<td>23 and 24.</td>
<td>Serrate margins of claws shown in figures 21 and 22</td>
<td>271</td>
</tr>
<tr>
<td>25.</td>
<td>Armature of right crusher of female lobster 35 mm. long and at approximately tenth stage</td>
<td>272</td>
</tr>
<tr>
<td>26 and 27.</td>
<td>Profile and horizontal projection of larger division of right toothed forceps of male lobster immediately before molt</td>
<td>279</td>
</tr>
<tr>
<td>28 and 29.</td>
<td>Partial profile, and projection of armature of same claw shown in figures 26 and 27 but immediately after molting</td>
<td>279</td>
</tr>
<tr>
<td>30.</td>
<td>Diagram to illustrate growth in a single generation of lobster's eggs during a period of nearly 3 years, from an initial stage in ovary to time of hatching</td>
<td>290</td>
</tr>
<tr>
<td>31.</td>
<td>Diagrams of sperm shells of the lobster before, during, and after capsular explosion</td>
<td>314</td>
</tr>
<tr>
<td>32.</td>
<td>Diagrammatic section of sperm cell in capsular explosion</td>
<td>315</td>
</tr>
<tr>
<td>33.</td>
<td>Outlines to show relative sizes of lobsters' eggs when laid and when ready to hatch</td>
<td>326</td>
</tr>
<tr>
<td>34.</td>
<td>First larva, or first swimming stage of lobster</td>
<td>329</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS.

NATURAL HISTORY OF THE AMERICAN LOBSTER—Continued.

Fig. 35. Cephalothorax of lobster in first stage when under stimulus of pressure, drawn immediately after reddening through expansion of chromatophores.......................... 330
36. Cephalothorax of the same individual 10 minutes after release from pressure, and after paling from contraction of chromatophores................................. 330
37, 38, and 39. Parts of setae from chelifed of larval lobster showing different degrees of reduction from typical plumose type.. 333
40. Swimming attitudes of young lobsters in the first free stages... 335
41. Second larva, or second swimming stage of lobster.. 337
42. Third larva, or third swimming stage of lobster.. 339

ANATOMY AND PHYSIOLOGY OF THE WING-SHELL ATRINA RIGIDA:

Fig. 1. The shell.. 413
2. Diagrammatic cross section of the body anterior to the adductor muscle.............. 415
3. Transverse section of gill... 420
4. Diagrammatic drawing of a bit of the gill.. 421
5. Transverse section of a filament.. 422
6. Drawing of kidney in position.. 430
7. Bodies excreted from the kidney.. 431
8. Section of the glandular portion of the kidney.. 431
9. Drawing of the digestive system in position.. 432
10. Drawing of the cerebral and pedal ganglia with their connectives..................... 433
11. Drawing of the visceral ganglia... 433
12. Drawing to show distribution of mantle nerves.. 434
13. Drawing of transverse section of one lobe of otocyst.. 435
14. Reconstruction of the compound otocyst from a series of sections....................... 435
15. Drawing of transverse section of the foot showing the position of the otocyst...... 436