UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary FISH AND WILDLIFE SERVICE Ira N. Gabrielson, Director

Fishery Bulletin 39

FLUCTUATIONS IN ABUNDANCE OF RED SALMON, Oncorhynchus nerka (WALBAUM), OF THE KARLUK RIVER, ALASKA

By JOSEPH T. BARNABY

From FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE Volume 50

UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1944

ABSTRACT

Karluk River red salmon migrate to the ocean in their first to their fifth year. The majority migrate during their third or fourth year. They mature, and return to fresh water to spawn in their third to eighth year. The 5-year age group is dominant, with the 6-year age group next in importance. In the period from 1921 to 1936, the spawning escapements have fluctuated from 400,000 to 2,533,402 with an average escapement of 1,113,594. The fluctuations in the ratio of return to escapement have been considerable, and no correlation has been found to exist between escapement and return.

Certain adverse environmental conditions in the lake and tributary streams appear to have a deleteriou effect upon the young red salmon. Insufficient amounts of phosphorus and silica present in the lake waters is one such condition. This shortage of essential chemicals indirectly affects the production of zooplankton of the lake, and thus appears to indirectly affect the growth and survival of young salmon which depend upon zooplankton for food. A marked change is occurring in the percentage of fish of a given fresh-water history in the escapement, in relation to the percentage of fish of the same fresh-water history in the return. A higher percentage of fish spend 3 years in fresh water in the escapement than in the return, and a higher percentage of fish spend 4 years in fresh water in the return than in the escapement. Unless this relationship changes, the majority of salmon in the Karluk River runs will be fish that have spent 4 years in fresh water.

Seaward migration takes place during the last week of May and the first 2 weeks in June. The percentage of 4-year fingerlings decreased, and the percentage of 3-year fingerlings increased during the period of migration. Growth rate affects the time of migration, as the fastest growing individuals migrate first. Marking experiments at Karluk River have shown the amputation of the adipose and right, left, or both ventral fins to be better methods of marking than those which included the pectoral fins. The fresh-water mortality of Karluk River red salmon was found to be in excess of 99 percent. The average ocean mortality was 79 percent. The older and larger 4-year seaward migrants experienced a lower ocean mortality than the 3-year migrants; the average mortality of the former was 76 percent as compared to 83 percent for the younger age-group. Returns from marking experiments on the red salmon of Karluk River have been consistently greater than returns from similar experiments in other areas.

FLUCTUATIONS IN ABUNDANCE OF RED SALMON, ONCORHYNCHUS NERKA (WALBAUM), OF THE KARLUK RIVER, ALASKA

By JOSEPH T. BARNABY, A. M., Aquatic Biologist, Division of Fishery Biology, Fish and Wildlife Service

CONTENTS

. Je

	Page		Page
Introduction	237	Marking experiments-Continued.	
Statistical history of the fishery	238	Recovery of marked fish	281
Age at maturity	241	Experiments in 1926	282
Snawning populations	247	Experiments in 1927 and 1928	283
Total populations	252	Experiments in 1929	283
Returns from known spawning popula-		Experiments in 1930	284
tions	255	Experiments in 1931	286
Chemical analyses of lake and stream		Experiments in 1932	287
waters	260	Experiments in 1933	289
Change in age composition of the popu-		Discussion of marking experi-	
lation	267	ments	290
Seaward migrations	272	Mortality in fresh water	291
Sex ratios of adult fish	27 5	Summary and conclusions	292
Marking experiments	277	Literature cited	294
Marking of Karluk River red			
salmon	281		
tions Chemical analyses of lake and stream waters Change in age composition of the popu- lation Seaward migrations Sex ratios of adult fish Marking experiments Marking of Karluk River red salmon	255 260 267 272 275 275 277 281	Experiments in 1931 Experiments in 1932 Experiments in 1933 Discussion of marking experi- ments Mortality in fresh water Summary and conclusions Literature cited	286 287 289 290 291 292 294

INTRODUCTION

One of the major problems of the Federal Government on the Pacific coast is the conservation of the Alaska salmon resources which yield more than 280 million pounds of salmon to the commercial fisheries each year. In order to conserve these resources, so as to provide for an optimum yield each season, it has been found necessary to impose certain regulations on the fishing industry. These regulations aim primarily to provide an adequate escapement of the salmon to the streams each season so that they may reproduce and maintain the supply.¹

Knowledge of fluctuations in the abundance of salmon populations provided the basis upon which the regulations were formulated. Since the commercial catch records gave insufficient and frequently unreliable information on the abundance of salmon, picket weirs were established in a number of important salmon rivers through which the fish were counted on their upstream migration to the spawning grounds. The count of the number of salmon migrating into a river, together with the record of the commercial catch in the locality of the river, furnished information

¹ Pacific salmon spend the carly part of life in fresh water, the time spent there depending on the species and locality. They then migrate to the ocean and after a varying period of time return to fresh water to spawn. Fishery Bulletin 39. Approved for publication May 6, 1940.

on the magnitude of the total run during a particular season. It was soon evident, however, that information on the fluctuations in abundance was not sufficient. A knowledge of the causes of the fluctuations was both desirable and valuable in promulgating sound and adequate regulations.

The Karluk River on Kodiak Island, Alaska, was selected as an appropriate site for the study of the causal factors responsible for the yearly fluctuations in the abundance of a single population of red salmon, Oncorhynchus nerka (Walbaum). This river supports a commercial red-salmon fishery of considerable importance. The area in which the Karluk River red salmon are caught is confined to a readily delineated zone near the mouth of the river within which very few red salmon from other watersheds are taken, consequently the commercial catch can be determined quite The stream bed and water flow of the river are of such a nature that accurately. a counting weir for determining the number of salmon migrating upstream can be operated successfully throughout the season. Karluk Lake, the source of the river, and its tributaries are fairly accessible. Thus, this watershed fulfills admirably the requirements essential for a study of the biological background of the red salmon.

The White Act (43 Stat. 464-467; June 6, 1924) provided that there should be a 50 percent escapement of all salmon populations. Subsequent to the passage of that act, commercial fishing in the Karluk area has been so regulated that the catch of red salmon for a season has never exceeded the escapement. Unfortunately, this restriction of the commercial catch has not increased the size of the runs of red salmon in the river to the level of abundance that existed during the early years of the fishery. Factors other than the total number of salmon spawning in the river system each season have played an important role in the abundance of the runs. In this paper a statistical review is presented of the Karluk River red-salmon fishery from its inception in 1822 to 1936, together with a report on the major biological studies carried on to date.

STATISTICAL HISTORY OF THE FISHERY

Statistics of the catch of Karluk red salmon presented in this report are not always identical with those published by Gilbert and Rich (1927) but do agree for the years 1882 to 1920 with those given by Rich and Ball (1931) as these latter statistics are considered more reliable for this period. From 1921 to 1927, the statistics of the catch given herein are not identical with those presented by Rich and Ball, who include in their figures for the Karluk catch only those fish caught between Cape Karluk and Cape Uyak, although they mentioned that a large part of the fish caught to the northeast of Karluk in later years were Karluk fish. The development of the fishery between Cape Uyak and Uganik Bay resulted in the capture of a part of the Karluk run before it reached the mouth of the Karluk River. That fish caught as far north as Uganik Bay were chiefly derived from the Karluk run was shown by a tagging experiment (Rich and Morton 1929) carried on at West Point. The Karluk area, as defined in this report, includes all of the coast line between Cape Karluk and West Point on Kodiak Island.

Year	Number of fish	Year	Number of fish	Year	Number of fish	Year	Number of fish
1882	$\begin{array}{c} 58,800\\ 188,706\\ 282,184\\ 468,580\\ 646,100\\ 1,004,500\\ 2,781,100\\ 3,143,796\\ 3,500,588\\ 2,852,458\\ 2,909,508\\ 3,349,976\\ 3,349,976\\ 2,055,934 \end{array}$	1896	$\begin{array}{c} 2, 638, 976\\ 2, 204, 425\\ 1, 534, 064\\ 1, 399, 117\\ 2, 594, 774\\ 3, 985, 177\\ 2, 981, 112\\ 1, 319, 975\\ 1, 638, 949\\ 1, 787, 642\\ 3, 382, 913\\ 2, 929, 886\\ 1, 608, 418\\ 923, 501\\ \end{array}$	1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1922 1922 1922 1922 1923	$\begin{matrix} 1, 492, 544\\ 1, 723, 132\\ 1, 245, 272\\ 868, 422\\ 540, 455\\ 828, 429\\ 2, 343, 104\\ 2, 324, 492\\ 1, 094, 665\\ 1, 084, 669\\ 1, 368, 526\\ 1, 643, 119\\ 643, 159\\ 730, 170\end{matrix}$	1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936	890, 839 1, 323, 302 2, 356, 335 714, 790 1, 000, 774 227, 399 167, 091 751, 889 674, 407 845, 423 919, 200 654, 817 1, 077, 831
				1			

TABLE 1.-Catch of Karluk River red salmon from beginning of the canning industry in 1882 to 1936

Table 1 gives the yearly catch of Karluk red salmon from the beginning of the commercial fishery in 1882 up to and including the season of 1936. There has been a marked decline in the abundance of the run of fish. The total runs (catch plus escapement) for the past 16 years (table 19) have averaged slightly over 2,000,000 fish per year, and the average yearly run for 12 of these years was less than 1,600,000 fish, whereas for the 7-year period, 1888 to 1894, inclusive, the catch alone averaged over 3,000,000 fish per year.

In table 2 are presented, for the period 1895 to 1921,² the coefficients of correlation³ between the catches during the years of escapement and the catches 4, 5, and 6 years later, together with corresponding values of P.⁴

The values of P for 4-year and 6-year intervals are such that the coefficients of correlation cannot be considered statistically different from zero. The value of Pfor the 5-year interval is such that the coefficient of correlation can be considered statistically significant. It can be concluded from the fact that a statistically significant correlation of over 0.6 exists between the catches at 5-year intervals and that no statistically significant correlation exists between the catches at 4-year or 6-year intervals that the runs of Karluk red salmon from 1895 to 1921, inclusive, were composed largely of 5-year fish. Such a conclusion is verified by the age determinations based on examinations of scale samples taken during 1916, 1917, 1919, and 1921.

Yearly interval between catches	Number of pairs of catches correlated	y 1	z ?	£ 8	Pi
4	23	0.236	0.241	1.076	0. 2–0. 3
5	22	.644	.765	3.341	.01
6	21	.375	.394	1.669	0. 1–0. 2

TABLE 2.- Values of coefficients of correlation between catches during year of escapement and catches 4, 5, and 6 years later for the period 1895 to 1921, inclusive

¹ Coefficient of correlation.

Transformed coefficient of correlation.
Ratio of z to the standard deviation of z

⁴ Probability that z is not different from zero.

² The data for the years 1895 to 1921 were used in this analysis as the fishing effort was fairly constant during this period.
³ Where the relationship between two variables is found or assumed to be linear, the coefficient of correlation r measures the proportion of the variation in one variable which is associated with the socond variable. As the number of pairs of observations are relatively small the method of analysis given by Fisher (1930, p. 163) was used.
⁴ P is the probability that the value of the transformed coefficient of correlation z would have been obtained by chance, l. e., a value of P of 0.01 indicates that if the true value of x alue as large as the one obtained would occur only once in 100 random samples. The relationship between z and r is such that the values of P also Indicate the statistical reliability of r.

It is evident from the statistical study of the catches of Karluk River red salmon and also from the analysis of the scale samples that the majority of the fish comprising the runs during the early years of the fishery were 5 years of age on attaining maturity. Therefore, the annual catches have been divided into five groups and the data are presented in figure 1. This method of presenting the data gives a clearer indication of the trend of catches from one cycle-year to another, as the catch of a particular year can be easily compared with the catch during a year 5 years previous to, or 5 years following that year. While these data represent the catches of red salmon, not the size of the runs for the various years, the nature of the fishing operations at Karluk from 1895 to 1921 was such that the fishing effort was fairly constant from year to year; hence the catches, in a measure, depict the relative size of the runs. The trend for each of the 5 cycles has been downward since the beginning of intensive fishing, and although such a condition might be due to a long period of unfavorable environmental conditions, it seems probably that overfishing must be largely responsible.

AGE AT MATURITY

One of the major problems involved in the study of the Karluk River red salmon is the determination of the approximate number of fish derived from each spawning population. This necessarily involves the determination of the approximate number of fish of each age group ⁵ found each year, but such a determination is by no means a simple matter. Karluk red salmon vary from 3 to 8 years in age, and the percentage occurrence of the various age groups changes throughout the season.

In addition to the wide spread in time of maturity of the Karluk River red salmon there is a further complication, in that fish of a given age have different combinations of fresh-water and ocean histories. Thus of the fish maturing in their fifth year, some migrate to the ocean in their second year, some in the third year, some in their fourth year, and some in their fifth year. These four groups of fish, with different fresh-water histories, may stay in the ocean 3, 2, 1, and 0 years (a few months), respectively, and all return in the fifth year as mature fish. This diversity in fresh-water and ocean history also occurs in the fish of other ages, so that 20 different age groups have been found in the samples collected for age determination, the complete list being as follows: $3_1, 3_2, 3_3, 4_1, 4_2, 4_3, 4_4, 5_2, 5_3, 5_4, 5_5, 6_2, 6_3, 6_4, 6_5, 7_3, 7_4, 7_5, 8_4, and 8_5.$

The age of a fish may be determined with substantial accuracy by an examination of some of its scales under a microscope, but it is impossible to examine scales from every fish in the run. Recourse must be had to a process of sampling so that by the examination of the scales of a few thousand fish the age-group composition of the escapement and commercial catch can be calculated. Samples of scales are obtained for this purpose several times a week during each season from the fish caught in the scine fishery near the mouth of the river. It is fairly certain that the fish so caught are representative of the population of fish congregated near the mouth of the river

[•] The method, first used by Oilbert and Rich (1927), for designating the age of salmon is as follows: A fish resulting from an egg laid in the spawning gravels in 1930 and which migrated to the ocean in 1933 and returned to the river in 1935 is called a "five-three" and designated thus "5₃". Such a fish would have emerged from the gravels of the spawning beds in the spring of 1931 and would have spent two growing seasons, i. e., the summers of 1931 and 1932, in fresh water. In referring to its fresh-water history it is called a "three-fresh-water fish" because it migrated seaward in its third year. It would have spent two full growing seasons, i. e., 1933 and 1934, and part of a third year in the ocean; but in referring to its ocean history it is called a "two-ocean fish," because it returned as an adult in the second year following its seaward migrated. A fish which migrated to the ocean in its fourth year and which returned in its sixth year is called a "six-four" and designated thus "64".

on the day of capture. Each scale sample contains scales from about 100 fish, these fish being taken at random from the day's catch. The scales are cleaned, mounted in sodium silicate between glass slides, examined under a microscope, and the age of the fish in the sample determined.

A preliminary study of the age-group composition of the various samples showed that the composition of the run changes throughout a season, and consequently it was found advisable to divide the season into a series of short successive periods of time. For the purpose of comparison these units of time should begin and end on the same dates each year, and so the scale samples, escapements, and runs have been grouped in 7-day periods which coincide from year to year.

Tables 3 to 16 give the age-group analyses of the several weekly samples taken in 1922, and in the years 1924 to 1936, inclusive. It will be seen from these tables that the age-group composition of the run changes considerably during the season, and also that the percentage occurrence of any one age group varies from year to year.

In considering the three principal age groups, 5_3 , 6_3 , and 6_4 , it will be noted that 5_3 usually is the dominant age group present in the run. The percentage occurrence of the 6_3 age group always decreases as the season progresses, this age group never being important toward the end of the run. The percentage occurrence of the 6_4 age group generally increases as the season progresses. This age group, while seldom of importance in the early part of the season, usually is quite important in the latter part of the season.

The data included in tables 3 to 16 are of further value in that they are essential in calculating the percentage occurrence of the various age groups in the yearly escapements and in the returns from these escapements as given in tables 18 and 25, respectively. Since the salmon returning to Karluk each year from each of the previous spawning populations, or escapements, can be segregated according to age, the data in tables 3 to 16 are likewise essential in calculating the returns from known escapements. These returns are given in table 20.

Week ending						Age	e groups					
week ending-	41	42	43	44	52	53	54	55	63	64	65	74
une 7	0.7				1.4	31.0			66. 9			
une 14	.7	0.7			2.1	34.4			60.7	1.4		
une 21		.7			.7	36.1	1.3		58.7	1.9		
une 28			2.2		1.3	32.3	.9		60.3	3.0		
uly 5		.7				37.3	.7		56.0	5.3		
uly 12						36.0	2.7		51.3	10.0		
uly 19		.6	.6			62.0	.7		26.7	8.7		0
uly 26		.6				76.0	.7		18.0	4.0		
ug. 2						69.3			21.3	8.0	0.7	
lug. 9		.7	1.3			72.0			16.6	8.7		
ug. 16		.7	.7			87.2	.7		8.7	2.0		
ug. 23.		1.3				85.3	.7		6.7	6.0		
ug. 30		1.4	.7			77.0	2.0		2.7	16.2		
Sept. 6		.7	.7	0.7		80.1	3.3		3.3	11.2		
Sept. 13.		.6	2.7			91.1	2.1		1.4	2.1		
ept. 20		2.0	2.7	1.4		87.8	2.0	0.7	1.4	2.0		

TABLE 3.—Percentage occurrence of each age group, during week, in the Karluk red-salmon run of 1922, determined by analyses of scale samples collected from a total of 2,469 fish

33	41	42	43	44	52	5.	5			
		succession and the second seco			04	01	- 24	03	64	74
0.2	0.2	0.7 .6 .2 .4 .3 .9 .3	1.7 2.2 1.9 5.0 .4 .3 .6 1.6 1.6 1.6 2.9 4.2 2.9 9.2	0.7	0.9 .8 .2 .8 1.1 .1 .1	80. 8 81. 4 84. 3 76. 2 75. 3 73. 1 73. 5 77. 6 71. 0 81. 0 75. 8 77. 3 63. 3	0.2 1.1 .6 1.7 .4 .2 .1 .3 .4 .2 .1 .3 .2 .1 .3 .2 .1 .3 .2 .1 .3 .2 .1 .3 .2 .1 .3 .2 .1 .3 .2 .1 .3 .3 .2 .1 .3 .3 .3 .4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	11.0 6.1 6.3 6.3 5.7 5.7 4.8 3.4 2.4 .9 1.0	3.6 7.2 6.1 9.6 16.3 19.9 19.7 17.7 24.4 17.2 15.0 15.7 11.8	1.1 .6 .4 .4 .2 .9 .6 .3
	0.2	0.2		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 TABLE 4.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1924, determined by analyses of scale samples collected from a total of 5,132 fish

 TABLE 5.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1925, determined by analyses of scale samples collected from a total of 5,513 fish

		Age groups											
week ending-	31	41	42	43	52	S3	5.	63	64	65	74		
June 7 June 21 June 21 June 28 July 5 July 5 July 19 July 26 Aug, 2 Aug, 2 Aug, 9 Aug, 16 Aug, 23 Aug, 30 Sept, 13	0.2 2.0 .5 1.5 .4	0.2 2 1.1 .2 .3 .3 .3	0.8 .9 6.5 3.8 3.3 1.5 1.8 1.2 1.3 .4 .3	0.8 2.4 2.0 4.4 1.2 .9 1.5 1.1 3.9 9.5 10.2 10.6	0.5 .2 1.0 .1 .2 .4 .2	69. 2 72. 4 69. 1 70. 4 69. 6 69. 2 72. 7 75. 1 77. 2 70. 7 69. 3 52. 1	0.2 .8 .4 .2 .7 1.0 1.6 2.8 7.6	26.7 18.1 13.9 10.5 3.7 1.5 .7 1.9 .6 .4	$\begin{array}{c} 2.5\\ 5.2\\ 7.7\\ 9.0\\ 19.6\\ 25.2\\ 20.7\\ 18.4\\ 13.0\\ 16.3\\ 17.4\\ 29.5 \end{array}$	0.2	0.5 .4 .9 .8 .4 .1 .9 .8 .8 .2		

 TABLE 6.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1926, determined by analyses of scale samples collected from a total of 8,172 fish

Week ending-	Age groups													
	31	41	43	43	44	52	53	54	63	64	65	74	78	84
May 24. May 24. June 7. June 7. June 21. Juno 28. July 5. July 12. July 19. July 19. July 26. Aug. 2. Aug. 9. Aug. 9. Aug. 23. Aug. 30. Sept. 6. Sept. 13. Sept. 30.	0.4 .9 .4 .2 .4 .2	0.3 29 9 1.3 .4 1.0 1.1 .7 .2 .2	4.8 4.5 4.4 3.9 5.5 6.9 3.8 2.4 .6 .3 .2 .2 .3 2.0	0.8 .6 .8 .7 1.9 .4 .2 .7 .2 .7 .2 .5 .2 .1,0		4.8 1.3 2.4 2.3 2.4 3.4 2.4 7.7 2.0 .8 .2 .3	77.6 79.0 83.2 77.8 75.8 71.7 75.4 69.2 74.5 81.5 81.5 81.9 86.1 84.3 83.6 79.0 79.6	0, 2 	0.6 12.0 8.0 13.4 10.9 9.9 9.9 8.3 4.5 4.0 3.0 2.4 1.0 .7 .2 3.3	$\begin{array}{c} 1.6\\ 2.1\\ 2.8\\ 3.0\\ 6.8\\ 5.2\\ 8.4\\ 12.1\\ 11.2\\ 3.0\\ 9.7\\ 12.3\\ 15.1\\ 18.9\\ 16.4 \end{array}$	0. 2 	0.8 .5 .4 1.2 1.3 2.0 .9 1.1 1.9 .7 .4	0.3 .2 .5 .3 .1	0.2

527715 - 43 - 2

Week ending-	Age groups													
	31	41	42	43	44	δ2	53	54	63	64	65	74	75	85
May 31 June 7			0, 4	3.0		10.6 13.1	69.7 69.9	1.5	15.2 15.3			0.9		
June 14 June 21 June 28				.4 1.0 2.2		9.1 13.0 5.7	77.3 79.0 80.3		12.2 7.0 10.8	0.3		.7		
July 5. July 12. July 19.			.8	.6		9.4 5.6 4.5	73.8 79.6 76.5	.8	12.6 11.2 9.5	1.4		$^{.6}_{.2}$		
July 26 Aug. 2				4.0		3.0	78.0 78.2 76.9	3.0	3.1	10.0 13.6		2.0		
Aug. 16. Aug. 23.	0. 2	1.0 1.0	.2	4.4		1.4	69.9 66.0	3.6	4.8	11. 2 12. 7 20. 0	0.2	1.0	.6	0.2
Sept. 13.		. 2	.4	6.7	0, 4	.4	49.2	14. 4	1.5	25.9	.4		1.1	

TABLE 7Percen	tage occurrence	of each age	group, durin	g each week,	in the Ke	arluk red-salmon	run of
1927, 6	determined by a	nalyses of s	cale samples of	collected from	a total o	of 4,963 fish.	Ť

 TABLE 8.—Percentage occurrence of each age group, during cach week, in the Karluk red-salmon run of 1928, determined by analyses of scale samples collected from a total of 4,247 fish.

Week ending-					Age g	roups				
	41	42	43	52	53	54	63	64	74	78
June 14 June 21 June 28 July 5 July 5 July 12 July 19 Aug. 9 Aug. 9 Aug. 9 Aug. 16 Aug. 23 Sept. 6 Sept. 13 Sept. 20 Sept. 27	0.3	0.5 	1.0 .4 .3 .3 .5 .5 .3 .3 .5 3.0 .3 1.0	0.3 .7 .5 .7	$\begin{array}{c} 54.5\\ 60.0\\ 44.8\\ 49.7\\ 41.8\\ 48.3\\ 66.3\\ 60.7\\ 72.0\\ 76.7\\ 78.5\\ 64.5\\ 43.0\\ 42.3\\ 35.0\\ \end{array}$	0.3 	$\begin{array}{r} 44.5\\ 36.0\\ 51.6\\ 44.5\\ 51.4\\ 35.0\\ 18.2\\ 13.7\\ 9.6\\ 6.0\\ 3.0\\ 3.0\\ 3.5\\ 4.0\\ 2.7\\ 1.0\end{array}$	$\begin{array}{c} 0.5\\ 3.0\\ 2.5\\ 4.9\\ 6.2\\ 13.0\\ 12.4\\ 19.3\\ 15.5\\ 16.3\\ 15.5\\ 16.3\\ 15.8\\ 46.0\\ 51.3\\ 59.0\\ \end{array}$	0.3 2.4 1.3 4.0 2.5 .7 5 .2 1.0 .7	0.3

 TABLE 9.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1929, determined by analyses of scale samples collected from a total of 1,602 fish

Week anding					Age g	roups				
week ending-	41	42	43	52	53	54	63	64	73	74
June 21. June 28. July 5. July 12. July 19. July 20. Aug. 2. Aug. 9. Aug. 16. Aug. 30. Sept. 6. Sept. 13. Sept. 13.	0.4	2.0 .8 .7 	0.8 6.9 1.4 	2.0 1.9 	$\begin{array}{c} 39,9\\ 40,2\\ 40,4\\ 42,4\\ 35,3\\ 54,7\\ 61,4\\ 47,9\\ 42,4\\ 50,9\\ 26,7\\ 19,6\\ 12,5\\ 19,4\end{array}$	0.4	50. 2 51. 7 58. 9 54. 1 57 2 31. 0 9. 9 16. 3 30. 3 14. 8 6. 7 3. 4	3, 3 3, 1 7 2, 8 4, 2 11, 9 19, 8 31, 2 24, 2 32, 4 66, 6 75, 8 85, 0 78, 2	1.3	1.3 1.1 2.5 .8 2.0 1.9 .8 1.9
Sept. 27					26.2	2.4		71.4		

Week anding					Age	groups				
Week ending-	42	48	53	53	54	63	64	72	74	76
May 17 June 14 June 21 June 28 July 26 Aug. 2 Aug. 9 Aug. 9 Aug. 16 Aug. 16 Aug. 23 Aug. 30 Sept. 13 Sept. 20	.2	1.7 1.1 1.2 $.7$ $.6$ 1.1 1.5 2.3 5.0 10.6 12.2	1.7 1.3 1.1 3.4 .5 .2	$\begin{array}{c} 17.\ 2\\ 51.\ 9\\ 58.\ 9\\ 51.\ 2\\ 70.\ 7\\ 76.\ 4\\ 79.\ 2\\ 73.\ 6\\ 62.\ 0\\ 49.\ 5\\ 36.\ 9\\ 23.\ 8\end{array}$	1, 3 1, 6 4, 3 2, 3 1, 6 2, 0 3, 3 10, 0 32, 5 40, 2	$\begin{array}{c} 70.8\\ 33.9\\ 23.2\\ 29.2\\ 13.1\\ 8.2\\ 10.1\\ 4.6\\ 1.9\\ 4.1\\ .4\\ 1.2 \end{array}$	$\begin{array}{c} 1.7\\ 10.3\\ 14.1\\ 9.7\\ 13.9\\ 11.7\\ 5.7\\ 14.2\\ 27.9\\ 30.0\\ 18.6\\ 21.4\end{array}$	0.3	6.9 1.3 .5 7 8 1.8 4.1 2.3 1.0 .7 1.2	0.3

 TABLE 10.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1930, determined by analyses of scale samples collected from a total of 3,617 fish

TABLE 11.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1931, determined by analyses of scale samples collected from a total of 7,258 fish

						А	ge group)\$					
Week ending-	31	41	42	43	52	53	54	63	64	65	73	74	75
May 31 June 7 June 14 June 21 July 25 July 5 July 12 July 12 July 12 July 12 July 26. Aug. 2 Aug. 9. Aug. 2 Aug. 16. Aug. 23. Aug. 30. Sept. 13 Sept. 20 Sept. 20	31 0.2 	<u>41</u> <u>0.5</u>	42 1.4 1.6 4.4 2.6 1.9 9.9 2.5 1.4 1.7 .2 .3 .3 .3 .4 .4 .5 .5	$\begin{array}{c} 4_{3} \\ \hline \\ 0,9 \\ 1,3 \\ .3 \\ 1,4 \\ .5 \\ .2 \\ \hline \\ .5 \\ .6 \\ \hline \\ .2 \\ .6 \\ \hline \\ .2 \\ .6 \\ \hline \\ .1,1 \\ .5 \end{array}$	52 0.7 1.2 .6 1.1 .4 1.0 .6 .3 .3 .3 .3 .9	$\begin{array}{c} \mathbf{5_3} \\ 48.6 \\ 41.8 \\ 33.4 \\ 37.5 \\ 47.1 \\ 50.5 \\ 51.8 \\ 60.3 \\ 55.5 \\ 64.9 \\ 68.7 \\ 68.7 \\ 62.9 \\ 56.2.9 \\ 62.9 \\ 56.2.9 \\ 62.9 \\ 56.7 \\ 23.7.0 \end{array}$	54 0.5 1.7 3 3 2 2 2 3 3,9 1.8 4.1 9,0 13.6 9,0	03 12.6 20.4 22.2 15.9 11.5 8.0 7.6 7.6 1.2 .6 1.2 .5	04 34. 2 31. 5 36. 6 35. 2 34. 229. 2 31. 8 229. 2 31. 8 229. 3 32. 3 32. 3 32. 3 32. 3 51. 5 52. 9 51. 5 51. 5	0.2 		2.5 1.9 1.2 3.8 1.9 .9 1.3 1.4 1.1 .3 .6 .9 .3 .2 .4 .2 .4	

 TABLE 12.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1932, determined by analyses of scale samples collected from a total of 4,700 fish

					Age g	roups				
week ending-	41	42	43	52	52	54	63	64	74	78
May 24			1.0	1.0	73.0	1.0	6.0	7.0	11.0	
May 31 June 7		1.0	2.0	1.0	75.0		7.0	13.0 8.0 7.5	7.0	
June 21		1.0	1.0	.8	78.4		3.6	11.2	4.8	
July 5		4.9	1.3	8.7	54.4 59.5	1.3	9.1 6.3	15.6 14.3	4.0	0.7
July 19 July 26.	0.5	2.0	. 5	3.5 4.7	67.5 72.7	1.0	5. 5 5. 7	17.0 13.0	2.0	. 8
Aug. 2. Aug. 9.	$.2 \\.7$	1.8 1.8	.7 2.3	1.3 .5	62.2 43.4	.4 1.3	9.3 9.0	21.6 38.5	1.6 1.8	
Aug. 16. Aug. 23.	. 5	.2	1.0	. 5	30.3 15.5	1.8	6.0 3.5	59.0 77.5	.5	1.0
Aug. 30 Sept. 20		1, 2	.5		16. 6 16. 0	1.4 6.0	2.0	73.6		1.6

Week anding						А	ge group:	3				
week ending-	41	42	43	52	53	54	63	64	65	72	74	75
June 7. June 14. June 24. June 28. July 5. July 12. July 19. July 26. Aug. 30. Sept. 6. Sept. 13. Sept. 20.		0.5 .3 1.1 1.0 .9 .5 .5 .5 .7	0.3 .3 .5 .5 .7 .7 	1.3 2.2 2.8 4.8 11.2 4.2 1.4 2.0 .5	$\begin{array}{c} 65.\ 3\\ 54.\ 3\\ 51.\ 5\\ 56.\ 6\\ 44.\ 0\\ 51.\ 1\\ 55.\ 6\\ 57.\ 4\\ 58.\ 6\\ 42.\ 7\\ 22.\ 0\\ 23.\ 0\end{array}$	0.2 .3 .6 .9 .7 .7 .7 .7 .8 4.0 1.5	21.3 29.6 26.3 15.4 23.4 18.6 13.2 6.9 1.4 1.0 1.5	$\begin{array}{r} 9.8\\ 11.8\\ 15.7\\ 21.2\\ 14.0\\ 22.8\\ 27.1\\ 31.2\\ 29.6\\ 51.7\\ 68.0\\ 65.5\end{array}$	0.2	0.2	$1.1 \\ 1.0 \\ .9 \\ 1.0 \\ 2.8 \\ 1.9 \\ 1.1 \\ 1.0 \\ 1.9 \\ .7 \\ .5 \\ 2.0 $	0. 1 1. (3. 1. 3. 6.

 TABLE 13.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1933, determined by analyses of scale samples collected from a total of 3,867 fish

 TABLE 14.—Percentage occurrence of each age group, during cach wcck, in the Karluk red-salmon run of 1934, dctermined by analyses of scale samples collected from a total of 6,551 fish

Weekerding					A	ge group	os				
W SER Ending-	42	43	52	53	54	63	64	65	74	75	85
May 24. May 31. June 7. June 14. June 21. June 28. July 5. July 19. July 19. July 26. Aug. 2. Aug. 9. Aug. 16. Aug. 23. Sept. 13. Sept. 20.	1.3 .6 .8 .5 28.6 23.9 5.5 1.5 1.5 1.8 .2 .4	0.4 3 2	2.9 3.2 2.4 1.2 .7 3.7 3.3 .7 .7 .8	39.5 47.2 25.4 25.4 25.4 25.9 26.0 31.5 18.8 3.5 31.4 30.8 36.4 37.3 33.7 40.3 25.2 20.2	2.9 23 35 77 	$\begin{array}{r} 47.\ 4\\ 38.\ 2\\ 53.\ 6\\ 54.\ 3\\ 62.\ 8\\ 48.\ 8\\ 36.\ 4\\ 29.\ 4\\ 35.\ 8\\ 27.\ 5\\ 22.\ 4\\ 16.\ 4\\ 8.\ 6\\ 6.\ 1\\ 3.\ 2\\ 3.\ 6\end{array}$	$\begin{array}{c} 11.8\\5.9\\11.4\\2.6.0\\14.7\\8.4\\5.8\\23.3\\37.2\\35.8\\42.9\\52.1\\67.6\\63.8\end{array}$	0.4	$\begin{array}{c} 2.9\\ 5.2\\ 3.6\\ 2.6\\ 3.1\\ 3.9\\ 4.1\\ 2.3\\ 1.8\\ 1.8\\ 1.5\\ 1.4\end{array}$	0.2 .2 .2 .2 .2 .2	0.2

 TABLE 15.—Percentage occurrence of each age group, during cach week, in the Karluk red-salmon run of 1935, determined by analyses of scale samples collected from a total of 7,152 fish

Week anding								Age g	roups							
Week ending-	32	41	42	43	J2	53	54	62	63	64	6s	73	74	ĩs	84	85
June 7 June 14 June 21 June 28 July 5 July 12 July 12 July 19 July 26 Aug, 2 Aug, 2 Aug, 2 Aug, 30 Sept, 20 Oct, 2	0.1	1.4 2.4 .8 .5 .4	4.6 3.2 9.0 16.0 11.5 3.7 8.2 4.7 1.5 1.7 .7	$\begin{array}{c} 1.0\\ 1.6\\ 1.9\\ 6.6\\ 4.2\\ 5.1\\ .6\\ 1.2\\ 2.1\\ 3.3\\ 16.6\\ 16.7\\ 8.0 \end{array}$	4.1 1.8 3.3 5.8 7.5 6.0 9.5 4.6 1.1 .8 .2	$\begin{array}{c} 20.\ 2\\ 36.\ 5\\ 33.\ 2\\ 29.\ 7\\ 30.\ 7\\ 35.\ 8\\ 46.\ 3\\ 59.\ 2\\ 55.\ 4\\ 54.\ 1\\ 24.\ 4\\ 19.\ 2\\ 28.\ 0\\ 3.\ 0\end{array}$	$1.7 \\ 1.2 \\ 1.4 \\ 2.7 \\ 2.2 \\ 3.7 \\ .7 \\ 1.5 \\ 1.7 \\ 3.9 \\ 6.7 \\ 8.0 \\ 19.0 $	0.5	40. 2 28. 2 24. 2 19. 3 20. 5 24. 7 12. 6 9. 0 8. 3 4. 2 3. 0 - 8	$\begin{array}{c} 15.\ 1\\ 15.\ 8\\ 16.\ 0\\ 13.\ 5\\ 13.\ 6\\ 15.\ 6\\ 15.\ 6\\ 17.\ 7\\ 25.\ 5\\ 31.\ 7\\ 47.\ 3\\ 54.\ 2\\ 44.\ 0\\ 69.\ 0\end{array}$	0.1 		12.0 10.7 10.2 6.4 9.6 7.0 3.4 1.6 3.2 2.5 .1 .8	0. 2 .3 .4 .2 .1 .5 .6 .3 .6 .2 .4 .8 12.0 3.0	0.2	0, 1

Week anding								A	ge grou	ps							
week ending-	31	41	42	43	44	52	53	54	62	63	64	65	73	74	75	84	85
June 7 June 14 June 21 June 28 July 5 July 12 July 19 July 19 July 26 Aug. 20 Sept. 6 Sept. 13 Sept. 20 Sept. 27 Oct. 4	0.1	0.1	0.8 2.5 1.5 .5 1.2 4.3 2.2 2.0	2.8 3.8 2.5 2.7 4.9 3.6 2.1 .7 .7 .2 1.1 .6 .9 1.4	0.5	4.9 5.0 7.5 6.7 1.2 27.7 5.3 4.4 	62.0 58.8 65.6 66.3 64.7 40.5 57.4 75.1 82.3 75.3 72.2 64.3 71.2 61.5 60.6	0.1 .4 .5 1.2 .3 5.6 7.4 6.4 1.3 5.6 2.8	0.1 	$\begin{array}{c} 13.4\\ 13.9\\ 10.9\\ 11.5\\ 14.6\\ 9.7\\ 16.6\\ 6.8\\ 1.8\\ 1.9\\ .6\\ 3.2\\ 1.5\\ 1.4 \end{array}$	10. 6 11. 2 8. 5 8. 6 3. 7 2. 8 11. 0 8. 8 8. 0 14. 2 15. 8 22. 8 21. 2 22. 8 29. 6	0.3	0.1 .1 .3 1.2	4.9 3.7 2.7 2.4 6.1 1.5 4.9 1.5 1.3 1.6 1.8 1.3 1.2 1.2 1.4	0.3 .4 .4 .5 .6 1.3 .9 4.2 .6 6.2 2.8	0.1	. 2

 TABLE 16.—Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1936, determined by analyses of scale samples collected from a total of 7,093 fish

SPAWNING POPULATIONS

The determination of the size of the escapement, or spawning population, of a river or district is of vital importance in intelligently administering the fishery. In a self-perpetuating salmon population an adequate part of the yearly run must be allowed to escape the fishery and continue uninterrupted to the spawning grounds in order to insure future supplies of fish. Not only must a proper number of fish be allowed to escape in a given area or district, but each individual salmon stream, and in large watersheds, each small area in the watershed, must receive a sufficient escapement if adequate runs of fish are to be maintained. Under natural conditions, an extremely high percentage of the fish returning to spawn proceed to the same area where they emerged from the spawning gravel as fry. There is a slight degree of straying, but the fact remains that if a spawning area has not been seeded, there will not be a run of fish returning to that area in one or more subsequent years. Thus, large river systems such as the Kvichak, Copper, Fraser, Columbia, and others, must not only receive an escapement sufficient in number, but the fish must be distributed in the proper proportions to the various tributaries in the river system. If a part of the spawning area in a given watershed be depopulated for a period of time, the chief hope of restoring the productivity of that watershed to its maximum value would be to restock the depleted area by the planting of eggs or fry for a period of several consecutive years, an expensive undertaking which would have no positive assurance of success.

The determination of the magnitude of the escapement of Karluk River red salmon is important not only in regulating the commercial fishery, but is also another of the major problems involved in the biological study of this population. The calculation of the total size of populations, the returns from known spawning populations, the mortality in fresh water, and the mortality in the ocean are based upon a knowledge of the number of fish entering the river each season to spawn.

Table 17 gives the weekly escapements of red salmon to the Karluk River for the years 1921 to 1936, inclusive. The escapement records are complete except for 1921, 1922, 1924, and 1934. In 1921, the first year the weir was operated, it was removed on September 18, as the companies fishing in the Karluk area were about to discontinue canning, and the importance of keeping the weir in to the end of the season was not appreciated. The counted escapement was 1,325,654 and Gilbert and Rich (1927) estimated that the total escapement that year was approximately 1,500,000 red salmon.

	192	21	192	22	19:	23	19:	24	19	25
Week ending-	Escape- ment for week	Cumula- tive total, thousands	Escape- ment for week	Cumula- tive total, thousands	Escape- ment for week	Cumula- tive total, thousands	Escape- ment for wcek	Cumula- tive total, thousands	Escape- ment for week	Cumula- tive total, thousands
May 24	5, 894 16, 254 155, 097 137, 334 195, 151 74, 291 72, 556 28, 668 19, 737 70, 954 96, 677 114, 109 58, 867 79, 316 42, 974 143, 022 14, 760 (1)	6 22 177 315 510 584 685 705 873 987 1,046 1,125 1,168 1,311 1,311 1,326	$\begin{array}{c} 60\\ 418\\ 9,921\\ 8,355\\ 56,739\\ 29,897\\ 46,770\\ 24,336\\ 19,660\\ 6,877\\ 8,035\\ 19,403\\ 7,919\\ 5,595\\ (^2)\\ (^$	10 19 75 105 152 177 196 203 211 231 238 244 285 321 321 321 321 321 321 321 321	$\begin{array}{c} 141\\ 1, 102\\ 71, 724\\ 28, 843\\ 42, 169\\ 62, 954\\ 42, 169\\ 62, 954\\ 34, 497\\ 31, 491\\ 24, 691\\ 66, 404\\ 13, 036\\ 48, 610\\ 38, 467\\ 27, 919\\ 61, 389\\ 48, 610\\ 38, 467\\ 27, 919\\ 61, 389\\ 43, 217\\ 10, 570\\ 62, 641\\ 9, 110\\ 1, 683\\ \end{array}$	$\begin{array}{c} 1\\ 73\\ 102\\ 144\\ 207\\ 243\\ 252\\ 255\\ 287\\ 312\\ 380\\ 391\\ 440\\ 478\\ 506\\ 567\\ 611\\ 621\\ 684\\ 693\\ 693\\ 695\\ \end{array}$	402 4, 149 86, 111 145, 417 127, 645 64, 913 57, 674 39, 837 10, 882 25, 659 57, 894 36, 263 61, 503 64, 357 (1)	5 91 239 367 452 459 529 540 566 624 660 721 776	$\begin{array}{c} 19\\ 30, 249\\ 32, 733\\ 20, 440\\ 263, 029\\ 211, 021\\ 34, 298\\ 39, 927\\ 25, 447\\ 25, 447\\ 25, 447\\ 25, 447\\ 25, 110, 570\\ 44, 722\\ 110, 570\\ 44, 722\\ 110, 570\\ 33, 797\\ 200, 247\\ 74, 730\\ 100, 431\\ 51, 814\\ 182, 763\\ 4, 619\\ \end{array}$	30 63 83 846 557 662 662 7466 857 953 973 973 973 973 973 973 973 977 1, 281 1, 382 2, 443 1, 612
Total	³ 1, 500, 000		³ 400, 000		694, 576		³ 1, 109, 161		1, 620, 927	
	1	926	1	927	1	928	19	929	19	30
Week ending-	Escape- ment for week	Cumula- tive total thousand	Escapc- ment for week	Cnmula- tive total, thousands	Escape- ment for week	Cumula- tive total thousands	Escape- ment for week	Cumula- tive total, thousands	Escape- ment for wcek	Cumula- tive total, thousands
May 24 May 31 June 7. June 7. June 24. June 28. July 5 July 12. July 19. July 19. July 26. Aug. 2 Aug. 9. Aug. 16. Aug. 23. Aug. 30. Sept. 6. Sept. 13. Sept. 20. Sept. 27. Oct. 4. Oct. 11. Oct. 18. Sept. 30. Sept. 30. Sept. 30. Sept. 30. Sept. 20. Sept. 21. Sept. 21. Sept. 21. Sept. 22. Sept. 23. Sept. 20. Sept. 24. Sept. 24. Sept. 24. Sept. 25. Sept. 26. Sept. 20. Sept. 20. Sept. 20. Sept. 20. Sept. 21. Sept. 21	577 80,704 479,455 437,051 127,537 415,520	$\begin{array}{c} 1\\ 81\\ 661\\ 998\\ 1,125\\ 1,71\\ 1,212\\ 1,256\\ 1,290\\ 1,320\\ 1,398\\ 1,500\\ 1,398\\ 1,500\\ 1,581\\ 1,685\\ 1,909\\ 2,140\\ 2,231\\ 2,408\\ 2,457\\ 2,467\\ 2,467\\ 2,503\\ 2,533\\ 3,533\\ 2,533\\ 3,533\\ 2,533\\ 3,533\\ 2,533\\ 3,533\\ 2,533\\ 3,533\\ 2,533\\ 3,533\\ 2,533\\ 3,533\\ $	$\begin{array}{c} 9,539\\ 82,532\\ 209,213\\ 188,798\\ 85,010\\ 51,492\\ 13,965\\ 7,064\\ 2,926\\ 12,454\\ 55,219\\ 19,461\\ 7,421\\ 8,456\\ 15,392\\ 10,007\\ 43,245\\ 1,294\\ 72,559\\ 8,491\\ \end{array}$	$\begin{array}{c} 10\\ 62\\ 271\\ 460\\ 545\\ 597\\ 611\\ 618\\ 621\\ 633\\ 686\\ 706\\ 713\\ 722\\ 727\\ 737\\ 747\\ 790\\ 791\\ 864\\ 873\\ \end{array}$	$\begin{array}{c} 41\\ 13, 600\\ 152, 669\\ 303, 976\\ 97, 503\\ 75, 234\\ 55, 817\\ 36, 723\\ 20, 048\\ 21, 781\\ 3, 514\\ 22, 734\\ 31, 255\\ 71, 015\\ 67, 837\\ 19, 966\\ 22, 581\\ 14, 929\\ 167\\ 45, 952\\ 9, 074\\ \end{array}$	$\begin{array}{c} & 14\\ 166\\ 470\\ 868\\ 663\\ 699\\ 735\\ 756\\ 777\\ 781\\ 804\\ 835\\ 906\\ 974\\ 994\\ 1,016\\ 1,039\\ 1,039\\ 1,039\\ 1,085\\ 1,094 \end{array}$	$\begin{array}{c} 22\\ 838\\ 75,305\\ 85,347\\ 116,624\\ 60,171\\ 12,228\\ 10,376\\ 9,656\\ 1,125\\ 21,241\\ 24,725\\ 27,343\\ 69,210\\ 69,552\\ 35,960\\ 109,916\\ 93,918\\ 13,950\\ 72,667\\ 145\\ \end{array}$	1 766 162 278 325 341 351 361 362 383 408 435 504 574 610 720 814 828 900 900	$\begin{array}{c} 1,008\\ 1,128\\ 42,352\\ 21,808\\ 228,405\\ 35,018\\ 22,427\\ 10,064\\ 6,901\\ 4,706\\ 42,939\\ 62,249\\ 95,2949\\ 62,714\\ 95,491\\ 6,162\\ 115,992\\ 60,590\\ 135,468\\ 1,488\\ 45,531\\ \end{array}$	1 2 44 66 295 330 332 371 376 419 64 256 669 788 833 669 788 833 914 1,049 1,051 1,097

872, 538

..... 1, 093, 817

900, 319

1, 096, 511

TABLE	17.—Escapements	and	cumulative	totals	of the	e escapements	of	Karluk	red	salmon	for	each	week
				from 1	1921 1	o 1936	Ť						

See footnotes at end of table.

2, 533, 402

Oct. 18. Oct. 25..... Total

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

	19	31	19	32	19	33	193-	4	193	35	193	6
Week ending—	Escape- ment for week	Cumu- lative total, thou- sands	Escape- ment for week	Cumu- lative total, thou- sands	Escape- ment for week	Cumu- lative total, thou- sands	Escape- ment for week	Cumu- lative total, thou- sands	Escape- ment for week	Cumn- lative total, thou- sands	Escape- ment for week	Cumu- lative total, thou- sands
May 24. May 31. June 7. June 7. June 24. June 21. June 28. July 5. July 12. July 12. July 19. July 26. Aug. 2. Aug. 0. Aug. 0. Aug. 23. Aug. 30. Sept. 6. Sept. 13. Sept. 20. Sept. 20. Sept	$\begin{array}{c} 1, 250\\ 11, 342\\ 50, 382\\ 109, 047\\ 34, 594\\ 38, 913\\ 29, 930\\ 9, 117\\ 3, 167\\ 1, 756\\ 6, 541\\ 12, 54, 209\\ 75, 089\\ 106, 362\\ 89, 360\\ 121, 464\\ 115\\ 64, 601\\ 11, 427\\ \end{array}$	1 13 63 172 207 246 275 288 289 296 308 362 438 545 634 4756 820 862 873	34 1,087 48,191 150,058 55,616 66,583 5,903 6,305 10,878 14,963 23,403 8,877 12,541 28,062 1,778 8,877 7,85 120,082 47,078 10,050	1 49 199 255 322 343 360 365 372 383 398 422 430 443 473 661 681 728 738 	2283 2, 101 24, 581 204, 014 46, 621 46, 621 46, 621 46, 665 223, 519 6, 923 16, 454 40, 509 6, 126 40, 509 7, 509 6, 126 40, 509 6, 126 40, 509 7, 509 6, 126 40, 509 7, 509 6, 126 40, 509 7,	2 27 231 3316 428 448 4513 519 535 576 631 732 736 631 732 736 631 732 923 923 925 929 957	878 1, 631 201, 544 169, 718 233, 626 118, 167 20, 870 6, 743 3, 196 6, 325 5, 431 3, 943 45, 843 (3) (4) (7) (7) (7) (7) (7) (7) (7) (7	1 3 204 374 607 726 765 765 765 765 765 765 791 795 795 791 1,103 1,146 1,146 1,146	7 22, 999 133, 867 172, 726 64, 249 31, 440 3, 812 3, 103 374 3, 723 2, 836 32, 513 30, 983 32, 513 30, 983 32, 513 30, 983 352, 513 30, 983 352, 513 310, 571 151, 051 151, 051, 051 151, 051, 051 151, 051, 051, 051, 051, 051, 051, 051,	23 162 3355 369 430 434 434 441 447 477 503 560 580 580 580 580 580 580 580 580 580 58	32 38, 560 144, 208 93, 157 82, 700 79, 290 57, 411 11, 378 3, 825 11, 042 2, 201 1, 087 34, 950 44, 451 130, 682 311, 917 204, 980 27, 749 81, 156 14, 622 361 14, 622	39 183 2766 359 438 495 507 511 522 524 525 560 604 735 1,047 1,252 1,047 1,252 1,376
Total	873, 428		737, 772		986, 765		\$1,146,299		876, 335		1, 375, 659	

TABLE 17.—Escapements and cumulative totals of the escapements of Karluk rcd salmon for each week from 1912 to 1936—Continued

Escapement to end of season estimated; see text.
 Escapement for these periods estimated; see text.

² Estimated; see text.

* Escapement for only a part of these weeks; see text.

In 1922, there was a large escapement of pink salmon in the Karluk River, and toward the end of their spawning season the carcasses of the fish that had finished spawning and died began drifting down stream against the weir. Although a crew was engaged in removing the dead fish from the face of the weir, it finally became impossible to remove them as fast as they accumulated. As the fish piled up against the weir, they obstructed the passage of water until there was danger of the weir collapsing from the weight of the impounded water, and consequently, a number of pickets were removed from the weir so as to allow the pink salmon carcasses to pass downstream. The weir was not in use from August 21 to September 4, inclusive. It was replaced on September 5, and the counting of fish was continued until the end of the season. The counted escapement was 383,446, and it is estimated that the total escapement that year was approximately 400,000 red salmon.

In 1924, there was a tremendous run of pink salmon to the Karluk River and, as in 1922, it was impossible to keep the weir in operation due to the dead pink salmon drifting down against it. The weir was not replaced that season, so that it is necessary to estimate the escapement from August 21 to the end of the season. The counted and partially estimated escapement was 775,705. Gilbert and Rich (1927) estimated that the total run that year was approximately 2,000,000 fish. Subtracting the catch from this figure leaves about 1,100,000 as the number of red salmon in the escapement.

In 1934, it was again impossible to keep the weir in continuous operation due to spawned-out pink salmon damming the weir and to extremely high water in the river caused by the run-off of heavy fall rains. The weir was out from August 22 to Septem-

ber 17, inclusive, a period of 27 days. It was replaced on September 18, and counting was continued until the end of the season. Unfortunately, fishing for that season stopped on August 18, and catch data are not available from which to judge the relative abundance of fish in the run. Data on the trend of abundance of the various age groups in the run up to August 18 have been examined and compared with data for previous years, and from this analysis it is estimated that the escapement during the period was approximately 300,000 red salmon. The counted escapement during the period the weir was in operation was 846,299.

The weir is located approximately 4 miles from the mouth of the river and in this 4-mile stretch the river widens out to form a lagoon, the lower end of which is usually slightly brackish. The fish, after entering the mouth of the river, stay in this lagoon for a varying period of time, averaging about 1 week, before they proceed up the river through the weir. Consequently, in calculating the age-group composition of the escapement, the percentages of the various age groups in one 7-day period, as determined by an analysis of the scale samples, (tables 3 to 16) were applied to the escapement of the following 7-day period.

The percentage occurences of the various age groups in the spring, fall, and total escapements for the years 1922 and 1924 to 1936, inclusive, are presented in table 18. There was a considerable fluctuation in the percentage occurrence of the principal age groups in the escapement from year to year. The percentage of the three principal age groups in the total escapements ranged from 24.1 to 81.1 for the 5_3 group; 4.0 to 38.6 for the 6_4 group; and from 4.5 to 32.8 for the 6_3 group.

This variation in the age composition of the escapements was due mainly to the fact that each year's escapement is composed of returns from several brood years. For example, a single escapement may be composed of 5-year fish from a brood year producing a small run, together with 6-year fish from a brood year producing a large run. In this instance the percentage of 5-year fish would be below average, and the percentage of 6-year fish would be above average. However, if the 5-year fish were from a very productive brood year and the 6-year fish were from a less productive brood year, the results would be just the reverse.

here																	
Voor of occompany								A	ge gro	ups							
Tear of escapement	31	41	42	43	44	52	53	54	53	62	63	64	65	73	74	75	85
1922: Spring	Pct.	Pci. 0.4	Pct. 0.4	Pct. 0.5	Pct.	Pct. 1.2	Pct. 34.3	Pct. 0.8	Pct.	Pct.	Pct. 59.3	Pct. 3.1	Pct.	Pct.	Pct.	Pct.	Pct.
Fall Escapement for year		.2	1.2 .8	$1.7 \\ 1.1$	0.6	.6	83.2 59.3	1.7 1.3	0.3		$\begin{array}{c} 6.1\\ 32.2 \end{array}$	5.0 4.0	0.1		0.1		
Spring Fall Escapement for year			.6 .2	2.0 4.3 3.2	.8	. 8	80.8 71.7 76.0	.5 5.7 3.2			9.4 1.5 5.4	5.0 15.7 10.5			.9		
1925: Spring	0.2		1.4	2.0		.3	71.0	.1			19.8	5.0			.4		
Escapement for year	.2		.9	5.2		.1	66.8	2.3			8.3	15.8			.3	*****	
Spring Fall Escapement for year	.2	.6 .3	4.6 .6 2.6	.7 .3 .5		1.4	80.0 81.8 81.1	.4 .2			$10.2 \\ 1.6 \\ 6.0$	$ \begin{array}{c} 2.6 \\ 13.2 \\ 7.6 \end{array} $.1		.5	0.1	
1927: Spring Fall			.2	.9 5.1	.2	10.8	74.5	.2			12.7	.2	2		.5		
Escapement for year			1.1	2.1	1	7.9	70.8	2.7			9.6	6.1			.5	.2	

 TABLE 18.—Percentage occurrence of the various age groups in the spring, fall, and total escapements of 1922, and of 1924 to 1936, inclusive

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

								A	ge gro	ups							
rear of escapement	31	41	42	43	44	52	53	54	55	63	63	64	65	73	74	75	85
1928: Spring. Fall Escapement for year	Pct.	Pct.	Pct. .5 .4 .4	Pct. .1 .4 .2	Pct.	Pct.	Pct. 53.7 63.5 56.9	Pct.	Pct.	Pct.	Pct. 44.4 6,9 32.8	Pct. 1.3 26.2 9.0	Pct.	Pct.	Pct.	Pct.	Pct.
Fall Escapement for year			1.9 .4 1.0	.3 .2		1.9 .8	$ \begin{array}{r} 40.0 \\ 31.5 \\ 34.8 \end{array} $.4 .3			50.6 9.5 26.0	$3.2 \\ 56.6 \\ 35.1$		1.2	1.2 1.3	1.3	
Spring Fell Escapement for year 1931:				.4 5.9 4.0		1.4 .1 .6	$51.1 \\ 51.7 \\ 51.5$	1.6 17.2 11.9			$33.9 \\ 4.6 \\ 14.5$	10.2 18.9 16.0			1.4 1.5 1.5	.1	•••••
Spring Fall Escapement for year 1932:			2.3 .2 .9	.7 .5 .5		.9 .1 .3	42.7 53.2 49.8	.4 4.2 3.0			$17.3 \\ 1.0 \\ 6.4$	33.4 40.3 38.1	,1 ,1 ,1		2.2 .3 .9	.1	
Spring Fall Escapement for year 1933:		.1	1.1 1.1 1.0	1.0 .8 .9		1.3 .3 .8	74.0 22.6 48.2	, 1 4, 0 2, 1			6.6 2.4 4.5	9.8 67.0 38.6			6.1 .3 3.2	1.4	
Fall Fall 1934:		.1	.6	.6 .2 .4		3.3 .6 2.0	57, 7 46, 2 52, 3	.3 2.5 1.3			22.9 2.4 13.1	13.0 44.1 27.9		• 1 	1.3 1.2 1.3	2.5 1.2	
Spring Fall Escapement for year 1935:			.9	.2		2.5	32.2 31.7 32.0	1.0 .9 1.0			50.6 6.2 35.7	8.8 58.9 25.7	. 2		3.6 1.4 2.9	.1 .2 .1	0.1
Spring Fall. Escapement for ycar 1936:		.1 .1	4.8	1.2 7.3 4.2		3.7 .4 2.0	23.7 24.5 24.1	1.6 9.1 5.4	· · · · · · ·	.2	30, 9 2, 6 19, 7	15.3 50.1 32.8	.9	.3	11.6 .9 6.2	.3 3.6 1.9	.1
Spring Fall Escapement for year			1.2	3.0 .3 1.3		5.6 .1 2.2	62, 5 74, 3 69, 9	.3 5,0 3.2			$ \begin{array}{c} 12.9 \\ 2.3 \\ 6.2 \end{array} $	15.0 13.1		.2	4.0 1.6 2.5	.3 1.4 1.0	. 1

TABLE 18.—Percentage occurrence of the various age groups in the spring, fall, and total escapements of 1922, and of 1924 to 1936, inclusive—Continued

The time of the season during which commercial fishing takes its toll also has an effect on the age composition of the escapement due to the fact that the age composition of the fish in a season's run is not constant but varies from week to week. If the commercial catch does not take a constant proportion of each week's run of fish, the age composition of the escapement is very apt to be different from that of the run of fish from which it resulted. Except in instances where an abnormal condition indicates the advisability of giving special protection to a certain part of a run, it is considered preferable to have the commercial catch so regulated that it constitutes the same percentage of the run from week to week throughout the season. When the catch is regulated in such a manner, the age composition of the escapement for a season will closely approximate the age composition of the run from which it is derived.

The escapement data presented in table 17 are used during each season in the regulation of the fishery, and in addition are also used in the study of the number of fish returning from known escapements, a subject discussed in a later section of this publication.

The data presented in table 18 are used together with data presented in table 25 in the study of the change in the age composition of the runs. This subject also is discussed later.

527715-43-3

TOTAL POPULATIONS

As the commercial catch of Karluk River red salmon can be ascertained from the records maintained by canneries operating in the Karluk area, and as the escapement can be determined by counting the fish passing upstream through the weir, it is possible to determine the number of fish in the total population or run. In determining the run of a 7-day period the catch of that period has been added to the escapement of the following 7-day period because of the aforementioned lag between the time the fish enter the river and the time they go through the weir. The weekly cumulative totals of the runs for the years 1921 to 1936, inclusive, are presented in table 19.

 TABLE 19.—Cumulative tatals of the runs of Karluk red solmon for each week from 1921 to 1936, and percentage of the total run that had cumulated to the end of each week

 [Run based on catch plus escapement of following week, as explained in the text]

	19	21	192	2	192	3		1924			1925	1	926
Week ending—	Num- ber of fish in thou- sands	Per- cent- age of total run	Num- ber of fish in thou- sands	Per- cent- age of total run	Num- ber of fisb in thou- sands	Per- cent- age of total run	Nu bei fist the sar	nm- P rof ce n in ag ou- to nds ru	er- nt- e of tal in	Num ber o fish i thou sand	f Per- f cent- n age of - total s run	Num- ber of fish in thou- sands	Per- cent- age of total run
May 24 May 31 June 7 June 7 June 7 June 28 July 5 July 5 July 12 July 12 July 20 Aug. 2 Aug. 16 Aug. 30 Sept. 6 Sept. 6 Sept. 27 Sept. 27 Sept. 27 Oct. 11 Oct. 18 	6 22 1777 315 545 7700 881 976 1,134 1,395 1,636 2,662 2,869 2,913 (/) 2,809 2,913 (/) 3,143	$\begin{array}{c} 0.2\\7\\ 5.6\\ 10.0\\ 17.3\\ 24.5\\ 38.0\\ 31.1\\ 36.1\\ 44.4\\ 52.1\\ 59.5\\ 65.7\\ 74.5\\ 80.5\\ 89.4\\ 92.7\\ \hline \\ 100.0\\ \end{array}$	$\begin{array}{c} 10\\ 23\\ 96\\ 145\\ 228\\ 264\\ 303\\ 345\\ 304\\ 452\\ 561\\ 637\\ 7704\\ 833\\ 956\\ 978\\ 994\\ 1,024\\ 1,058\\ 1,058\end{array}$	$\begin{array}{c} 0.9\\ 2.2\\ 9.1\\ 13.7\\ 21.6\\ 25.0\\ 28.7\\ 32.6\\ 37.3\\ 42.7\\ 47.5\\ 53.1\\ 60.2\\ 66.6\\ 60.2\\ 66.6\\ 78.8\\ 90.4\\ 92.5\\ 94.0\\ 90.8\\ 90.4\\ 92.5\\ 94.0\\ 90.6\\ 8\\ 100.0\\ 100.0\\ \end{array}$	$\begin{array}{c} 1\\ 73\\ 102\\ 212\\ 348\\ 423\\ 448\\ 496\\ 554\\ 662\\ 791\\ 854\\ 961\\ 1,022\\ 1,105\\ 1,260\\ 1,351\\ 1,414\\ 1,425\\ 1,425\\ \end{array}$	$\begin{array}{c} 0.1\\ 5.1\\ 7.2\\ 14.9\\ 29.7\\ 31.4\\ 34.4\\ 34.9\\ 46.5\\ 55.5\\ 55.5\\ 967.4\\ 71.7\\ 77.5\\ 88.4\\ 99.4\\ 8\\ 99.2\\ 99.9\\ 99.9\\ 100.0\\ \end{array}$	1, 1, 1, 1, 1, (5 91 257 548 637 703 772 862 955 027 123 211 375 	0, 2 4, 6 12, 8 21, 4 27, 4 33, 8 55, 2 38, 6 43, 1 47, 8 56, 2 60, 6 68, 8 	3 6 8 7 7 8 7 8 7 8 7 8 7 1,00 1,39 1,60 1,82 2,01 2,30 2,70 2,30 2,94 2,94 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.6\\ 11.4\\ 20.1\\ 22.9\\ 28.6\\ 31.7\\ 32.9\\ 34.9\\ 38.0\\ 42.7\\ 49.1\\ 56.0\\ 61.2\\ 71.7\\ 81.2\\ 88.4\\ 97.2\\ 98.5\\ 99.5\\ 100.0\\ \end{array}$
		19	927	1	928	_	19	29		19	30	19	31
Week endi:	ng	Number of fish in thou- sands	Percent- age of total run	Number of fish in thou- sauds	Percen age of total run	t- Num of fi in th san	iher sh iou- ds	Percent- age of total run	Nu of in sa	mber fish thou- uds	Percent- age of total run	Number of fish in thou- sands	Percent- age of total run
May 24. May 31. June 7. June 7. June 24. June 28. July 5. July 19. July 19. July 19. July 19. July 19. July 19. July 19. July 19. July 19. July 26. Aug. 20. Aug. 21. Aug. 21. Aug. 21. Aug. 21. Aug. 23. Aug. 23. Aug. 23. Aug. 23. Aug. 23. Aug. 23. Aug. 24. Aug. 24. Aug. 25. Aug. 25. Aug. 26. Aug. 26. Aug. 27. Aug. 20. Sept. 13. Sept. 27. Oct. 4. Oct. 11. Oct. 15.		$\begin{array}{c} 10\\ 0.2\\ 2.71\\ 4.60\\ 5.79\\ 6.80\\ 7.57\\ 7.98\\ 8.35\\ 8.81\\ 1.023\\ 1.127\\ 1.237\\ 1.377\\ 1.377\\ 1.431\\ 1.505\\ 1.506\\ 1.579\\ 1.687\\ \end{array}$	$\begin{array}{c} 0.6\\ 3.9\\ 17.1\\ 29.0\\ 36.5\\ 42.8\\ 47.7\\ 50.3\\ 52.6\\ 56.1\\ 64.5\\ 72.9\\ 78.0\\ 82.2\\ 86.8\\ 90.2\\ 94.9\\ 99.5\\ 100.0\\ \end{array}$	$\begin{array}{c} 14\\ 166\\ 470\\ 653\\ 753\\ 869\\ 934\\ 1,000\\ 1,058\\ 1,215\\ 1,350\\ 1,517\\ 1,686\\ 1,770\\ 1,517\\ 1,968\\ 2,006\\ 2,039\\ 2,010\\ 2,086\\ 2,095\\ 2,095\\ \end{array}$	0. 7. 22. 31. 35. 41. 44. 47. 51. 58. 64. 72. 80. 84. 89. 93. 95. 97. 97. 97. 90.	7942955677990444555569981, 1, 00	1 76 162 282 282 386 415 445 445 445 445 445 4476 503 548 603 657 732 801 837 947 041 055 128 128	$\begin{array}{c} 0,1\\ 6,7\\ 14,4\\ 25,6\\ 0\\ 34,2\\ 36,8\\ 39,5\\ 5\\ 42,2\\ 44,6\\ 55,5\\ 2\\ 64,9\\ 71,0\\ 74,2\\ 84,0\\ 74,2\\ 84,0\\ 92,3\\ 58,2\\ 100,0\\ 100,0\\ 100,0\\ \end{array}$		2 44 66 295 331 412 432 450 480 549 655 718 817 823 718 817 823 1,008 1,070 1,208 1,251	$\begin{array}{c} 0.2\\ 3.5\\ 5\\ 5.3\\ 23.5\\ 26.4\\ 32.9\\ 34.4\\ 35.9\\ 38.3\\ 43.8\\ 52.2\\ 57.3\\ 65.6\\ 57.1\\ 86.4\\ 85.3\\ 96.3\\ 96.3\\ 100.0\\ \end{array}$	$\begin{array}{c} 13\\ 63\\ 177\\ 274\\ 421\\ 4352\\ 421\\ 444\\ 488\\ 543\\ 629\\ 727\\ 787\\ 787\\ 880\\ 1,003\\ 1,105\\ 1,374\\ 1,547\\ 1,612\\ 1,625\\ \end{array}$	$\begin{array}{c} 0.8\\ 3.9\\ 9\\ 10.9\\ 16.0\\ 21.7\\ 25.9\\ 27.3\\ 30.6\\ 33.4\\ 38.7\\ 48.4\\ 51.2\\ 61.7\\ 68.0\\ 88.7\\ 99.2\\ 100.0\\ 100.0\\ \end{array}$

See footnote at end of table.

	1		1		1		2		1		
	19	32	19	33	19	34	19	35	19	36	
											Average
Week ending—	Number of fish in thou- sands	Percent- age of total run	Number of fish in tbou- sands	Percent- age of total run	Number of fish in thou- sands	Percent- age of total run	Number of fish in thou- sands	Percent- agc of total run	Number of fish in thou- sands	Percent- agc of total run	percent- age 1921-36
May 24 May 31 June 7 June 24 June 28 July 5 July 12 July 12 July 26 Aug. 2 Aug. 9 Aug. 9 Aug. 16 Aug. 30. Sept. 6 Sept. 13 Sept. 20 Sept. 27	$\begin{matrix} 1\\ 49\\ 223\\ 369\\ 451\\ 597\\ 634\\ 658\\ 740\\ 906\\ 906\\ 906\\ 1,081\\ 1,145\\ 1,147\\ 1,235\\ 1,355\\ 1,355\\ 1,402 \end{matrix}$	$\begin{array}{c} 0.1\\ 3.5\\ 16.8\\ 26.1\\ 34.1\\ 38.3\\ 42.3\\ 44.9\\ 48.7\\ 52.4\\ 455.7\\ 64.2\\ 68.1\\ 76.6\\ 81.1\\ 81.2\\ 87.5\\ 96.0\\ 99.3\end{array}$	$\begin{array}{c} 2\\ 27\\ 381\\ 575\\ 784\\ 895\\ 980\\ 1,029\\ 1,080\\ 1,255\\ 1,307\\ 1,385\\ 1,506\\ 1,606\\ 1,606\\ 1,742\\ 1,752\\ 1,756\end{array}$	$\begin{array}{c} 0.1\\ 1.5\\ 21.0\\ 31.7\\ 43.2\\ 49.4\\ 54.1\\ 56.8\\ 59.6\\ 64.1\\ 60.1\\ 72.1\\ 76.4\\ 83.8\\ 91.9\\ 96.1\\ 96.6\\ 96.9\end{array}$	3 204 503 807 1,097 1,164 1,214 1,309 1,385 1,499 1,581 1,651 1,700 (!) 	0.1 9.9 24.4 43.4 53.1 56.4 60.2 63.4 67.1 72.6 76.6 80.0 82.3 	$\begin{array}{c} 23\\ 162\\ 424\\ 625\\ 710\\ 809\\ 836\\ 873\\ 984\\ 1,03\\ 1,100\\ 1,172\\ 1,228\\ 1,217\\ 1,308\\ 1,309\\ 1,514\\ 1,531\\ \end{array}$	$\begin{array}{c} 1.5\\ 10.6\\ 27.7\\ 40.8\\ 46.4\\ 48.9\\ 52.8\\ 54.6\\ 57.3\\ 61.9\\ 67.8\\ 71.8\\ 76.5\\ 80.2\\ 81.4\\ 91.4\\ 91.4\\ 91.4\\ 91.00\\ 010.0\\ \end{array}$	$\begin{array}{c} 39\\ 183\\ 375\\ 585\\ 786\\ 906\\ 917\\ 979\\ 979\\ 1,069\\ 1,425\\ 1,573\\ 1,632\\ 1,813\\ 2,125\\ 2,330\\ 2,357\\ 2,439\\ 2,453\end{array}$	$\begin{array}{c} 1.6\\ 7.5\\ 15.3\\ 22.8\\ 32.0\\ 36.9\\ 37.4\\ 39.9\\ 43.6\\ 45.8\\ 58.1\\ 64.1\\ 68.6\\ 73.9\\ 86.6\\ 95.0\\ 96.1\\ 99.4\\ 100.0 \end{array}$	$\begin{array}{c} 0.6\\ 5.2\\ 14.1\\ 23.8\\ 31.0\\ 35.8\\ 38.7\\ 41.3\\ 44.7\\ 49.9\\ 56.7\\ 62.3\\ 67.8\\ 72.9\\ 79.3\\ 87.0\\ 96.2\\ 42\\ 96.2\\ 98.6\end{array}$
Oct. 4 Oct. 11 Oct. 18	1,412	100.0	1,813	100.0			1, 531	100.0	2, 453	100.0	99.7 100.0

 TABLE 19.—Cumulative totals of the runs of Karluk red salmon for each week from 1921 to 1936, and percentage of the total run that had cumulated to the end of each week—Continued

¹ The number of fish in the run from here to the end of the season was calculated as explained in the text.

In discussing the time of appearance of the runs, Gilbert and Rich (1927, p. 63) pointed out the apparent "uniformity in the development of the runs" from year to year and stated that if supported by future data the size of the total run could be predicted with some degree of accuracy at least by the end of June. Unfortunately, additional data have shown that there is considerable variation in the cumulative percentage occurrence of the runs from year to year. Up to the week ending July 5 the data indicate that from 25 to 60 percent of the run may have come in. Therefore it is impossible to estimate, with any degree of accuracy, the size of the total run carly in the season. The main reason for the variation in the development of the runs from year to year is that the run of any single year is composed of fish of several age groups, and the various age groups do not appear uniformly during the season nor is there a correlation as previously explained between the abundance or scarcity of one age group appearing during one year with the abundance or scarcity of the other age groups appearing during that same year.

Figure 2 shows the average percentage of the run appearing during each 7-day period of the season. There is a definite mode in June, a minimum during the week ending July 12, followed by a second mode. The second mode itself is slightly bimodal; however, the data for any single year clearly show that the minumum occurs during the period of the week ending July 5 to the week ending July 19 and only one mode is present during the fall run. It appears that there are two distinct red salmon runs to the Karluk River each year, the spring run which reaches a maximum during June and the fall run which reaches a maximum between the last week of July and the first week of September.

Overlapping of these two runs cannot be denied, but the bimodality of the runs is evidenced not only in the appearance of the fish at the mouth of the river but also in their appearance on the spawning grounds. The spring run first appears on the

spawning grounds during the last of June and the peak of the spawning occurs during the third week of July. These fish populate all the spawning streams entering the lake and, to a slight extent, certain parts of the lake shores where seepage through the gravel promotes conditions suitable for spawning. By the end of July or the first week of August the fish have completed spawning, and there is a definite scarcity of live fish on the spawning grounds. During late August, fish again appear in numbers on

the spawning grounds. An appreciable percentage of the fall run spawns along the beaches, and some of the fish spawn in the Karluk River for a distance of a mile or two below the lake, an area never populated by fish of the spring run. The majority of the fish in the fall run do spawn, however, in the tributary streams of the lake.

Although the two runs of fish spawn, to a great extent, on the same spawning grounds, the time interval precludes a thorough interbreeding of the two populations. The only interbreeding possible is between the late spawners of the spring run and the early spawners of the fall run. Whether or not the separation between the two groups has been sufficient to produce any anatomical differences that might be detected biometrically has not been determined conclusively. Even though the differences could not be detected biometrically, such an absence of differences would not repudiate the theory of two populations of red salmon inhabiting one watershed and spawning in the same gravel. Environmental conditions undoubtedly do account, in a large

measure, for the minor fluctuations in the time of appearance of the runs from year to year and may be the cause of bimodality in the runs. Regardless of the primary cause of this phenomenon, it would seem that there are two self-perpetuating components of the red-salmon population in the watershed, and that each should be given adequate protection.

During the 16 years under consideration the spring runs have ranged from 303,000 fish in 1922 to 1,715,000 fish in 1926, the average being 817,000 fish. The fall runs have ranged from 652,000 fish in 1929 to 3,205,000 fish in 1926, the average being 1,211,000 fish. The total run has ranged from 1,058,000 fish in 1922 to 4,920,000 fish in 1926, the average being 2,028,000 fish. Thus, there has been a rather wide range in the number of fish in the runs from year to year, and the average run has been far below that of the early days of the fishery when for a period of 7 years the catch alone exceeded the run (catch plus escapement) during this period by more than 1,000,000 fish per year.

RETURNS FROM KNOWN SPAWNING POPULATIONS

In order to maintain the salmon runs at a high level, an adequate escapement must be obtained for each and every suitable spawning area. The question at once arises as to what constitutes an adequate escapement. This question has confronted the salmon conservationist since the first attempt was made to regulate a fishery, and it is a question that still needs considerable study. Each small section of a spawning area must have its proper escapement, and in the final analysis, it is necessary to determine, for each small area, the size of an adequate spawning population. The problem is further complicated because an adequate spawning population for a given spawning area is not necessarily constant. Variations in meteorological conditions result in changes in environmental conditions on the spawning grounds during the spawning and incubation periods from year to year, consequently, a spawning escapement which may be adequate in one year may be inadequate, or may be more than adequate, in some other year. As there is no means of predicting what meteorological conditions will prevail during the spawning season and the subsequent incubation period, we can at best determine an average figure for the optimum size of the spawning population for each spawning area.

Most of the progeny from a year's spawning population of Karluk red salmon return as adults in their fourth to seventh year.⁶ In order to determine the return from the spawning of 1930, for example, it is necessary to determine the number of 4-year fish in the run of 1934, the number of 5-year fish in the run of 1935, the number of 6-year fish in the run of 1936, and the number of 7-year fish in the run of 1937. The numbers of these several groups are then added together to determine the total return from the spawning of 1930. The returns from the escapements of the spring run, from the fall run, and from the total run of each year are given in table 20.

The escapement of 1921 (1,500,000 fish) produced a very good return both in the ratio of return to escapement and also in the total number of fish produced. While the return from the spring escapement was good, the return from the fall escapement was much better and was largely responsible for the exceptionally good total return.

⁶ There are a few 3-year and 8-year fish in the Karluk runs which are included in the tabulations, but their presence is quite unimportant.

Year and season	Escapement	Return	Ratio of re- turn to cs- capement	Return minus escapement
1921 Fall	685, 245 814, 755	1, 522, 032 2, 970, 272	2. 2: 1 3. 6: 1	836, 787 2, 155, 517
Total	1, 500, 000	4, 492, 304	3.0:1	2, 992, 304
1922 Spring Fall	196, 186 203, 814	$1,252,839\\1,001,461$	6. 4: 1 4. 9: 1	1, 056, 653 797, 647
Total	400, 000	2, 254, 300	5.6:1	1,854,300
Spring Fall	255, 351 439, 228	891, 653 1, 186, 950	3. 1: 1 2. 7: 1	546, 302 747, 722
Total	694, 579	1, 988, 603	2.9:1	1,294,024
1924 Fall	540, 030 569, 131	409, 352 435, 118	. 8: 1 . 8: 1	-130,678 -134,013
Total	1, 109, 161	844, 470	.8:1	-264, 691
1925 Spring Fall	657, 154 963, 773	538, 113 1, 062, 953	. 8: 1 1. 1: 1	
Total	1, 620, 927	1, 601, 066	1.0:1	- 19, 861
1926 Spring Fall	1, 289, 976 1, 243, 426	336, 507 1, 177, 101	.3:1 .9:1	-953, 469 -66, 325
Total	2, 533, 402	1, 513, 608	. 6: 1	-1,019,794
1927 Spring Fall	617, 613 254, 925	926, 611 651, 563	1.5:1 2.6:1	308, 998 396, 638
Total	872, 538	1, 578, 174	1.8:1	705, 636
1923 Spring Fall	755, 511 338, 306	1, 519, 176 925, 453	2.0:1 2.7:1	763, 665 587, 147
Total	1, 093, 817	2, 444, 629	2.2:1	1, 350, 812
1929 Spring Fall	360, 567 539, 752	883, 509 623, 956	2.5:1 1.2:1	522, 942 83, 304
Total	900, 319	1, 506, 565	1.7:1	606, 246

TABLE 20.-Returns from escapements of Karluk River red salmon

The escapement of 1922 (400,000 fish) was very poor. However, this escapement produced a fair-size run because the ratio of return to escapement was exceptionally high both in the spring and fall.

The escapement of 1923 (694,579 fish), although it produced a good ratio of return to escapement, produced only a moderate run because the size of the escapement itself was below average.

The escapement of 1924 (1,109,161), while considered satisfactory in size, produced a very poor return. In fact there were fewer fish in the return than in the escapement. This was due probably to the tremendous escapement of pink salmon in the Karluk River in 1924. Normally, the pink salmon spawn in the lower half of the river, but in that year, because of population pressure, large numbers of this species continued up the river and occupied the red salmon spawning grounds. Quoting from a report made by Fred R. Lucas in 1924 (Gilbert and Rich 1927):

. . . On August 21st hundreds of thousands of fish died in the twenty miles of river between the

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

weir and the still water at the Larson Bay portage. The mortality included adult red salmon, humpbacks, and trout, as well as young fish. The cause is unknown unless it was due to overcrowding of humpbacks, with a possible fall of the water level in the river . . . it is estimated that over four million humpbacks passed through the weir this season.

Quoting from Lucas' notes taken while visiting the red-salmon spawning grounds at Karluk Lake, September 16 to 24:

... Behind every rock and in every eddy piles of humpback eggs lay. Within twenty-two steps the writer counted twelve piles that would average five gallons to a pile; and behind a small island about six feet in diameter there were more than a fifty-gallon barrel full of humpback eggs. These eggs were all dead; ... a small percentage of red eggs was among them. In fact, more or less red eggs were noticed adrift in every stream where humpbacks had spawned ... The dead, red eggs ... were more numerous than the live ones. All of these live eggs will probably be pieked up by the birds and trout before they hatch...

It was apparent that there was too large a pink-salmon escapement, and this was borne out by the failure of the pink-salmon run of 1926, the total return from the escapement of over 4,000,000 being less than 100,000 fish. The overcrowded conditions on the spawning grounds in 1924 not only resulted in a very poor return of pink salmon in 1926 but undoubtedly were largely responsible for the poor return from the red-salmon escapement.

The escapement of 1925 (1,620,927), while good, also produced a relatively poor return, and the total return was slightly less than the number of fish in the escapement. Karluk Lake was not visited during the summer of 1925, and consequently no information as to conditions on the spawning grounds during that year is available. The moderately large escapement should not have caused an undue mortality due to overcrowding under normal conditions, and there is no reason to believe environmental conditions were abnormal during the spawning period. It is known that the winter of 1925–26 was exceptionally mild. A mild winter should cause the eggs to hatch earlier than usual, but just what effect this would have on the fry is impossible to state.

The excellent escapement of 1926 (2,533,402) suffered from unfavorable conditions caused by an exceptionally warm, dry summer, and the return was 1,000,000 fish less than the number of spawners in the escapement. The lack of rainfall coupled with a large escapement of red salmon produced conditions somewhat similar to those encountered in 1924. Quoting from notes made by Willis H. Rich in 1926:

On July 18, in Spring Creek . . . it was very noticeable that many of the females were not completely spawned out; six of twelve examined had eggs apparently still in good condition. Most of these were apparently not spawned at all, although ripe . . . Upper Thumb River . . . we saw many dead females, ripe but unspawned, and many others that were not completely spawned out. Causes of death quite unknown, as most of them appeared to be in fine condition.

Observers at Karluk Lake in 1926 considered that "about 25 percent of the females that reached the lake died only partially spawned out." Not only did many fish die before spawning, but large numbers of eggs deposited in the gravels died because the spawning grounds dried up. Again quoting from Rich's notes:

August 9... In Thumb River, where the spawning had been heaviest, many of the nests were exposed by the lowering of the water. We dug in some of them and found mainly dead eggs, although a very few live ones were found.

In many of the other streams similar conditions were noted. Thus, the poor return from the spawning of 1926 might have been due largely to the conditions on the spawning grounds during that year. The spawn of the spring escapement, in the opinion of observers, suffered the greatest loss, and it is significant that the return per fish from the spring escapement was only one-third as great as the return per fish from the fall escapement.

The escapement of 1927 (872,538 fish) produced a moderate-size run and probably would have produced a better run had not the spring run suffered to some extent from unfavorable conditions. Precipitation during the summer of 1927 was in marked contrast to that of 1926. In 1927 the spring spawning population suffered because the streams were at flood stage for a period of time, whereas in 1926 the fish suffered from a lack of sufficient water.

The escapement of 1928 (1,093,817 fish) produced a fairly good run, and the ratio of return to escapement in both the spring and fall was equal to, or greater than, the ratio of return of 2:1 on which the Alaska fishery regulations are based.

The escapement of 1929 (900,319 fish) produced a relatively small run. The spring escapement produced a good ratio of return to escapement, but the fall escapement produced only a few more fish than were in the escapement for that period.

Although fluctuations in the ratio of return to escapement were anticipated, it was expected that some correlation would be found between these two factors. The big escapements to the Fraser River (Rounsefell and Kelez, 1938) every fourth year prior to the rock slide in the river in 1913, always resulted in a large run 4 years later. Observations made on the escapement and returns of pink salmon in Puget Sound and Alaska indicate that usually big runs are produced from good escapements and poor or only fair runs produced by poor escapements. The cyclic nature of the catches at Karluk during most of the history of the fishery also indicates that some correlation exists between escapement and return. These and many other instances which might be cited give reason to believe that, normally, a positive correlation exists between escapement and return.

Figure 3 shows the correlation between the total yearly escapement and the total returns. The most striking point about these data is the utter lack of correlation between the escapements and the returns from the escapements. That such a condition could not have existed during the early days of the fishery is apparent when one considers that for 3 of the 9 years under consideration the ratio of return to escapement did not exceed 1.0 to 1.0. Obviously, unless this ratio is greater than 1.0 to 1.0 a fishery cannot be sustained. For only one of the years under consideration, 1921, did the return exceed the escapement from which it resulted by an amount approximately equal to the catches made during the early days of the fishery.

In the consideration of returns from escapements the most important point is the surplus, or return minus escapement, produced by a given escapement. The aim of every regulatory body governing a self-perpetuating biological resource should be to allow the greatest possible catch without endangering future supplies. The size of the population inhabiting a watershed is, in itself, of little concern. For example, if an escapement of 1,000,000 fish always produced a run of 3,000,000 fish, and an escapement of 4,000,000 fish always produced a run of 5,000,000 fish it would be wasteful to require an escapement of 4,000,000 fish solely on the basis that such an escapement produced the largest run. In this hypothetical example the escapement of 1,000,000 fish would produce a surplus of 2,000,000, and the escapement of 4,000,000

would produce a surplus of only 1,000,000. It is then of considerable importance to determine, for each given area, the size of the escapement which will consistently produce the greatest surplus.

In figure 4 the return minus escapement, or surplus, has been plotted against the escapement. A negative correlation between escapement and surplus is indicated, and it appears that, overlooking the return from the fall escapement of 1921, the

FIGURE 3.- Returns from the spring and fall escapements for the years 1921 to 1929, inclusive.

optimum escapement for the spring and fall runs was approximately 200,000 fish for each period or a total yearly escapement of 400,000 fish. There are several facts, however, that should be considered before drawing conclusions from the data. The escapement of 1921, and especially the fall escapement, produced a very good surplus. The Karluk pink salmon spawning population of 1922 produced an exceptionally large surplus, as did the red salmon spawning population of that year, indicating unusually favorable environmental conditions. Conditions on the spawning grounds were judged to be very unfavorable during 1924 and 1926, and hence the returns from those escapements were likely much lower than if the environment had been normal. Furthermore, only the escapement of 1921 (1,500,000 fish) produced a surplus comparable to the average catch made during the 20-year period from 1888 to 1907. While

527715-43----4

it is obvious that the catches made during the early days of the fishery were such as to cause serious depletion of the population, it would seem likely that the fishery could have been stabilized with a yearly catch of 1,500,000 to 2,000,000 fish.

FIGURE 4.-Surplus (return minus escapement) produced by spring and fall escapements for the years 1921 to 1929, inclusive.

CHEMICAL ANALYSES OF LAKE AND STREAM WATERS

A factor to be considered in relation to the optimum magnitude of the escapements of red salmon is the addition to the lake water of phosphorus and other inorganic salts from the bodies of the fish which migrate into the watershed to spawn. Prior to the inception of the commercial fishery, Karluk Lake received a large supply of chemical compounds each year because practically all of each season's run of fish proceeded to the lake and its tributaries to spawn and die. As soon as the commercial fishery began, the spawning escapements became less, and not only were there fewer spawners available to deposit eggs in the gravel, but the yearly increment of chemical compounds to the water was considerably decreased.

That the productivity of bodies of fresh and salt water is controlled in part by the abundance of certain inorganic salts such as phosphorus has long been known and the relationship between the chemical content of the water of ponds, lakes, and the ocean and their productivity has been studied by a large number of investigators. Soluble phosphorus has been considered by most workers to be the chief limiting factor in the productivity of aquatic organisms during the summer months, although nitrogen and carbon dioxide have also been shown to be limiting factors at times.

During the 2 or 3 years that the red-salmon fingerlings spend in fresh water, prior to their sojourn in the ocean, they feed upon certain minute forms of animal life existing in the lake. These animal forms, or zooplankton, are dependent upon the plant forms, or phytoplankton, and they in turn are dependent upon the sunlight and the inorganic salts in the lake water. Hence, fluctuations in the supply of salts in the lake water can indirectly affect the growth and survival of the fish.

In tables 21 and 22 are presented the results of temperature and chemical observations made on the waters of Karluk and Thumb Lakes in 1935 and 1936. Similar data collected in 1927 were presented and discussed by Juday, Rich, Kemmerer, and Mann (1932).

The temperature of both Karluk and Thumb Lakes was higher in 1935 than in 1927 and still higher in 1936. At Station 1, in Karluk Lake (fig. 5), for example, the surface temperature on August 13, 1927, was 11.1° C.; on the same date in 1935 it was 12.2° C.; and in 1936 it was 15.5° C. There was evidently a marked difference in the amount of sunshine during these 3 years, and such a conclusion is confirmed by the precipitation data. The June-July-August precipitation at Kodiak, the nearest recording station, was 22.33 inches in 1927; 13.85 in 1935; and 6.56 inches in 1936. During the 47 years that June-July-August precipitation data has been tabulated at Kodiak, the average precipitation was 13.32 inches.

Soluble phosphorus was found in the water of Karluk and Thumb Lakes in 1927 on the dates samples were taken, and whereas the surface waters of these lakes lacked a measurable amount of phosphorus during the summers of 1935 and 1936, it was not until September, at the end of the salmon growing season, that measurable amounts of phosphorus were found.

Silica was almost entirely absent from the surface waters of Karluk Lake during 1935 and 1936, whereas a small amount was present in 1927.⁷ A greater amount of silica occurred in the water of Thumb Lake in 1935 and 1936 than in 1927.

⁷ The 1927 silica values should be multiplied by 1.44 to correct a change in the value used in the calculation. The method used for the determination of silica is that described by Dienert and Wandenbulcke (1923), and Juday. Rich, Lemmerer, and Mann (1932) used Dienert and Wandenbulcke value of 30.9 mgs, of pieric acid as being equivalent to 50 mgs, of silica. King and Lucas (1928) showed this value to be in error and indicated that 25.6 mgs, of pieric acid were equivalent to 50 mgs, of silica. This latter value was confirmed by Robinson and Kemmerer (1930a) and was used in the present analysis.

FIGURE 5 .- Map of Karluk Lake region.

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

TABLE 21.-Results of chemical analyses of the waters of Karluk Lake and Thumb Lake in 1935

[The results are stated in milligrams per liter of water. Tr.=Trace]

Date	Time 1	Depth in meters	Temper- ature,°C.	p'II	Carbon dioxide free	Soluble phos- phorus	Silica	Nitrite nitrogen
May 26. June 28. June 28. June 28. June 28. July 11. July 11. July 11. July 11. July 10. July 30. July 30. July 30. July 30. Aug. 13. Aug. 13. Aug. 13. Aug. 13. Aug. 13. Aug. 13. Sept. 6. Sept. 6. Sept. 6. Sept. 6.	11:15 10:27 8:30 8:21 9:45 11:25	$\begin{array}{c} 0\\ 0\\ 20\\ 30\\ 100\\ 0\\ 20\\ 30\\ 100\\ 0\\ 100\\ 100\\ 100\\ 124\\ 0\\ 20\\ 100\\ 122\\ 0\\ 20\\ 120\\ 120\\ 120\\$	$\begin{array}{c} 5.0\\ 11.0\\ 9.8\\ 6.0\\ 4.5\\ 11.6\\ 8.7\\ 6.9\\ 4.8\\ 11.9\\ 5.0\\ 4.9\\ 12.2\\ 8.1\\ 5.1\\ 5.1\\ 5.1\\ 5.3\\ 5.3\\ 5.1\end{array}$	7,2,6,8,4,0,7,6,3,7,2,1,8,2,0,0,9,3,0,0,0,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	0.8 1.2 1.8 1.8 .8 2.0 2.0 2.5 	0,000 ,000 ,000 ,000 ,000 ,000 ,000 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,002 ,000	1.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0	0.002 002 002 001 001 001 001 001 001 001
	KA.	RLUK LAI	KE, STATI	ON 2 (THE	THUMB)			·
May 26 July 13 July 13 July 13 July 13 July 13 Ang, 13 Ang, 13 Aug, 13 Sept. 5. Sept. 5. Sept. 5. Sept. 5.	10:50 8:30 8:20 2 12:50	$\begin{array}{c} 0\\ 0\\ 10\\ 20\\ 35\\ 0\\ 40\\ 0\\ 20\\ 35\\ 41 \end{array}$	$5.6 \\ 12.8 \\ 10.5 \\ 6.4 \\ 5.5 \\ 12.8 \\ 12.9 \\ 10.4 \\ 6.9 \\ 6.4 $	7.6 8.2 7.5 7.3 8.1 7.1 7.0 7.0 6.0	0.6 6 1.4 1.6 2.2 	0,000 000 000 000 000 000 002 002 002 00	Tr. Tr. 0 7r. .5	0 003 002 001 004 004 002
		KAI	LUK LAK	E, STATIC	ON 3			
July 12. July 12. July 12. July 12. Sept. 6. Sept. 6. Sept. 6. Sept. 6.	9:18	0 20 30 50 0 20 50 50 50	11.8 6.5 6.0 4.8 12.6 8 5 5.3	$\begin{array}{c} 7.9\\ 7.7\\ 7.4\\ 7.2\\ 7.4\\ 7.0\\ 6.9\\ 6.9\end{array}$	0.6 1.0 1.6 2.4	0, 000 - 000 - 000 - 000 - 002 - 002 - 010 - 005	Tr. 0 Tr. 7 .5 .5	0,003 .001 .001
		η.	HUMB LA	КĘ				
May 26 June 25 June 25 July 20 July 21 July 21 July 21 July 21 Aug. 14	10:10 ? 12:01 11:20 \$:23 \$:25	0 0 8 0 0 9 9	9, 2 10 6 9 8 12, 2 11 6 11 1 13 0	8 2 7 7 7 3 7 1 7 1 9 1	1. 6 2. 2 2. 8 1. 6	0, 000 002 000 002 002	7 0 5 5	Tr. Tr. Tr.

KARLUK LAKE STATION I

Time a. m. except as noted. Time p. m.

In tables 23 and 24 are presented the results of temperature and chemical analyses made on 15 affluents of Karluk Lake during the summers of 1935 and 1936. These data, with the exception of the silica values, agree with the results presented for 1927 by Judny, Rich, Kemmerer, and Manu (1932). Variations in temperature, pH, carbon dioxide, soluble phosphorus, and nitrite nitrogen depend, in a large degree, on the time of day observations are made, the number of fish in the streams, and the depth of water in the streams.

TABLE 22.- Results of chemical analyses of the waters of Karluk Lake and Thumb Lake in 1936

[The results are stated in milligrams per liter of water. Tr=Trace]

		JOIL DAILE	, or arrow	1			
Date	Time ¹	Depth in meters	Temper- ature, ° C	pH	Soluble phosphorus	Silica	Nitrite nitrogen
June 28	10:30	0	13.6	7.6	0.000	0	0.002
28		20	6.1	7.5	. 000	0	Tr.
28.		100	4.3	7.3	Tr.	— ŏ	Tr.
July 11	11:15	0	12.2	7.6	. 000	0	. 001
11		30	5.8	7.5	.000	0	Tr.
11.	0.45	100	4.5	7.3	. 000	0	Tr.
18	8:10	30	13.5	7.5	. 000	0	
Aug. 7	9:41	0	17.1	8.4	.000	Ťr.	.001
13	9.96	20	6.5	7.3	. 000	0	. 001
13		20	7.0	8.0	.002	ŏ	Tr.
13		100	4.6	7.1	. 003	0	.002
27	8:15	124	15.0	7.9	. 018	1.0 Tr.	. 002
27		20	S. I.	7.3	. 000	Ô	.001
27		30	6.1 4.8	7.2	. 000	0 5	Tr.
Sept. 9	9:09	0	12.7	7.6	.000	Tr.	. 001
9		20	8.3	7.2	. 000	0	. 000
9		100	4.8	7.1	. 004	Ťr.	
		1			l		l
	KARI	UK LAKE	, STATION	2			
Turley of							
July 7	10:20	0	13.6	8.0	0.000	0	0.002
13		20	6.6	7.7	. 000	ŏ –	Tr.
13		30	5.6	7.5	.000	0	Tr.
18	8:37	40	13.8	4.9 8.0	. 000	0	11.
18	0.15	30	5.6	7.4	. 000	Ö_	
Aug. 7	8:15	20	16.5	8.5 7.4	. 000	. 5	.002
7		40	5.3	6. 8	. 036	1.0	
13	² 2:44	0	15.6	8.3	. 000	.7	. 002
13		40	0.0	7.2	. 006	.5	.001
13	0.47	41	5.8	6, 9	. 008	. 7	. 001
25	8:40	20	15.2	8.1 7.2	.000	. 5	.001
25		30	5.8	7.0	.004	Ťr.	.001
Sept 6	7-19	40	5.5	6. 9 7. 6	. 023	1.0	.001
6.	.10	20	9.8	7.1	.000	0	Tr.
6		30	6.3	7.0	. 001	0_	Tr.
0		40	5.8	6.9	. 023	. 5	. 001
		THUMB	LAKE				
June 30	10.20	0	11.7	7.4	0.000	E F	(T
30	10:30	8	9.9	$7.4 \\ 7.2$, 000	a. a 5. 5	Tr.
July 9	11:50	0	12.5	7.3	. 000	5.5	0.001
Ang. 10	2 12:07 11:45	0	11.5	8 2	. 000	3.5	001
10	11:50	9	11.9	6.5	. 00.5	3. 0	.000

KARLUK LAKE STATION 1

¹ Time a. m. except as noted. • Time p. m.

Applying the correction factor of 1.44 to the 1927 silica values, it is found that the silica content of the various streams ranged from 1.4 to 5.0 milligrams per liter. In 1935, the silica values ranged from 5.0 to 13.0, and in 1936 they ranged from 4.0 to 15.0 milligrams per liter. In both 1935 and 1936, it was noted that the silica content of the water of any one stream varied with the stream flow. In the summer months of 1927 there was 1.6 times as much precipitation as during the same period in 1935, and 3.4 times as much as in 1936; hence, the stream flow in 1927 must have been con-

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

TABLE 23.-Results of chemical analyses of stream waters in 1935

Oterrow	Data	(TD)	Temper-	TI	Carbon	dioxide	Soluble	Silion	Nitrite
Stream	Date	Jumer	°C,	рн	Free	Fixed	phorus	Silica	nitrogen
Cold Creek *	July 1	9:10	3.9	6.3	12.2	10.0	0.012	13.0	
pring Creek	do	9:15	5.8	6.8	7.8	6.8	. 002	11.0	0.001
	Aug. 15	10:00	6.8	6.7	6.7	10.8	. 022	9.0	Tr.
	Aug. 29	10.10	6.1	6, 7	5.9	11.0	. 006	9.0	Tr.
Joraine Creek	July 1	9:25	7.2	7.1	3.2	11.0	. 018	7.0	. 003
	Ang. 15	11:15	10.4	7.8	.8	11.0	. 022	8.0	. 001
	Aug. 29	10.25	9.4	8.4	. 0	10.2	. 014	11.0	. 001
Cottouwood Creek	July 1	10.05	7.2	7.2	2.8	7.8	.016	8.0	, 003
	July 15 July 27	9.30	7.8	7.3	1.4	13.4	. 030	9.0	. 003
	Aug. 15	* 12:01	9.2	7.7	1.0	13.6	. 020	8.5	, 002
Idea Casela I	Sept. 7	8:45	6.6	7.8	2.4	14.8	. 008	8.5	Tr
Ider Creek	do	9:15	7.2	7.2	3. 2	15.2	. 016	9.0	. 002
	July 15	11:55	8.3	7.2					
	July 27	9:05	6.7	7.3	1.6	13.8	. 025	9.0	001
	Sept. 7	2:40	6.1	7.6	1.0	10.0	. 010		
ittle Lagoon Creek 2	May 26	10:42	3.5	7.9					, 000
ittle Logeon Creek	July 7	10:10	3.6	7.7	1.4	25.0	. 004	9,0	. 000
Attle Lagoon Creek	July 13	10:00	4, /	1.9	4. 4	61.U	. 016		
ittle Lagoon Creek 2	Aug. 15	7:50	3.3	7.8	1.4	23.0	. 006	8, 5	. 000
ittle Lagoon Creek	do	8:00	3.9	7.7	2.2	23.8	. 010	9, 0	. 000
lower Thumb River	June 26	\$ 1:20	10.3	7.5					
	July 9	² 12:05	12.2	7.3					
almen Creek	Aug. 14	9.00	12.2	91				•••••	
amon Creek	June 25	\$ 1.00	0.8	1.0					
	July 9	11:40	8.0	7.2	2.4	12.6	. 016	8.0	. 004
	July 21	9.45	7.2	7.3	2.0	11.4	. 015	7.0	, 002
Inner Thumh River	Aug. 14 June 25	8 40	0.1	$\frac{7.0}{7.1}$		10.2	.040		
The reason for the second second	July 9	11:10	8.3	6.9	3.8	10.0	. 022	7.5	. 005
	July 21	9:20	8.3	7.0	2.0	10.8	. 025	7.0	. 004
Ialfway Creek ?	Aug. 14 July 6	8:20	7.2	0.9 7.3	3.4 1.6	9.0	. 002	9.5	Tr.
lalfway Creek	do	9:15	7.8	7.1	2.4	9.0	. 004	10.0	. 001
	July 27	10:25	7.8	7.2	1.2	8.8	. 025	9.0	
	Alle, 16 Sent 7	10:00	0.0 6 1	1.3	1.2	9.2	. 014	10.0	. 0.91
lrassy Point Creek	July 6	9:40	5.9	7.0	3 6	10.8	. 036	9.0	. 005
	July 27	10:00	7.2	7.2	1.6	10.8	. 045	9.0	. 005
	Sent 7	10:25	6.1	7.5	1.0	10. 4	.014		. 004
Jeadow Creek	July 17	9:55	8.3	7.0					
lance de Courte	Ang. 16	9:10	7.2	7.5	1.0	9.6	. 018	7.5	. 004
asende Creck	July 3 July 17	10:35	8.9	7.3	1.6	14.5	. 024	5.0	. 005
	Ang. 16	8:50	7.2	7.6	1.2	14.2	. 020	7.5	. 003
anyon Creek	July 3	10:15	8.9	6.8	5.1	10.2	. 032	5.5	. 005
Alls Creek	- do	9:30	8.3	7.3	a. 8 1.6	9.4	. 002	5.0	Tr
, money arrest states	July 17	8:35	8.9	7.3	2.8	10.8	. 006	5. 5	. 002
	July 23	10:50	8, 9	7.1	2.6	10.4	. 004	6.0	. 002
	Aug. 16	8:35	9.2	î. O	2.2	11.0	. 012	6, 0	002

[Results are stated in milligrams per liter of water. Tr.=Trace]

¹ Time a, m. except as noted,

² Above salmon.
³ Time p. m.
⁴ Above Falls Creek.

siderably greater than in 1935 or 1936. The streams were lower for a part of the summer of 1936 than in 1935, and this is reflected in slightly higher silica values in that year.

Karluk Lake receives silica, in part from the action of the water on the silica bearing rocks on the bottom and on the beaches, and in part from its tributary streams which leach the silica from their respective watersheds. Consequently, the yearly increment of silica, although undoubtedly affected by temperature and precipitation, is probably

TABLE 24. Results of chemical analyses of stream waters in 1936

Stream	Date	Time ¹	Temper- ature ° C.	рН	Soluble phosphorus	Silica	Nitrite nitrogen
Cold Creek 2	July 1	10:18	3. 9	6, 2	0.015	15, 0	0, 009
Spring Creek	do	10:35	7.2	6.7	, 006	13.5	.000
	July 15	9:20	6.9	6.7	, 005	13.5	Τт.
	Aug. 8 Sopt 11	9:15	5. I	0.0	.005	13.0	. 000
Marging Creek	July 1	11:05	8.3	7.5	. 032	9.5	. 002
MORATHE CICCR	July 15	9:55	10.3	7.3	. 130	9.5	. 024
	Aug. 8	9:30	11.1	6.6	. 135	10.0	. 018
	Sept. 11	10:35	5.6	7.8	. 030	9.0	. 002
Cottonwood Creek	July I	11:40	9.5	7.1	. 015	9.5	. 002
	July 15	10:35	9.2	7.2	. 045	9.5	.004
	Aug. 8	10:00	10.7	7.1	. 180	10.0	.015
Alden Craels	July 7	0:40	67	7.5	000	9.5	. 001
Alder Creek	July 15	11.05	7.5	7.3	. 020	9.5	. 001
	Aug. 8	11:00	10.0	7.3	. 050	10.0	. 008
	Sept. 11	3 12:20	5.1	7.6	. 012	8.0	. 001
Little Lagcon Creek	June 25	\$ 2:30	8.3		. 004	11.0	
Little Lagoon Creek ²	July 7	10:00	3.6	7.8	. 004	10.5	.000
Little Lagoon Creek		10:05	4,4	7.6	. 008	10.5	. 000
Lower Thumb River	June 30	3 19-15	12.2	7.4	, 000	0.0	.000
	July 9	3 1.35	16.7	7.5	. 002	4.0	,004
	A119 29	\$ 3:35	17.1	8.9			
	Sept. 6	3 12:30	12.3	7.3			
Salmon Creek	June 30	11:20	8.3	7.2	. 004	7.5	. 000
	July 9	12:00	7.8	7.3	. 018	7.5	002
	July 17	3 1:10	12.2	6.9	. 060	7.5	
	Aug. 10	* 12:40	8.9	1.0	.030	9,0	.007
	Sent 6	\$ 12.05	7.8	7.3	. 010	8.0	.004
Upper Thumb River	June 30	9:45	8.3	7.2	.007	6.5	. 000
opplet indentified of the second se	July 9	11:30	8.3	7.0	. 020	7.0	, 002
	July 17	11:30	11.7	6.7	. 045	7.5	
	Aug. 10	11:30	10.0	6.9	.070	8.5	.007
	Aug. 29	4 3:05	11.4	1.0	.024	8.0	. 001
Helfman Crock 1	Loly 6	0:03	3.7	7.4	004	10.0	000
Halfway Creek	do	10:00	7.2	7.2	. 010	10.0	.000
Halfway Creek 2	Aug. 11	11:45	8.3	7.6	, 004	11.0	. 000
Halfway Creek	do	\$ 12:15	8.9	7.3	. 040	12.0	. 002
	Sept. 11	8:40	4.0	7.3	. 012	9.5	. 001
Grassy Point Creek	July 6	10:25	7.8	7.2	, 056	10.0	.004
	Aug. II	* 12:40	9.2	1.5	. 100	11.0	.000
Mondow Crook	Iolv 3	11:00	0.2	7.0	.012	6.5	.001
Meadow Creek	July 16	11:05	8.3		. 025	7.5	, 003
	Aug. 14	3 12:35	9.7	7.4	, 060	9.5	. 007
	Sept. 10	3 1:15	6.7	7.3	.008	9.0	.001
Cascade Creek	July 3	10:15	8.3	7.6	. 003	6.5	.00
	July 16	10:20	9.2		.006	8.0	. 00
	Aug. 14	3 12:03	9.9	1 2.0	003	9.0	
Canyon Crook	July 2	9.55	7.8	7.4	004	5.0	.00
auton creek	July 16	10:00	8.3		, 016	6.5	.00
	Aug. 14	11:34	10.6	7.4	. 030	8.5	. 006
	Sept. 10	\$ 12:10	8.9	7.0	.014	8.0	. 00.
Falls Creck	July 3	9:35	8.3	7.4	. 000	5.0	, 000
	July 16	9:35	9.2		. 006	6.0	. 000
	Ang. 14	10.07	10.8	7.2		7.5	
	Sept. 10	12:00	8.9	1.2	. 0(0)	7.0	

[Results are stated in milligrams per liter of water, Tr .= Trace]

Time a. m. except as noted,
Above salmon,
Time p. m.

rather constant from year to year. A shortage of silica in the lake water would act as a limiting factor in the production of diatoms but would not inhibit the production of other forms of phytoplankton.

The yearly increment of soluble phosphorus is dependent, very largely, upon the number of spawning fish which enter the lake each year. There was from 11/2 to 10 times the concentration of phosphorus in the water at the mouths of the streams as

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

in the water of the same streams, on the same dates, above the area where spawning and spawned-out salmon were found. Furthermore, a part of the salmon spawn along the beaches of the lake and eventually die, and the carcasses, together with the carcasses which drift downstream into the lake from the tributaries, decompose and the phosphorus contained therein becomes available to the phytoplankton. A shortage of phosphorus in the lake water would inhibit the growth of all forms of phytoplankton.

It is apparent from a study of the chemical analyses of the lake water and of the stream waters that both phosphorus and silica are being absorbed, during the summer months, by the phytoplankton as fast as they become available, for otherwise the concentration of these chemicals in the lake water would approach that found in the streams. Since the concentration of these chemicals in the lake water during most of the summer was less than a measurable amount, it is evident that they must be limiting factors in the production of the phytoplankton and may possibly be affecting indirectly the growth and survival of the red salmon fingerlings of Karluk Lake.

CHANGE IN AGE COMPOSITION OF THE POPULATION

The percentage occurrence of the various age groups in the population, as determined from a study of the scale samples (tables 3 to 16), appears to be changing from year to year. However, a direct comparison of one year's data with another cannot truly represent the change, if any, since a given year's run is composed of the progeny from the escapements of several years.

To determine whether or not a change has been taking place in the age composition of the population, it is necessary to compare the age composition of the escapements with the age composition of the fish returning from the respective escapements. The age compositions of the escapements for a series of years are presented in table 18, and the age compositions of the returns from the escapements appear in table 25.

The percentage of 5_3 fish in the escapements for the years 1922 and 1924 to 1929, inclusive, was 59.3, 76.0, 66.8, 81.1, 70.8, 56.9, and 34.8 while the percentage of 5_3 fish in the returns from these escapements was 50.0, 49.3, 41.2, 52.5, 45.2, 39.5 and 42.0, respectively. There was a lower percentage of 5_3 fish in the return than there was in the escapement for every year with the exception of 1929. A similar condition is found to exist if the returns from the spring and fall escapements are considered separately.

The pairs of percentages for the 6_4 age group for the years 1922 and 1924 to 1929, inclusive, are as follows (the first figure being the percentage of the 6_4 group in the escapement for a given year and the second figure being the percentage of the 6_4 group in the return from the escapement): 4.0:11.3; 10.5:22.8; 15.8:39.3; 7.6:33.2; 6.1:29.4; 9.0:20.3; 35.1:27.7. In all years except 1929 there was a greater percentage of the 6_4 group present in the return from the escapements than there was in the escapements.

In considering these two major age groups there appears to be a decrease in the relative abundance of one, and an increase in the relative abundance of the other. It thus becomes of interest to determine if a change is taking place in the length of ocean residence and in the length of fresh-water residence of these fish.

Year of apapament	Age groups																
Tear of escapement	31	41	42	43	4,	5_{2}	53	54	62	63	64	65	73	74	7s	84	85
1920: Spring Fall Returns for year	Pct.	Pct.	Pct. 0.5 .1 .2	Pct. 1.8 2.8 2.5	Pct.	Pct. 0.3 .1 .2	Pct. 69.7 69.4 69.5	$\begin{array}{c} Pct. \\ 0, 1 \\ 3, 1 \\ 2, 2 \end{array}$	Pct.	Pct. 21, 9 3, 1 8, 6	$\begin{array}{c} Pct. \\ 5.3 \\ 20.3 \\ 15.9 \end{array}$	Pct.	Pct.	Pct. 0.4 .3 .3	Pct.	Pct.	Pct.
Fall Returns for year		0.1 .1	1.1 .6 .8	1, 2 4, 5 3, 3		1.8 .7 1.1	89, 3 87, 9 88, 4			$ \begin{array}{c} 6.4 \\ .7 \\ 2.6 \end{array} $.2 4.6 3.1			.6 .4			
Spring Fall. Returns for year	1. 2 . 6	1.8 .8	$ \begin{array}{r} 6.3 \\ 2.1 \\ 4.5 \\ \end{array} $	1.1 ,9 1.0	.1	6, 5 1, 0 4, 1	47. 9 52. 6 50. 0	.2 4.5 2.1		$35.9 \\ 11.1 \\ 24.8$	1.3 23.8 11.3		0,4	.4 .9 .6			
Spring Fall Returns for year 1924:	.8 .4	. 1 . 1	$.2\\.1\\.2$	1, 0 3, 0 2, 2	• I	.2 .1	$\begin{array}{c} 65.9\\ 59.7\\ 62.2 \end{array}$			30.4 6.9 16.4	1.8 27.4 17.1			.7 1.0 .9			
Spring Fall. Returns for year 1925:		. 1 	$ \begin{array}{c} 1.1 \\ 1.3 \\ 1.2 \end{array} $.4 .9 .6		2, 0 , 1 1, 1	46.7 51.8 49.3	. 6 . 4		36.0 10.2 22.7	11. 2 33. 8 22. 8		, 1 	2.4 1.0 1.7	.1		
Spring Fall Returns for year 1926:			1.5 .2 .6	.4		1.4 .1 .6	$\begin{array}{c} 43.1 \\ 40.2 \\ 41.2 \end{array}$	1.7 12.0 8.5		15.1 2.0 6.4	30.7 43.7 39.3	. 1 . 1		6.4 .5 2.5	.1 .8 .5		
Spring Fall Returns for year 1927:			.1 .1	.7 3.7 3.1		1.2 .2 .4	61.5 49.9 52.5	.8 3.9 3.2		11.9 2.8 4.8	19.4 37.2 33.2		.2	3.7 .8 1.5			0.2
Spring. Fall Returns for year 1928:		•••••• ••••	1.5 .7 1.2	.4		1.4 .9 1.2	50.0 38.7 45.2	.3 2.8 1.3		25.9 4.4 17.1	15.1 49.4 29.4			5.2 2.1 3.9		0.1	
Spring Fall Returns for year 1929:		.2	.7 .9 .8	.3 .7 .5		2.1 .7 1.6	38.7 40.9 39.5	.2 1.9 .8		43. 4 11. 8 31. 4	8.3 39.9 20.3	. 1	.1	6.0 1.0 4.1	.1 1.9 .8	•1	
Spring Fall Returns for year		.1 .1	.8 .4 .6	.6 .3 .4		3.7 .3 2.3	43.6 39.7 42.0	1.1 .7 .9	0.2	$ \begin{array}{c c} 31.0 \\ 4.8 \\ 20.2 \end{array} $	14.3 46.7 27.7	.7.3	.1	4.1 3.9 4.0	2.5 1.3		

TABLE 25.—Percentage occurrence of various oge groups in returns from escapements of the spring, fall, and total run for the years 1920 to 1929, inclusive

In figures 6 and 7 is presented the relationship between the percentage of fish of a particular ocean history in the escapement and the percentage of fish of the same ocean history in the return. In these and the following figures in this section, lines purportedly fitting the data have been omitted intentionally. The two important questions on which information is desired are (1) whether or not there is a correlation between the percentage occurrence of a particular age group in the escapement and the percentage occurrence of that same age group in the return, and (2) whether or not the values fluctuate around a ratio of 1 to 1. To facilitate observation of the second point, a line representing a ratio of 1 to 1 has been included in each figure.

The relationship between the percentage of fish of a certain ocean history in the escapement and the percentage of fish of the same ocean history in the return, may be considered linear and is such that there will be approximately the same percentage of fish of a single ocean history in the return as there was in the escapement. There appears to be a slight indication that the two-ocean fish are making up a lesser percentage of the returns than they did of the escapements and, conversely, that the three-ocean fish are making up a greater percentage of the returns than they did of the escapements, but the tendency is not marked and probably is not significant.

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

In figures 8 and 9 is presented the relationship between the percentage of fish of a particular fresh-water history in the escapement and the percentage of fish of the same fresh-water history in the return. There is a positive correlation between the the two variables, although the relationship is very peculiar. For each 1 percent of three-fresh-water fish in the escapement there is approximately 0.75 percent of threefresh-water fish in the return, and for each 1 percent of four-fresh-water fish in the

FIGURE 6.—Percentage of two-ocean fish in return plotted against percentage of two-ocean fish in escapement for the years 1922 and 1924 to 1929, inclusive. The straight line represents a ratio of 1 to 1.

escapement there is more than 2 percent of four-fresh-water fish in the return. Such a condition could not have prevailed for any great length of time. Obviously, if such a relationship had existed for several complete cycles, the three-fresh-water fish would disappear from the population and only those that migrate to the ocean in their fourth year would remain.

The age analysis based on scale samples collected during 1916, 1917, 1919, and 1921 (Gilbert and Rich, 1927), demonstrated 88.5, 88.1, 91.3, and 93.4 percent,

respectively, of three-fresh-water fish in the samples. While the percentages of threefresh-water fish in the small samples taken from the runs of those years are not exactly comparable to the data under consideration, it is evident that the three-freshwater age group was dominant.

The change in age composition might be due to any one, or a combination, of the following causes: (1) An increase in the ocean mortality of the 3-year seaward

FIGURE 7.- Fercentage of three-ocean fish in the return plotted against percentage of three-ocean fish in escapement for the years 1922 and 1924 to 1929, inclusive. The straight line represents a ratio of 1 to 1.

migrants or a decrease in the ocean mortality of the 4-year seaward migrants; (2) an increase in the fresh-water mortality of the 3-year seaward migrants or a decrease in the fresh-water mortality of the 4-year seaward migrants; (3) an increase in the length of fresh-water residence.

The ocean mortality of the 4-year seaward migrants, as determined by the marking experiments reported in a later section, is less than that of the 3-year seaward migrants. This might be expected as they are larger at the time of migration than the 3-year

migrants. There is no evidence that a marked change has taken place in the ocean mortality of either the 3-year or the 4-year seaward migrants.

A change in environment that would increase or decrease the mortality of the fingerlings in the lake should affect each age group of seaward migrants in a similar manner. No data are at hand to indicate that environmental conditions have

FIGURE 8.— Percentage of three-fresh-water fish in the return plotted against percentage of three-fresh-water fish in escapement for the years 1922 and 1924 to 1929, inclusive. The straight lino represents a ratio of 1 to 1.

altered in such a manner as to affect the mortality of one age group without affecting the mortality of the other age group.

It is probable that the shortage of phosphorus and silica in Karluk Lake during the summer months, which acts as a limiting factor in the production of phytoplankton, also indirectly affects the growth of the rcd salmon fingerlings. A decrease in the growth rate of the fingerlings may well result in an increase in the length of time spent in fresh water. Data presented in a later section indicate that the fastest growing fingerlings migrate seaward sooner than do the slower growing ones. Consequently, anything affecting the growth rate of the fish would probably cause a change in the time of seaward migration.

FIGURE 9.—Percentage of four-fresh-water fish in return plotted against percentage of four-fresh-water fish in escapement for the years 1922 and 1924 to 1929, inclusive. The straight line represents a ratio of 1 to 1.

SEAWARD MIGRATIONS

The seaward migration of Karluk River red salmon takes place during the last week of May and the first 2 weeks of June each year. A few fish migrate sometimes a day or two earlier or later than this period but the major part of the migration, and frequently the entire migration, takes place during these 3 weeks. During the migration period the seaward migrants can be observed in front of the counting weir where they congregate in schools of a few hundred to tens of thousands. Only occasionally can they be seen going through the weir during the daytime, but just at dusk the schools above the weir drop downstream and begin to pass through the spaces between the pickets. Where there is any appreciable current, the fish always head upstream even when migrating downstream. Seaward migrants are present in the river above the weir for only 10 to 16 days each year, although the migration period may extend over a period of 3 weeks. They may be quite abundant one day, entirely absent the next, and present again the following day.

The percentage occurrence of the various age groups in the random samples of seaward migrants collected at the weir site is presented in table 26. Samples were not collected every day that migrants were present in the river, but since 1930 samples have been taken every day that fish were abundant.

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

 TABLE 26.—Percentage occurrence of various age groups in the random samples of seaward migrant

 red salmon for the years 1925 to 1936, inclusive

Week ending-	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936
May 31 June 7 June 14 June 21 June 28	0.4	0.9	0.8 1.7	0.8		1.0 1.0 1.9 1.2	0, 3 1.0 1.0	0.2 .2 2.0	3.5	0.5	0.1	4.0
			3-YEA	R SEA	WARD	MIGRA	NTS	_				
Nay 31. June 7. June 14. June 21. June 28.	90.0 84.0	67.3 79.9 73.5	46.7 52.1 78.2	45.0 72.9 86.7	21, 0 30, 3 70, 6	56.8 52.1 69.8 74.1	73.5 86.2 92.5 96.1	38.8 53.0 75.9 \$1.0 88.0	32, 5 45, 2 68, 7 75, 5	83. 2 93. 3 96. 0	81.0 82.3 88.5	58.8 79.0 80.3
			4-YEA	R SEA	WARD	MIGRA	NTS					
May 31. June 7 June 14. June 21. June 28.	9.6 16.0	32.7 19.7 25.1	53. 3 47. 1 20. 1	54.2 26.7 12.5	77.0 69.3 29.4	40. 2 45. 2 27. 9 24. 5	25.6 13.0 6.5 2.9	60.5 46.2 23.1 15.0 12.0	65.0 52.8 30.0 21.0	15.8 6.0 3.0	19.0 17.6 10.7	40. 2 17. 0 11. 3
			5-YEA	R SEA	WARD	MIORA	NTS					
May 31 June 7. June 14 June 21 Number of fish in sample.	644	0.4 .5 602	358	0.8 .4 720	2.0 .4 1,025	2.0 1.7 .4 .2 1,811	0.9 .5 2,050	$ \begin{array}{c} 0.7\\.6\\.8\\2.0\\2,007\end{array} $	2.5 2.0 1.3 1,197	1.0 .3 900	0.1	1.0

2-YEAR SEAWARD MIGRANTS

In considering the two major age groups, 3 and 4, it will be noted that the percentage of the 4-year group decreases as the migration proceeds while the percentage of the 3-year group increases. This phenomenon, while not so obvious because of the small numbers in the samples, also appears to exist in the two minor age groups for the percentage of the 5-year group decreases and the percentage of the 2-year group increases as the migration proceeds. There is a tendency for the older age groups to migrate earlier than the younger age groups.

The average sizes of the seaward migrants in the samples collected in the years 1925 to 1936, inclusive, are presented in table 27. There is a marked decrease, especially among the 4-year migrants, in the average size during successive periods of sampling. The decrease in size of the 3-year migrants would probably be more apparent were it not for the fact that the fish are just commencing to grow at the beginning of the migration period, and those fish which migrate late in the season have grown a certain amount as indicated by two or three wide-spaced rings beyond the winter check on their seales. Fish of the 4-year and 5-year groups seldom show any new growth of the year until late in the migration period.

From a study of the rate of growth of the fingerlings, as determined by their scales, and from the above-mentioned data relating to the change in age composition and size of the migrants during each year's seaward migration, the following trend of events is indicated. Of the progeny of a given brood year, the fastest growing individuals (hence the largest) migrate to the ocean in the spring of their second year. In the spring of the third year the largest individuals of the population left in the lake

2-YEAR SEAWARD MIGRANTS Week ending-Week ending -Year Item Year Item May 31 June 7 June 14 June 21 June 28 May 31 June 7 June 14 June 21 June 28 1925 Number. 9 1932 Number. 112.50 7.07 Mean Mean ... 110.17 96. 50 107.5 12.34 ÷ Number. Mean 2 1926 1933 Number. 100.00 Mean.... 113.79 10.06 4.68 $\frac{1}{2}$ 1927 Number. 1934 Number. ٦ Mean... Mean... 127.50 103.00 119.5 125. 5 3.53 2.83Number Mean Number. Mean 1928 1935 6 117.5 110.50 107.5 2.83 9.36 6 101. 17 7. 15 Number 17 1936 Number 11 21 1930 6 109.33 113.85 Mean. 118. 17 2. 58 105.50 Mean. 109.95 111.07 4.26 4.16 6.87 3.59 3.43 σ Number Mean 1931 2 6 113. 17 99.50 119.50 25.45 21.61 σ..... 3-YEAR SEAWARD MIGRANTS Number Mean 90 135.56 131 135. 09 1925 1931 Number... 399 527 130.55 632 196 Mean ... 128.87 8.22 129.96 128.06 7.73 81 6.92 7, 93 286 8. 27 7.06 Number. Number... 1932 88 135, 97 1926 101 183 164 265444 Mean.... Mean. 136.47 135.82 134.91 131.81 131.73 132.01 131.44 5.60 6. 87 7. 56 5.31 6.34 6.84 5.86 5 60 93 Number_ Number 1933 1927 56 62 65 226204 151 Mean__ Mean_ 135.40 134. 11 132. 59 136.90 137.68 135.95 131.15 6.04 208 6.82 373 6. 71 6.69 6. 57 7.10 7.98 Number. 108 1934 Number. 96 1928 333 Mean.... Mean ... 129.83 128.34 125.85 141 . 83 138.92 140.32 6. 21 5.63 8.46 09 8.17 8.04 797 Number . 1929 Number. 21 23 274 1935 81 660 141.56 133 21 130.07 127.69 7.89 Mean.... Mean.... 141.96 140.86 6.32 7.32 5.01 6.16 8.16 Number. Mean 340 185 436 173 1936 Number. 235 237 241 1930 174 126.66 128.16 Mean.... 124.71 131.30 124.63 136.19 132.70 129 59 6.52 6.81 5.71 7.31 7.61 6,60 8.37 9.04 σ..... σ..... 4-YEAR SEAWARD MIGRANTS Number. 25 141.70 Number_ 1925 47 147.48 1931 139 95 37 135. 20 Mean. 143.31 7.92 139.68 132.33 Mean. 8.05 8.61 249 6.24 6.55 7.14 Number 1926 49 45 56 1932 Number 413 135 15 12 139.98 Mean... 138. 00 Mean... 147.13 145.90 145.11 142.94 137.83 131. 30 7.3926421 42 6.92 7. 00 6. 99 11 8.43 5.3256 Number 24 1933 Number. 1927 64 130 89 145.86 7.24 146.79 4.90 144. **1**7 5. 45 138.36 Mean.. Mean.... 149.27 147.24 142.23 5. 8.01 7.81 10.12 9,40 1928 Number. 130 64 30 1934 Number_ 63 24 $\hat{3}$ 155. 34 10. 23 42 74 $142.20 \\ 6.02$ 137.83 7.87 Mean.... $147.79 \\ 12.02$ Mean... 143 142.17 12.34 6. 1929 Number. 96 1935 Number. 19 96 114 139 Mean.... 153. 45 153.76 146.47 145.74 137.34 Mean... 148.95 6.49 5. 40 11.12 6.88 6.62 11.40 74 142. 31 144 38 Number 1930 Number 123 295 1936 161 51 34 Mean.... 137.12 7.26 Mean_ 140.65 136.26 126.68 149.41 142.62 140.13 8.10 7.30 9.48 9.16 8.19 9.26 7.80 σ.... σ.... 5-YEAR SEAWARD MIGRANTS 1926 Number. 1932 Number. 3 $\mathbf{2}$ Mean.. 132.502.83 150.50 175.50 Mean.... 152.90 153.50 144.50 4.98 2.0010.75 Number Mean 1928 Number 1933 10 150.50 149.50 145.90 150.90 144.75 Mean... 0.00 2.07 5.72 6.99 1929 Number 9 1934 Number Meau .. 149.00 Mean. 160.50 161.75 158.50 16.26 4.79 Number. Mean 1935 Number 1930 6 138. 05 Mean.... 143.33 152.50 137.50 145.50 6.14 6.35 σ Number. $\hat{2}$ 1936 Number. 1931 4 4 Mean..... Mean.... 146.50 141.75 149.75 152.00 σ \$ 34 3 77 3.10 13.44 σ

TABLE 27.—Average length in millimeters of 2-, 3-, 4-, and 5-year seaward migrants in weekly samplesfor the years 1925 to 1936, inclusive

migrate seaward. At the end of the migration period a part of this population is present in the lake. These fish remain for another year and obtain more growth. In the fourth year, the largest individuals remaining in the lake proceed seaward, the time of appearance in the migration being correlated with their size. The slowest growing individuals of the entire progeny which have not migrated remain in the lake for another year and then migrate seaward in their fifth year.

The older fish are of a larger average size than those of lesser age and their larger size is due to the longer growing period that precedes migration. Fish in the older age groups are usually the slower growing fish of the progeny from a particular spawning. Thus, the urge to migrate seaward is related to the size and growth rate of fingerlings, and it appears that environmental conditions that affect the growth of the fish during the time spent in the lake also affect the time at which the fingerlings migrate to the ocean.

The data on the percentage of males in the samples of migrants which were examined to determine sex are presented in table 28. The males and females were equally represented. Grouping the 3- and 4-year fish, it was found that the total of 11,080 fish examined consisted of 5,557 males and 5,523 females. The slight variations in the sex ratios from year to year are probably due to chance because there is no significant statistical difference in the ratios.

Year	Number of 3-year fish examined	Number of males	Percentage of males	Number of 4-year fish examined	Number of males	Percentage of males
1925	570	296	51.9	72	40	55.6
1926 1927	448 211	232	51.8 54.5	150 144 224	71 75 127	47.3 52.1
1028 1929	491 318 1 208	202 168 659	52.8 50.4	223 287 674	161	56.1
1930	1,754	831 632	47.4	277 833	132	47.6
1932 1933 1934	646 802	320 401	49.5 50.0	525 90	252 47	48.0 52.2
Total	7, 804	3, 916	50.18	3, 276	1, 641	50.09

TABLE 28 .- Number of 3-year and 4-year migrants examined and percentage of males in the samples

SEX RATIOS OF ADULT FISH

The sex ratio of the adult fish is in marked contrast to that of the seaward migrants. Data on the percentage occurrence of males in the samples for the years 1922 and 1924 to 1936 are presented in table 29, arranged according to the length of time spent in the ocean. The percentage occurrence of the males decreases with increased ocean residence. All of the zero-ocean fish ⁸ are males. The average percentages of males in the one-ocean fish, of varying periods of fresh-water residence, range from 100 percent to 75 percent. The average percentages of males in the two-ocean fish range from 62 percent to 32 percent, while the average percentages of males in the threeocean fish of varying fresh-water residence range from 38 percent to 35 percent.

^{*} Fish which spend only a few months in the ocean and return as mature fish in the fall of the same year in which they migrated seaward.

	geu	10 10 000	1024, 10	10.00, 0	14 1000					
	19	22	19	24	19	25	19:	26	19	27
Age gronp	Number examined	Percent- age males	Number examined	Percent- age males	Number examined	Percent- age males	Number examined	Percent- age males	Number examined	Percent- age males
33 44 55	3 1	103.0 100.0	1 18	100. 0 100. 0			1	100.0	1	100. 0
32 43 54 6δ	19 27 1	89.5 85.2 100.0	161 176	95.0 69.3	228 71 1 30	94.7 84.5 100.0 66.7	35 15 3	100.0 100.0 100.0 57.9	151 136 2	95.4 87.5 50.0
42 53 64 7-	16 1, 511 138	18.8 48.4 57.2	17 3, 845 060	23. 5 46. 6 46. 8	100 3, 877 920	45. 5 43. 6 43. 2	207 6, 426 743 9	46.4 43.2 46.4 22.2	17 3,476 477 9	29.4 43.1 46.1 55.6
41	3 9 737 4	$100.0 \\ 44.4 \\ 41.9 \\ 25.0$	1 18 217 18	$ \begin{array}{r} 100.0 \\ 38.9 \\ 44.2 \\ 50.0 \end{array} $	12 14 227 23	$ \begin{array}{r} 41.7\\35.7\\41.4\\34.8\end{array} $	35 141 470 67	20, 0 34, 8 34, 0 31, 3	$10 \\ 201 \\ 315 \\ 32 \\ 1$	40.0 27.9 35.6 43.8
05 73 84							1	100.0		
Total	2, 469		5, 132		5, 513		8, 172		4, 829	
	19	128	19	930	19	1931 1932		19	33	
Age gronp	Number examined	Percent- age males	Number examined	Percent- age males	Number examined	Percent- age males	Number examined	Percent- age males	Number examined	Percent- age males
38 44 56										
32 43 δ4 66	16 22	93.8 90.9	19 34	100.0 100.0	14 108 6	100.0 71.3 66.7	40 59	97. 8 91. 5	$\begin{array}{c} 2\\ 4\\ 1\end{array}$	100. 0 75. 0 100. 0
31 42 53 64 75	18 2, 391 688 4	$ \begin{array}{r} 44.4 \\ 42.2 \\ 41.9 \\ 50.0 \\ 100 \end{array} $	2 601 141	50 0 42.3 44.7	$51 \\ 1, 821 \\ 1, 453 \\ 3$	52.9 42.8 39.2 33.3	71 1, 821 1, 314 25	36. 6 40. 5 40. 4 28. 0	2 85 91 7	50. 0 52. 9 48. 4 28. 6
41. 52. 63. 74. 85.	1,052 37	$ \begin{array}{c} 100.0 \\ 42.9 \\ 38.4 \\ 51.4 \end{array} $	19 223 13	42. 1 41. 2 30. 8	16 266 44	37.5 36.1 34.1	85 233 80	25.0 42.4 32.6 37.5	4 21 1	50, 0 25, 0 100, 0
73			1	100.0						
Total	4,236		1,053		3, 782		3, 736		221	
		19)34	1	935	19	936		1922-36	
A ge group		Number examined	Percent- age males	Number examined	Percent- age males	Number examined	Percent- age males	Total number examined	Number males found	Percent- age males
32								1	1	100.0

TABLE 29.—Number of fish of each age group examined, and the percentage of males in samples for the years 1922, 1924, to 1928, and 1930 to 1936, inclusive

31		75.0	1 210 64	100.0 96.2 79.7	114 13	100.0	1 23 1 1 1 1 $1,009$ 733	1 23 1 1 970 593	100. 0 100. 0 100. 0 100. 0 96. 1 80. 9
6δ			2	100.0			16 50	12 31	75.0 62.0
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$	70 311 273 1	38.6 51.8 39.2 100.0	148 1, 312 898 30 29	49.3 42.5 39.9 23.3 41.4	78 3, 510 492 22	48.7 42.2 43.3 45.5	807 30, 987 8, 288 110 99	359 13, 517 3, 523 36 35	44. 5 43. 6 42. 5 32. 7 35. 4
52 63 74 85 73	22 327 34	59. 1 43. 4 32. 4	107 284 91	30. 8 35. 9 33. 0	241 567 154	39. 4 35. 6 40. 9	884 4,942 598 1 1	$ \begin{array}{r} 317 \\ 1,891 \\ 227 \\ 1 \\ 1 \end{array} $	35.9 38.3 38.0 100.0 100.0
S4 	1,042		3, 176		5, 191		48, 552	21, 540	100.0

.

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

Thus there is a decrease in the percentage of males, and conversely an increase in the percentage of females, with increased length of time spent in the ocean. The males tend to mature after a shorter period of ocean residence than the females, and this precocious development of the males also is apparent from a consideration of the total age of the mature fish. In a group of the same ocean history, with the exception of the three-ocean fish, the younger fish are more predominately male than the older members of that group.

The percentages of males and females returning from the seaward migrations of 1923 to 1933, inclusive, are presented in table 30. These percentages were determined by calculating the number of males and females of various ocean histories returning from a single seaward migration and then adding the several groups together to obtain the total number of males and females returning from that migration. The percentage of males varied from 40.1 to 48.8 percent and the percentage of females from 51.2 to 59.9 percent, and the average for all years was 43.9 percent males and 56.1 percent females.

TABLE 30.-Percentage of males and females in the returns from the seaward migrations of 1923 to 1933

Year of seaward migration	Percentage of males in return	Percentage of females in return	Year of seaward migration	Percentage of males in return	Percentage of females in return
1923 1924 1925 1925	44.3 45.3 43.0 45.0	55.7 547 57.0 55.0	1930	40, 1 48, 8 43, 5 40, 7	59. 9 51. 2 56. 5 59. 3
1927	43.3 42.0 47.0	56.7 58.0 53.0	A verage	43, 9	56.1

The sex ratio of these fish changes from approximately 50 percent males and 50 percent females at the time of seaward migration to approximately 44 percent males and 56 percent females on their return from the ocean. Since the males, on the average, spend less time in the ocean than the females, the mortality of the males should be less than that of the females, which should result in a preponderance of males. A part of the Karluk run is intercepted by a gill-net fishery to the north and east of the Karluk River, and because of the size of the gill-net mesh employed, a great percentage of the larger fish in the run is captured. As the average size of the males is slightly greater than the average size of the females, more males than females are captured and thus the percentage of males in the fish arriving at the Karluk River, where the data for table 30 were obtained, is reduced. It is not considered that the selective action by the gill nets accounts entirely for the discrepancy in the sex ratio because the gill-net catches are fairly small in relation to the size of the run as a whole. A differential mortality in favor of the females during the time spent in the ocean does not appear probable. A satisfactory explanation of this phenomenon is lacking at the present time.

MARKING EXPERIMENTS

A series of marking experiments was begun at Karluk River, Alaska, in 1926.⁹ In these experiments, red salmon migrating seaward were marked by the removal of

[•] These marking experiments were initiated by the late Dr. C. H. Oilbert, and Dr. W. H. Rich, both of the former United States Bureau of Fisheries.

two or three fins, so that their presence in the future runs of fish could be noted. The experiments were initiated to determine the rate of survival of the fish during their stay in the ocean.

Rich and Holmes (1929), in reviewing the results of previous marking experiments, pointed out that fish occasionally have one fin, or two fins in close proximity to each other (both ventrals), accidentally missing. In the marking experiments carried on at Karluk the adipose and one or two other fins were amputated, as it was considered that the finding of a fish with two widely separated fins missing as a result of an accident would be an extremely rare occurrence.

During the marking of seaward migrants at Karluk and the subsequent examination of the run of adult fish, salmon have been found with the following fins missing: adipose, right ventral, left ventral, both ventrals, right pectoral, and left pectoral. Fish with the dorsal, anal, and caudal, or one of the above mentioned fins badly deformed, have also been observed. More than 400,000 seaward migrant red salmon have been examined at Karluk, and in no case bas a fish been found which had both the adipose and some other fin missing or badly deformed.

The results of other marking experiments, in which data on the percentage return of marked fish from the experiments were obtained, are reviewed for the sake of comparison with the results obtained at Karluk. It should be noted that in several instances species other than red salmon were marked, and in no instance were the fish marked as large as the seaward migrants marked in the Karluk experiments.

Rich and Holmes (1928) in their experiemnts in marking chinook salmon on the Columbia River, from 1916 to 1927, had returns ranging from 0.002 to 0.45 percent of the number of fish liberated from a single marking experiment. They pointed out that—

These figures have very little significance, however, because they represent not the total returns but an unknown and varying proportion of the total.

In four of their experiments the records are believed to be fairly complete, and in their opinion

. . . the returns that have not come to our attention certainly would not add enough to make the totals more than 1 or 2 percent of the liberation.

Snyder (1921, 1922, 1923, 1924) marked chinook salmon on the Klamath and Sacramento rivers in California, and the proportion of marked fish recovered was approximately the same as in the experiments of Rich and Holmes.

In 1930, Davidson (1934) marked 36,000 seaward migrant pink salmon at Duckabush River, Hoods Canal, Wash., by amputating the adipose and dorsal fins. In 1931, 50,000 seaward migrant pink salmon were similarly marked at Snake Creek, Olive Cove, Alaska. These fish were approximately 40 mm. long at the time of marking. From the first experiment 10 marked fish were recovered, or 0.028 percent of the number marked. From the second experiment 23 marked fish were recovered, and it was calculated that the total number of marked fish in the escapement was 54, or 0.108 percent of the number marked. These data represent only the return of marked fish in the escapement. However, the total return from either experiment could hardly have equaled 1 percent of the number of fish marked.

Pritchard (1934a) marked 8,741 pink-salmon fingerlings at Cultus Lake, British Columbia, in 1932, by the amputation of both ventral fins. These fish were released

 $\mathbf{278}$

into the Vedder River below the mouth of Sweltzer Creek which is the outlet stream of Cultus Lake.

One hundred and twenty-four thousand pink-salmon fingerlings of Tlell River (east coast of Graham Island) were marked by the amputation of the adipose and left ventral fins. These fish together with 750,000 unmarked individuals, from the same source, were liberated in McClinton Creek, Massett Inlet.

In 1933, fish with the following fins missing were recovered at various localities in Puget Sound, British Columbia, and Chignik, Alaska: adipose 576, adipose and left ventral 40, both ventrals 64, right ventral 54, adipose and right ventral 20, left ventral 56. No marked fish were recovered in Sweltzer Creek, Tlell River, or McClinton Creek though counting weirs were maintained in these streams.

During 1933, Pritchard (1934b) marked 108,000 pink-salmon fry at McClinton Creek, Massett Inlet, by amputating both ventral fins. The following numbers of fish with fins missing were recovered at various localities in British Columbia during 1934: both ventrals 3,285, left ventral 195, right ventral 139, adipose 100, and left pectoral 15.¹⁰ Of these totals, 2,950 with both ventrals, 66 with left ventrals, 95 with right ventrals, and 2 with adipose fins absent were recovered at McClinton Creek. Thus, of the number of fish marked by removal of both ventrals 2.73 percent returned to McClinton Creek. The total return was possibly higher than 3,285 (3.04 percent of the number marked) because all of the fish bound for McClinton Creek were not sampled.

In 1934, Kelez (1937) initiated two marking experiments on hatchery-raised coho salmon at Friday Creek, a tributary of the Samish River. In the first experiment 26,150 fingerlings were marked by the amputation of the adipose and dorsal fins. The fish were liberated during May when they averaged 47.4 mm. in length. Seven marked fish were recovered as adults, or 0.027 percent of the number marked.

In the second experiment 26,150 fingerlings of the same brood were marked by the amputation of the dorsal and left ventral fins and liberated during November when they averaged 101.6 mm. in length. From this experiment 469 marked fish were recovered, or 1.79 percent of the number marked.

Assuming that there was not a differential mortality caused by the marking in the two groups of fish in the experiments, these data indicate a striking increase in the survival rate of the fingerlings retained in the hatehery ponds for a longer period of time. The returns from these experiments comprise only those fish which escaped the sport and commercial fisheries.

A series of marking experiments has been conducted on the red salmon of Cultus Lake, British Columbia. In 1927 (Foerster, 1934), 91,600 seaward migrants were marked by the amputation of the adipose and both ventral fins. From this marking, 804 fish, or 0.88 percent, were recovered during 1929 and 1930 at the counting weir below Cultus Lake, these being the total number of marked fish returning to Cultus Lake from this experiment. Of the 158,100 unmarked fish, 3,930, or 2.49 percent, returned to Cultus Lake.

During 1928 (Foerster, 1936a), 99,700 seaward migrants were marked by the

¹⁰ The finding of fish with adipose fins missing, and left pectoral fins missing only confirms the long established fact that fish occur in nature with fins missing. The finding of fish with right or left ventral fins missing is due in part to natural deformities, and may he due to regeneration of one or the other of the fins of the fish marked both ventrals. A part of the fish with both ventral fins missing may not be returns from the experiment but may be fish with natural deformities.

amputation of both ventral fins and the posterior half of the dorsal. From this marking, 1,340 fish, or 1.34 percent of the number marked, were recovered at the counting weir below Cultus Lake; and these were the total number of marked fish that returned to Cultus Lake from this experiment. Of the unmarked seaward migrants, 3.2 percent returned to Cultus Lake.

In 1930 (Foerster, 1936b), 104,061 seaward migrants were marked by the amputation of both ventral fins. A total of 3,821 fish, or 3.67 percent of the number marked, was recovered from the commercial fishery and at the counting weir below Cultus Lake. It was considered that the recovery was at least 90 percent of the total number of marked fish returning from the experiment, so that the actual return ". . . probably lay somewhere between 3.67 and 4.1 per cent."

During 1931 (Foerster, 1936b), 365,265 seaward migrants were marked by the amputation of the adipose and both ventral fins. A total of 12,803 fish, or 3.51 percent of the number marked, was recovered from the commercial fishery and at the counting weir below Cultus Lake. The recovery was at least 95 percent of the total number of marked fish returning from the experiment so that the actual return ". . . lies between 3.5 and 3.7 percent."

In Foerster's experiments of 1927 and 1928 a greater survival was found among the unmarked fish than among the marked fish. Three factors were considered in an endeavor to account for the disparity.

. . . infiltration of unmarked adults from other areas, the straying of marked individuals to other spawning regions or a definite differential mortality among marked groups.

Evidence was produced to show cause for ruling out the first two factors, and it was concluded that—

There remains, therefore, only the factor of differential mortality among the marked individuals, and on the data available this is held to be the one largely responsible for the lower return of marked adults when compared with that for the unmarked.

The differential mortality was calculated to be 65 percent for the 1927 experiment and 58 percent for the 1928 experiment, and the probable value was considered to be the mean of the two values or 62 percent. Thus there was a 186 percent greater survival among the unmarked fish than among the marked fish of the first experiment, and a 138 percent greater survival among the unmarked fish than among the marked fish of the second experiment, and the probable value was considered to be approximately 163 percent.

Based on the information on differential mortality between marked and unmarked fish derived from the 1927 and 1928 marking experiments and on the data collected from the marking experiments of 1930 and 1931, Foerster considered that the survival of Cultus Lake red salmon during the time spent in the ocean ranged between 3.5 percent (his lowest percentage return uncorrected for differential mortality) and 11.7 percent (his highest percentage return, 4.1 percent, multiplied by 2.86 to correct for differential mortality). The most probable value was considered to be 9.9 percent (the mean probable value of the recoveries, 3.75 percent, multiplied by a mean value, 2.63, to correct for differential mortality).

FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE

MARKING OF KARLUK RIVER RED SALMON

The Karluk River is relatively shallow, and as the seaward migrant fingerlings tend to congregate above the counting weir, they can easily be captured. A pen about 5 feet square of 1/2-inch bar wire netting, having a gate for the fish to enter, was constructed in the river. A seine was passed around a school of fish, and an end of the seine brought to each side of the gate. By gradually drawing in the ends of the seine, the fish were induced to enter the pen, and the gate was closed. Several thousand migrants can be held in the pen at one time without injury. Two or three hundred migrants were caught and transferred to a wash tub partially filled with water. The tub of fish was then carried from the pen to the marking shed below the weir. The fish were removed from the tub one at a time, the adipose and one or two other fins removed by means of a nail clipper, and the fish dropped into the river free to proceed downstream. During the entire operation the fish are out of water for less than 10 seconds. Samples of marked fish have been held in tanks for several days after marking, and the fish have shown no ill effects from the operation, though some of the fish marked by the removal of either of the pectoral fins appeared to have a slight list.

The age group composition of the marked migrants was determined by multiplying the number of migrants marked each day by the percentage of the various age groups in the migration for that day as determined by the analysis of data obtained from scale samples of the fish.

RECOVERY OF MARKED FISH

Owing to the magnitude of the run of Karluk red salmon, it was impossible to examine every fish to search for marked individuals. The method employed to determine the total number of marked fish was as follows:

As large a portion as possible of each day's catch of red salmon, taken by means of beach seines near the mouth of the Karluk River, was examined for the presence of marked fish by an employee of the Fish and Wildlife Service who, during the examination, was stationed in the cannery. Each red salmon was examined and counted as it passed along the chute. All fish with missing or mutilated fins were put aside and re-examined later to determine whether they were marked fish. Scale samples were taken from all marked fish found, and scale samples were taken at random from the catch to determine the age composition. The number of marked fish of each age found and the number of fish of that same age examined were determined at weekly intervals throughout the season. The total number of marked fish of each age found was divided by the total number of fish of the same age group examined to determine the percentage occurrence of marked fish in that age group. Data were collected on the number of Karluk red salmon in the commercial catch and also the number in the escapement, hence, the total number of fish of each age group in the run can be determined for the season. Multiplying the number of fish of a given age in the run by the percentage occurrence of marked fish in that age group gave the calculated number of marked fish of that age group returning.

Since it is considered that there are two runs of red salmon to the Karluk River, it would be preferable to divide each marking experiment into two parts, i. e., spring run and fall run. Unfortunately, there is no way of determining which are spring

run or which are fall run scaward migrants. The percentage occurrence of marked fish of each age group is fairly constant throughout the season, indicating that proportionate numbers of the two runs are marked.

EXPERIMENTS IN 1926

A total of 47,691 seaward migrant rcd salmon were marked by the amputation of two fins. Two combinations were used, the adipose and right ventral, and the adipose and left ventral. Since approximately the same number of fish were marked each day by each mark, the data can be grouped together and considered as one experiment or divided according to the marks used and considered as duplicate experiments. Although the experiments were carried on simultaneously, the one in which the fish were marked by the amputation of the adipose and right ventral fins will be referred to as the first experiment, and the one in which the fish were marked by the amputation of the adipose and left ventral fins will be referred to as the second experiment.

Commercial fishing was limited in 1929 and the run of that year could not be adequately sampled to detect the presence of marked fish. Consequently, no accurate means of determining the number of three-ocean fish returning from these experiments is available. The number of marked fish returning and the percentage return, as presented, are lower than they would have been had information on the threeocean fish been available.

In the first experiment (table 31), 25,000 seaward migrants were marked, 740 marked fish were recovered and a calculated total of 5,151 marked fish returned from this experiment, not counting the marked fish returning during 1929. The return from this experiment was at least 20.6 percent.

Age of seaward mi- grants marked	Calcu- lated number of cach age marked	Age of fish returning from 1926 migration	Calculated number of each age group ex- amined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percent- age return at various ages	Total per- centage return
2	92	{ 4 ₂ 5 ₂	1, 509	1	0.066	9, 934 8, 836	7	7.6	} 17.6
3	19, 196	$\begin{cases} 4_3 \\ 5_3 \\ 6_3 \end{cases}$	2, 690 168, 042	5 498	. 186 . 296	43, 551 1, 236, 953 325, 643	81 3, 661	.4 19.1	1 19. 5
4	5, 641	$\begin{cases} 7_3 \\ 4_4 \\ 5_4 \\ 6_4 \\ 7_1 \end{cases}$	4, 527 44, 264	11 219	. 243 . 495	$ \begin{array}{r} 20 \\ 1,040 \\ 47,298 \\ 254,138 \\ 14,294 \end{array} $	115 1, 258	2.0 22.3	1 24, 3
5	71	δs 7δ	279	6	2. 151	895 1, 325	29	40.8	<pre></pre>
Total	25,000		221, 311	740		1, 943, 927	1 5, 151		

TABLE 31.—Data for the first 1926 marking experiment

¹ Based on incomplete data, see text.

The incomplete returns from the marked 2-, 3-, 4-, and 5-year seaward migrants were 7.6, 19.5, 24.3, and 40.8 percent, respectively. Very few 2- and 5-year seaward migrants were marked, and the returns from those age groups are based on the re-

covery of only one and six fish, respectively; hence, the percentage returns are unreliable. As the size of the migrants increases with age, the data indicate that the larger migrants have the highest survival value.

In the second experiment (table 32) 21,791 migrants were marked, 659 were recovered, and a calculated total of at least 4,582 marked fish returned from this experiment (at least 21.0 percent). The incomplete returns from the marked 2-, 3-, 4-, and 5-year seaward migrants were 0.0, 20.5, 23.0 and 28.6 percent, respectively.

The returns from the two experiments agree closely except for the 2- and 5-year fish of which few were marked. If the data are combined as one experiment, 46,791 seaward migrants were marked, 1,399 were recovered, and a calculated total of at least 9,733 fish returned (a minimum of 20.8 percent).

Age of seaward mi- grants marked	Calcu- lated number of each age marked	Age of fish returning from 1926 migration	Calculated number of each age group ex- amined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percent- age return at various ages	Total per- centage return
2	{ 52	42 50	1,509			9, 934 8, 836			} 10.0
3	16, 730	43 53 63	2, 690 168, 042	3 458	0. 112 . 273	43, 551 1, 236, 953 325, 643	49 3, 377	0, 3 20, 2	1 20. 5
4	4, 925	73 44 54 64	4, 527 44, 264	5 188	. 110 . 425	20 1, 040 47, 298 254, 138	52 1, 080	1. 1 21. 9	1 23.0
5	84	74 65 75	279	5	. 792	14, 294 895 1, 325	24	28.6	} 28.6
Total	21, 791		221, 311	659		1, 943, 927	1 4, £82		

TABLE 32.—Data for the second 1926 marking experiment

4 Based on incomplete data, see text.

EXPERIMENTS IN 1927 AND 1928

Fifty thousand seaward migrants were marked in both 1927 and 1928. However, the eurtailment of commercial fishing in 1929 and 1930 made it impossible to adequately sample the runs of those years for the presence of marked fish, and the data are consequently not included here.

EXPERIMENTS IN 1929

In 1929 (table 33), 50,061 seaward migrants were marked by the amputation of the adipose and both ventral fins, 1,315 fish were recovered, and a calculated total of 11,157 marked fish returned from this experiment (22.3 percent). The return from the 3-, 4-, and 5-year marked seaward migrants was 18.3, 24.4, and 13.5 percent, respectively. As very few 5-year seaward migrants were marked and only 3 recovered, the latter figure cannot be considered reliable; however, considering the returns of the 3- and 4-year seaward migrants, it is again apparent that the older and larger migrants had the highest survival value.

				and the second se					
Age of seaward mi- grants marked	Calcu- lated number of each age marked	Age of fish returning from 1929 migration	Calculated number of each age group ex- amined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percent- age return at various ages	Total per- centage return
1		$\begin{cases} 3_1 \\ 4_1 \end{cases}$	57 204			311 1, 938			
2			2,734			18, 573			
3	21, 858	$ \begin{array}{c} 32 \\ 43 \\ 53 \\ 63 \\ 73 \end{array} $	1,990 212 100,844 8,308 92	3 366 51	1.415 .363 .614	19, 133 46, 344 793, 931 73, 293 752	656 2,882 450	3.0 12.2 2.1	18.3
4 5	28, 041 162	$ \begin{cases} 5_4 \\ 6_4 \\ 7_4 \\ 7_5 7_5 $	679 96, 863 3, 110 176	5 826 61 3	. 736 . 853 1. 961 1, 705	136, 159 628, 663 39, 920 1, 308	1,002 5,362 783 22	3.5 19.1 2.8 13.5	25, 4
Total	50, 061		215, 269	1, 315		1, 760, 325	11, 157		

TABLE 33.—Data for the 1929 marking experiment

EXPERIMENTS IN 1930

Three marking experiments were carried on simultaneously (tables 34-36). Although the experiments were simultaneous they have been designated first, second, and third for reference purposes and to provide for facility in discussion.

In the first experiment (table 34), 25,000 seaward migrants were marked by amputation of the adipose and right ventral fins, 631 of these were recovered, and a calculated total of 5,177 fish returned (20.7 percent).

In the second experiment (table 35), 25,000 seaward migrants were marked by amputation of the adipose and left ventral fins, 666 of these were recovered, and a calculated total of 5,350 marked fish returned (21.4 percent). Two marked fish of the 7_3 age group were recovered, but according to the data, no fish of that age group were examined or were present in the return from the migration. The 7_3 age group, undoubtedly, was present among the fish examined, but its numbers were so few that representation was not afforded in the samples from which scales were secured for age determination.

TABLE 34.—Data fe	or the fi	irst 1930	marking	experiment
-------------------	-----------	-----------	---------	------------

_	Age of seaward mi- grants marked	Calcu- lated number of each age marked	Age of fish returning from 1930 migration	Calculated number of each age group ex- amined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percent- age return at various ages	Total per- centage return
1 2 3 4 5		252 14, 676 9, 773 299	$ \begin{cases} 4_1 \\ 4_2 \\ 5_2 \\ 4_2 \\ 5_3 \\ 6_8 \\ 5_4 \\ 6_4 \\ 7_4 \\ 6_5 \\ 7_8 $	$\begin{array}{c} 130\\ 2,078\\ 3,212\\ 1,252\\ 67,451\\ 32,251\\ 8,669\\ 72,302\\ 1,769\\ 325\\ 1,146\end{array}$	1 4 163 87 26 322 19 1 8	$\begin{array}{c} 0.031\\ .319\\ .242\\ .270\\ .300\\ .445\\ 1.058\\ .308\\ .698\end{array}$	804 18, 664 38, 624 8, 764 714, 745 268, 334 48, 829 502, 844 21, 838 1, 507 8, 835	$ \begin{array}{r} 12\\28\\1,730\\725\\146\\2,238\\231\\5\\62\end{array} $	4.8 .2 11.8 4.9 1.5 22.9 2.4 1.7 20.7	<pre> 4.8 16.9 26.8 22.4</pre>
	Total	25,000		190, 675	631		1, 633, 788	5, 177		

Age of seaward mi- grants marked	Calcu- lated number of each age marked	Age of fish returning from 1930 migration	Calculated number of eacb age group ex- amined	Number of marked fish of each age group found	Percentage occurrence of marked fisb in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percent- age return at various ages	Total per- centage return
		4.	130			804			
2	237	{ 42	2,078			18,664			} 0.0
		$\begin{cases} 3_2 \\ 4_3 \end{cases}$	3, 212	6	0.479	38, 024 8, 764	42	0.3	1
	14, 923	52	67,451	150	. 222	714,745	1, 587	10.6	16.3
		73	02, 201	12		200,001			J
	9, 554	54 64	8,669 72,392	37	. 427	48, 829 502, 844	230	2.4 25.1	29.2
		74	1,769	13	.735	21,838	161	1.7	ł
	286		1, 146	16	1. 330	8, 835	123	41.6	} 41.6
Total	25,000		190, 675	666		1,633 788	5, 350		
				1		1	1		

TABLE 35.—Data for the second 1930 marking experiment

¹ See p. 284.

TABLE 36.—Data for the third 1930 marking experiment

Age of seaward mi- grants marked	Calcu- lated number of each age marked	Age of fish returning from 1930 migration	Calculated number of cach age group ex- amined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percent- age return at various ages	Total per centage return
1		4,	130			804			
2	46	{ 42	2,078			18,664			} 0.0
		43	1, 252	1	0.080	8,764	7	0.2	1
3	2, 966	53 63	67,451 32,251	31	.046	714,745 268,334	329	11.1 3.9	15.2
	1 020	54	8,669	8	. 092	48,829	45	2.3	1 20.8
*	1, 505		1,769	1	.003	21,838	12	.6	{
5	59	85 75	325	2	. 175	1, 507	15	25.4	25.4
Total	5.000		190.675	107		1 633 788	870		
1000100	0,000		100,070	101		1,000,100	010		

In the third experiment, 5,000 seaward migrants were marked by amputating the adipose and right pectoral fins, 107 of these were recovered, and a calculated total of 870 marked fish returned (17.4 percent).

The data for the first and second experiments are considered more reliable than those of the third, because more fish were marked and more fish recovered, and beeause there is the possibility that an unusual mortality occurred among the fish of the third experiment. Some of the seaward migrants, marked by removal of the adipose and right pectoral fins appeared to have a slight "list" and appeared to be maintaining balance with difficulty.

Grouping the data for the first and second experiments, 50,000 were marked, 1,297 were recovered, and a calculated total of 10,495 marked fish returned (21.0 percent). The return from the marked 2-, 3-, 4-, and 5-year seaward migrants was 2.4, 16.6, 28.0, and 32.0 percent, respectively.

EXPERIMENTS IN 1931

Two marking experiments were conducted in 1931 (tables 37 and 38). For easy reference they have been designated first and second although they were simultaneous.

In the first experiment, 50,000 seaward migrants were marked by amputating the adipose and both ventral fins, 1,549 of these fish were recovered, and a calculated total of 11,790 fish returned (23.6 percent of the number marked). The return from the 2-, 3-, 4-, and 5-year marked fish was 54.8, 21.2, 34.5, and 40.8 percent, respectively.

In the second experiment, 5,000 seaward migrants were marked by amputating the adipose and dorsal fin, 124 were recovered, and a calculated total of 1,016 fish returned (20.3 percent). The return from this experiment, although slightly lower, agrees closely with results of the first experiment. Amputation of the entire dorsal fin close to the base results in a large wound that may have a deleterious effect on the fish. The results of the first experiment are believed to be more reliable than those of the second.

Age of seaward migrants marked	Calculated number of each age marked	Age of fish returning from 1931 migration	Calculated number of each age group examined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentage return at various ages	Total percentage return
2	84	{ 4 2 8 2 6 2	786 5,947 49	24	0.254 .067	9, 191 34, 756 2, 143	23 23	27.4 27.4	54.8
3	41, 403	4 s 8 s 6 s 7 s	1, 166 86, 623 136, 439 249	4 345 863 8	.343 .398 .633 2.008	11, 516 966, 015 767, 240 2, 276	$39 \\ 3, 845 \\ 4, 857 \\ 46 \\ 40$.1 9.3 11.7 .1	21 2
4	8, 145	84 64 74 84	1, 434 48, 318 10, 669 17	246 58	. 558 . 809 . 544	21, 291 461, 549 62, 249	2, 349 339	1.5 28.8 4.2	34.5
5	368	{ 75 85	1, 721	14	. 813	18, 407 671	150	40.8	} 40.8
Total	50, 000		293, 418	1, 549		2, 358, 320	11,790		

FABLE 37. —Data	for the first	1931 marking	experiment
------------------------	---------------	--------------	------------

TABLE 38.—Data for the second 1931 marking experiment

Age of seaward migrants marked	Calculated number of each age marked	Age of fish returning from 1931 migration	Calculated number of cach age group examined	Number of marked fish of each of age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentage return at various ages	Total percentage return
2	9	4 2 5 2	786 5, 947			9, 191 34, 756 2, 143			} 0.0
3	4, 131		1, 166 86, 623 136, 439 249	1 37 57	0.086 .043 .042	11, 516 966, 015 767, 240 2, 276	$\begin{array}{r}10\\415\\322\end{array}$	0.2 10.0 7.8	18.0
4	824	5 4 6 4 7 4 8 4	1, 434 48, 318 10, 669	24 3	.050 .028	21, 291 461, 549 62, 240	231 17	28.0 2.1	30. 1
δ	36		1, 721	2	. 116	18, 407 671	21	88.3	58.3
Total	5, 000		293, 418	124		2, 358, 320	1, 016		

EXPERIMENTS IN 1932

Four marking experiments were conducted (tables 39-42). The fish marked in the first experiment were captured on May 27 and 28; those in the second experiment on May 30, 31, June 3, and 4; the fish for the third experiment on June 6, 7, 8, and 9; and the fish in the fourth experiment on June 11, 12, and 22. The experiments were planned, in part, to determine whether or not a differential mortality in the ocean existed between fish marked by the amputation of the adipose and one ventral fin and fish marked by the amputation of the adipose and one ventral fin and fish marked by the amputation of the adipose and one pectoral fin, and to determine if a correlation existed between the time of occurrence of fish in the migration period and the time of their occurrence in the runs on their return as adults.

In the first experiment (table 39), 15,000 seaward migrants were marked by amputation of the adipose and right ventral fins, 341 fish were recovered, and a calculated total of 2,957 marked fish returned (19.7 percent). The return from the 3-, 4-, and 5-year marked seaward migrants was 19.1, 20.5, and 3.0 percent, respectively.

				the second se	And the second sec		And and a second s		
Age of seaward migranta marked	Calculated number of each age marked	Aga of fish returning from 1932 migration	Calculated number of each age group examined	Number of marked fish of each aga group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentage return at various ages	Total percentage return
1		4 ₁ 4 ₂	837 12, 225			2,811 53,258)
2		51	5, 525			41, 299			}
		6 42	148		0 192	6 771	13	0.2	1
2	0.075	52	88, 164	116	. 132	632, 884	835	13. 3	
3	0, 215	63	26, 912	30	. 111	304,079	338	5.4	19.1
		1 73	113	1	.885	1,281	11	.2	Į
		64	56 666	139	245	494 716	1 212	1.3	
4	8, 593	74	9, 551	39	. 408	100, 909	412	4.8	20.5
		84	57	2	3.509	664	23	. 3	9
5	130	05	171			418		********	20
0	104	8	46	1	2.174	207	4	3.0	5.0
Total	15 000		203 502	2.11		1 662 401	9.057		
10(01	10,000		203, 083	941		1,002,491	2,801	*********	*****

TABLE 40.—Data for the second 1932 marking experiment

Age of seaward migrants marked	Calculated uumber of each age marked	Age of fish returning from 1932 migration	Calculated number of each aga group examined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentage return at various ages	Total percentage return
1			837 12, 225 5, 525 148			2,811 53,258 41,299 790			}
3	6, 020		1,041 88,164 26,912 113	97 49	0.110 ,182	6,771 632,884 304,079 1,281	696 553	11.5 9.2	20.7
4	8,824		2,077 56,686 9,551 57	1 91 46	.048 .161 .482	20, 626 494, 716 100, 909 664	10 796 486	. 1 9. 0 5. 5	14.6
5	147	$ \left\{\begin{array}{c} 6_{5} \\ 7_{5} \\ 8_{5} \end{array}\right. $	60 171 46	 1 1	. 585 2. 174	418 1,778 207	10 4	6.8 3.0	9.8
Total	15,000		203, 593	286		1, 662, 491	2, 555		

Age of seaward migrants marked	Calculated number of each age marked	Age of fish returning from 1932 migration	Calculated number of each age group examined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentage return at various ages	Total percentage return
1 2		$ \begin{array}{c} 4_1 \\ 4_2 \\ 5_2 \\ 6_2 \\ 6_2 \end{array} $	83712,2255,5251481,041			2, 811 53, 258 41, 299 790 6, 771			} }
3	9, 381	53 53 62 73	88, 164 26, 912 113 2, 077	175 82 4	0. 198 . 304 3. 540 241	632,884 304,079 1 281 20 626	1, 253 924 45 50	13.4 9.8 .5	23.7
4	5, 580	64 64 74 84	56, 666 9, 551 57	68 29 1	. 120 . 304 1. 754	494, 716 100, 909 664	594 307 12	10.7 5.5 .2	17.3
5	39	85 85	$\begin{array}{r} 60\\171\\46\end{array}$			1, 778 207			0.0
Total	15, 000		203, 593	364		1, 662, 491	3, 185		

TABLE 41.-Data for the third 1932 marking experiment

TABLE 42.—Data for the fourth 1932 marking experiment

:	Age of seaward nigrants marked	Calculated number of each age marked	Age of fish returning from 1932 migration	Calculated number of each age group examined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentage return at various ages	Total percentage return
				0.07			9 911			
1 2			$\begin{cases} 4_1 \\ 4_2 \\ 5_2 \end{cases}$	12, 225 5, 525	2	0.016	53, 258 41, 299	9	(1)	(1)
2			62	148			790 6 771			1
3		11, 420	43 53 63 7	1,041 88,164 26,912	99 101	. 112 . 375	632, 884 304, 079	709 1, 140	6. 2 10. 0	16.2
4		2, 416		2, 077 56, 666 9, 551	20 11	.035 .115	20, 626 494, 716 100, 909 664	173 116	7.2 4.8	12.0
5		164		60 171 46	1	. 585	418 1,778 207	10	6.1	6.1
	Total	14,000		203, 593	234		1, 662, 491	2, 157		

¹ See text.

In the second experiment (table 40), 15,000 seaward migrants were marked by amputation of the adipose and right pectoral fins, 286 fish were recovered, and a calculated total of 2,555 fish returned (17.0 percent). The return from the 3-, 4-, and 5-year marked fish was 20.7, 14.6, and 9.8 percent, respectively.

In the third experiment (table 41), 15,000 seaward migrants were marked by amputation of the adipose and left ventral fins, 364 fish were recovered, and a calculated total of 3,185 marked fish returned (21.2 percent). The return from the 3-, 4-, and 5-year marked fish was 23.7, 17.3, and 0.0 percent, respectively.

In the fourth experiment (table 42), 14,000 seaward migrants were marked by the amputation of the adipose and left pectoral fins, 234 fish were recovered, and a calculated total of 2,157 fish returned (15.4 percent). The return from the 3-, 4-, and 5-year marked fish was 16.2, 12.0, and 6.1 percent, respectively.

Two marked fish of the 42 age group were recovered (table 42). However, according to the data presented, no 2-year seaward migrants were marked. Some 2-year

seaward migrants, undoubtedly, were marked but their numbers probably were so few that they were not represented in the samples of fish from which scales were taken for age determination.

From the results of these experiments it appears that there was a differential mortality between the fish marked by excising the adipose and one ventral fin, and those marked by excising the adipose and one pectoral fin. The average survival from the first and second experiments was 18.4 percent, and the average survival from the last two experiments was also 18.4 percent. However, the average survival from the first and third experiments was 20.5, while the average survival from the second and fourth experiments was only 16.2 percent. Hence, there was only 79.2 percent as good a return from the fish marked by removing the adipose and one pectoral fin as there was from the fish marked by removing the adipose and one ventral fin. These results agree closely with those obtained in the 1930 experiment in which the total return from the fish marked by amputing the adipose and one ventral fin was 21.0 percent, and the total return from the fish marked by amputating the adipose and one pectoral fin was 17.4 percent. In the 1930 experiments, there was only 89.2 percent as good a survival of fish marked by excising the adipose and one pectoral fin as there was of fish marked by removing the adipose and one pectoral fin as there was of fish marked by removing the adipose and one pectoral fin as there

The percentage occurrence of marked fish of a single age and one type of mark remained fairly constant throughout the seasons in which they were sampled. However, from the marking of 3-year seaward migrants, the ratio between the return of two-ocean fish and the return of three-ocean fish was 2.38 to 1, 1.25 to 1, 1.37 to 1, and 0.62 to 1 for the first, second, third, and fourth experiments, respectively. Thus, of the 3-year seaward migrants the early migrating fish spent, on the average, a shorter time in the ocean than the late migrating fish. From the marking of 4-year seaward migrants, the ratio between the return of two-ocean fish and the return of three-ocean fish was 2.94 to 1, 1.64 to 1, 1.95 to 1, and 1.5 to 1 for the first, second, third, and fourth experiments, respectively. The returns from the marking of 4-year seaward migrants and the returns from the marking of 3-year seaward migrants both demonstrated a positive correlation between the time of occurrence during the migration period, and the length of time spent in the ocean.

As there appears to be a differential mortality between fish marked by removal of the adipose and one ventral fin, and fish marked by removal of the adipose and one pectoral fin, in comparing the results of the 1932 experiments with experiments of other years, it seems advisable to consider only the two experiments in which the fish were marked by the amputation of the adipose and one ventral fin. Grouping the data of the first and third experiments, 30,000 migrants were marked, 705 fish were recovered, and 6,142 marked fish returned (20.5 percent). The returns from the marked 3-, 4-, and 5-year seaward migrants were 21.9, 19.1, and 2.3 percent, respectively, giving evidence for the first time contrary to the hypothesis that there is no positive correlation between age at time of migration, and survival.

EXPERIMENTS IN 1933

In 1933 (table 43) 40,000 seward migrants were marked by the amputation of the adipose and both ventral fins, 959 fish were recovered, and a calculated total of 8,212 marked fish returned (20.5 percent of the number marked). The return from the 2-, 3-, 4-, and 5-year marked seaward migrants was 18.8, 18.3, 24.9, and 15.6 percent, respectively.

Age of seaward mi- grants marked	Calcu- lated number of each age marked	Age of fish returning from 1933 migration	Calculated number of each age group ex- amined	Number of marked fish of cach age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percent- agereturn at various ages	Total per- centage return
1 2 3	- 250 - 25, 394		$\begin{array}{r} 166\\ 7, 614\\ 9, 942\\ 548\\ 64, 728\\ 24, 536\end{array}$	2 4 1 453 189	0.026 .040. .171 .700 .770	474 58, 018 80, 153 3, 654 458, 344 187, 190	15 32 6 3, 208 1, 441	6.0 12.8 0.0 12.6 5.7	} 18.8 } 18.3
4 5	- 13, 692 - 664	18 54 64 74 65 78 85	901 34,756 6,244 1,037 51	3 202 98 4 3	. 333 . 581 1. 570 . 386 5. 882	$\begin{array}{r} 13,655\\417,073\\59,934\\638\\20,043\\409\end{array}$	45 2, 423 941 77 26	$ \begin{array}{r} 0.3\\17.7\\6.9\\11.6\\4.0\end{array} $	24.9
Total	40,000		150, 523	959		1, 299, 675	8, 212		

TABLE 43.—Data for the 1933 marking experiment

DISCUSSION OF MARKING EXPERIMENTS

In comparing results of the several years marking experiments, it seems advisable to consider the returns from only those experiments in which the fish were marked by the amputation of the adipose and one, or both, ventral fins. It also seems advisable to combine the results in those years when duplicate experiments were run.

In those experiments in which the adipose and one, or both, of the ventral fins were amputated, the returns from the experiments of the years 1926, and 1929 to 1933, inclusive, are 20.8 (incomplete), 22.3, 21.0, 23.6, 20.5 and 20.5 percent, respectively. These results are remarkably uniform and indicate that the survival rate of the fish, during their stay in the ocean, has been quite constant.

Grouping the data of all experiments wherein the fish were marked by the amputation of the adipose and left, right, or both ventral fins gives a total of 169,836 three-fresh-water fish marked and a calculated return of 29,560 marked fish, or a 17.4 ¹¹ percent return. For the four-fresh-water fish it is found that 93,944 were marked, and 24,142 marked fish returned, or a 25.7 percent return.

While combining the data in this manner may be subject to some criticism, it is quite evident that a differential mortality exists between the three-fresh-water fish and the older and larger four-fresh-water fish. The greater survival of the four-freshwater fish during their stay in the ocean would seem to indicate that a longer lake residence was advantageous. However, this greater ocean survival may be drastically over-balanced by the mortality during the extra year spent in fresh water.

The percentage occurrence of marked fish in the different age groups examined varied considerably, and while a certain amount of the variation is due to random errors in sampling, it cannot all be ascribed to that factor. The age-group composition of the seaward migration changes considerably during the migration period, and as there is no means of determining, actually or relatively, how many migrants pass downstream each day, it is impossible to mark a constant proportion of the migration.

[&]quot; Does not include the three-ocean fish from the experiments of 1926. However, this omission would not materially affect the results.

Since a constant proportion of the migrating population cannot be marked day by day during the migration period, and as the 1932 experiments indicated that early migrating fish tended to return after a shorter period of ocean life, it is apparent that eritical comparisons of the returns of any two or more years cannot be made. The longer the period of time spent in the ocean the greater the mortality will be, consequently, for exact comparisons between marking experiments of 2 or more years, it is necessary that the fish of one experiment have remained in the ocean the same length of time as the fish of the other experiments.

In view of the possible errors in the calculated percentage return from the marking of any one age of seaward migrants, especially in the returns of the 2- and 5-year age groups, it is believed that the best average value for the ocean survival is the mean of the several yearly values, i. e., 21.45 percent.

Unfortunately, there is no way of knowing whether or not a differential mortality exists between marked and unmarked fish, although a differential mortality was found to exist between fish marked by the amputation of the adipose and one pectoral fin, and the fish marked by the amputation of the adipose and one of the ventral fins. This might be caused by any one, or a combination, of the following:

1. Regeneration of the pectoral fins. The pectoral fins were amputated as close to the body of the fish as possible, and it does not seem probable that any of the amputated fins could have regenerated to such an extent as to be unrecognizable. None of the marked fish recovered showed the slightest sign of regeneration of this fin.

2. Mortality of the fish as a direct result of the operation. Some of the fish were held in a pen for several days after being marked and then earefully examined. The wounds had begun to heal and the fish showed no ill effects other than that a few specimens appeared to have a slight "list." Consequently, the marking probably did not have a direct influence on the mortality.

3. Mortality caused by the inability of the fish to elude their enemies to as great an extent as could the fish marked by the amputation of the adipose and one ventral fin. The peetoral fins are used, almost entirely, for maintaining equilibrium, and it is possible that fish marked by the amputation of the adipose and one peetoral fin were handicapped. Such a handicap should not hinder fish feeding on plankton. However, it might be a serious disadvantage when being pursued by predators. This is considered the most likely of the several possible explanations for the differential mortality found between the two groups.

There may have been a differential mortality between the unmarked fish and those marked by the amputation of the adipose and one, or both, of the ventral fins. It is not believed that the differential mortality could have been very great in view of the relatively good returns from all the experiments. If the factor used by Foerster at Cultus Lake, to correct for differential mortality, were applied to the Karluk data, the survival of unmarked Karluk fish would be in excess of 56 percent.

MORTALITY IN FRESH WATER

Having ascertained the probable average ocean mortality of Karluk red salmon to be 78.55 percent, as determined by the marking experiments, it is of interest to calculate the mortality of this species between the egg stage and the scaward migrant stage. The

average number of eggs per female, as reported by Gilbert and Rich (1927), is approximately 3,700. If the spawning fish are 56 percent females (table 30), then there would be an average of 2,072 eggs per fish in the escapement. With a ratio of return to escapement of 2 to 1 the mortality between eggs and seaward migrants would be 99.55 percent, while with a ratio of return to escapement as high as 4 to 1 the mortality between eggs and seaward migrants would still be over 99 percent. Thus the mortality rate of these salmon, during the fresh-water stage of their life history, is extremely high.

There are a number of factors which contribute to this terrific loss in fresh water. Many eggs are destroyed by the spawning fish which, during their spawning activities, dig out eggs laid by earlier spawners. While the eggs are being deposited and during the incubation period, there is a loss caused by predators such as trout and birds. Meteorological conditions during the incubation period affect the success or failure of a brood year. Floods, dry spells, or freezing weather may affect the eggs adversely. After hatching, the fry work their way out of the gravels of the spawning beds and, if in the tributaries, migrate downstream to the lake. Until the young fish distribute themselves along the lake shores and seek shelter among the rocks and boulders on the bottom, they are preyed upon by trout. During the next 2 or 3 years they are subject to diseases and parasites, and many are devoured by fish-eating birds such as mergansers and terns. Thus, there is a constant decimation of the population, until less than 1 percent of the possible number of progeny have survived to migrate to the ocean.

Of the fraction of 1 percent of possible progeny which have survived to the seaward migrant stage, 79 percent perish while in the ocean due to disease and natural enemies, leaving only 21 percent of the seaward migrants (between 0.1 and 0.2 percent of the possible number of progeny) to return as mature fish.

SUMMARY AND CONCLUSIONS

1. There has been a marked reduction in the abundance of Karluk River red salmon since the inception of intensive commercial fishing in 1888. The average yearly catch for the period 1888 to 1894, inclusive, was more than 1,000,000 fish greater than the average yearly total run (catch plus escapement) for the period 1921 to 1936.

2. Karluk red salmon migrate to the occan in their first to fifth year counting from the time the eggs are deposited in the gravel of the spawning beds, the majority migrating in their third or fourth year.

3. From a few months to 4 years are spent in the ocean, after which the fish return as adults to spawn.

4. While the fish range from 3 to 8 years of age at maturity, the 5-year age group is usually dominant, followed in importance by the 6-year age group.

5. The number of fish in the spawning escapements during the period 1921 to 1936 has ranged from 400,000 to 2,533,402 and averaged 1,113,594.

6. The runs of red salmon at Karluk are bimodal, and it is considered that there are actually two distinct runs, spring and fall.

7. The fluctuations in the ratio of return to escapement have been considerable, and no correlation has been found between escapement and return. This is due in part to unfavorable environmental conditions on the spawning grounds in certain years.

8. A negative correlation exists between escapement and surplus which might indicate that most of the escapements have been too large. This suggestion is believed to be untrue. The negative correlation is related to adverse factors influencing the survival value.

9. While the affluents of Karluk Lake contained appreciable amounts of phosphorus and silica, during the summer months, less than a measurable quantity of these inorganic salts were present in the lake water, indicating that they are limiting factors in the production of phytoplankton and indirectly of the zooplankton of Karluk Lake. As the lack of these inorganic salts indirectly affects the production of zooplankton it is probable that it also indirectly affects the growth and survival of young red salmon which depend, to a large extent, on the zooplankton as a source of food.

10. Little change, if any, is taking place in the relationship between the percentage of fish of a certain ocean history in the escapement and the percentage of fish of the same ocean history in the return. However, a marked change is occurring in the percentage of fish of a particular fresh-water history in the escapement in relation to the percentage of fish of the same fresh-water history in the return. This relationship is quite unusual, and though evidently existent during most of the period of time under consideration could not possibly have existed for any great length of time in the past. Unless the relationship changes, the majority of the fish in the Karluk runs will be four-fresh-water fish, whereas formerly the three-freshwater age group was domiuant.

11. The change in the period of time spent in fresh water is considered to be due to unfavorable environmental conditions, which may also adversely affect the survival value of the population.

12. The seaward migration of Karluk red salmon takes place during the last week of May and the first 2 weeks of June.

13. The percentage of 4-year fingerlings decreases, and the percentage of 3-year fingerlings increases, during the period of the migration.

14. The time of seaward migration depends on the growth rate of the fingerlings, the fastest growing individuals migrating first.

15. Among the seaward migrants the males and females are equally represented.

16. Among the adult fish there is a greater proportion of females than males.17. There is a decrease in the percentage of males among the adult fish, with increased ocean residence.

18. Among the fish of a single ocean history, there is usually a decrease in the percentage of males with increased total age.

19. The returns from the marking experiments at Karluk have been consistently greater than returns from similar experiments in other areas. This is probably true because the Karluk seaward migrants were larger at the time of marking and migration than the fish in similar experiments in other areas.

20. A greater return, or survival, was found among the older and larger 4-year migrants than among the 3-year migrants.

21. Although the ocean survival is greatest for fish that have had the longest lake residence, these fish suffer a greater mortality in fresh water due to the longer residence in the lake.

22. Removal of the adipose and right, left, or both ventral fins is considered preferable in marking fish rather than the removal of adipose and dorsal, or adipose and one pectoral fin.

23. The adipose and dorsal mark compared equally well with the adipose and right ventral mark in the returns. However, the removal of the dorsal fin left a large wound on the back of the young fish which may cause a high rate of mortality.

24. The right and left pectoral marks are definitely inferior to the others, due probably to the need of these fins by the fish for maintaining their equilibrium when eluding their enemies.

25. The total calculated returns from those experiments wherein either the adipose and left ventral, adipose and right ventral, or adipose and both ventral fins were amputated were 20.8 (incomplete), 22.3, 21.0, 23.6, 20.5, and 20.5 percent for the experiments of 1926, 1929, 1930, 1931, 1932, and 1933, respectively.

26. The average return from the marking of 3-year seaward migrants was 17.4 percent and for the 4-year seaward migrants 25.7 percent.

27. While a slight differential mortality probably exists between the marked and the unmarked fish, it is not considered to be great in the case of the fish marked by the amputation of either the left, right, or both ventral fins, as the survival of the marked fish during their stay in the ocean is relatively high, averaging 21.45 percent.

28. The mortality of Karluk River red salmon during the fresh-water stage of their life history is usually over 99 percent.

LITERATURE CITED

Association of Official Agricultural Chemists.

1930. Nitrogen in the form of nitrite—official, p. 405. Official and Tentative Methods of Analysis. Assoc. Official Agr. Chem. third edition, 593 pp. Wash.

DAVIDSON, FREDERICK A.

1934. The homing instinct and age at maturity of pink salmon (Oncorhynchus gorbuscha). Bull. U. S. Bureau of Fisherics, vol. XLVIII, 1933 (1934) pp. 27-39, Wash.

DIENERT, M. M., and F. WANDENBULCKE.

1923. On the determination of silica in water. Compt. rend. soc. biol. Paris 176: 1478-1480. FISHER, R. A.

1930. Statistical methods for research workers. 283 pp. Oliver and Boyd, London. FOERSTER, R. E.

1934. An investigation of the life history and propagation of the sockeye salmon (Oncorhynchus nerka) at Cultus Lake, British Columbia. No. 4. The life history cycle of the 1925 year class with natural propagation. Contributions to Canadian Biology and Fisheries, vol. VIII, No. 27 (Series A, General, No. 42). Toronto.

1936a. An investigation of the life history and propagation of the sockeye salmon (Oncorhynchus nerka) at Cultus Lake, British Columbia. No. 5. The life history cycle of the 1926 year class with artificial propagation involving the liberation of free-swimming fry. Jour. Biol. Bd. Can. vol. 2, No. 3, pp. 311-333. Toronto.

1936b. The return from the sea of sockeye salmon (Oncorhynchus nerka) with special reference to percentage survival, sex proportions, and progress of migration. Jour. Biol. Bd. Can. vol. 3, No. 1, pp. 26-42. Toronto. GILBERT, CHARLES H., and WILLIS H. RICH.

- 1927. Investigations concerning the red-salmon runs to the Karluk River, Alaska. Bull. U. S. Bureau of Fisheries, vol. XLIII, Part II, pp. 1–69. Wash.
- JUDAY, C., WILLIS H. RICH, G. I. KEMMERER, and ALBERT MANN.
- 1932. Limnological studies of Karluk Lake, Alaska, 1926–1930. Bulletin U. S. Bureau of Fisheries, vol. XLVII, pp. 407–436. Wash.

KELEZ, GEORGE B.

1937. Relation of size at release to proportionate return of hatchery-reared coho (silver) salmon. The Progressive Fish Culturist. July, No. 41, pp. 33-36. U.S. Bureau of Fisheries, Wash.

KING, E. J., and C. C. LUCAS.

- 1928. The use of picric acid as an artificial standard in the colorimetric estimation of silica. Jour. of Am. Chem. Soc. vol. 50, pp. 2395-2397.
- PRITCHARD, A. L.
 - 1934a. The interpretation of the recoveries of marked pink salmon in 1933. Biol. Bd. of Can. Progress Reports of Pacific Biol. Sta., Nanaimo, B. C., and Pacific Fisheries Exper. Sta. Prince Rupert, B. C., No. 20, pp. 3-5. Prince Rupert.
 - 1934b. The recovery of marked pink salmon in 1934. Biological Board of Canada. Progress Reports of Pacific Biol. Sta., Nanaimo, B. C., and Pacific Fisheries Exper. Sta., Prince Rupert, B. C., No. 22, pp. 17–18. Prince Rupert.
- RICH, WILLIS H., and H. B. HOLMES.
- 1928. Experiments in marking young chinook salmon on the Columbia River, 1916–1927. Bull. U. S. Bureau of Fisheries, vol. XLIV, pp. 215–264. Wash.
- RICH, WILLIS H., and FREDERICK G. MORTON.
- 1929. Salmon-tagging experiments in Alaska, 1927 and 1928. Bull. U. S. Bureau of Fisheries, vol. XLV, pp. 1–23. Wash.
- RICH, WILLIS H., and EDWARD M. BALL.
 - 1931. Statistical review of the Alaska salmon fisheries. Part II: Chignik to Resurrection Bay. Bull. U. S. Bureau of Fisheries, vol. XLIV, pp. 643-712, Wash.
- ROBINSON, R. J., and G. I. KEMMERER.
 - 1930a. Determination of silica in mineral waters, Trans. Wis. Acad. Sci., Arts, and Letters, vol. 25, pp. 129-134.
 - 1930b. Determination of organic phosphorus in lake waters. Trans. Wis. Acad. Sci., Arts, and Letters, vol. 25, pp. 117-121.
- ROUNSEFELL, GEORGE A., and GEORGE B. KELEZ.
- 1938. The salmon and salmon fisheries of Swiftsure Bank, Puget Sound, and the Frascr River. Bull. U. S. Bureau of Fisheries, vol. XLIX, pp. 693-823. Wash.

SEYLER, C. A.

- 1894. Notes on water analysis. Chem. News, vol. 70, pp. 82-83, 104-105, 112-114, 140-141. SNYDER, J. O.
- 1921. Three California marked salmon recovered. Calif. Fish and Game, vol. 7, No. 1, Jan. pp. 1-6. Sacramento.
- 1922. The return of marked king salmon grilse. Calif. Fish and Game, vol. 8, No. 2, April, 1922, pp. 102-107. Sacramento.
- 1923. A second report of the return of king salmon marked in 1919, in Klamath River. Calif. Fish and Game, vol. 9, No. 1, Jan. pp. 1-9, Sacramento.
 - 1924. A third report on the return of king salmon marked in 1919 in Klamath River, Calif. Fish and Game, vol. 10, No. 3, July, pp. 110-114. Sacramento.